[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0433790A1 - Burner - Google Patents

Burner Download PDF

Info

Publication number
EP0433790A1
EP0433790A1 EP90123495A EP90123495A EP0433790A1 EP 0433790 A1 EP0433790 A1 EP 0433790A1 EP 90123495 A EP90123495 A EP 90123495A EP 90123495 A EP90123495 A EP 90123495A EP 0433790 A1 EP0433790 A1 EP 0433790A1
Authority
EP
European Patent Office
Prior art keywords
burner
fuel
injector
air
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90123495A
Other languages
German (de)
French (fr)
Other versions
EP0433790B1 (en
Inventor
Jakob Dr. Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0433790A1 publication Critical patent/EP0433790A1/en
Application granted granted Critical
Publication of EP0433790B1 publication Critical patent/EP0433790B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2210/00Noise abatement

Definitions

  • the present invention relates to a burner according to the preamble of claim 1. It also relates to a method for operating such a burner.
  • a burner which consists of two half-hollow partial cone bodies which are offset from one another.
  • the conical shape of the partial conical bodies shown in the figure there extends in the direction of flow over a certain fixed angle.
  • the aforementioned displacement of the partial cone bodies relative to one another creates on both sides of the burner body a tangential entry slot over the entire length of the burner, the width of which corresponds to the respective offset of the central axes of the partial cone bodies with respect to one another, and through which the combustion air flows into the interior of the burner.
  • a fuel nozzle is placed in the interior at the beginning of the burner, the fuel injection of which preferably starts in the center of the mutually offset central axes of the partial cone bodies. Further fuel nozzles are provided in the area of the tangential inlet slots. Liquid fuel is preferably introduced through the central fuel nozzle, while the fuel nozzles in the region of the tangential inlet slots are preferably operated with a gaseous fuel. If such a burner is now operated with a medium-calorific gas, which generally contains highly flammable hydrogen, there is a concrete risk that the combustion air that is brought in is present and mix this gas so strongly already in the entry area, at the point of their meeting, that the mixture may ignite prematurely.
  • a medium-calorific gas which generally contains highly flammable hydrogen
  • the invention seeks to remedy this.
  • the invention is based on the object of providing measures in a burner of the type mentioned at the outset which prevent the mixture from igniting prematurely when a medium-calorific gas is used as fuel.
  • the measures should also enable the mixing process to be stabilized.
  • the main advantage of the invention is that the NO x emissions remain low because there is no premature ignition.
  • the injector which forms the solution according to the task, makes it possible not to change the flow field of the burner used, despite the high mass flow share of the medium-calorific gas in the air / gas mixture.
  • This is achieved with the aid of a suitable distribution of a number of injector bores of the same size or with the aid of an arrangement of bores whose diameter varies in a suitable manner.
  • the Density of the gas inlet holes (P GB ) proportional to the radially averaged combustion air inlet velocity through the tangential air inlet slots of the burner.
  • the injector according to the invention does not allow shear layers to arise during the mixing process: these shear layers, which always arise when the velocity of the gaseous fuel at the mixing location is greater than the air velocity, cause strong turbulence, which triggers instability in the system.
  • these shear layers which always arise when the velocity of the gaseous fuel at the mixing location is greater than the air velocity, cause strong turbulence, which triggers instability in the system.
  • the mixing process is designed for full load with regard to the flow rate of the gaseous fuel: the gaseous fuel is "breathed" into the air flow almost without pressure.
  • Another advantage of the invention can be seen in the fact that even combustion of gases with a low calorific value is conceivable in suitable temperature and pressure ranges.
  • FIGS. 1 and 2 should be used simultaneously. Furthermore, so that FIG. 1 remains clear, the injectors shown in FIG. 2 have not been included.
  • Fig. 1 shows a burner 1, which consists of two half, hollow partial cone bodies 2, 3, which are offset from one another.
  • the conical shape of the partial conical bodies 2, 3 shown has a certain fixed angle in the flow direction.
  • the partial cone bodies 2, 3 can have an increasing taper (convex shape) or a decreasing taper (concave shape) in the direction of flow.
  • the latter two forms are not recorded in the drawing, since they can be easily traced. Which form is ultimately used depends on the various parameters of the combustion process.
  • the form shown in the drawing is preferably used.
  • the offset of the respective central axis 2a, 3a see FIG.
  • the entry slot width S is a measure that results from the displacement of the two central axes 2a, 3a of the partial cone bodies 2, 3.
  • the two partial cone bodies 2, 3 each have a cylindrical initial part 2c, 3c, which, like the partial cone bodies 2, 3, also run offset from one another, so that the tangential entry slots 2b, 3b are present from the start.
  • the burner 1 can of course describe a purely conical shape, that is to say without a cylindrical starting body.
  • a nozzle is accommodated in this cylindrical starting body, which is preferably operated with a liquid fuel 5 and whose fuel injection 15 is preferably placed in the center of the two central axes 2a, 3a.
  • the two partial cone bodies 2, 3 each have a fuel line 10, 11, which are provided in the flow direction with openings 21 which are distributed over the entire length of the fuel lines.
  • a gaseous fuel 6 is preferably introduced through the fuel lines 10, 11, this fuel being injected in the region of the tangential inlet slots 2b, 3b, as can be seen particularly well from FIG. 2.
  • the burner 1 also has a fuel supply, preferably a gaseous fuel 4, which takes place via injectors 12, 13, which also act in the region of the tangential inlet slots 2b, 3b via a number of gas bores 14, as can be seen comprehensively from FIG. 2.
  • a fuel supply preferably a gaseous fuel 4
  • FIG. 2 It is basically the case that the burner 1 can be operated via individual fuel feeds or through a mixed operation with the available fuel options.
  • the burner 1 On the combustion chamber side 22, the burner 1 has a collar-shaped wall 20, through which, if necessary, bores (not shown) are provided, through which dilution air or cooling air is fed to the front part of the combustion chamber 22.
  • This fuel injection 15 can be an air-assisted atomization or a pressure atomization.
  • the conical liquid fuel profile 16 is enclosed by a trangentially flowing combustion air stream 8 and an axially brought in further air stream 7a. About the composition of the tangential inflowing air / fuel mixture 8 is discussed in more detail in the description of FIG. 2. In the axial direction of the burner 1, the concentration of the injected liquid fuel 5 is continuously reduced by an air flow or by the air / fuel mixture 8.
  • gaseous fuel 6 is used via the two fuel lines 10, 11, the mixture formation begins with the invisible air supply (see FIG. 2, item 7) directly in the area of the tangential inlet slots 2b, 3b, corresponding to the fuel openings 21 provided there
  • the combustion process of each air / fuel mixture then begins at the top of this backflow zone 18. Only at this point can a stable flame front 19 arise. A flashback of the flame inside the burner 1 like this With known premixing sections, there is always no need to worry, whereas complicated flame holders are there to remedy the situation.
  • the air used (see FIG. 2, item 7) is preheated at most, accelerated, holistic evaporation of the liquid fuel 5 occurs before the point at the outlet of the burner 1 is reached at which the combustion process of the mixture begins.
  • the degree of evaporation is dependent on the size of the burner 1, the drop size and the temperature of the air streams 7a, 7 respectively. of the air / fuel mixture 8 dependent.
  • the nitrogen oxide and carbon monoxide emissions are low if the air excess is at least 60%, which means an additional one precaution to minimize NOx emissions is available.
  • the backflow zone 18, which is once geometrically fixed, is inherently position-stable, because the swirl number increases in the direction of flow in the region of the cone shape of the burner 1.
  • the axial speed leaves further influence each other by axially feeding the air flow 7a already mentioned.
  • the design of the burner 1 is ideally suited, given a given overall length of a burner 1, to adapt the size of the tangential inlet slots 2b, 3b to the requirements by pushing the partial cone bodies 2, 3 towards or away from one another, which means that the distance between the two central axes 2a, 3a reduced or increases, and accordingly the entry slot width S also changes, as can be seen particularly well from FIG. 2.
  • the partial cone bodies 2, 3 can also be moved relative to one another in another plane. Seen in this way, the burner 1 can be individually adapted without changing its focal length.
  • the injector 12, 13 is designed in such a way that the gaseous fuel 4, which is preferably used, flows from a gas supply pipe 12a, 13a through which a gas can flow, via a number of gas bores 14, into a gas injector channel (injection channel) 12b, 13b. This extends into the area of the tangential entry slot 2b, 3b.
  • the width of the injector 12, 13 is designed such that the air 7 that is brought in flows along the flanks of the injector 12, 13, and begins to mix with the gaseous fuel 4 in the region of the trangential inlet slot 2b, 3b, after which the air / Fuel mixture 8 is formed.
  • the property of the injector 12, 13 of not significantly changing the flow field of the burner 1 despite the high mass flow fraction of the medium-calorific gas used in the air / gas mixture. This is achieved with the help of a suitable distribution of the gas holes 14 of the same size or with the help an arrangement of holes, the diameter of which varies in a suitable manner.
  • the density of the gas bores is proportional to the radially averaged speed of the air 7 in the inlet slots 2b, 3b of the burner 1, and follows the following formula: where ⁇ is the opening angle of the burner 1 (see FIG. 1), S denotes the entry slot width and R is the mean radius of the position of the entry slot 2b, 3b in question (see FIG. 1).
  • the directions of the gas bores 14 should preferably coincide with the prevailing flow direction in the inlet slot 2b, 3b. It is important that the gaseous fuel 4 undergoes the actual throttling when it enters the gas bores 14 from the gas supply channel 12a, 13a.
  • the gas holes 14 are to be designed in such a way that they cannot be freely blown into the interior 17 of the burner 1.
  • These gas bores 14 open into a gas injector channel 12b, 13b, which extends to the inlet slot 2b, 3b. It is advantageous if this channel is divided several times in the longitudinal direction by flow plates that cannot be seen, so that the gaseous fuel 4 is channeled in the direction of the combustion air flow under design conditions, for example full load. Furthermore, aid is provided in that the gaseous fuel 4 blows at the respective speed of the air 7 brought in in the region of the inlet slots 2b, 3b.
  • the transition from the gas holes 14 to the subsequent gas injector channel 12b, 13b is preferably designed as a Borda-Carnot extension.
  • the minimum length of the gas injector channel is concerned, the usual rule of 3-5 hydraulic diameters resp. 6 - 10 gap width used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Control Of Combustion (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

