[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0540529B1 - Fuel-injection device for spark-ignition internal-combustion engines - Google Patents

Fuel-injection device for spark-ignition internal-combustion engines Download PDF

Info

Publication number
EP0540529B1
EP0540529B1 EP91910996A EP91910996A EP0540529B1 EP 0540529 B1 EP0540529 B1 EP 0540529B1 EP 91910996 A EP91910996 A EP 91910996A EP 91910996 A EP91910996 A EP 91910996A EP 0540529 B1 EP0540529 B1 EP 0540529B1
Authority
EP
European Patent Office
Prior art keywords
fuel
distributor
valve
injection device
rotating part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91910996A
Other languages
German (de)
French (fr)
Other versions
EP0540529A1 (en
Inventor
Helmut Rembold
Ernst Linder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0540529A1 publication Critical patent/EP0540529A1/en
Application granted granted Critical
Publication of EP0540529B1 publication Critical patent/EP0540529B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/14Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined rotary distributor supporting pump pistons
    • F02M41/1405Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined rotary distributor supporting pump pistons pistons being disposed radially with respect to rotation axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively

Definitions

  • the invention is based on a device according to the preamble of the main claim.
  • the duration of the fuel in the combustion chamber when the internal combustion engine is operating at full load is extended by the 180 ° angle of rotation of a camshaft connected to an internal combustion engine piston compared to the duration of stay in part-load operation.
  • the injection quantity of the fuel is adapted to the load operation.
  • the fuel injection device has a pump and a distributor, preferably driven at pump speed. The rotating part of the distributor alternately connects a supply line connected to the pump to injection lines leading to the individual cylinders of the internal combustion engine via internal flow channels depending on the angle of rotation.
  • the fuel When the internal combustion engine is operating at full load, the fuel is introduced into the combustion chamber during the suction stroke of the internal combustion engine piston so that it can mix well up to the ignition point. In this way, a complete combustion of the fuel-air mixture is ensured and soot emissions are prevented. In contrast, in part-load operation of the internal combustion engine, the fuel becomes very late, i.e. injected immediately before the ignition point, so that an ignitable mixture can form in layers in the area of the spark plug, so that the ignition initiated by the spark plug briefly detects the rest of the charge in the combustion chamber.
  • a switchover valve is provided for switching between the two different load-dependent injection times of the fuel injection device.
  • the outlet side has two outlet openings which are each connected to the inlet opening depending on the position of the valve slide.
  • the outlet openings lead to two different inner passages of the rotating part of the distributor.
  • the openings of the two passage channels occupy different angular positions in the fixed part of the distributor, so that the two opening angle regions of the rotating part of the distributor thus generated - with respect to the respective cylinder of the internal combustion engine - advance or lag relative to one another.
  • the injection which differs in time and is dependent on the angle opening area, takes place.
  • Corresponding ring grooves assigned to the lines are provided in each case for supplying the fuel from the changeover valve via lines into the flow channels of the rotating part of the distributor. As a result, the fuel flows from the changeover valve via the activated annular groove into the corresponding flow channel and via its opening further into the respective injection line connected to a cylinder.
  • the known fuel injection device has the disadvantage that it is complicated.
  • the production of the numerous transitions for the fuel between the fixed part of the distributor and the rotating part of the distributor is particularly complex.
  • These fuel transitions, which are designed as ring grooves, require precise manufacture with low tolerances for the distributor parts and the provision of appropriate sealants for fault-free operation.
  • the rotating part of the distributor does not have a homogeneous mass distribution on the surface of the rotating part of the distributor due to its flow channels running inside with the corresponding inlet and outlet openings. This places an unfavorable load on the bearings.
  • the fuel injection device according to the invention with the characterizing features of the main claim has a simplified construction while eliminating the disadvantages mentioned.
  • the invention is based on the knowledge that by moving the changeover valve in the rotating part of the distributor, a number of (to be sealed) fuel transitions between the lines of the fixed part of the distributor and the associated flow channels arranged in the rotating part of the distributor can be avoided, so that the manufacturing outlay is reduced. Furthermore, the flow conditions of the fuel delivered within the lines and the flow channels can be improved, so that a more direct fuel delivery is made possible.
  • the changeover valve is arranged concentrically within the rotating part of the distributor and its inlet opening is connected to the pump work space via a line which also runs exclusively within the rotating part of the distributor.
  • the rotating part of the distributor can be built up uniformly concentrically, so that the bearing forces which occur during rotation are reduced in relation to the known design.
  • the flow channels are directly connected to the changeover valve, whereby two transition channels of the fuel between the fixed part and the rotating part of the distributor are unnecessary.
  • the sliding arrangement of the valve slide of the changeover valve in the axial direction of the rotating part of the distributor results in the coaxial arrangement of the rotating part of the distributor with the changeover not changed from part load to full load operation.
  • An increase in the bearing forces during the switching process is thus avoided from the outset.
  • a more compact and lighter design is made possible in that the rotating part of the distributor forms the wall guiding the valve slide.
  • the longitudinal axis of the changeover valve and / or the connecting lines between the changeover valve and the pump work space coincide with the longitudinal axis of the rotating part of the distributor.
  • the movements of the individual parts can thus be coordinated with one another at low cost.
  • a streamlined arrangement of the fuel lines is made possible, that is to say fuel lines which have short lengths and are as straight as possible with few changes in direction.
  • the valve slide of the changeover valve is mounted in the rotating part of the distributor so that it can be switched easily by means of a hydraulic drive.
  • the valve spool forms the working piston of the hydraulic drive. Hydraulic fluid is applied to the front of this working piston, which ensures optimal power transmission.
  • the valve slide forms with its side wall a seal for the outlet opening of the changeover valve to be blocked. By moving the liquid, the valve slide is displaced between its two switching positions without being influenced by the rotational movement of the rotating part of the distributor.
  • a coaxial hydraulic channel with radial connecting channels to form an annular groove is provided as a connection between the hydraulic drive and the fixed part of the distributor.
  • the valve spool moves, the hydraulic fluid passes via the annular groove, the connecting channel to an end face of the valve spool, so that the valve spool can be switched while the distributor rotor is rotating.
  • this design and arrangement of the valve slide means that the hydraulic pressure for moving the valve slide can be built up without loss of pressure from the hydraulic drive and can be applied to the corresponding end face of the valve slide.
  • a valve in particular a solenoid valve, is provided in the hydraulic drive for determining the activation times of the valve slide.
  • the solenoid valve can be easily controlled by means of electrical signals and thus essentially the flow rate or flow times of the hydraulic fluid during the switching process of the changeover valve.
  • the valve slide has an annular groove which is connected to the connecting line via pressure channels. The fuel can be conveyed through the annular groove into the further openings of the passage channels of the distributor.
  • the effort involved in producing and processing the fixed part of the distributor can be reduced, that the outlet openings of the inner passage channels of the rotating part of the distributor on the outside thereof are located at the same height with respect to the axial direction.
  • Axial compensation by moving the valve slide is provided in the rotating part of the distributor.
  • the valve spool can also be stabilized in a position which forms the starting position, in which a spring acting in the axial direction and biased in the direction of the pump working space rests on the end face of the valve spool which is remote from the pump working space.
  • the spring force presses the slide against a stop arranged in accordance with the starting position of the slide.
  • the valve slide is held in the starting position in the event of a possible defect in the hydraulic line, i.e. preferably in the position for partial load operation. This avoids an uncontrolled movement of the slide in the event of a possible hydraulic line defect, and controlled injection also takes place in the event of failure or malfunctions of the hydraulic drive.
  • the rotating part of the distributor forms the working piston of the pump.
  • the size of the fuel injection device is thereby reduced in a favorable manner and the possibility of constructive design of the fuel injection device is expanded, in particular with regard to optimal fuel delivery.
  • the annular groove for the hydraulic fluid or an opening provided on the opposite wall has an extent in the axial direction that hydraulic fluid can pass regardless of the axial position of the rotating part of the distributor. The transition during the rotational and lifting movements of the corresponding part of the distributor is thus guaranteed throughout.
  • the pump work space can be connected to a relief space via a relief line that can be released as a function of time.
  • the fuel line leading the fuel into the pump work space is arranged coaxially with the axis of the rotating part of the distributor.
  • a check valve can be used, which is provided in the fuel line leading the fuel into the pump work chamber for closing the fuel line during the pressure stroke.
  • a controllable fuel shut-off means is preferably connected in parallel to the check valve, the fuel shut-off valve being located in the relief line.
  • a pressure limiter is provided in the fuel line, which avoids suddenly increasing line pressures, in which the pressure limiter opens its valve.
  • the hydraulic drive is connected to the fuel line, the fuel forming the pressure medium and the pressure being generated by a feed pump provided in the fuel line.
  • FIG. 1 shows a section through a fuel injection pump shown in simplified form
  • FIGS. 2a and 2b each show a section through the distributor of the fuel injection pump in different switching positions
  • FIGS. 3a to 3e each show a diagram of an injection sequence depending on the load of the internal combustion engine and in accordance with the possible switchover processes a schematically illustrated cross section of the distributor and in Figure 4 five time diagrams in different dependencies in a switching process by the switching valve.
  • an injection pump 9 for spark-ignition internal combustion engines which has a distributor 10 consisting of a fixed part 101 and a distributor rotor 102.
  • the cylindrical distributor rotor 102 of the distributor 10 is also designed as a working piston of the injection pump 9 for pumping movements and is connected to a rotating drive, not shown here, which generates lifting movements by means of a control disk.
  • the fixed part 101 of the distributor 10 is designed as a cylinder adapted to the rotating part 102 of the distributor 10.
  • the distributor rotor 102 is guided in the fixed part 101 of the distributor 10.
  • the free end of the distributor rotor 102 is adjoined by a pump work chamber 11 which essentially has the diameter of the distributor rotor 102 and which is expanded or reduced by the lifting movements of the distributor rotor 102 and thus promotes the fuel located in the pump work chamber.
  • the pump working space 11 is delimited in the axial direction by a wall 12 and in the radial direction by the inner surface 103 of the fixed part 101 of the distributor 10 which is adapted to the distributor rotor 102.
  • a cylindrical recess 13 which extends to the pump working chamber 11 and which has a constant diameter over its axial extent.
