[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0425350A1 - Layers with magnetic or dielectric anisotropy, stratified composite material comprising these layers and their process of manufacture - Google Patents

Layers with magnetic or dielectric anisotropy, stratified composite material comprising these layers and their process of manufacture Download PDF

Info

Publication number
EP0425350A1
EP0425350A1 EP90402944A EP90402944A EP0425350A1 EP 0425350 A1 EP0425350 A1 EP 0425350A1 EP 90402944 A EP90402944 A EP 90402944A EP 90402944 A EP90402944 A EP 90402944A EP 0425350 A1 EP0425350 A1 EP 0425350A1
Authority
EP
European Patent Office
Prior art keywords
fibers
magnetic
dielectric
layer
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP90402944A
Other languages
German (de)
French (fr)
Inventor
Thierry Massard
Claude Barbalat
Jean Jacques Lefevre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0425350A1 publication Critical patent/EP0425350A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/005Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems using woven or wound filaments; impregnated nets or clothes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • Y10T428/24124Fibers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24132Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in different layers or components parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3146Strand material is composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/3154Sheath-core multicomponent strand material

Definitions

  • the subject of the present invention is layers with magnetic or dielectric anisotropy intended for the manufacture of a laminated composite material, having absorbent electromagnetic properties, as well as their manufacturing process.
  • this material can be used as a microwave absorber in a wide wavelength range. It can be used as coating material for an anechoic chamber (chamber without echo), as an electromagnetic filter or as electromagnetic shielding used in particular in the fields of telecommunications and computer science (shielding of complex circuits, computers, etc. .) but also in microwave ovens.
  • the material of the invention is intended to be placed inside the oven door.
  • Composite materials make it possible to obtain materials with magnetic permeability and electrical permittivity suitable for each type of application.
  • microwave absorption materials are in the form of thin layers, of thickness less than a few centimeters, made with dense materials such as ferrite or from the dispersion of these materials in an appropriate organic binder.
  • the invention relates to thin layers with magnetic or dielectric anisotropy intended for the manufacture of a new composite material absorbing electromagnetic waves.
  • the subject of the invention is a laminated composite material comprising at least two stacks of assembled layers, a first stack consisting of a layer of first dielectric fibers, oriented parallel to a first direction, and of a layer of first magnetic fibers, oriented parallel to a second direction perpendicular to the first direction, and a second stack consisting of a layer of second dielectric fibers, oriented parallel to the second direction, and a layer of second magnetic fibers, oriented parallel to the first direction.
  • This arrangement of magnetic and dielectric fibers makes it possible to obtain composite materials with suitable magnetic permeability and electrical permittivity, the values of which are equivalent to the arithmetic means of the values of the components of each layer, weighted by the thicknesses of these layers.
  • the first layer stack behaves like a polarizer and the assembly is therefore isotropic.
  • an electromagnetic wave in contact with this first stack can be strongly attenuated and the reflection of this wave can be zero if the impedance agreement is realized with the medium of propagation of the wave.
  • the second stack plays the role of a polarizer, this polarizer being crossed at 90 ° relative to the first polarizer.
  • the impedance agreement between the propagation medium and the composite material is also achievable if the medium located in contact with the composite material has a different impedance than that of the vacuum.
  • the electrical permittivity respectively of the first and second dielectric fibers is approximately equal to the magnetic permeability respectively of the first and second magnetic fibers and, on the other hand, the magnetic permeability respectively of the first and second dielectric fibers is approximately equal to the electrical permittivity first and second magnetic fibers respectively.
  • first and second dielectric fibers made of the same material although it is possible to use different materials for these first and second dielectric fibers.
  • the double condition above is a priori easier to achieve by the use of two different materials, one having a high electrical permittivity ⁇ 1 and a low magnetic permeability ⁇ 1, the other material having a low electrical permeability ⁇ 2 and a high magnetic permeability ⁇ 2.
  • the dielectric fibers consist of a polymeric sheath containing a dielectric charge.
  • the magnetic fibers consist of a polymeric sheath containing a magnetic charge.
  • thermoplastic polymers e.g., polystyrene foam
  • thermosetting polymers e.g., polystyrene foam
  • thermoplastic polymer used in the constitution of the sheath mention may be made of polyamides, polyesters, polyphenylenes, polypropylenes, polyethylenes, silicones, etc.