A burner (1), with a conical shape opening in the direction of flow, is composed of two part cone members (2, 3) which are positioned on top of one another and the central axes (2a, 3a) of which run in a displaced manner in relation to one another in the longitudinal direction. From this displacement, a tangential inlet slot to the interior (17) of the burner (1) is in each case formed over the length of the burner (1). The fuel supply takes place centrally via a nozzle (9) and tangentially in the region of the inlet slots via a fuel pipe (10, 11) in each case, which is provided with fuel openings (21) which there take on the injection of the fuel (6). Above each inlet slot, a duct is formed, which is equipped with an injector (12, 13). Additional fuel (4) is introduced by this injector. The air/fuel mixture with fuel from the injector (12, 13) and/or fuel from the fuel pipe (10, 11) flows generally in the form of an air/fuel mixture (8) through the tangential inlet slots into the interior (17) of the burner (1). There, if necessary, further mixing with the fuel (5) from the nozzle (9) takes place. <IMAGE>

Description

Die vorliegende Erfindung betrifft einen Brenner gemäss Oberbegriff des Anspruchs 1. Sie betrifft auch ein Verfahren zum Betrieb eines solchen Brenners.The present invention relates to a burner according to the preamble of claim 1. It also relates to a method for operating such a burner.

STAND DER TECHNIKSTATE OF THE ART

Aus EP-A1-0 321 809 ist ein Brenner bekanntgeworden, der aus zwei halben hohlen Teilkegelkörper besteht, die versetzt zueinander aufeinander liegen. Die Kegelform der in der dortigen Figur gezeigten Teilkegelkörper erstreckt sich in Strömungsrichtung über einen bestimmten festen Winkel. Die erwähnte Versetzung der Teilkegelkörper zueinander schafft auf beiden Seiten des Brennerkörpers jeweils einen über die ganze Länge des Brenners tangentialen Eintrittsschlitz, dessen Breite der jeweiligen Versetzung der Mittelachsen der Teilkegelkörper zueinander entspricht, und durch welchen die Verbrennungsluft in den Innenraum des Brenners strömt.From EP-A1-0 321 809 a burner has become known which consists of two half-hollow partial cone bodies which are offset from one another. The conical shape of the partial conical bodies shown in the figure there extends in the direction of flow over a certain fixed angle. The aforementioned displacement of the partial cone bodies relative to one another creates on both sides of the burner body a tangential entry slot over the entire length of the burner, the width of which corresponds to the respective offset of the central axes of the partial cone bodies with respect to one another, and through which the combustion air flows into the interior of the burner.

Im Innenraum am Anfang des Brenners ist eine Brennstoffdüse plaziert, deren Brennstoffeindüsung vorzugsweise mittig der zueinander versetzten Mittelachsen der Teilkegelkörper ausgeht. Im Bereich der tangentialen Eintrittsschlitze sind weitere Brennstoffdüsen vorgesehen. Durch die zentrale Brennstoffdüse wird vorzugsweise flüssiger Brennstoff herangeführt, während die Brennstoffdüsen im Bereich der tangentialen Eintrittsschlitze vorzugsweise mit einem gasförmigen Brennstoff betrieben werden. Wird nun ein solcher Brenner mit einem mittelkalorischen Gas, das in der Regel leicht entzündlichen Wasserstoff enthält, betrieben, so besteht die konkrete Gefahr, dass sich die herangeführte Verbrennungsluft und dieses Gas bereits im Eintrittsbereich, am Ort ihres Zusammentreffens, derart stark vermischen, dass es zu einer verfrühten Zündung des Gemisches kommen kann. Dies wiederum würde zu einer diffusionsartigen Verbrennung mit stark erhöhter NOx-Emission führen. Danebst ist feststellbar, dass bei einer solchen Vermischung Luft/Gas leicht Scherschichten entstehen können, worauf eine Instabilität des Mischvorganges infolge starker Verwirbelungen die Folge ist. Kommt es auf die Zuführung des Gases wegen obengenannter Instabilität zu Druckpulsationen, so führt dies, darüber hinaus, zu starken Schwingungen im System.A fuel nozzle is placed in the interior at the beginning of the burner, the fuel injection of which preferably starts in the center of the mutually offset central axes of the partial cone bodies. Further fuel nozzles are provided in the area of the tangential inlet slots. Liquid fuel is preferably introduced through the central fuel nozzle, while the fuel nozzles in the region of the tangential inlet slots are preferably operated with a gaseous fuel. If such a burner is now operated with a medium-calorific gas, which generally contains highly flammable hydrogen, there is a concrete risk that the combustion air that is brought in is present and mix this gas so strongly already in the entry area, at the point of their meeting, that the mixture may ignite prematurely. This in turn would lead to a diffusion-like combustion with a greatly increased NO x emission. In addition, it can be ascertained that with such a mixture of air / gas, shear layers can easily arise, which results in instability of the mixing process as a result of strong turbulence. If pressure pulsations occur due to the instability mentioned above, this also leads to strong vibrations in the system.