  • an axially displaceable valve slide 14 which is adapted to the recess 13 in the radial direction and is limited in the direction of the pump working space 11 by a stop disk 15 in its axial displacement movement.
  • the stop disc 15 is in an adapted Groove in the distributor rotor 102 clamped in the recess 13.
  • the limitation of the displacement movement in the opposite direction of displacement of the valve spool 14 is formed by the end face 16 of the recess 13, so that the valve spool 14 is displaceably mounted from the end face 16 of the recess 13 up to the stop disc 15.
  • a hydraulic channel 17 runs coaxially up to two connecting channels 18 that run radially with respect to the axis of the distributor rotor 102.
  • These two radial connecting channels 18 end in an annular groove 19 formed in the distributor rotor 102 19 corresponds to an opening 20 of a hydraulic line 21 and extends in the axial direction according to the maximum stroke movements, so that regardless of the position of the distributor rotor hydraulic fluid from the opening 20 into the annular groove 19 and thus the valve spool 14 are always moved by the hydraulic drive can.
  • valve spool 14 close tightly with the recess 13, so that the associated end face 141 of the valve spool 14 can be acted upon with hydraulic fluid without loss.
  • a solenoid valve 23 connected to a control device 22 is arranged in the hydraulic line 21 to determine the activation times of the valve slide. According to the control by the control device 22, the solenoid valve 23 opens, so that the valve slide is pressed into its left or right position as a result of the pressure conditions in the pump work chamber 11 and the pressure conditions by the hydraulic fluid of the hydraulic drive.
  • a cylindrical, coaxially arranged recess 24 and a corresponding further recess 25 in the end face 141 of the valve slide 14 are provided in the end face 16 of the recess 13.
  • the two recesses 24 and 25 are connected to one another via a prestressed spring 26, which presses the valve slide 14 in the direction of the pump work chamber 11. In the event of a possible defect in the hydraulic line, the valve slide 14 is thus pressed against the stop disk 15, the position of the valve slide during part-load operation of the internal combustion engine, by the prestressed spring 26.
  • valve spool 14 is an outwardly facing annular groove 27 and in the recess 13 and in the distributor rotor 102 are two inwardly facing, in the axial direction corresponding to the displacement movement of the valve spool 14 offset annular grooves 28 and 29 are formed.
  • connection channel 30 which initially runs radially to the center of the valve slide 14 and then in the axial direction to the pump work chamber 11 and which enables a fuel flow from the pump work chamber 11 into the inlet opening 31 of the connection channel 30 into the annular groove 27.
  • a passage channel 32 and 33 leads from the annular grooves 28 and 29 to the outer surface of the distributor rotor 102, the outlet openings 34 and 35 of the passage channels 32 and 33 being arranged at the same height in the axial direction.
  • the outlet openings 34 and 35 of the passage channels 32 and 33 have inlet openings 36 to 39 of injection lines 361 to 391 in the fixed part 101 of the distributor 10.
  • the passage channels 32 and 33 run obliquely in the distributor rotor 102 in order to compensate for the axial offset of their associated ring grooves 28 and 29.
  • the inlet openings 36 to 39 have an angle of 90 ° adjacent to one another.
  • the injection lines 361 to 391 are connected to injection nozzles 362 to 392, which introduce the fuel into the cylinder of the internal combustion engine.
  • the outlet openings 34 and 35 assume different angular positions on the outer surface of the distributor rotor 102, so that the opening angle regions of the distributor thus generated, in relation to the respective cylinder of the internal combustion engine, not shown here, lag or lag relative to one another.
  • the reference numerals are omitted the openings mentioned in this figure. However, these can be seen from FIGS. 2a and 2b.
  • the pump work chamber 11 By moving the valve slide 14 into one of the two stop positions, the pump work chamber 11 can be connected to the passage channel 32 or 33 via the annular groove 27 and the annular groove 28 or 29. As a result, the fuel introduced into the pump work chamber 11 can be conveyed via the passage channel 32 or 33 into the injection lines 361 to 391 and accordingly into the cylinders of the internal combustion engine.
  • the fuel enters the pump work chamber 11 via a fuel line 40 arranged coaxially to the rotating axis of the distributor rotor 102.
  • the fuel line 40 leads the fuel from an electric fuel pump 42 which pressurizes the fuel and delivers it from a storage tank 41 via a to close the fuel line 40 during
  • Check valve 43 provided in the pump stroke chamber 11 is connected in parallel with the check valve 43 and a further solenoid valve 44 is connected to the control device 22.
  • the solenoid valve 44 opens for predetermined periods of the pressure stroke by signals from the control device 22. The injection duration and the injection quantity are controlled via this solenoid valve 44, since when the solenoid valve 44 opens during the pressure stroke, fuel flows from the pump work chamber 11 through the solenoid valve 44.
  • the solenoid valve 44 When the solenoid valve 44 is opened, the start of delivery, the delivery rate and the delivery time can be controlled, so that the fuel is correspondingly less or over a shorter period of time is injected into the cylinder of the internal combustion engine through the distributor rotor 102.
  • the check valve 43 and the solenoid valve 44 are preceded by a pressure limiter 45, so that when a predetermined pressure value is exceeded, the pressure limiter 45 opens and fuel flows into a collecting tank 46 can escape.
  • the hydraulic drive is connected to the fuel line 40, the fuel being the pressure medium, i.e. forms the hydraulic fluid and the pressure in the hydraulic fluid is generated by the electric fuel pump 42.
  • the injection takes place in the suction stroke or in the compression stroke of the piston of the internal combustion engine via the outlet openings 34 or 35 of the passage 32 or 33 which are relatively advanced or lagging, with the different Points in time at which the outlet openings 34 and 35 pass through the inlet openings 36 to 39 are essentially fixed at the injection times.
  • the solenoid valve 44 there is still the possibility of influencing the injection process via the solenoid valve 44.
  • valve slide 14 At full load operation, ie injection in the suction stroke, the valve slide 14 is in its left position, so that the fuel from the pump work chamber 11 passes through the connection channel 30 into the passage channel 33 and then into the corresponding cylinder.
  • the solenoid valve 23 initially remains open during the delivery stroke of the distribution rotor 102. After the closing of the solenoid valve 44, the pressure builds up in the pump work chamber 11 and the valve slide 14 moves to its left stop, the end face 16 of the recess 13. Before the solenoid valve 44 is opened, the solenoid valve 23 closes. This keeps the control slide in its left position . Solenoid valve 23 is opened again briefly only at the beginning of the build-up of pressure during the next stroke cycle of the distributor rotor. The process is then repeated periodically.
  • valve slide 14 At partial load operation, i.e. Injection in the compression stroke of the piston of the internal combustion engine, the valve slide 14 is in the right position, so that the fuel passes through the connecting channel 30 into the passage channel 32 and thus into the associated cylinders of the internal combustion engine.
  • the solenoid valve 23 remains closed during the delivery stroke of the distributor rotor 102, as a result of which the valve slide 14 cannot deflect to the left because the hydraulic pressure continues to act on the valve slide 14. To correct an adjustment that can occur due to leakage on the valve slide 14, the solenoid valve 23 is briefly opened during the suction stroke of the distributor rotor 102. The forces acting on the valve slide 14 The spring force, mass force and pressure differential force between the left and right end faces then ensure that the stop disc 15 is pressed on.
  • valve slide 14 can also take place via the described circuitry of the solenoid valve 23.
  • a spark-ignited internal combustion engine can be operated with gasoline fuel in connection with the advantages which result in a self-igniting internal combustion engine from the low-loss, unthrottled supply of the combustion air into the combustion chambers.
  • the exemplary embodiment relates to a fuel supply for a four-cylinder internal combustion engine.
  • a fuel supply for a four-cylinder internal combustion engine can also be supplied with such a correspondingly modified fuel injection pump.
  • the outlet opening 34 rushes by the angular distance in front of the outlet opening 35 which the successive injection lines 361 to 391 have from one another.
  • FIG. 2a and 2b show a cross section II and II-II from FIG. 1 through the distributor 10.
  • the valve slide 14 assumes the left position, FIG. 2a, and the right position, FIG. 2b, from which the functioning of the distributor during full and part-load operation can be seen.
  • valve spool 14 When operating at full load, the valve spool 14 is in the left position.
  • the fuel from the pump work chamber 11 passes from the connecting channel 30 into the annular groove 27 of the valve slide 14, into the annular groove 28 of the distributor rotor 102 via the passage channel 33, the outlet opening 34 thereof, via the inlet openings 36 to 39 into the injection lines 361 to 391 into the respective cylinders.
  • valve spool 14 In contrast, at part-load operation the valve spool 14 is in the right position and the fuel passes from the ring groove 27 of the valve spool 14, into the ring groove 29 of the distributor rotor 102, the passage channel 32, the outlet opening 35 of which via the inlet openings 36 to 39 into the injection lines 361 to 391 in the connected cylinders.
  • the outlet openings 34 and 35 are arranged at an angle of 90 ° to one another, so that the injection time is offset by a crank angle of 180 °.
  • FIGS. 3a to 3d the injection times for cylinders 1 to 4 are shown in four diagrams as a function of the crankshaft rotation angle, with FIG. 3e - for better understanding of FIGS. 3a to 3d - a schematic cross section through distributor 10 with its passage channels 32 and 33 and the connected cylinders 1 to 4 shows.
  • FIG. 3a the injection sequence at part-load operation of the internal combustion engine is shown schematically in the form of the black boxes shown, i.e. injection on compression stroke.
  • the ignition timing and top dead center for the 1st cylinder is 180 °, for the 3rd cylinder at 360 °, for the 4th cylinder at 540 ° and for the 2nd cylinder at 0 ° and 720 °.
  • 3b shows the injection cycle for full-load operation, injection in the suction stroke, in the form of the white boxes.
  • the charge exchange and the top dead center are 180 ° for the 4th cylinder, 360 ° for the 2nd cylinder, 540 ° for the 1st cylinder and 720 ° for the 3rd cylinder.
  • Figure 3c shows the control when switching from compression to suction stroke injection.
  • the first cylinder is injected in the compression stroke.
  • no work cycle would take place in the next cycle in cylinder 3, since the entire quantity is injected into cylinder 4.
  • injection is now first carried out in cylinder 3 in the compression stroke and then injected into cylinder 4 in the same cycle by switching valve slide 14.
  • the pump feed cam is sufficient for this, since the compression stroke is only carried out in the lower partial load, i.e. with a small injection quantity
  • Figure 3d shows the reverse case, switching from suction to compression stroke injection.
  • fuel was still injected during the suction stroke.
  • This quantity is ignited in the next cycle, ie the magnetic valve 44 must not be closed now, since an additional quantity would otherwise be injected.
  • the switching of the valve spool 14 takes place, so that the injection stroke of the 4th cylinder is injected.
  • the embodiment of the invention is not limited to the preferred exemplary embodiment specified above. Rather, a number of variants are conceivable which make use of the solution shown, even in the case of fundamentally different types.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The fuel-injection device proposed has a pump and a fuel distributor with a changeover valve, the distributor being preferably driven at the speed of the pump and comprising a stationary part and a rotating part. The changeover valve is located inside the rotating part (102) of the fuel distributor (10), preferably concentrically, and its inlet opening (31) is connected to the pump cylinder (11) by a line (30) which is also entirely contained within the rotating part of the fuel distributor.

Description

Stand der TechnikState of the art

Die Erfindung geht von einer Vorrichtung nach der Gattung des Hauptanspruchs aus.The invention is based on a device according to the preamble of the main claim.