AUFGABE DER ERFINDUNGOBJECT OF THE INVENTION

Hier will die Erfindung Abhilfe schaffen. Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, bei einem Brenner der eingangs genannten Art Massnahmen vorzusehen, die bei Verwendung eines mittelkalorischen Gases als Brennstoff eine Frühzündung des Gemisches verunmöglichen. Die Massnahmen sollen auch eine Stabilisierung des Mischvorganges ermöglichen.The invention seeks to remedy this. The invention, as characterized in the claims, is based on the object of providing measures in a burner of the type mentioned at the outset which prevent the mixture from igniting prematurely when a medium-calorific gas is used as fuel. The measures should also enable the mixing process to be stabilized.

Der wesentliche Vorteil der Erfindung ist darin zu sehen, dass die NOx-Emissionen, da es zu keiner verfrühten Zündung kommt, tief bleiben.The main advantage of the invention is that the NO x emissions remain low because there is no premature ignition.

Ein weiterer wesentlicher Vorteil der Erfindung ist darin zu sehen, dass der Injektor, der die aufgabengemässe Lösung bildet, ermöglicht, das Strömungsfeld des zum Einsatz kommenden Brenners, trotz des hohen Massenstromanteils des mittelkalorischen Gases am Luft/Gas-Gemisch, nicht nennenswert zu verändern. Dies gelingt mit Hilfe einer geeigneten Verteilung einer Anzahl von Injektorbohrungen gleicher Grösse oder mit Hilfe einer Anordnung von Bohrungen, deren Druchmesser in geeigneter Weise variiert. Dabei ist die Dichte der Gaseintrittsbohrungen (PGB) proportional zur radial gemittelten Verbrennungslufteintrittsgeschwindigkeit durch die tangentialen Lufteintrittsschlitze des Brenners.Another important advantage of the invention is that the injector, which forms the solution according to the task, makes it possible not to change the flow field of the burner used, despite the high mass flow share of the medium-calorific gas in the air / gas mixture. This is achieved with the aid of a suitable distribution of a number of injector bores of the same size or with the aid of an arrangement of bores whose diameter varies in a suitable manner. Here is the Density of the gas inlet holes (P GB ) proportional to the radially averaged combustion air inlet velocity through the tangential air inlet slots of the burner.

Der erfindungsgemässe Injektor lässt des weiteren Scherschichten beim Mischvorgang nicht entstehen: Diese Scherschichten, die immer dann entstehen, wenn die Geschwindigkeit des gasförmigen Brennstoffes am Mischort grösser als die Luftgeschwindigkeit ist, bewirken starke Verwirbelungen, welche eine Instabilität des Systems auslösen. Indem nun der Injektor so ausgelegt ist, dass am Mischort die beiden Medien mit nahezu gleicher Geschwindigkeit aufeinander treffen, treten dort keine Turbulenzen auf; auch entstehen dort keine Druckpulsationen, welche eine negative Auswirkung auf den Misch- und Brennvorgang hätten, so dass Schwingungen auf das System ausgeschlossen sind. Der Mischvorgang ist bezüglich Strömungsgeschwindigkeit des gasförmigen Brennstoffes auf Vollast ausgelegt: Der gasförmige Brennstoff wird annähernd drucklos in die Luftströmung "eingehaucht". Weitere Vorteile der Erfindung betreffen die Vermeidung der akustischen Härte bei der Eindüsung des Brennstoffes: Indem die Spaltbreite und die Länge des Injektors entsprechend ausgelegt ist, kann sich die Strömung vor Verlassen des Injektors soweit erholen, dass die erwähnte akustische Härte nicht entstehen kann.Furthermore, the injector according to the invention does not allow shear layers to arise during the mixing process: these shear layers, which always arise when the velocity of the gaseous fuel at the mixing location is greater than the air velocity, cause strong turbulence, which triggers instability in the system. By designing the injector so that the two media meet at the mixing location at almost the same speed, there is no turbulence; there are also no pressure pulsations which would have a negative effect on the mixing and burning process, so that vibrations on the system are excluded. The mixing process is designed for full load with regard to the flow rate of the gaseous fuel: the gaseous fuel is "breathed" into the air flow almost without pressure. Further advantages of the invention relate to the avoidance of acoustic hardness when the fuel is injected: by designing the gap width and the length of the injector accordingly, the flow can recover before leaving the injector to such an extent that the aforementioned acoustic hardness cannot arise.

Ein weiterer Vorteil der Erfindung ist darin zu sehen, dass in geeigneten Temperatur- und Druckbereichen sogar eine Verbrennung von Gasen mit niedrigem Heizwert denkbar ist.Another advantage of the invention can be seen in the fact that even combustion of gases with a low calorific value is conceivable in suitable temperature and pressure ranges.

Vorteilhafte und zweckmässige Wetierbildungen der erfindungsgemässen Aufgabenlösung sind in den weiteren Ansprüchen gekennzeichnet.Advantageous and expedient forms of watering of the task solution according to the invention are characterized in the further claims.

Im folgenden wird anhand der Zeichnung ein Ausführungsbeispiel der Erfindung näher erläutert. Alle für das unmittelbare Verständnis der Erfindung nicht erforderlichen Elemente sind fortgelassen. Die Strömungsrichtung der verschiedenen Medien ist mit Pfeilen angegeben. In den verschiedenen Figuren sind gleiche Elemente jeweils mit den gleichen Bezugszeichen versehen.An exemplary embodiment of the invention is explained in more detail below with reference to the drawing. All elements not necessary for the immediate understanding of the invention have been omitted. The direction of flow of the different media is indicated by arrows. In the different figures, the same elements are each provided with the same reference symbols.

KURZE BESCHREIBUNG DER FIGURENBRIEF DESCRIPTION OF THE FIGURES

Es zeigt:

Fig.1
eine perspektivische Darstellung des Brenners, entsprechend aufgeschnitten, mit angedeuteter tangentialer Luftzuführung und
Fig.2
einen Schnitt durch die Ebene II-II von Fig. 1, in einer schematischen, vereinfachten Darstellung.
It shows:
Fig. 1
a perspective view of the burner, cut open accordingly, with indicated tangential air supply and
Fig. 2
a section through the plane II-II of Fig. 1, in a schematic, simplified representation.

BESCHREIBUNG DES AUSFÜHRUNGSBEISPIELSDESCRIPTION OF THE EMBODIMENT

Um den Aufbau des Brenners 1 besser zu verstehen, sollen die Fig. 1 und 2 gleichzeitig herangezogen werden. Des weiteren, damit Fig. 1 übersichtlich bleibt, sind die nach Fig. 2 gezeigten Injektoren nicht darin aufgenommen worden.To better understand the structure of the burner 1, FIGS. 1 and 2 should be used simultaneously. Furthermore, so that FIG. 1 remains clear, the injectors shown in FIG. 2 have not been included.