Bei einer aus der EP-PS 0 114 991 bekannten Kraftstoffeinspritzvorrichtung für fremdgezündete Brennkraftmaschinen dieser Art wird die Verweildauer des Kraftstoffs im Brennraum bei Vollastbetrieb der Brennkraftmaschine um den 180°-Drehwinkel einer mit einem Brennmaschinenkolben verbundenen Nockenwelle gegenüber der Verweildauer bei Teillastbetrieb verlängert. Die Einspritzmenge des Kraftstoffs ist dabei dem Lastbetrieb angepaßt. Dazu weist die Kraftstoffeinspritzvorrichtung eine Pumpe und einen, vorzugsweise mit Pumpendrehzahl angetriebenen, Verteiler auf. Der rotierende Teil des Verteilers verbindet über innere Durchflußkanäle drehwinkelabhängig eine mit der Pumpe verbundene Zuleitung abwechselnd mit zu den einzelnen Zylindern der Brennkraftmaschine führenden Einspritzleitungen.In a fuel injection device for spark-ignition internal combustion engines of this type known from EP-PS 0 114 991, the duration of the fuel in the combustion chamber when the internal combustion engine is operating at full load is extended by the 180 ° angle of rotation of a camshaft connected to an internal combustion engine piston compared to the duration of stay in part-load operation. The injection quantity of the fuel is adapted to the load operation. For this purpose, the fuel injection device has a pump and a distributor, preferably driven at pump speed. The rotating part of the distributor alternately connects a supply line connected to the pump to injection lines leading to the individual cylinders of the internal combustion engine via internal flow channels depending on the angle of rotation.

Bei Vollastbetrieb der Brennkraftmaschine wird hierbei der Kraftstoff während des Saughubs des Brennmaschinenkolbens in den Brennraum eingebracht, so daß dieser sich bis zum Zündzeitpunkt gut durchmischen kann. Auf diese Weise werden eine vollständige Verbrennung des Kraftstoff-Luft-Gemisches gewährleistet und Rußemissionen verhindert. Im Teillastbetrieb der Brennkraftmaschine hingegen wird der Kraftstoff sehr spät, d.h. unmittelbar vor dem Zündzeitpunkt eingespritzt, so daß sich im Bereich der Zündkerze geschichtet ein zündfähiges Gemisch bilden kann, so daß die durch die Zündkerze initierte Entflammung kurzfristig den Rest der Ladung des Brennraumes erfaßt.When the internal combustion engine is operating at full load, the fuel is introduced into the combustion chamber during the suction stroke of the internal combustion engine piston so that it can mix well up to the ignition point. In this way, a complete combustion of the fuel-air mixture is ensured and soot emissions are prevented. In contrast, in part-load operation of the internal combustion engine, the fuel becomes very late, i.e. injected immediately before the ignition point, so that an ignitable mixture can form in layers in the area of the spark plug, so that the ignition initiated by the spark plug briefly detects the rest of the charge in the combustion chamber.

Zum Umschalten zwischen den beiden unterschiedlichen lastabhängigen Einspritzzeitpunkten der Kraftstoffeinspritzvorrichtung ist ein Umschaltventil vorgesehen. Dabei sind zwei Einlaßöffnungen wechselweise mit dem Pumpenarbeitsraum verbindbar. Die Austrittsseite weist zwei Auslaßöffnungen auf, die in Abhängigkeit von der Position des Ventilschiebers jeweils mit der Einlaßöffnung verbunden sind. Die Auslaßöffnungen führen zu zwei verschiedenen inneren Durchlaßkanälen des rotierenden Teils des Verteilers. Die Öffnungen der beiden Durchlaßkanäle nehmen im feststehenden Teil des Verteilers unterschiedliche Winkelpositionen ein, so daß die beiden so erzeugten Öffnungswinkelbereiche des rotierenden Teils des Verteilers - bezogen auf den jeweiligen Zylinder der Brennkraftmaschine - relativ zueinader vor- bzw. nacheilen.A switchover valve is provided for switching between the two different load-dependent injection times of the fuel injection device. Are there two inlet openings can be connected alternately to the pump work space. The outlet side has two outlet openings which are each connected to the inlet opening depending on the position of the valve slide. The outlet openings lead to two different inner passages of the rotating part of the distributor. The openings of the two passage channels occupy different angular positions in the fixed part of the distributor, so that the two opening angle regions of the rotating part of the distributor thus generated - with respect to the respective cylinder of the internal combustion engine - advance or lag relative to one another.

Je nach dem welche Öffnung durch das Umschaltventil für die Einspritzung des Kraftstoffs mit der Einlaßöffung des Umschaltventils verbunden ist, erfolgt die zeitlich unterschiedliche, vom Winkelöffnungsbereich abhängige Einspritzung. Zum Zuführen des Kraftstoffs aus dem Umschaltventil über Leitungen in die Durchflußkanäle des rotierenden Teils des Verteilers sind jeweils entsprechende, den Leitungen zugeordnete Ringnuten vorgesehen. Dadurch strömt der Kraftstoff vom Umschaltventil über die zugeschaltete Ringnut in den entsprechenden Durchflußkanal sowie über dessen Öffnung weiter in die jeweilige mit einem Zylinder verbundene Einspritzleitung.Depending on which opening is connected through the changeover valve for the injection of the fuel to the inlet opening of the changeover valve, the injection, which differs in time and is dependent on the angle opening area, takes place. Corresponding ring grooves assigned to the lines are provided in each case for supplying the fuel from the changeover valve via lines into the flow channels of the rotating part of the distributor. As a result, the fuel flows from the changeover valve via the activated annular groove into the corresponding flow channel and via its opening further into the respective injection line connected to a cylinder.

Das mit der bekannten Kraftstoffeinspritzvorrichtung erreichte Verfahren zur lastabhängigen Einspritzung des Kraftstoffs in den Brennraum der Brennkraftmaschine hat sich zwar wegen der Kraftstoffeinsparungen und der damit verbundenen geringeren Schadstoffemissionen bewährt, die Konstruktion der Kraftstoffeinspritzvorrichtung ist jedoch noch nicht optimal.The method achieved with the known fuel injection device for load-dependent injection of the fuel into the combustion chamber of the internal combustion engine has proven itself because of the fuel savings and the associated lower pollutant emissions However, the fuel injector design is not yet optimal.

Zum einen hat die bekannte Kraftstoffeinspritzvorrichtung den Nachteil, daß sie kompliziert ausgeführt ist. Dabei ist insbesondere die Fertigung der zahlreichen Übergänge für den Kraftstoff zwischen dem festen Teil des Verteilers und dem rotierenden Teil des Verteilers aufwendig. Diese als Ringnute ausgebildeten Kraftstoffübergänge setzen für einen fehlerfreien Betrieb eine exakte Fertigung mit geringen Toleranzen der Verteilerteile sowie das Vorsehen entsprechender Dichtmittel voraus.On the one hand, the known fuel injection device has the disadvantage that it is complicated. The production of the numerous transitions for the fuel between the fixed part of the distributor and the rotating part of the distributor is particularly complex. These fuel transitions, which are designed as ring grooves, require precise manufacture with low tolerances for the distributor parts and the provision of appropriate sealants for fault-free operation.

Desweiteren weist der rotierende Teil des Verteilers aufgrund seiner im Inneren verlaufenden Durchflußkanäle mit den entsprechenden Eintritts- bzw. Austrittsöffnungen an der Oberfläche des rotierenden Teils des Verteilers keine homogene Massenverteilung auf. Dadurch werden die Lager ungünstig belastet.Furthermore, the rotating part of the distributor does not have a homogeneous mass distribution on the surface of the rotating part of the distributor due to its flow channels running inside with the corresponding inlet and outlet openings. This places an unfavorable load on the bearings.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Kraftstoffeinspritzvorrichtung mit den kennzeichenden Merkmalen des Hauptanspruchs weist unter Beseitigung der genannten Nachteile demgegenüber eine vereinfachte Konstruktion auf.In contrast, the fuel injection device according to the invention with the characterizing features of the main claim has a simplified construction while eliminating the disadvantages mentioned.

Die Erfindung beruht dabei auf der Erkenntnis, daß durch ein Verlegen des Umschaltventils in den rotierenden Teil des Verteilers eine Anzahl von (zu dichtenden) Kraftstoffübergängen zwischen den Leitungen des festen Teils des Verteilers und den zugeordneten, im rotierenden Teil des Verteilers angeordneten Durchflußkanälen vermeidbar ist, so daß der Herstellungsaufwand vermindert wird. Desweiteren lassen sich dadurch die Strömungsverhältnisse des geförderten Kraftstoffs innerhalb der Leitungen und der Durchflußkanäle verbessern, so daß eine direktere Kraftstofförderung ermöglicht wird.The invention is based on the knowledge that by moving the changeover valve in the rotating part of the distributor, a number of (to be sealed) fuel transitions between the lines of the fixed part of the distributor and the associated flow channels arranged in the rotating part of the distributor can be avoided, so that the manufacturing outlay is reduced. Furthermore, the flow conditions of the fuel delivered within the lines and the flow channels can be improved, so that a more direct fuel delivery is made possible.

Gemäß einer Ausgestaltung des Anspruchs 1 ist es besonders vorteilhaft, wenn das Umschaltventil konzentrisch innerhalb des rotierenden Teils des Verteilers angeordnet ist und seine Einlaßöffnung über eine ebenfalls ausschließlich innerhalb des rotierenden Teils des Verteilers verlaufende Leitung mit dem Pumpenarbeitsraum verbunden ist. Dadurch kann der rotierende Teil des Verteilers gleichmäßig konzentrisch aufgebaut werden, so daß die beim Rotieren auftretenden Lagerkräfte in bezug auf die bekannte Ausführung verringert werden. Weiterhin sind die Durchflußkanäle direkt mit dem Umschaltventil verbunden, wodurch sich zwei Übergangskanäle des Kraftstoffs zwischen dem festen Teil und dem rotierenden Teil des Verteilers erübrigen.According to one embodiment of claim 1, it is particularly advantageous if the changeover valve is arranged concentrically within the rotating part of the distributor and its inlet opening is connected to the pump work space via a line which also runs exclusively within the rotating part of the distributor. As a result, the rotating part of the distributor can be built up uniformly concentrically, so that the bearing forces which occur during rotation are reduced in relation to the known design. Furthermore, the flow channels are directly connected to the changeover valve, whereby two transition channels of the fuel between the fixed part and the rotating part of the distributor are unnecessary.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen des Hauptanspruchs gegeben.The measures listed in the subclaims provide advantageous developments of the main claim.

Insbesondere wird durch eine verschiebliche Lagerung des Ventilschiebers des Umschaltventils in Achsrichtung des rotierenden Teils des Verteilers die koaxiale Anordnung des rotierenden Teils des Verteilers mit dem Umschalten von Teillast auf Vollastbetrieb nicht verändert. Eine Erhöhung der Lagerkräfte während des Umschaltvorgangs wird somit von vornherein vermieden. Weiterhin wird eine kompaktere und leichtere Bauweise dadurch ermöglicht, daß der rotierende Teil des Verteilers die den Ventilschieber führende Wandung bildet.In particular, the sliding arrangement of the valve slide of the changeover valve in the axial direction of the rotating part of the distributor results in the coaxial arrangement of the rotating part of the distributor with the changeover not changed from part load to full load operation. An increase in the bearing forces during the switching process is thus avoided from the outset. Furthermore, a more compact and lighter design is made possible in that the rotating part of the distributor forms the wall guiding the valve slide.

Die Längsachse des Umschaltventils und/oder die Verbindungsleitungen zwischen dem Umschaltventil und dem Pumpenarbeitsraum fallen mit der Längsachse des rotierenden Teils des Verteilers zusammen. Die Bewegungen der einzelnen Teile sind somit günstig aufeinander abstimmbar. Desweiteren wird eine strömungsgünstige Anordnung der Kraftstoffleitungen ermöglicht, also Kraftstoffleitungen, die kurze Längenerstreckungen und eine möglichst gerade Ausbildung mit wenig Richtungsänderungen aufweisen.The longitudinal axis of the changeover valve and / or the connecting lines between the changeover valve and the pump work space coincide with the longitudinal axis of the rotating part of the distributor. The movements of the individual parts can thus be coordinated with one another at low cost. Furthermore, a streamlined arrangement of the fuel lines is made possible, that is to say fuel lines which have short lengths and are as straight as possible with few changes in direction.

Durch einen Hydraulikantrieb ist der Ventilschieber des Umschaltventils einfach schaltbar im rotierenden Teil des Verteilers gelagert. Hierbei bildet der Ventilschieber den Arbeitskolben des Hydraulikantriebs. Dieser Arbeitskolben wird stirnseitig mit der Hydraulikflüssigkeit beaufschlagt, wodurch eine optimale Kraftübertragung gewährleistet wird. Weiterhin bildet der Ventilschieber mit seiner Seitenwandung eine Dichtung für die jeweils zu versperrende Auslaßöffnung des Umschaltventils. Durch Bewegen der Flüssigkeit wird der Ventilschieber zwischen seinen beiden Schaltpositionen verschoben, ohne von der Rotationsbewegung des rotierenden Teils des Verteilers beeinflußt zu werden.The valve slide of the changeover valve is mounted in the rotating part of the distributor so that it can be switched easily by means of a hydraulic drive. The valve spool forms the working piston of the hydraulic drive. Hydraulic fluid is applied to the front of this working piston, which ensures optimal power transmission. Furthermore, the valve slide forms with its side wall a seal for the outlet opening of the changeover valve to be blocked. By moving the liquid, the valve slide is displaced between its two switching positions without being influenced by the rotational movement of the rotating part of the distributor.

Als Verbindung zwischen Hydraulikantrieb und dem feststehenden Teil des Verteilers ist ein koaxial verlaufender Hydraulikanal mit radialen Verbindungskanälen zu einer Ringnut vorgesehen. Die Hydraulikflüssigkeit gelangt bei den Verschiebebewegungen des Ventilschiebers über die Ringnut, den Verbindungskanal zu einer Stirnseite des Ventilschiebers, so daß während des Rotierens des Verteilerrotors der Ventilschieber schaltbar ist. Desweiteren kann durch diese Ausbildung und Anordnung des Ventilschiebers der Hydraulikdruck zum Bewegen des Ventilschiebers im wesentlichen ohne Druckverlust vom Hydraulikantrieb aufgebaut und auf die entsprechende Stirnseite des Ventilschiebers beaufschlagt werden.A coaxial hydraulic channel with radial connecting channels to form an annular groove is provided as a connection between the hydraulic drive and the fixed part of the distributor. When the valve spool moves, the hydraulic fluid passes via the annular groove, the connecting channel to an end face of the valve spool, so that the valve spool can be switched while the distributor rotor is rotating. Furthermore, this design and arrangement of the valve slide means that the hydraulic pressure for moving the valve slide can be built up without loss of pressure from the hydraulic drive and can be applied to the corresponding end face of the valve slide.

Bei einer günstigen Weiterbildung der Erfindung ist im Hydraulikantrieb ein Ventil, insbesondere ein Magnetventil, zum Festlegen der Aktivierungszeiten des Ventilschiebers vorgesehen. Das Magnetventil läßt sich dabei mittels elektrischer Signale einfach steuern und somit im wesentlichen die Durchflußmenge bzw. die Durchflußzeiten der Hydraulikflüssigkeit während des Schaltvorgangs des Umschaltventils.In a favorable further development of the invention, a valve, in particular a solenoid valve, is provided in the hydraulic drive for determining the activation times of the valve slide. The solenoid valve can be easily controlled by means of electrical signals and thus essentially the flow rate or flow times of the hydraulic fluid during the switching process of the changeover valve.

Um ein möglichst strömungsgünstiges Fördern des Kraftstoffs zu ermöglichen, weist der Ventilschieber eine Ringnut auf, die mit der Verbindungsleitung über Druckkanäle in Verbindung steht. Der Kraftstoff ist dabei über die Ringnut in die weiteren Öffnungen der Durchlaßkanäle des Verteilers förderbar.In order to enable the fuel to be conveyed as aerodynamically as possible, the valve slide has an annular groove which is connected to the connecting line via pressure channels. The fuel can be conveyed through the annular groove into the further openings of the passage channels of the distributor.

Der Aufwand der Herstellung und der Bearbeitung des feststehenden Teils des Verteilers ist dadurch verringerbar, daß die Austrittsöffnungen der inneren Durchlaßkanäle des rotierenden Teils des Verteilers an dessen Außenseite bezüglich der axialen Richtung in derselben Höhe gelegen sind. Ein axialer Ausgleich durch das Verschieben des Ventilschiebers ist dabei im rotierenden Teil des Verteilers vorgesehen.The effort involved in producing and processing the fixed part of the distributor can be reduced, that the outlet openings of the inner passage channels of the rotating part of the distributor on the outside thereof are located at the same height with respect to the axial direction. Axial compensation by moving the valve slide is provided in the rotating part of the distributor.

Der Ventilschieber ist weiterhin in einer Position, die die Ausgangsstellung bildet, stabilisierbar, in dem an der vom Pumpenarbeitsraum entfernt gelegenen Stirnseite des Ventilschiebers eine in axialer Richtung wirkende und in Richtung auf den Pumpenarbeitsraum vorgespannte Feder anliegt. Dabei drückt die Federkraft den Schieber gegen einen entsprechend der Ausgangsposition des Schiebers angeordneten Anschlag. Auf diese Weise wird der Ventilschieber bei einem möglichen Defekt der Hydraulikleitung in der Ausgangsposition gehalten, d.h. vorzugsweise in der Stellung für Teillastbetrieb. Damit wird ein unkontrolliertes Bewegen des Schiebers bei einem möglichen Defekt der Hydraulikleitung vermieden und eine kontrollierte Einspritzung erfolgt auch bei Ausfall bzw. Störungen des Hydraulikantriebs.The valve spool can also be stabilized in a position which forms the starting position, in which a spring acting in the axial direction and biased in the direction of the pump working space rests on the end face of the valve spool which is remote from the pump working space. The spring force presses the slide against a stop arranged in accordance with the starting position of the slide. In this way, the valve slide is held in the starting position in the event of a possible defect in the hydraulic line, i.e. preferably in the position for partial load operation. This avoids an uncontrolled movement of the slide in the event of a possible hydraulic line defect, and controlled injection also takes place in the event of failure or malfunctions of the hydraulic drive.

Gemäß einer vorteilhaften Weiterbildung der Erfindung bildet der rotierende Teil des Verteilers den Arbeitskolben der Pumpe. Die Baugröße der Kraftstoffeinspritzvorrichtung wird dadurch günstig verkleinert sowie die Möglichkeit der konstruktiven Ausgestaltung der Kraftstoffeinspritzvorrichtung erweitert, insbesondere im Hinblick auf eine optimale Kraftstofförderung.According to an advantageous development of the invention, the rotating part of the distributor forms the working piston of the pump. The size of the fuel injection device is thereby reduced in a favorable manner and the possibility of constructive design of the fuel injection device is expanded, in particular with regard to optimal fuel delivery.

Dabei weist die Ringnut eine für die Hydraulikflüssigkeit bzw. eine an der gegenüberliegenden Wandung vorgesehene zugewandte Öffnung eine derartige Erstreckung in axialer Richtung auf, daß ein Übertritt von Hydraulikflüssigkeit unabhängig von der axialen Position des rotierenden Teils des Verteilers erfolgen kann. Der Übertritt während der Rotations- und Hubbewegungen des enstprechenden Teils des Verteilers wird somit durchgehend gewährleistet.Here, the annular groove for the hydraulic fluid or an opening provided on the opposite wall has an extent in the axial direction that hydraulic fluid can pass regardless of the axial position of the rotating part of the distributor. The transition during the rotational and lifting movements of the corresponding part of the distributor is thus guaranteed throughout.

Als günstig erweist sich insbesondere auch, daß zur Begrenzung der Einspritzdauer für vorgegebene Zeitabschnitte des Druckhubs und der Einspritzmenge der Pumpenarbeitsraum über eine zeitabhängig freigebbare Entlastungsleitung mit einem Entlastungsraum verbindbar ist. Dabei ist die den Kraftstoff in den Pumpenarbeitsraum führende Kraftstoffleitung koaxial zur Achse des rotierenden Teils des Verteilers angeordnet.It has also proven particularly advantageous that, in order to limit the injection duration for predetermined periods of the pressure stroke and the injection quantity, the pump work space can be connected to a relief space via a relief line that can be released as a function of time. The fuel line leading the fuel into the pump work space is arranged coaxially with the axis of the rotating part of the distributor.

Für eine einfache Zuleitungssteuerung ist ein Rückschlagventil verwendbar, das in der den Kraftstoff in den Pumpenarbeitsraum führenden Kraftstoffleitung zum Verschließen der Kraftstoffleitung während des Druckhubes vorgesehen ist. Vorzugsweise ist dabei parallel zum Rückschlagventil ein steuerbares Kraftstoffabsperrmittel geschaltet, wobei sich das Kraftstoffsperrventil in der Entlastungsleitung befindet.For a simple supply line control, a check valve can be used, which is provided in the fuel line leading the fuel into the pump work chamber for closing the fuel line during the pressure stroke. A controllable fuel shut-off means is preferably connected in parallel to the check valve, the fuel shut-off valve being located in the relief line.

In der Kraftstoffleitung ist weiterhin ein Druckbegrenzer vorgesehen, der möglicherweise schlagartig ansteigende Leitungsdrücke vermeidet, in dem der Druckbegrenzer sein Ventil öffnet.Furthermore, a pressure limiter is provided in the fuel line, which avoids suddenly increasing line pressures, in which the pressure limiter opens its valve.

Um den in der Kraftstoffleitung herrschenden Druck auszunutzen und damit eine hiervon separate Druckquelle zu ersparen, ist der Hydraulikantrieb mit der Kraftstoffleitung verbunden, wobei der Kraftstoff das Druckmedium bildet und der Druck von einer in der Kraftstoffleitung vorgesehenen Förderpumpe erzeugt wird.In order to take advantage of the pressure prevailing in the fuel line and thus to save a separate pressure source, the hydraulic drive is connected to the fuel line, the fuel forming the pressure medium and the pressure being generated by a feed pump provided in the fuel line.