Fig. 1 zeigt einen Brenner 1, welcher aus zwei halben, hohlen Teilkegelkörpern 2, 3 besteht, die versetzt zueinander aufeinander liegen. Die Kegelform der gezeigten Teilkegelkörper 2, 3 weist in Strömungsrichtung einen bestimmten festen Winkel auf. Selbstverständlich können die Teilkegelkörper 2, 3 in Strömungsrichtung eine zunehmende Kegelneigung (konvexe Form) oder eine abnehmende Kegelneigung (konkave Form) aufweisen. Die beiden letztgenannten Formen sind zeichnerisch nicht erfasst, da sie ohne weiteres nachempfindbar sind. Welche Form schlussendlich zum Einsatz gelangt, hängt von den verschiedenen Parametern des Verbrennungsprozesses ab. Vorzugsweise wird die zeichnerisch gezeigte Form eingesetzt. Die Versetzung der jeweiligen Mittelachse 2a, 3a (siehe Fig. 2) der Teilkegelkörper 2, 3 zueinander schafft auf beiden Seiten des Brenners 1 in Strömungsrichtung je einen tangentialen Eintrittsschlitz 2b, 3b, mit einer bestimmten Eintrittsschlitzbreite S frei (siehe Fig. 2), durch welche die Verbrennungsluft 8 (Luft/Brennstoff-Gemisch) im Innenraum 17 des Brenners 1 strömt. Die Eintrittsschlitzbreite S ist ein Mass, das aus der Versetzung der beiden Mittelachsen 2a, 3a der Teilkegelkörper 2, 3 resultiert. Die beiden Teilkegelkörper 2, 3 haben je einen zylindrischen Anfangsteil 2c, 3c, die analog den Teilkegelkörpern 2, 3, auch versetzt zueinander verlaufen, so dass die tangentialen Eintrittsschlitze 2b, 3b von Anfang an vorhanden sind. Selbstverständlich kann der Brenner 1 eine rein kegelige Form beschreiben, also ohne einen zylindrischen Anfangskörper. In diesem zylindrischen Anfangskörper ist eine Düse untergebracht, welche vorzugsweise mit einem flüssigen Brennstoff 5 betrieben wird, und deren Brenn- stoffeindüsung 15 vorzugsweise mittig zu den beiden Mittelachsen 2a, 3a plaziert ist. Als weitere Brennstoffzuführung weisen beide Teilkegelkörper 2, 3 je eine Brennstoffleitung 10, 11 auf, welche in Strömungsrichtung mit Öffnungen 21, die über die gesamte Länge der Brennstoffleitungen verteilt sind, versehen sind. Durch die Brennstoffleitungen 10, 11, wird vorzugsweise ein gasförmiger Brennstoff 6 herangeführt, wobei dieser Brennstoff im Bereich der tangentialen Eintrittsschlitze 2b, 3b eingedüst wird, wie dies aus Fig. 2 besonders gut hervorgeht. Der Brenner 1 weist des weiteren eine Brennstoffzuführung auf, vorzugsweise eines gasförmigen Brennstoffes 4, die über Injektoren 12, 13 stattfindet, welche auch im Bereich der tangentialen Eintrittsschlitze 2b, 3b über eine Anzahl Gasbohrungen 14 wirken, wie dies umfassend aus Fig. 2 hervorgeht. Für die diesbezügliche Beschreibung wird auf Fig. 2 verwiesen. Grundsätzlich ist es so, dass der Betrieb des Brenners 1 über einzelne Brenntoffzuführungen oder durch einen Mischbetrieb mit den vorhandenen Brennstoff-Möglichkeiten möglich ist. Brennraumseitig 22 weist der Brenner 1 eine kragenförmige Wand 20 auf, durch welche, allenfalls, nicht dargestellte Bohrungen vorgesehen werden, durch welche Verdünnungsluft oder Kühlluft dem vorderen Teil des Brennraumes 22 zugeführt wird. Der durch die Düse 9 vorzugsweise in den Brenner 1 eingebrachte flüssige Brennstoff 5 wird unter einem spitzen Winkel in den Innenraum 17 eingedüst, dergestalt, dass sich in der Brenneraustrittsebene ein möglichst homogenes kegeliges Sprühbild einstellt. Bei dieser Brennstoffeindüsung 15 kann es sich um eine luftunterstützte Zerstäubung oder eine Druckzerstäubung handeln. Das kegelige Flüssigbrennstoffprofil 16 wird von einem trangential einströmenden Verbrennungsluftstrom 8 und einem achsial herangeführten weiteren Luftstrom 7a umschlossen. Über die Zusamensetzung des tangentialen einströmenden Luft/Brennstoff-Gemisches 8 wird in der Beschreibung von Fig. 2 näher eingetreten. In axialer Richtung des Brenners 1, wird die Konzentration des eingedüsten flüssigen Brennstoffes 5 fortlaufend durch eine Luftströmung oder durch das Luft/Brennstoff-Gemisch 8 abgebaut. Wird gasförmiger Brennstoff 6 über die beiden Brennstoffleitungen 10, 11 eingesetzt, beginnt die Gemischbildung mit der nicht ersichtlichen Luftzuführung (siehe Fig. 2, Pos. 7) direkt im Bereich der tangentialen Eintrittsschlitze 2b, 3b, entsprechend den dort vorgesehenen Brennstofföffnungen 21. Bei der Eindüsung von flüssigem Brennstoff 5 über die Düse 9 wird im Bereich des Wirbelaufplatzens, also im Bereich einer sich bildenden Rückströmzone 18, die optimale, homogene Brennstoffkonzentration über den Querschnitt erreicht. Der Verbrennungsvorgang jedes Luft/Brennstoff-Gemisches beginnt dann an der Spitze dieser Rückströmzone 18. Erst an dieser Stelle kann eine stabile Flammenfront 19 entstehen. Ein Rückschlag der Flamme ins Innere des Brenners 1, wie dies bei bekannten Vormischstrecken immer gegeben sein kann, wogegen dort mit komplizierten Flammenhaltern Abhilfe gesucht wird, ist hier nicht zu befürchten. Wird allgemein die eingesetzte Luft (siehe Fig. 2, Pos. 7) allenfalls vorgewärmt, so stellt sich eine beschleunigte ganzheitliche Verdampfung des flüssigen Brennstoffes 5 ein, bevor der Punkt am Ausgang des Brenners 1 erreicht ist, an dem der Verbrennungsvorgang des Gemisches beginnt. Der Grad der Verdampfung ist von der Grösse des Brenners 1, von der Tropfengrösse und von der Temperatur der Luftströme 7a, 7 resp. des Luft/Brennstoff-Gemisches 8 abhängig. Unabhängig davon, ob neben der homogenen Tropfenvermischung durch einen Verbrennungsluftrom niedriger Temperatur oder zusätzlich eine partielle oder die vollständige Tropfenverdampfung durch vorgeheizte Verbrennungsluft erreicht wird, fallen die Stickoxid-und Kohlenmonoxid-Emissionen niedrig aus, wenn der Luftüberschuss mindestens 60 % beträgt, womit hier eine zusätzliche Vorkehrung zur Minimierung der NOx-Emissionen zur Verfügung steht. Im Falle der vollständigen Verdampfung des eingesetzten Brennstoffes vor dem Eintritt in die Verbrennungszone sind die Schadstoffemissionswerte am niedrigsten. Gleiches gilt auch für den nahstöchiometrischen Betrieb, wenn die Überschussluft durch rezirkulierendes Rauchgas ersetzt wird. Bei der Gestaltung der Teilkegelkörper 2, 3 hinsichtlich Kegelwinkels und Breite der tangentialen Eintrittsschlitze 2b, 3b sind enge Grenzen einzuhalten, damit sich das gewünschte Strömungsfeld der Luft mit ihrer Rückströmzone 18 im Bereich der Brennermündung zur Flammenstabilisierung einstellt. Allgemein ist zu sagen, dass eine Verkleinerung der tangentialen Eintrittsschlitze 2b, 3b, d.h. eine Verkleinerung der Eintrittsbreite S (siehe Fig. 2) die Rückströmzone 18 weiter stromaufwärts verschiebt, wodurch dann allerdings das Gemisch früher zur Zündung käme. Indessen ist festzuhalten, dass die einmal geometrisch fixierte Rückströmzone 18 an sich positionsstabil ist, denn die Drallzahl nimmt in Strömungsrichtung im Bereich der Kegelform des Brenners 1 zu. Die Achsialgeschwindigkeit lässt sich des weiteren durch axiale Zuführung des bereits erwähnten Luftstromes 7a beeinflussen. Die Konstruktion des Brenners 1 eignet sich vorzüglich, bei vorgegebener Baulänge eines Brenners 1, die Grösse der tangentialen Eintrittsschlitze 2b, 3b dem Bedarf anzupassen, indem die Teilkegelkörper 2, 3 zu- oder auseinander geschoben werden, wodurch sich der Abstand der beiden Mittelachsen 2a, 3a verkleinert resp. vergrössert, und dementsprechend sich auch die Eintrittsschlitzbreite S verändert, wie dies aus Fig. 2 besonders gut hervorgeht. Selbstverständlich sind die Teilkegelkörper 2, 3 auch in einer anderen Ebene zueinander verschiebbar. So gesehen kann der Brenner 1, ohne Veränderung seiner Brennlänge, individuell angepasst werden.Fig. 1 shows a burner 1, which consists of two half, hollow partial cone bodies 2, 3, which are offset from one another. The conical shape of the partial conical bodies 2, 3 shown has a certain fixed angle in the flow direction. Of course, the partial cone bodies 2, 3 can have an increasing taper (convex shape) or a decreasing taper (concave shape) in the direction of flow. The latter two forms are not recorded in the drawing, since they can be easily traced. Which form is ultimately used depends on the various parameters of the combustion process. The form shown in the drawing is preferably used. The offset of the respective central axis 2a, 3a (see FIG. 2) of the partial cone bodies 2, 3 relative to one another creates a tangential entry slot 2b, 3b with a certain entry slot width S on both sides of the burner 1 in the flow direction (see FIG. 2), through which the combustion air 8 (air / fuel mixture) flows in the interior 17 of the burner 1. The entry slot width S is a measure that results from the displacement of the two central axes 2a, 3a of the partial cone bodies 2, 3. The two partial cone bodies 2, 3 each have a cylindrical initial part 2c, 3c, which, like the partial cone bodies 2, 3, also run offset from one another, so that the tangential entry slots 2b, 3b are present from the start. The burner 1 can of course describe a purely conical shape, that is to say without a cylindrical starting body. A nozzle is accommodated in this cylindrical starting body, which is preferably operated with a liquid fuel 5 and whose fuel injection 15 is preferably placed in the center of the two central axes 2a, 3a. As a further fuel supply, the two partial cone bodies 2, 3 each have a fuel line 10, 11, which are provided in the flow direction with openings 21 which are distributed over the entire length of the fuel lines. A gaseous fuel 6 is preferably introduced through the fuel lines 10, 11, this fuel being injected in the region of the tangential inlet slots 2b, 3b, as can be seen particularly well from FIG. 2. The burner 1 also has a fuel supply, preferably a gaseous fuel 4, which takes place via injectors 12, 13, which also act in the region of the tangential inlet slots 2b, 3b via a number of gas bores 14, as can be seen comprehensively from FIG. 2. For the description in this regard, reference is made to FIG. 2. It is basically the case that the burner 1 can be operated via individual fuel feeds or through a mixed operation with the available fuel options. On the combustion chamber side 22, the burner 1 has a collar-shaped wall 20, through which, if necessary, bores (not shown) are provided, through which dilution air or cooling air is fed to the front part of the combustion chamber 22. The liquid fuel 5, which is preferably introduced into the burner 1 through the nozzle 9, is injected into the interior 17 at an acute angle, in such a way that the most conical spray pattern is obtained in the burner outlet plane. This fuel injection 15 can be an air-assisted atomization or a pressure atomization. The conical liquid fuel profile 16 is enclosed by a trangentially flowing combustion air stream 8 and an axially brought in further air stream 7a. About the composition of the tangential inflowing air / fuel mixture 8 is discussed in more detail in the description of FIG. 2. In the axial direction of the burner 1, the concentration of the injected liquid fuel 5 is continuously reduced by an air flow or by the air / fuel mixture 8. If gaseous fuel 6 is used via the two fuel lines 10, 11, the mixture formation begins with the invisible air supply (see FIG. 2, item 7) directly in the area of the tangential inlet slots 2b, 3b, corresponding to the fuel openings 21 provided there The injection of liquid fuel 5 via the nozzle 9 in the area of the vortex run, ie in the area of a backflow zone 18 that is formed, the optimal, homogeneous fuel concentration is achieved over the cross section. The combustion process of each air / fuel mixture then begins at the top of this backflow zone 18. Only at this point can a stable flame front 19 arise. A flashback of the flame inside the burner 1 like this With known premixing sections, there is always no need to worry, whereas complicated flame holders are there to remedy the situation. If, in general, the air used (see FIG. 2, item 7) is preheated at most, accelerated, holistic evaporation of the liquid fuel 5 occurs before the point at the outlet of the burner 1 is reached at which the combustion process of the mixture begins. The degree of evaporation is dependent on the size of the burner 1, the drop size and the temperature of the air streams 7a, 7 respectively. of the air / fuel mixture 8 dependent. Regardless of whether, in addition to the homogeneous droplet mixing by means of a low-temperature combustion air flow or in addition partial or complete droplet evaporation is achieved by preheated combustion air, the nitrogen oxide and carbon monoxide emissions are low if the air excess is at least 60%, which means an additional one precaution to minimize NOx emissions is available. In the case of complete vaporization of the fuel used before entering the combustion zone, the pollutant emission values are lowest. The same applies to near-stoichiometric operation when the excess air is replaced by recirculating flue gas. When designing the partial cone bodies 2, 3 with regard to the cone angle and width of the tangential inlet slots 2b, 3b, narrow limits must be observed so that the desired flow field of the air with its return flow zone 18 is established in the area of the burner mouth for flame stabilization. In general, it can be said that a reduction in the tangential inlet slots 2b, 3b, that is to say a reduction in the inlet width S (see FIG. 2), shifts the backflow zone 18 further upstream, which would cause the mixture to ignite earlier, however. In the meantime, it should be noted that the backflow zone 18, which is once geometrically fixed, is inherently position-stable, because the swirl number increases in the direction of flow in the region of the cone shape of the burner 1. The axial speed leaves further influence each other by axially feeding the air flow 7a already mentioned. The design of the burner 1 is ideally suited, given a given overall length of a burner 1, to adapt the size of the tangential inlet slots 2b, 3b to the requirements by pushing the partial cone bodies 2, 3 towards or away from one another, which means that the distance between the two central axes 2a, 3a reduced or increases, and accordingly the entry slot width S also changes, as can be seen particularly well from FIG. 2. Of course, the partial cone bodies 2, 3 can also be moved relative to one another in another plane. Seen in this way, the burner 1 can be individually adapted without changing its focal length.