Zeichnungdrawing

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 einen Schnitt durch eine vereinfacht dargestellte Kraftstoffeinspritzpumpe, Figuren 2a und 2b je einen Schnitt durch den Verteiler der Kraftstoffeinspritzpumpe in unterschiedlichen Schaltpositionen, Figuren 3a bis 3e je ein Schaubild einer Einspritzfolge in Abhängigkeit von der Last der Brennkraftmaschine und entsprechend den möglichen Umschaltvorgängen mit einem schematisch dargestellten Querschnitt des Verteilers sowie in Figur 4 fünf Zeit-Diagramme in unterschiedlichen Abhängigkeiten bei einem Umschaltvorgang durch das Umschaltventil.An embodiment of the invention is shown in the drawing and is explained in more detail in the following description. 1 shows a section through a fuel injection pump shown in simplified form, FIGS. 2a and 2b each show a section through the distributor of the fuel injection pump in different switching positions, FIGS. 3a to 3e each show a diagram of an injection sequence depending on the load of the internal combustion engine and in accordance with the possible switchover processes a schematically illustrated cross section of the distributor and in Figure 4 five time diagrams in different dependencies in a switching process by the switching valve.

Beschreibung des AusführungsbeispielsDescription of the embodiment

In dem Ausführungsbeispiel ist eine Einspritzpumpe 9 für fremdgezündete Brennkraftmaschinen dargestellt, die einen aus einem feststehenden Teil 101 und einem Verteilerrotor 102 bestehenden Verteiler 10 aufweist.In the exemplary embodiment, an injection pump 9 for spark-ignition internal combustion engines is shown, which has a distributor 10 consisting of a fixed part 101 and a distributor rotor 102.

Der zylindrisch ausgebildete Verteilerrotor 102 des Verteilers 10 ist dabei auch als Arbeitskolben der Einspritzpumpe 9 für Pumpbewegungen ausgeführt und mit einem rotierenden, mittels einer Steuerscheibe Hubbewegungen erzeugenden, hier nicht dargestellten Antrieb verbunden. Der feststehende Teil 101 des Verteilers 10 ist als Zylinder dem rotierenden Teil 102 des Verteilers 10 angepaßt ausgebildet. Der Verteilerrotor 102 ist dabei in dem feststehenden Teil 101 des Verteilers 10 geführt gelagert. An das freie Ende des Verteilerrotors 102 schließt sich ein im wesentlichen den Durchmesser des Verteilerrotors 102 aufweisender Pumpenarbeitsraum 11 an, der durch die Hubbewegungen des Verteilerrotors 102 erweitert bzw. verkleinert wird und somit den im Pumpenarbeitsraum befindlichen Kraftstoff fördert. Der Pumpenarbeitsraum 11 ist dabei in axialer Richtung durch eine Wandung 12 und in radialer Richtung von der dem Verteilerrotor 102 angepaßten Innenfläche 103 des feststehenden Teils 101 des Verteilers 10 begrenzt.The cylindrical distributor rotor 102 of the distributor 10 is also designed as a working piston of the injection pump 9 for pumping movements and is connected to a rotating drive, not shown here, which generates lifting movements by means of a control disk. The fixed part 101 of the distributor 10 is designed as a cylinder adapted to the rotating part 102 of the distributor 10. The distributor rotor 102 is guided in the fixed part 101 of the distributor 10. The free end of the distributor rotor 102 is adjoined by a pump work chamber 11 which essentially has the diameter of the distributor rotor 102 and which is expanded or reduced by the lifting movements of the distributor rotor 102 and thus promotes the fuel located in the pump work chamber. The pump working space 11 is delimited in the axial direction by a wall 12 and in the radial direction by the inner surface 103 of the fixed part 101 of the distributor 10 which is adapted to the distributor rotor 102.

Koaxial zur Drehachse ist innerhalb des Verteilerrotors 102 ist eine zylindrische, sich bis zum Pumpenarbeitsraum 11 erstreckende Ausnehmung 13 angeordnet, die über ihre axiale Erstreckung einen konstanten Durchmesser aufweist. In der Ausnehmung 13 ist ein in axialer Richtung verschieblicher, der Ausnehmung 13 in radialer Richtung angepaßter Ventilschieber 14 gelagert, der in Richtung auf den Pumpenarbeitsraum 11 durch eine Anschlagscheibe 15 in seiner axialen Verschiebebewegung begrenzt wird. Der in der Ausnehmung verschiebliche Ventilschieber 14 wirkt als Umschaltventil. Die Anschlagscheibe 15 ist in einer angepaßten Nut in dem Verteilerrotor 102 in der Ausnehmung 13 eingespannt. Die Begrenzung der Verschiebebewegung in der entgegengesetzten Verschieberichtung des Ventilschiebers 14 wird durch die Stirnseite 16 der Ausnehmung 13 gebildet, so daß der Ventilschieber 14 von der Stirnseite 16 der Ausnehmung 13 bis maximal zur Anschlagscheibe 15 verschieblich gelagert ist.Coaxial to the axis of rotation is arranged within the distributor rotor 102 a cylindrical recess 13 which extends to the pump working chamber 11 and which has a constant diameter over its axial extent. In the recess 13 there is mounted an axially displaceable valve slide 14 which is adapted to the recess 13 in the radial direction and is limited in the direction of the pump working space 11 by a stop disk 15 in its axial displacement movement. The valve slide 14, which is displaceable in the recess, acts as a changeover valve. The stop disc 15 is in an adapted Groove in the distributor rotor 102 clamped in the recess 13. The limitation of the displacement movement in the opposite direction of displacement of the valve spool 14 is formed by the end face 16 of the recess 13, so that the valve spool 14 is displaceably mounted from the end face 16 of the recess 13 up to the stop disc 15.

Die Verschiebebewegungen des Ventilschiebers 14 erfolgen über einen Hydraulikantrieb. Zu diesem Zwecke führt mittig von der Stirnseite 16 der Ausnehmung 13 ein Hydraulikkanal 17 koaxial bis zu zwei in bezug auf die Achse des Verteilerrotors 102 radial verlaufenden Verbindungskanälen 18. Diese zwei radialen Verbindungkanäle 18 enden in einer in den Verteilerrotor 102 eingeformten Ringnut 19. Die Ringnut 19 korrespondiert dabei mit einer Öffnung 20 einer Hydraulikleitung 21 und erstreckt sich in axialer Richtung entsprechend der maximalen Hubbewegungen, so daß unabhängig von der Position des Verteilerrotors Hydraulikflüssigkeit aus der Öffnung 20 in die Ringnut 19 gelangt und somit der Ventilschieber 14 immer von dem Hydraulikantrieb bewegt werden kann.The displacement movements of the valve spool 14 take place via a hydraulic drive. For this purpose, from the end face 16 of the recess 13, a hydraulic channel 17 runs coaxially up to two connecting channels 18 that run radially with respect to the axis of the distributor rotor 102. These two radial connecting channels 18 end in an annular groove 19 formed in the distributor rotor 102 19 corresponds to an opening 20 of a hydraulic line 21 and extends in the axial direction according to the maximum stroke movements, so that regardless of the position of the distributor rotor hydraulic fluid from the opening 20 into the annular groove 19 and thus the valve spool 14 are always moved by the hydraulic drive can.

Die benachbarten Seitenbereiche des Ventilschiebers 14 schließen mit der Ausnehmung 13 dicht ab, so daß die zugeordnete Stirnseite 141 des Ventilschiebers 14 mit Hydraulikflüssigkeit verlustfrei beaufschlagbar ist.The adjacent side areas of the valve spool 14 close tightly with the recess 13, so that the associated end face 141 of the valve spool 14 can be acted upon with hydraulic fluid without loss.

Aufgrund der sich in axialer Richtung ertreckenden Ringnut 19 gelangt die Hydraulikflüssigkeit unabhängig von der axialen Position des Verteilerrotors 102 von der Leitung 21 über die Ringnut 19 in den radialen Verbindungskanal 18 in den Hydraulikkanal 17 an die Stirnseite 141 des Ventilschiebers 14. Dieser wirkt dabei als Arbeitskolben des Hydraulikantriebs.Due to the annular groove 19 extending in the axial direction, the hydraulic fluid gets out of the line regardless of the axial position of the distributor rotor 102 21 via the annular groove 19 into the radial connecting channel 18 into the hydraulic channel 17 to the end face 141 of the valve slide 14. This acts as the working piston of the hydraulic drive.

Zum Festlegen der Aktivierungszeiten des Ventilschiebers ist in der Hydraulikleitung 21 ein mit einer Steuereinrichtung 22 verbundenes Magnetventil 23 angeordnet. Entsprechend der Ansteuerung durch die Steuervorrichtung 22 öffnet sich das Magnetventil 23, so daß der Ventilschieber in Folge der Druckverhältnisse im Pumpenarbeitsraum 11 und der Druckverhältnisse durch die Hydraulikflüssigkeit des Hydraulikantriebs in seine linke bzw. rechte Position gedrückt wird.A solenoid valve 23 connected to a control device 22 is arranged in the hydraulic line 21 to determine the activation times of the valve slide. According to the control by the control device 22, the solenoid valve 23 opens, so that the valve slide is pressed into its left or right position as a result of the pressure conditions in the pump work chamber 11 and the pressure conditions by the hydraulic fluid of the hydraulic drive.

In der Stirnseite 16 der Ausnehmung 13 ist eine zylindrische, koaxial angeordnete Aussparung 24 und eine entsprechende weitere Aussparung 25 in der Stirnseite 141 des Ventilschiebers 14 vorgesehen. Die beiden Aussparungen 24 und 25 sind über eine vorgespannte Feder 26 miteinander verbunden, die den Ventilschieber 14 in Richtung auf den Pumpenarbeitsraum 11 drückt. Für den Fall eines möglichen Defekts in der Hydraulikleitung wird der Ventilschieber 14 somit gegen die Anschlagscheibe 15, der Position des Ventilschiebers bei Teillastbetrieb der Brennkraftmaschine, von der vorgespannten Feder 26 gedrückt.A cylindrical, coaxially arranged recess 24 and a corresponding further recess 25 in the end face 141 of the valve slide 14 are provided in the end face 16 of the recess 13. The two recesses 24 and 25 are connected to one another via a prestressed spring 26, which presses the valve slide 14 in the direction of the pump work chamber 11. In the event of a possible defect in the hydraulic line, the valve slide 14 is thus pressed against the stop disk 15, the position of the valve slide during part-load operation of the internal combustion engine, by the prestressed spring 26.

In den Ventilschieber 14 ist eine nach außen weisende Ringnut 27 und in die Ausnehmung 13 bzw. in den Verteilerrotor 102 sind zwei jeweils nach innen weisende, in axialer Richtung entsprechend der Verschiebebewegung des Ventilschiebers 14 versetzt angeordnete Ringnute 28 und 29 eingeformt.In the valve spool 14 is an outwardly facing annular groove 27 and in the recess 13 and in the distributor rotor 102 are two inwardly facing, in the axial direction corresponding to the displacement movement of the valve spool 14 offset annular grooves 28 and 29 are formed.