Fig. 2 ist ein Schnitt etwa in der Mitte des Brenners 1, gemäss Schnittebene II-II aus Fig. 1. Die achsensymmetrisch angeordneten Einläufe 23, 24, welche in den Innenraum 17 des Brenners 1 münden, beinhalten je einen Injektor 12, 13, der sich über die ganze tangentiale Länge des Brenners 1 erstreckt. Der Injektor 12, 13 ist so konzipiert, dass der vorzugsweise eingesetzte gasförmige Brennstoff 4 von einem durchströmbaren Gaszuführrohr 12a, 13a aus, über eine Anzahl von Gasbohrungen 14 in einen Gasinjektorkanal (Einblaskanal) 12b, 13b strömt. Dieser erstreckt sich bis in den Bereich des tangentialen Eintrittsschlitzes 2b, 3b. Die Breite des Injektors 12, 13 ist so ausgelegt, dass die herangeführte Luft 7 entlang der Flanken des Injektors 12, 13 strömt, und sich im Bereich des trangentialen Eintrittsschlitzes 2b, 3b mit dem gasförmigen Brennstoff 4 zu vermischen beginnt, worauf erst das Luft/Brennstoff-Gemisch 8 entsteht. Von grundlegender Bedeutung ist die Eigenschaft des Injektors 12, 13, das Strömungsfeld des Brenners 1 trotz des hohen Massenstromanteils des eingesetzten mittelkalorischen Gases am Luft/Gas-Gemisch nicht nennenswert zu verändern. Dies gelingt mit Hilfe einer geeigneten Verteilung der Gasbohrungen 14 gleicher Grösse oder mit Hilfe einer Anordnung von Bohrungen, deren Durchmesser in geeigneter Weise variiert. Die Dichte der Gasbohrungen, PGB genannt, ist dabei proportional zur radial gemittelten Geschwindigkeit der Luft 7 in den Eintrittsschlitzen 2b, 3b des Brenners 1, und folgt folgender Formel:

Figure imgb0001

wobei α der Öffnungswinkel des Brenners 1 (Siehe Fig. 1) ist, S die Eintrittsschlitzbreite bezeichnet und R der mittlere Radius der jeweils betrachteten Stelle des Eintrittsschlitzes 2b, 3b ist (Siehe Fig. 1). Die Richtungen der Gasbohrungen 14 sollten vorzugsweise mit der vorherrschenden Strömungrichtung im Eintrittsschlitz 2b, 3b zusammenfallen. Dabei ist es wichtig, dass das gasförmige Brennstoff 4 die eigentliche Drosselung beim Eintritt aus dem Gaszufuhrkanal 12a, 13a in die Gasbohrungen 14 erfährt. Da mittelkalorische Gase in der Regel leicht entzündlichen Wasserstoff enthalten, sind die Gasbohrungen 14 so auszulegen, das sie nicht frei in den Innenraum 17 des Brenners 1 ausblasen können. Diese Gasbohrungen 14 münden in einen Gasinjektorkanal 12b, 13b, der sich bis zum Eintrittsschlitz 2b, 3b erstreckt. Vorteilhaft ist es, wenn dieser Kanal in Längsrichtung mehrfach durch nicht ersichtliche Strömungsbleche unterteilt ist, damit das gasförmige Brennstoff 4 unter Auslegebedingungen, beispielsweise Vollast, in Richtung der Verbrennungsluftströmung kanalisiert wird. Des weiteren wird damit Beihilfe geleistet, dass das gasförmige Brennstoff 4 mit der jeweiligen Geschwindigkeit der herangeführten Luft 7 im Bereich der Eintrittsschlitze 2b, 3b bläst. Damit wird verhindert, dass sich die Luft 7 und das zum Einsatz gelangende mittelkalorische Gas 4 bereits im Eintrittsbereich in den Innenraum 17 des Brenners 1 stark durchmischen kann, denn dies würde zwangsläufig zu einer verfrühten Zündung führen, welche eine diffusionsartige Verbrennung mit stark erhöhten NOx-Emissionen nach sich zieht. Um diese angestrebten Ziele zu erreichen, wird der Übergang von den Gasbohrungen 14 zum nachfolgenden Gasinjektorkanal 12b, 13b vorzugsweise als Borda-Carnot-Erweiterung ausgebildet. Was die Mindestlänge des Gasinjektorkanals betrifft, so wird hier mit Vorteil auf die übliche Regel der 3 - 5 hydraulischen Durchmesser resp. 6 - 10 Spaltbreite zurückgegriffen. Bei einer solchen Auslegung ist Gewähr vorhanden, dass sich die beruhigte Gasströmung 4 "hauchartig" mit der Luftströmung 7 vermischen kann, wodurch auch die akustische Härte beim Mischvorgang vermieden wird.2 is a section approximately in the middle of the burner 1, according to section plane II-II from FIG. 1. The inlets 23, 24, which are arranged axially symmetrically and which open into the interior 17 of the burner 1, each contain an injector 12, 13, which extends over the entire tangential length of the burner 1. The injector 12, 13 is designed in such a way that the gaseous fuel 4, which is preferably used, flows from a gas supply pipe 12a, 13a through which a gas can flow, via a number of gas bores 14, into a gas injector channel (injection channel) 12b, 13b. This extends into the area of the tangential entry slot 2b, 3b. The width of the injector 12, 13 is designed such that the air 7 that is brought in flows along the flanks of the injector 12, 13, and begins to mix with the gaseous fuel 4 in the region of the trangential inlet slot 2b, 3b, after which the air / Fuel mixture 8 is formed. Of fundamental importance is the property of the injector 12, 13 of not significantly changing the flow field of the burner 1 despite the high mass flow fraction of the medium-calorific gas used in the air / gas mixture. This is achieved with the help of a suitable distribution of the gas holes 14 of the same size or with the help an arrangement of holes, the diameter of which varies in a suitable manner. The density of the gas bores, called P GB , is proportional to the radially averaged speed of the air 7 in the inlet slots 2b, 3b of the burner 1, and follows the following formula:
Figure imgb0001

where α is the opening angle of the burner 1 (see FIG. 1), S denotes the entry slot width and R is the mean radius of the position of the entry slot 2b, 3b in question (see FIG. 1). The directions of the gas bores 14 should preferably coincide with the prevailing flow direction in the inlet slot 2b, 3b. It is important that the gaseous fuel 4 undergoes the actual throttling when it enters the gas bores 14 from the gas supply channel 12a, 13a. Since medium-calorific gases generally contain highly flammable hydrogen, the gas holes 14 are to be designed in such a way that they cannot be freely blown into the interior 17 of the burner 1. These gas bores 14 open into a gas injector channel 12b, 13b, which extends to the inlet slot 2b, 3b. It is advantageous if this channel is divided several times in the longitudinal direction by flow plates that cannot be seen, so that the gaseous fuel 4 is channeled in the direction of the combustion air flow under design conditions, for example full load. Furthermore, aid is provided in that the gaseous fuel 4 blows at the respective speed of the air 7 brought in in the region of the inlet slots 2b, 3b. This prevents the air 7 and the medium-calorific gas 4 that is used can already be mixed thoroughly in the inlet area into the interior 17 of the burner 1, because this would inevitably lead to premature ignition, which entails a diffusion-like combustion with greatly increased NO x emissions. In order to achieve these desired goals, the transition from the gas holes 14 to the subsequent gas injector channel 12b, 13b is preferably designed as a Borda-Carnot extension. As far as the minimum length of the gas injector channel is concerned, the usual rule of 3-5 hydraulic diameters resp. 6 - 10 gap width used. With such a design, there is a guarantee that the calmed gas flow 4 can "breath-like" mix with the air flow 7, which also avoids the acoustic hardness during the mixing process.

Claims (6)