Von der Ringnut 27 geht ein zunächst radial zur Mitte des Ventilschiebers 14 sowie dann in axialer Richtung zum Pumpenarbeitsraum 11 koaxial verlaufender Verbindungskanal 30 aus, der einen Kraftstoffluß aus dem Pumpenarbeitsraum 11 in die Einlaßöffnung 31 des Verbindungskanals 30 in die Ringnut 27 ermöglicht.Starting from the annular groove 27 is a connection channel 30 which initially runs radially to the center of the valve slide 14 and then in the axial direction to the pump work chamber 11 and which enables a fuel flow from the pump work chamber 11 into the inlet opening 31 of the connection channel 30 into the annular groove 27.

Ein Durchlaßkanal 32 und 33 führt von den Ringnuten 28 und 29 an die Außenfläche des Verteilerrotors 102, wobei die Austrittsöffnungen 34 und 35 der Durchlaßkanäle 32 und 33 in axialer Richtung auf gleicher Höhe angeordnet sind. In entsprechender Höhe sind den Austrittsöffnungen 34 und 35 der Durchlaßkanäle 32 und 33 Eintrittsöffnungen 36 bis 39 von Einspritzleitungen 361 bis 391 im feststehenden Teil 101 des Verteilers 10 angeordnet. Die Durchlaßkanäle 32 und 33 verlaufen schräg im Verteilerrotor 102, um den axialen Versatz ihrer zugeordneten Ringnute 28 und 29 auszugleichen. Die Eintrittsöffnungen 36 bis 39 weisen benachbart zueinander einen Winkel von 90° auf. Die Einspritzleitungen 361 bis 391 sind mit Einspritzdüsen 362 bis 392 verbunden, die den Kraftstoff in den Zylinder der Brennkraftmaschine einbringen. Die Austrittsöffnungen 34 und 35 nehmen dabei an der Außenfläche des Verteilerrotors 102 unterschiedliche Winkelpositionen ein, so daß die so erzeugten Öffnungswinkelbereiche des Verteilers, bezogen auf den jeweiligen, hier nicht dargestellten Zylinder der Brennkraftmaschine, relativ zueinander vor bzw. nacheilen. Aus Gründen der Übersichtlichkeit sind die Bezugszeichen der genannten Öffnungen in dieser Figur fortgelassen. Diese sind aber aus den Figuren 2a und 2b zu entnehmen.A passage channel 32 and 33 leads from the annular grooves 28 and 29 to the outer surface of the distributor rotor 102, the outlet openings 34 and 35 of the passage channels 32 and 33 being arranged at the same height in the axial direction. At the appropriate height, the outlet openings 34 and 35 of the passage channels 32 and 33 have inlet openings 36 to 39 of injection lines 361 to 391 in the fixed part 101 of the distributor 10. The passage channels 32 and 33 run obliquely in the distributor rotor 102 in order to compensate for the axial offset of their associated ring grooves 28 and 29. The inlet openings 36 to 39 have an angle of 90 ° adjacent to one another. The injection lines 361 to 391 are connected to injection nozzles 362 to 392, which introduce the fuel into the cylinder of the internal combustion engine. The outlet openings 34 and 35 assume different angular positions on the outer surface of the distributor rotor 102, so that the opening angle regions of the distributor thus generated, in relation to the respective cylinder of the internal combustion engine, not shown here, lag or lag relative to one another. For the sake of clarity, the reference numerals are omitted the openings mentioned in this figure. However, these can be seen from FIGS. 2a and 2b.

Durch das Verschieben des Ventilschiebers 14 in eine der beiden Anschlagpositionen, ist der Pumpenarbeitraum 11 über die Ringnut 27 und die Ringnut 28 bzw. 29 mit dem Durchlaßkanal 32 bzw. 33 verbindbar. Dadurch kann der in den Pumpenarbeitsraum 11 eingebrachte Kraftstoff über den Durchlaßkanal 32 bzw. 33 in die Einspritzleitungen 361 bis 391 und somit entsprechend in die Zylinder der Brennkraftmaschine gefördert werden.By moving the valve slide 14 into one of the two stop positions, the pump work chamber 11 can be connected to the passage channel 32 or 33 via the annular groove 27 and the annular groove 28 or 29. As a result, the fuel introduced into the pump work chamber 11 can be conveyed via the passage channel 32 or 33 into the injection lines 361 to 391 and accordingly into the cylinders of the internal combustion engine.

In den Pumpenarbeitsraum 11 gelangt der Kraftstoff über eine koaxial zur rotierenden Achse des Verteilerrotors 102 angeordnete Kraftstoffleitung 40. Die Kraftstoffleitung 40 führt den Kraftstoff von einer den Kraftstoff mit Druck beaufschlagenden und aus einem Vorratstank 41 fördernden Elektrokraftstoffpumpe 42 über ein zum Verschließen der Kraftstoffleitung 40 während des Druckhubes vorgesehenes Rückschlagventil 43 in den Pumpenarbeitsraum 11. Parallel zum Rückschlagventil 43 ist ein weiteres Magnetventil 44 geschaltet, das mit der Steuereinrichtung 22 verbunden ist. Dabei öffnet sich das Magnetventil 44 für vorgegebene Zeitabschnitte des Druckhubs durch Signale der Steuereinrichtung 22. Über dieses Magnetventil 44 wird die Einspritzdauer und die Einspritzmenge gesteuert, da mit dem Öffnen des Magnetventils 44 während des Druckhubs Kraftstoff aus dem Pumpenarbeitsraum 11 durch das Magnetventil 44 fließt. Mit dem Öffnen des Magnetventils 44 ist der Förderbeginn, die Fördermenge und die Förderdauer steuerbar, so daß der Kraftstoff entsprechend weniger bzw. über eine kürzere Zeitspanne in den Zylinder der Brennkraftmaschine durch den Verteilerrotor 102 eingespritzt wird.The fuel enters the pump work chamber 11 via a fuel line 40 arranged coaxially to the rotating axis of the distributor rotor 102. The fuel line 40 leads the fuel from an electric fuel pump 42 which pressurizes the fuel and delivers it from a storage tank 41 via a to close the fuel line 40 during Check valve 43 provided in the pump stroke chamber 11 is connected in parallel with the check valve 43 and a further solenoid valve 44 is connected to the control device 22. The solenoid valve 44 opens for predetermined periods of the pressure stroke by signals from the control device 22. The injection duration and the injection quantity are controlled via this solenoid valve 44, since when the solenoid valve 44 opens during the pressure stroke, fuel flows from the pump work chamber 11 through the solenoid valve 44. When the solenoid valve 44 is opened, the start of delivery, the delivery rate and the delivery time can be controlled, so that the fuel is correspondingly less or over a shorter period of time is injected into the cylinder of the internal combustion engine through the distributor rotor 102.

Zur Begrenzung des Druckes in der Kraftstoffleitung 40 und um den Druck in der Kraftstoffleitung 40 konstant zu halten ist dem Rückschlagventil 43 und dem Magnetventil 44 ein Druckbegrenzer 45 vorgeschaltet, so daß bei Überschreiten eines vorbestimmten Druckwertes sich der Druckbegrenzer 45 öffnet und Kraftstoff in einen Auffangtank 46 entweichen kann.To limit the pressure in the fuel line 40 and to keep the pressure in the fuel line 40 constant, the check valve 43 and the solenoid valve 44 are preceded by a pressure limiter 45, so that when a predetermined pressure value is exceeded, the pressure limiter 45 opens and fuel flows into a collecting tank 46 can escape.

Der Hydraulikantrieb ist mit der Kraftstoffleitung 40 verbunden, wobei der Kraftstoff das Druckmedium, d.h. die Hydraulikflüssigkeit bildet und der Druck in der Hydraulikflüssigkeit von der Elektrokraftstoffpumpe 42 erzeugt wird.The hydraulic drive is connected to the fuel line 40, the fuel being the pressure medium, i.e. forms the hydraulic fluid and the pressure in the hydraulic fluid is generated by the electric fuel pump 42.

Je nach Betriebsart, also Vollast- bzw. Teillastbetrieb, der Brennkraftmaschine erfolgt die Einspritzung im Saughub oder im Kompressionshub des Kolbens der Brennkraftmaschine über die relativ zueinander vor- bzw. nacheilenden Austrittsöffnungen 34 bzw. 35 des Durchlaßkanals 32 bzw. 33, wobei durch die verschiedenen Zeitpunkte, in denen die Austrittsöffnungen 34 und 35 die Eintrittsöffnungen 36 bis 39 passieren, im wesentlichen die Einspritzzeitpunkte festgelegt sind. Über das Magnetventil 44 besteht aber noch die Möglichkeit der Einflußnahme auf den Einspritzvorgang.Depending on the operating mode, i.e. full load or partial load operation, of the internal combustion engine, the injection takes place in the suction stroke or in the compression stroke of the piston of the internal combustion engine via the outlet openings 34 or 35 of the passage 32 or 33 which are relatively advanced or lagging, with the different Points in time at which the outlet openings 34 and 35 pass through the inlet openings 36 to 39 are essentially fixed at the injection times. However, there is still the possibility of influencing the injection process via the solenoid valve 44.

Bei Vollastbetrieb, d.h. Einspritzung im Saughub, steht der Ventilschieber 14 in seiner linken Position, so daß der Kraftstoff vom Pumpenarbeitsraum 11 über den Verbindungskanal 30 in den Durchlaßkanal 33 und dann in den entsprechenden Zylinder gelangt.At full load operation, ie injection in the suction stroke, the valve slide 14 is in its left position, so that the fuel from the pump work chamber 11 passes through the connection channel 30 into the passage channel 33 and then into the corresponding cylinder.

Hierbei bleibt das Magnetventil 23 während des Förderhubs des Verteilrotors 102 zunächst geöffnet. Nach der Schließung vom Magnetventil 44 erfolgt der Druckaufbau im Pumpenarbeitsraum 11 und der Ventilschieber 14 bewegt sich zu seinem linken Anschlag, der Stirnseite 16 der Ausnehmung 13. Bevor das Magnetventil 44 geöffnet wird, schließt das Magnetventil 23. Dadurch bleibt der Steuerschieber in seiner linken Position. Lediglich zu Beginn des Druckaufbaus beim nächsten Hubzyklus des Verteilerrotors wird das Magnetventil 23 wieder kurz geöffnet. Der Vorgang wiederholt sich dann periodisch.Here, the solenoid valve 23 initially remains open during the delivery stroke of the distribution rotor 102. After the closing of the solenoid valve 44, the pressure builds up in the pump work chamber 11 and the valve slide 14 moves to its left stop, the end face 16 of the recess 13. Before the solenoid valve 44 is opened, the solenoid valve 23 closes. This keeps the control slide in its left position . Solenoid valve 23 is opened again briefly only at the beginning of the build-up of pressure during the next stroke cycle of the distributor rotor. The process is then repeated periodically.

Bei Teillastbetrieb, d.h. Einspritzung im Kompressionshub des Kolbens der Brennkraftmaschine, steht der Ventilschieber 14 in der rechten Position, so daß der Kraftstoff über den Verbindungkanal 30 in den Durchlaßkanal 32 und somit in die zugeordneten Zylinder der Brennkraftmaschine gelangt.At partial load operation, i.e. Injection in the compression stroke of the piston of the internal combustion engine, the valve slide 14 is in the right position, so that the fuel passes through the connecting channel 30 into the passage channel 32 and thus into the associated cylinders of the internal combustion engine.