Brenner, im wesentlichen bestehend aus mindestens zwei aufeinander positionierten Teilkegelkörpern mit einer in Strömungsrichtung sich öffnenden Kegelform, wobei die Mittelachsen dieser Teilkegelkörper in Längsrichtung zueinander versetzt verlaufen, dergestalt, dass sich über die Länge des Brenners tangentiale Eintrittsschlitze zum Innenraum des Brenners bilden, dadurch gekennzeichent, dass sich oberhalb jedes Eintrittsschlitzes (2b, 3b), ausserhalb des durch die Teilkegelkörper (2, 3) gebildeten Brenners (1), ein Kanal (23, 24) erstreckt, in welchem ein Injektor (12, 13) für einen Brennstoff (4) plaziert ist, dass der Brennstoff (4) im Bereich des Eintrittsschlitzes (2b, 3b) aus dem Injektor (12, 13) strömt und dort mit einem durch den Kanal (23, 24) strömenden Luftstrom (7) vermischbar ist.Burner, consisting essentially of at least two partial cone bodies positioned one on top of the other with a conical shape opening in the direction of flow, the central axes of these partial cone bodies being offset with respect to one another in the longitudinal direction, in such a way that tangential entry slots to the interior of the burner are formed over the length of the burner, characterized in that that a channel (23, 24) extends above each inlet slot (2b, 3b), outside the burner (1) formed by the partial cone bodies (2, 3), in which an injector (12, 13) for a fuel (4th ) that the fuel (4) flows out of the injector (12, 13) in the area of the inlet slot (2b, 3b) and can be mixed there with an air stream (7) flowing through the channel (23, 24). Brenner nach Anspruch 1, dadurch gekennzeichnet, dass der Injektor (12, 13) aus einem sich in Strömungsrichtung des Brenners (1) erstreckenden Zufuhrkanal (12a, 13a) für den Brennstoff (4) besteht, dass der Zufuhrkanal (12a, 13a) in Strömungsrichtung des Brennstoffes (4) eine Anzahl Bohrungen (14) aufweist, dass die Bohrungen (14) in einen sich bis im Bereich des Eintrittsschlitzes (2b, 3b) erstreckenden Injektorkanal (12b, 13b) münden.Burner according to claim 1, characterized in that the injector (12, 13) consists of a feed channel (12a, 13a) for the fuel (4) extending in the flow direction of the burner (1), that the feed channel (12a, 13a) in The direction of flow of the fuel (4) has a number of bores (14) such that the bores (14) open into an injector channel (12b, 13b) which extends in the region of the inlet slot (2b, 3b). Brenner nach Anspruch 2, dadurch gekennzeichnet, dass der Übergang von den Bohrungen (14) zum nachfolgenden Injektorkanal (12b, 13b) durch eine Borda-Carnot-Erweiterung gebildet ist.Burner according to claim 2, characterized in that the transition from the bores (14) to the subsequent injector channel (12b, 13b) is formed by a Borda-Carnot extension. Brenner nach Anspruch 2, dadurch gekennzeichnet, dass die Dichte (PGB) der Bohrungen (14) zur radial gemittelten Eintrittsgeschwindigkeit der Luft (7) im Bereich des Eintrittsschlitzes (2b, 3b) des Brenners (1) proportional ist, nach folgender Formel:
Figure imgb0002
wobei a der Öffnungswinkel des kegeligen Brenners (1) ist, S die Eintrittsschlitzbreite bedeutet, R der mittlere Radius der jeweils betrachteten Stelle des Eintrittsschlitzes (2b, 3b) ist.
Burner according to Claim 2, characterized in that the density (P GB ) of the bores (14) is proportional to the radially averaged inlet speed of the air (7) in the region of the inlet slot (2b, 3b) of the burner (1), according to the following formula:
Figure imgb0002
where a is the opening angle of the tapered burner (1), S is the entry slot width, R is the mean radius of the point of the entry slot (2b, 3b) in question.
Brenner nach Anspruch 2, dadurch gekennzeichnet, dass im Injektorkanal (12b, 13b) Strömungshilfen für den Brennstoff (4) für eine Angleichung zur Strömungsrichtung des Luftstromes 7 und der Verbrennungsluft (8) vorhanden sind.Burner according to claim 2, characterized in that flow aids for the fuel (4) are provided in the injector channel (12b, 13b) for an adjustment to the flow direction of the air flow 7 and the combustion air (8). Verfahren zum Betrieb eines Brenners nach Anspruch 1, dadurch gekennzeichnet, dass der Brennstoff (4) durch den Injektor (12, 13) ein gasförmiger ist, dessen Einströmungsgeschwindigkeit in den Innenraum (17) des Brenners (1) gleich oder kleiner gegenüber der Geschwindigkeit der Luftströmung (7), die sich im Breich der Eintrittsschlitze (2b, 3b) mindestens mit dem Brennstoff (4) vermischt, angepasst wird.A method of operating a burner according to claim 1, characterized in that the fuel (4) by the injector (12, 13) is a gaseous gas, the rate of inflow into the interior (17) of the burner (1) is equal to or less than the speed of the Air flow (7), which mixes at least with the fuel (4) in the area of the inlet slots (2b, 3b).
EP90123495A 1989-12-22 1990-12-07 Burner Expired - Lifetime EP0433790B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4602/89A CH680467A5 (en) 1989-12-22 1989-12-22
CH4602/89 1989-12-22

Publications (2)

Publication Number Publication Date
EP0433790A1 true EP0433790A1 (en) 1991-06-26
EP0433790B1 EP0433790B1 (en) 1995-03-08

Family

ID=4279159

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90123495A Expired - Lifetime EP0433790B1 (en) 1989-12-22 1990-12-07 Burner

Country Status (9)

Country Link
US (1) US5169302A (en)
EP (1) EP0433790B1 (en)
JP (1) JP3011775B2 (en)
AT (1) ATE119650T1 (en)
CA (1) CA2032562A1 (en)
CH (1) CH680467A5 (en)
DE (1) DE59008639D1 (en)
PL (1) PL288225A1 (en)
RU (1) RU2011117C1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4302847A1 (en) * 1993-02-02 1994-08-04 Abb Research Ltd Two-stage non-polluting fuel combustion system
EP0610722A1 (en) * 1993-02-12 1994-08-17 Abb Research Ltd. Burner for an internal combustion engine, a combustion chamber of a gas turbine plant or a furnace
EP0641971A3 (en) * 1993-09-06 1995-08-16 Abb Research Ltd Method for operating a premix burner.
EP0683219A3 (en) * 1994-05-19 1996-01-10 Abb Research Ltd Process for air blast gasification of carbonaceous fuels.
DE4435266A1 (en) * 1994-10-01 1996-04-04 Abb Management Ag burner
DE4441235A1 (en) * 1994-11-19 1996-05-23 Abb Management Ag Combustion chamber with multi-stage combustion
EP0718550A1 (en) 1994-12-19 1996-06-26 ABB Management AG Injection nozzle
DE19502796A1 (en) * 1995-01-30 1996-08-01 Abb Management Ag burner
EP0918191A1 (en) * 1997-11-21 1999-05-26 Abb Research Ltd. Burner for the operation of a heat generator
EP0981016A1 (en) * 1998-08-19 2000-02-23 Asea Brown Boveri AG Burner and method for operating an internal combustion engine
EP0985876A1 (en) * 1998-09-10 2000-03-15 Abb Research Ltd. Burner
EP0987491A1 (en) * 1998-09-16 2000-03-22 Asea Brown Boveri AG Method for preventing flow instabilities in a burner
US6176087B1 (en) 1997-12-15 2001-01-23 United Technologies Corporation Bluff body premixing fuel injector and method for premixing fuel and air
WO2001096785A1 (en) * 2000-06-15 2001-12-20 Alstom (Switzerland) Ltd Method for operating a burner and burner with stepped premix gas injection
US7565794B2 (en) 2005-03-31 2009-07-28 Alstom Technology Ltd. Premix burner for a gas turbine combustion chamber
CN107255278A (en) * 2017-07-21 2017-10-17 东北大学 A kind of joint-cutting eddy flow low nitrogen oxide burner