Dabei bleibt das Magnetventil 23 während des Förderhubs des Verteilerrotors 102 geschlossen, wodurch der Ventilschieber 14 nicht nach links ausweichen kann, weil der Hydraulikdruck weiter an den Ventilschieber 14 angreift. Zur Korrektur einer Verstellung, die aufgrund von Leckage am Ventilschieber 14 auftreten kann, wird das Magnetventil 23 während des Saughubs des Verteilerrotors 102 kurzzeitig geöffnet. Die am Ventilschieber 14 angreifenden Kräfte, Federkraft, Massenkraft sowie Druckdifferenzkraft zwischen linker und rechter Stirnseite sorgen dann für das Andrücken an der Anschlagscheibe 15.The solenoid valve 23 remains closed during the delivery stroke of the distributor rotor 102, as a result of which the valve slide 14 cannot deflect to the left because the hydraulic pressure continues to act on the valve slide 14. To correct an adjustment that can occur due to leakage on the valve slide 14, the solenoid valve 23 is briefly opened during the suction stroke of the distributor rotor 102. The forces acting on the valve slide 14 The spring force, mass force and pressure differential force between the left and right end faces then ensure that the stop disc 15 is pressed on.

Soll auf eine definierte Ausgangsstellung verzichtet werden, kann die Positionierung des Ventilschiebers 14 auch über die beschriebene Beschaltung des Magnetventils 23 erfolgen.If a defined starting position is to be dispensed with, the positioning of the valve slide 14 can also take place via the described circuitry of the solenoid valve 23.

Mit der erfindungsgemäßen Kraftstoffeinspritzvorrichtung 9 läßt sich eine fremdgezündete Brennkraftmaschine mit Vergaserkraftstoff betreiben in Verbindung mit den Vorteilen, die sich bei einer selbstzündenden Brennkraftmaschine aus der verlustarmen, ungedrosselten Zuführung der Verbrennungsluft in die Brennräume ergeben.With the fuel injection device 9 according to the invention, a spark-ignited internal combustion engine can be operated with gasoline fuel in connection with the advantages which result in a self-igniting internal combustion engine from the low-loss, unthrottled supply of the combustion air into the combustion chambers.

Das Ausführungsbeispiel bezieht sich dabei auf eine Kraftstoffversorgung einer Vierzylinderbrennkraftmaschine. Natürlich lassen sich auch andere Zylinderzahlen mit einer solchen entsprechend modifizierten Kraftstoffeinspritzpumpe versorgen. Die Austrittsöffnung 34 eilt dabei um den Winkelabstand vor der Austrittsöffnung 35, den die aufeinander folgenden Einspritzleitungen 361 bis 391, voneinander haben.The exemplary embodiment relates to a fuel supply for a four-cylinder internal combustion engine. Of course, other numbers of cylinders can also be supplied with such a correspondingly modified fuel injection pump. The outlet opening 34 rushes by the angular distance in front of the outlet opening 35 which the successive injection lines 361 to 391 have from one another.

In den Figuren 2a und 2b ist ein Querschnitt I-I und II-II aus Figur 1 durch den Verteiler 10 dargestellt. Dabei nimmt der Ventilschieber 14 einmal die linke Position, Figur 2a, und einmal die rechte Position, Figur 2b, ein, woraus die Funktionsweise des Verteilers bei Voll- und Teillastbetrieb ersichtlich wird.2a and 2b show a cross section II and II-II from FIG. 1 through the distributor 10. The valve slide 14 assumes the left position, FIG. 2a, and the right position, FIG. 2b, from which the functioning of the distributor during full and part-load operation can be seen.

Bei Vollastbetrieb ist der Ventilschieber 14 in der linken Position. Der Kraftstoff aus dem Pumpenarbeitsraum 11 gelangt dabei von dem Verbindungskanal 30 in die Ringnut 27 des Ventilschiebers 14, in die Ringnut 28 des Verteilerrotors 102 über die den Durchlaßkanal 33, dessen Austrittsöffnung 34, jeweils über die Eintrittsöffnungen 36 bis 39 in die Einspritzleitungen 361 bis 391 in die jeweiligen Zylinder.When operating at full load, the valve spool 14 is in the left position. The fuel from the pump work chamber 11 passes from the connecting channel 30 into the annular groove 27 of the valve slide 14, into the annular groove 28 of the distributor rotor 102 via the passage channel 33, the outlet opening 34 thereof, via the inlet openings 36 to 39 into the injection lines 361 to 391 into the respective cylinders.

Wohingegen bei Teillastbetrieb der Ventilschieber 14 in der rechten Position sich befindet und der Kraftstoff gelangt dabei von der Ringnut 27 des Ventilschiebers 14, in die Ringnut 29 des Verteilerrotors 102, den Durchlaßkanal 32, dessen Austrittsöffnung 35 jeweils über die Eintrittsöffnungen 36 bis 39 in die Einspritzleitungen 361 bis 391 in die angeschlossenen Zylinder.In contrast, at part-load operation the valve spool 14 is in the right position and the fuel passes from the ring groove 27 of the valve spool 14, into the ring groove 29 of the distributor rotor 102, the passage channel 32, the outlet opening 35 of which via the inlet openings 36 to 39 into the injection lines 361 to 391 in the connected cylinders.

Die Austrittsöffnungen 34 und 35 sind zueinander in einem Winkel von 90° angeordnet, so daß der Einspritzzeitpunkt um 180° Kurbelwellenwinkel zeitlich versetzt erfolgt.The outlet openings 34 and 35 are arranged at an angle of 90 ° to one another, so that the injection time is offset by a crank angle of 180 °.

In den Figuren 3a bis 3d sind in vier Schaubildern die Einspritzzeitpunkte für die Zylinder 1 bis 4 in Abhängigkeit vom Kurbelwellendrehwinkel dargestellt, wobei Figur 3e - zum besseren Verständnis der Figuren 3a bis 3d - einen schematischen Querschnitt durch den Verteiler 10 mit seinen Durchlaßkanälen 32 und 33 sowie den angeschlossenen Zylindern 1 bis 4 zeigt.In FIGS. 3a to 3d, the injection times for cylinders 1 to 4 are shown in four diagrams as a function of the crankshaft rotation angle, with FIG. 3e - for better understanding of FIGS. 3a to 3d - a schematic cross section through distributor 10 with its passage channels 32 and 33 and the connected cylinders 1 to 4 shows.

In Figur 3a ist die Einspritzfolge bei Teillastbetrieb der Brennkraftmaschine in Form der Schwarzen Kästchen schematisch dargestellt, also Einspritzung bei Kompressionshub. Dabei liegt der Zündzeitpunkt und obere Totpunkt für den 1. Zylinder bei 180°, für den 3. Zylinder bei 360°, für den 4. Zylinder bei 540° und für den 2. Zylinder bei 0° bzw. 720°.In Figure 3a, the injection sequence at part-load operation of the internal combustion engine is shown schematically in the form of the black boxes shown, i.e. injection on compression stroke. The ignition timing and top dead center for the 1st cylinder is 180 °, for the 3rd cylinder at 360 °, for the 4th cylinder at 540 ° and for the 2nd cylinder at 0 ° and 720 °.

In Figur 3b ist der Einspritzzyklus für den Vollastbetrieb, Einspritzung im Saughub, in Form der weißen Kästchen dargestellt. Der Ladungswechsel und der obere Totpunkt liegt dabei für den 4. Zylinder bei 180°, für den 2. Zylinder bei 360°, für den 1. Zylinder bei 540° und für den 3. Zylinder bei 720°.3b shows the injection cycle for full-load operation, injection in the suction stroke, in the form of the white boxes. The charge exchange and the top dead center are 180 ° for the 4th cylinder, 360 ° for the 2nd cylinder, 540 ° for the 1st cylinder and 720 ° for the 3rd cylinder.

Dabei soll ein besonderer sich beim Umschalten von Saug- auf Kompressionshubeinspritzung und umgekehrt ergebender Steuerungszustand nachfolgend noch näher erläutert werden.A particular control state which results when switching from suction to compression stroke injection and vice versa is to be explained in more detail below.

Figur 3c zeigt die Steuerung beim Umschalten von Kompressions- auf Saughubeinspritzung. Dabei wird in den 1. Zylinder zunächst noch im Kompressionshub eingespritzt. Bei schlagartiger Umschaltung auf Saughubeinspritzung würde jetzt beim nächsten Zyklus in Zylinder 3 kein Arbeitstakt erfolgen, da die gesamte Menge in Zylinder 4 eingespritzt wird. Zur Vermeidung dieses Aussetzers wird nun zunächst noch in Zylinder 3 im Kompressionshub eingespritzt und anschließend im gleichen Zyklus durch Umschaltung des Ventilschiebers 14 in Zylinder 4 eingespritzt. Der Pumpenfördernocken ist dafür ausreichend, da nur in der unteren Teillast, also bei kleiner Einspritzmenge, im Kompressionshub eingespritzt wird
Figur 3d zeigt den umgekehrten Fall, das Umschalten von Saug- auf Kompressionshubeinspritzung. In Zylinder 3 wurde dabei noch im Saughub eingespritzt. Diese Menge wird im nächsten Zyklus gezündet, d.h. das Magnetvenbtil 44 darf jetzt nicht geschlossen werden, da sonst eine zusätzliche Menge eingespritzt würde. Dann erfolgt die Umschaltung des Ventilschiebers 14, so daß in den Kopressionshub des 4. Zylinders eingespritzt wird.
Figure 3c shows the control when switching from compression to suction stroke injection. The first cylinder is injected in the compression stroke. In the event of a sudden changeover to suction stroke injection, no work cycle would take place in the next cycle in cylinder 3, since the entire quantity is injected into cylinder 4. To avoid this misfire, injection is now first carried out in cylinder 3 in the compression stroke and then injected into cylinder 4 in the same cycle by switching valve slide 14. The pump feed cam is sufficient for this, since the compression stroke is only carried out in the lower partial load, i.e. with a small injection quantity
Figure 3d shows the reverse case, switching from suction to compression stroke injection. In cylinder 3, fuel was still injected during the suction stroke. This quantity is ignited in the next cycle, ie the magnetic valve 44 must not be closed now, since an additional quantity would otherwise be injected. Then the switching of the valve spool 14 takes place, so that the injection stroke of the 4th cylinder is injected.

Die Steuerimpulse I 23 und I 44 der Magnetventile 23 und 44, die Einspritzmenge im Kompressions- bzw. Saughub Qek bzw. Qes sowie die Geschwindigkeit der Hubbewegung des Verteilerrotors 102 in Abhängigkeit des Kurbelwellendrehwinkels während des Umschaltvorgangs von Kompressionshub auf Saughub gemäß Figur 3c ist in den Diagrammen der Figur 4 dargestellt.The control pulses I 23 and I 44 of the solenoid valves 23 and 44, the injection quantity in the compression or suction stroke Qek or Qes and the speed of the stroke movement of the distributor rotor 102 as a function of the crankshaft rotation angle during the switching process from compression stroke to suction stroke according to FIG Diagrams of Figure 4 shown.

Die Erfindung beschränkt sich in ihrer Ausführung nicht auf das vorstehend angegebene bevorzugte Ausführungsbeispiel. Vielmehr ist eine Anzahl von Varianten denkbar, welche von der dargestellten Lösung auch bei grundsätzlich anders gearteten Ausführungen Gebrauch macht.The embodiment of the invention is not limited to the preferred exemplary embodiment specified above. Rather, a number of variants are conceivable which make use of the solution shown, even in the case of fundamentally different types.

Claims (17)

  1. Fuel injection device for applied-ignition internal combustion engines with a pump and a distributor (10), which is preferably driven at the speed of the pump and the rotating part (102) of which alternately connects, via inner throughflow passages (32, 33), a feed line (13, 30) connected to the pump to injection lines (361 to 391) leading to the individual cylinders of the internal combustion engine, the connection being effected as a function of the rotational angle, a two-position switchover valve with a valve spool (14) being provided, this valve being actuated as a function of the load and the speed of the internal combustion engine,
       its inlet opening (31) being connectable to the pump working space via the feed line (30) and
       its outlet side having two outlet openings (28, 29), which are respectively connected to the inlet opening (31) as a function of the position of the valve spool (14),
    the outlet openings (28, 29) leading to two different inner throughflow passages (32, 33) of the rotating part (102) of the distributor, whose openings (34, 35) at the outside of the rotating part, occupy different angular positions, with the result that the two opening-angle ranges of the distributor which are thus produced precede or follow one another in relation to the respective cylinder of the internal combustion engine, characterized in that the valve spool (14) of the switchover valve is arranged within the rotating part (102) of the distributor (10), preferably concentrically, and the feed line (30) is likewise entirely contained within the rotating part (102) of the distributor (10).
  2. Fuel-injection device according to Claim 1, characterized in that the valve spool (14) of the switchover valve is mounted in a manner which allows it to be displaced in the axial direction of the rotating part (102) of the distributor (10) and in that the rotating part (102), in particular, of the distributor (10) forms the wall which guides the valve spool (14).
  3. Fuel-injection device according to one of the preceding claims, characterized in that the longitudinal axis of the switchover valve and/or the connecting line (30) between the switchover valve and the pump working space (11) coincides with the longitudinal axis of the rotating part (102) of the distributor (10).
  4. Fuel-injection device according to one of the preceding claims, characterized in that the valve spool (14) forms the working piston of a hydraulic drive, this working piston being acted upon at the end by the hydraulic fluid and, with its side wall, forming a seal for the respective outlet opening (28, 29) of the switchover valve to be blocked.
  5. Fuel-injection device according to Claim 4, characterized in that a coaxially extending hydraulic passage (17) with radial connecting passages (18) leading to an annular groove (19) is provided as the connection between the hydraulic drive and the stationary part (101) of the distributor (10), such that the hydraulic fluid passes via the annular groove (19) and the connecting passage (18) to one end of the valve spool (14) during its displacement.
  6. Fuel-injection device according to either of Claims 4 and 5, characterized in that a valve, in particular a solenoid valve (23) is provided in the hydraulic drive for the purpose of defining the activation times of the valve spool (14).
  7. Fuel-injection device according to one of the preceding claims, characterized in that the valve spool (14) has an annular groove (27) which is connected to the connecting line (30) by pressure passages, allowing fuel to be pumped into the further openings of the throughflow passages (32, 33) of the distributor (10) via the annular groove.
  8. Fuel-injection device according to one of the preceding claims, characterized in that the outlet openings (34, 35) of the inner throughflow passages (32, 33) of the rotating part (102) of the distributor (10) are located on its outside at the same level relative to the axial direction.
  9. Fuel-injection device according to one of the preceding claims, characterized in that a spring (26) acting in the axial direction and prestressed in the direction of the pump working space (11) rests against the end (141) of the valve spool (14) remote from the pump working space (11).
  10. Fuel-injection device according to one of the preceding claims, characterized in that the rotating part (102) of the distributor (10) forms the working piston of the pump.
  11. Fuel-injection device according to Claims 5 and 10, characterized in that the annular groove (19) for the hydraulic fluid or a facing opening (20) provided on the opposite wall have an extent in the axial direction such that transfer of hydraulic fluid can take place irrespective of the axial position of the rotating part (102) of the distributor (10).
  12. Fuel-injection device according to one of the preceding claims, characterized in that, to limit the injection duration for predetermined time periods of the delivery stroke, the pump working space (11) can be connected to a relief space via a relief line that can be opened in a time-dependent manner.
  13. Fuel-injection device according to one of the preceding claims, characterized in that the fuel line (40) carrying the fuel into the pump working space (11) is arranged coaxially to the axis of the rotating part (102) of the distributor (10).
  14. Fuel-injection device according to one of Claims 10 to 13, characterized in that a nonreturn valve (43) for closing the fuel line (40) during the delivery stroke is provided in the fuel line (40) carrying the fuel into the pump working space (11).
  15. Fuel-injection device according to Claim 14, characterized in that controllable fuel shut-off means are connected in parallel with the nonreturn valve (43).
  16. Fuel-injection device according to one of Claims 10 to 15, characterized in that a pressure limiter (45) is provided in the fuel line (40).
  17. Fuel-injection device according to one of Claims 10 to 16, characterized in that the hydraulic drive is connected to the fuel line (40), the fuel forming the pressure medium and the pressure being generated by a feed pump (42) provided in the fuel line (40).
EP91910996A 1990-07-21 1991-06-26 Fuel-injection device for spark-ignition internal-combustion engines Expired - Lifetime EP0540529B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4023307A DE4023307A1 (en) 1990-07-21 1990-07-21 FUEL INJECTION DEVICE FOR FOREIGN IGNITION COMBUSTION ENGINES
DE4023307 1990-07-21
PCT/DE1991/000518 WO1992001863A1 (en) 1990-07-21 1991-06-26 Fuel-injection device for spark-ignition internal-combustion engines

Publications (2)

Publication Number Publication Date
EP0540529A1 EP0540529A1 (en) 1993-05-12
EP0540529B1 true EP0540529B1 (en) 1995-09-13

Family

ID=6410807

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91910996A Expired - Lifetime EP0540529B1 (en) 1990-07-21 1991-06-26 Fuel-injection device for spark-ignition internal-combustion engines

Country Status (5)

Country Link
US (1) US5327869A (en)
EP (1) EP0540529B1 (en)
JP (1) JPH05507990A (en)
DE (2) DE4023307A1 (en)
WO (1) WO1992001863A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257529A (en) * 1993-02-18 1994-09-13 Robert Bosch Gmbh Fuel injector for internal combustion engine
AU6828294A (en) * 1993-05-06 1994-12-12 Cummins Engine Company Inc. Distributor for a high pressure fuel system
DE69424448T2 (en) * 1993-09-14 2000-12-21 Lucas Industries Ltd., London Fuel supply device
KR100499583B1 (en) * 1999-11-17 2005-07-07 엘지.필립스 엘시디 주식회사 liquid crystal injection device and liquid crystal injection method
US8118549B2 (en) * 2008-08-26 2012-02-21 Siemens Energy, Inc. Gas turbine transition duct apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE933182C (en) * 1953-10-04 1955-09-22 Daimler Benz Ag Fuel injection pump, especially for diesel internal combustion engines
GB1542865A (en) * 1975-06-13 1979-03-28 Lucas Industries Ltd Fuel injection pumping apparatus
US4052971A (en) * 1975-10-10 1977-10-11 Stanadyne, Inc. Fuel injection pump and timing control therefor
DE3001166A1 (en) * 1980-01-15 1981-07-23 Robert Bosch Gmbh, 7000 Stuttgart FUEL INJECTION SYSTEM
DE3124500A1 (en) * 1981-06-23 1983-01-13 Robert Bosch Gmbh, 7000 Stuttgart FUEL INJECTION PUMP
DE3248713A1 (en) * 1982-12-31 1984-07-05 Robert Bosch Gmbh, 7000 Stuttgart METHOD FOR INJECTION OF FUEL AND FUEL INJECTION DEVICE FOR CARRYING OUT THE METHOD
DE3543151A1 (en) * 1985-08-16 1987-02-26 Daimler Benz Ag PRESSURE OIL FEEDING DEVICE FOR A HYDRAULICALLY ACTUATED SPRAY ADJUSTER INTERACTING WITH AN INJECTION PUMP
US4667641A (en) * 1985-09-23 1987-05-26 Stanadyne, Inc. Injection pump with radially mounted spill control valve

Also Published As

Publication number Publication date
WO1992001863A1 (en) 1992-02-06
EP0540529A1 (en) 1993-05-12
DE59106489D1 (en) 1995-10-19
JPH05507990A (en) 1993-11-11
US5327869A (en) 1994-07-12
DE4023307A1 (en) 1992-01-23

Similar Documents

Publication Publication Date Title
DE3788406T2 (en) Electronically controlled injection system.
EP0911511B1 (en) Method of injection of fuel into the combustion chamber of a diesel engine
DE3112381C2 (en)
DE3235413C2 (en)
DE2759187A1 (en) FUEL INJECTION SYSTEM WITH AT LEAST ONE FUEL INJECTION VALVE, ESPECIALLY FOR LARGE ENGINES
EP0328602B1 (en) Device for introducing fuel into the combustion chamber of an internal combustion engine
EP0114991B1 (en) Fuel injection device for combustion engines
DE69003186T2 (en) Fuel injection pump with backflow ventilation.
WO1995021998A1 (en) Injection system
DE60023168T2 (en) METHOD FOR REDUCING EMISSIONS IN AN INTERNAL COMBUSTION ENGINE
EP0021170A1 (en) Two-stroke internal combustion engine
EP0178487B1 (en) Fuel injection device for internal combustion engines
EP0298254B1 (en) Fuel injection pump
DE2541363C2 (en) Spark ignition rotary piston injection internal combustion engine
DE19833692C2 (en) Injector unit with timing plunger piston with a fixed stop
DE7903595U1 (en) DISTRIBUTOR INJECTION PUMP FOR MULTI-CYLINDER COMBUSTION ENGINES WORKING WITH COMPRESSION IGNITION
DE10117600C1 (en) High-pressure fuel pump for a fuel system of a direct-injection internal combustion engine, fuel system and internal combustion engine
EP0540529B1 (en) Fuel-injection device for spark-ignition internal-combustion engines
DE10327845A1 (en) Method of using multiple fuel injections to reduce idle engine emissions
DE2009365A1 (en) Fuel injection device for a diesel engine
CH671809A5 (en)
DE102015105735A1 (en) Method for operating a fuel pump for an internal combustion engine, fuel pump and internal combustion engine
DE4310457A1 (en) Fuel injection pump for internal combustion engines
EP0543805B1 (en) Fuel injection pump for internal combustion engines
DE3216513C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19940715

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59106489

Country of ref document: DE

Date of ref document: 19951019

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990614

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990622

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991230

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000626

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050626