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307634A (en) * 1992-02-26 1994-05-03 United Technologies Corporation Premix gas nozzle
DE59208364D1 (en) * 1992-10-23 1997-05-22 Asea Brown Boveri Burner with electrical ignition device
DE4242003A1 (en) * 1992-12-12 1994-06-16 Abb Research Ltd Process heat generator
DE4242721A1 (en) * 1992-12-17 1994-06-23 Asea Brown Boveri Gas turbine combustion chamber
US5461865A (en) * 1994-02-24 1995-10-31 United Technologies Corporation Tangential entry fuel nozzle
DE4440558A1 (en) * 1994-11-12 1996-05-15 Abb Research Ltd Premix burner
US6464489B1 (en) * 1997-11-24 2002-10-15 Alstom Method and apparatus for controlling thermoacoustic vibrations in a combustion system
US6113078A (en) 1998-03-18 2000-09-05 Lytesyde, Llc Fluid processing method
US6141954A (en) * 1998-05-18 2000-11-07 United Technologies Corporation Premixing fuel injector with improved flame disgorgement capacity
EP1002992B1 (en) 1998-11-18 2004-09-29 ALSTOM Technology Ltd Burner
DE10000415A1 (en) * 2000-01-07 2001-09-06 Alstom Power Schweiz Ag Baden Method and device for suppressing flow vortices within a fluid power machine
GB2368386A (en) * 2000-10-23 2002-05-01 Alstom Power Nv Gas turbine engine combustion system
EP1262714A1 (en) 2001-06-01 2002-12-04 ALSTOM (Switzerland) Ltd Burner with exhausts recirculation
JP3940705B2 (en) * 2003-06-19 2007-07-04 株式会社日立製作所 Gas turbine combustor and fuel supply method thereof
US7104528B2 (en) * 2003-08-15 2006-09-12 Lytesyde, Llc Fuel processor apparatus and method
CN100590359C (en) * 2004-03-03 2010-02-17 三菱重工业株式会社 Combustor
EP1614967B1 (en) * 2004-07-09 2016-03-16 Siemens Aktiengesellschaft Method and premixed combustion system
JP4509742B2 (en) * 2004-11-04 2010-07-21 株式会社日立製作所 Gas turbine power generation equipment
ES2352679T3 (en) * 2005-06-17 2011-02-22 Alstom Technology Ltd PREMIXING COMBUSTION BURNER.
US7681569B2 (en) * 2006-01-23 2010-03-23 Lytesyde, Llc Medical liquid processor apparatus and method
US7717096B2 (en) * 2006-01-23 2010-05-18 Lytesyde, Llc Fuel processor apparatus and method
WO2007113054A1 (en) 2006-03-30 2007-10-11 Alstom Technology Ltd Burner arrangement
JP4571612B2 (en) * 2006-12-11 2010-10-27 株式会社日立製作所 Gas turbine combustor and fuel supply method thereof
US8028674B2 (en) * 2007-08-07 2011-10-04 Lytesyde, Llc Fuel processor apparatus and method
CN101504140B (en) * 2008-02-04 2011-05-11 林光湧 Low-exhaustion high-efficiency energy-saving combustor
US20090249789A1 (en) * 2008-04-08 2009-10-08 Baifang Zuo Burner tube premixer and method for mixing air and gas in a gas turbine engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2410141A1 (en) * 1974-03-02 1975-09-04 Richard Fetzner BURNER FOR FLUID FUEL
FR2319846A1 (en) * 1975-07-31 1977-02-25 Exxon Research Engineering Co STAGED AIR SUPPLY BURNER
EP0321809B1 (en) * 1987-12-21 1991-05-15 BBC Brown Boveri AG Process for combustion of liquid fuel in a burner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3662462D1 (en) * 1985-07-30 1989-04-20 Bbc Brown Boveri & Cie Dual combustor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2410141A1 (en) * 1974-03-02 1975-09-04 Richard Fetzner BURNER FOR FLUID FUEL
FR2319846A1 (en) * 1975-07-31 1977-02-25 Exxon Research Engineering Co STAGED AIR SUPPLY BURNER
EP0321809B1 (en) * 1987-12-21 1991-05-15 BBC Brown Boveri AG Process for combustion of liquid fuel in a burner

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4302847A1 (en) * 1993-02-02 1994-08-04 Abb Research Ltd Two-stage non-polluting fuel combustion system
EP0610722A1 (en) * 1993-02-12 1994-08-17 Abb Research Ltd. Burner for an internal combustion engine, a combustion chamber of a gas turbine plant or a furnace
EP0641971A3 (en) * 1993-09-06 1995-08-16 Abb Research Ltd Method for operating a premix burner.
EP0683219A3 (en) * 1994-05-19 1996-01-10 Abb Research Ltd Process for air blast gasification of carbonaceous fuels.
DE4435266A1 (en) * 1994-10-01 1996-04-04 Abb Management Ag burner
DE4441235A1 (en) * 1994-11-19 1996-05-23 Abb Management Ag Combustion chamber with multi-stage combustion
EP0718550A1 (en) 1994-12-19 1996-06-26 ABB Management AG Injection nozzle
DE19502796A1 (en) * 1995-01-30 1996-08-01 Abb Management Ag burner
DE19502796B4 (en) * 1995-01-30 2004-10-28 Alstom burner
EP0918191A1 (en) * 1997-11-21 1999-05-26 Abb Research Ltd. Burner for the operation of a heat generator
US6155820A (en) * 1997-11-21 2000-12-05 Abb Research Ltd. Burner for operating a heat generator
US6176087B1 (en) 1997-12-15 2001-01-23 United Technologies Corporation Bluff body premixing fuel injector and method for premixing fuel and air
EP0981016A1 (en) * 1998-08-19 2000-02-23 Asea Brown Boveri AG Burner and method for operating an internal combustion engine
EP0985876A1 (en) * 1998-09-10 2000-03-15 Abb Research Ltd. Burner
EP0987491A1 (en) * 1998-09-16 2000-03-22 Asea Brown Boveri AG Method for preventing flow instabilities in a burner
WO2001096785A1 (en) * 2000-06-15 2001-12-20 Alstom (Switzerland) Ltd Method for operating a burner and burner with stepped premix gas injection
US6769903B2 (en) 2000-06-15 2004-08-03 Alstom Technology Ltd Method for operating a burner and burner with stepped premix gas injection
US7565794B2 (en) 2005-03-31 2009-07-28 Alstom Technology Ltd. Premix burner for a gas turbine combustion chamber
CN107255278A (en) * 2017-07-21 2017-10-17 东北大学 A kind of joint-cutting eddy flow low nitrogen oxide burner
CN107255278B (en) * 2017-07-21 2019-04-05 东北大学 A kind of joint-cutting eddy flow low nitrogen oxide burner

Also Published As

Publication number Publication date
CA2032562A1 (en) 1991-06-23
CH680467A5 (en) 1992-08-31
JP3011775B2 (en) 2000-02-21
US5169302A (en) 1992-12-08
JPH04136606A (en) 1992-05-11
ATE119650T1 (en) 1995-03-15
RU2011117C1 (en) 1994-04-15
EP0433790B1 (en) 1995-03-08
DE59008639D1 (en) 1995-04-13
PL288225A1 (en) 1991-12-16

Similar Documents

Publication Publication Date Title
EP0433790B1 (en) Burner
EP0794383B1 (en) Method of operating a pressurised atomising nozzle
EP0503319B1 (en) Burner for a premixing combustion of a liquid and/or a gaseous fuel
EP0902233B1 (en) Combined pressurised atomising nozzle
EP0321809B1 (en) Process for combustion of liquid fuel in a burner
EP0436113B1 (en) Method for operating a combustion plant
EP1802915B1 (en) Gas turbine burner
EP0777081B1 (en) Premix burner
CH678757A5 (en)
CH680084A5 (en)
DE69100493T2 (en) Lance for pulp dispersion.
EP0718561A2 (en) Combustor
EP0433789A1 (en) Method for a premix burning of a liquid fuel
EP0521325A1 (en) Combustion chamber
EP0641971A2 (en) Method for operating a premix burner
EP0394800B1 (en) Premix burner for generating a hot gas
EP0816759B1 (en) Premix burner and method of operating the burner
EP0742411B1 (en) Air supply for a premix combustor
EP0483554B1 (en) Method for minimising the NOx emissions from a combustion
DE19507088B4 (en) premix
EP0777082A2 (en) Premix burner
DE4412315A1 (en) Method of operating gas turbine combustion chamber
EP0961905B1 (en) Fuel combustion device and method
EP0807787A2 (en) Burner
EP0518072A1 (en) Burner for an internal combustion engine, a combustion chamber of a gas turbine plant or a furnace

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE

17P Request for examination filed

Effective date: 19911128

17Q First examination report despatched

Effective date: 19930226

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19950308

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950308

Ref country code: BE

Effective date: 19950308

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950308

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950308

REF Corresponds to:

Ref document number: 119650

Country of ref document: AT

Date of ref document: 19950315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59008639

Country of ref document: DE

Date of ref document: 19950413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950608

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950518

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19951207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19951231

Ref country code: LI

Effective date: 19951231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091215

Year of fee payment: 20

Ref country code: GB

Payment date: 20091106

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091230

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20101206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101207