  • the dielectric and / or magnetic fibers can receive a structural reinforcement in order to improve their resistance. mechanical.
  • reinforcing means it is possible to use either powder, or fibers, or yarns of glass, carbon, polymer, etc.
  • the coating of magnetic or dielectric charge in a polymeric sheath is done by coextruding a thermoplastic polymer and the respectively dielectric or magnetic charge and, if necessary, the reinforcing means.
  • the magnetic and dielectric charges are in the form of powder with a particle size of 10 to 50 micrometers.
  • the function of the polymeric sheath is to maintain magnetic and dielectric charges, to allow these fibers to be transformed into a thin layer and to impart anisotropy to the properties of the charges.
  • the first hot pressing allows the manufacture of a continuous layer of fibers and the second pressing the welding of the polymer sheaths.
  • This two-stage hot pressing makes it possible to maintain the polymer sheaths around the load and thus to keep the magnetic or dielectric anisotropy of the layers, fixed by the orientation of the fibers constituting them.
  • the invention also relates to thin layers with magnetic or dielectric anisotropy obtained by this process, for the manufacture of the laminated composite material.
  • the laminated composite material of the invention consists of an alternation of anisotropic thin dielectric and magnetic layers, made integral either by bonding using an electrical insulating adhesive film of the epoxy or polyester adhesive type, or using an insulating frame.
  • the number of layers stacked depends on the intended application. In general, this number is a multiple of four.
  • the total thickness of the material can vary from 0.6 to 6 mm.
  • the composite material shown in FIGS. 1 and 2 comprises a first thin layer 2 of dielectric fibers 4 oriented parallel to the direction x of an orthonormal system xyz. This layer of dielectric fibers 2 is associated with a thin layer 6 of magnetic fibers 8, oriented parallel to the direction y.
  • the dielectric fibers 4 have a high electrical permittivity ⁇ 1 and a low magnetic permeability ⁇ 1.
  • the magnetic fibers 8 have a high magnetic permeability ⁇ 2 and a low electrical permittivity ⁇ 2.
  • This second assembly comprises a thin layer 10 of dielectric fibers 12 parallel to each other but perpendicular to the dielectric fibers 4.
  • the dielectric fibers 12 are parallel to the direction y.
  • layer 10 with dielectric anisotropy is arranged in contact with layer 8 with magnetic anisotropy.
  • dielectric fibers 12 are associated with a thin layer 14 of magnetic fibers 16 which are parallel to one another and in the direction x but perpendicular to the dielectric fibers 12 as well as to the magnetic fibers 8.
  • the dielectric fibers 12 are made of the same material as the dielectric fibers 4 and the magnetic fibers 16 are made of the same material as the magnetic fibers 8.
  • the stack of layers 10-14 constitutes a second polarizer crossed at 90 ° relative to the first polarizer 2-6.
  • Dielectric 4 or magnetic 6 fibers consist, as shown in FIG. 3, of a thin thermoplastic polymeric sheath 18 containing a pulverulent filler 20 respectively dielectric or magnetic, and reinforcing fibers 22.
  • the sheath 18 is polyamide 12 of 0.010 to 0.015 mm thick containing glass fibers 22 and a powder 20 of barium titanate or of a nickel and zinc ferrite depending on whether these fibers are dielectric or magnetic. These fibers have an outside diameter of 0.2 to 0.7 mm.
  • the filler is in the form of a powder having a particle size of 10 to 50 micrometers.
  • the dielectric or magnetic fibers described in FIG. 3 and forming part of the composition of the composite materials of the invention are produced by coextrusion of the polymer, the filler and the reinforcing fibers.
  • coextrusion process which can be used in the invention, mention may be made of that described in the engineering techniques 3240-1 to 4 "Flexible prepreg with thermoplastic matrix (FIT)" by Ganga and Bourdon. This coextrusion allows fiber production, reproducible and adaptable to the different load characteristics taking into account their particular flowability condition.
  • the fibers produced are then shaped by contiguous winding on one or two thicknesses on flat mandrels.
  • the plates obtained are then cold compacted under a pressure of 200 MPa in hydrostatic pressure tanks. Finally, the material is transformed in a press with heating plates.
  • This last hot pressing step is carried out by plastic deformation of the polymer sheaths followed by a pressureless melting of the latter.
  • the plastic transformation is an irreversible transformation carried out at constant pressure in the temperature zone of the pseudo rubbery plateau of the polymer constituting the sheath of the fibers.
  • the thin layers of fibers obtained have a thickness of 0.2 to 0.5 mm depending on the initial diameter of the fibers and the number of layers wound on the mandrels.
  • FIG 4 there is shown the last step of transforming the fibers into a thin layer for polyamide sheaths.
  • This diagram gives the pressure and temperature variations expressed respectively in MPa and in ° C as a function of the time expressed in minutes.
  • Zone A corresponds to a temperature rise from 0 to 100 ° C under a pressure of 20 MPa.
  • Zone B corresponds to the plastic deformation zone of the sheath of the fibers at 120 ° C. under a pressure of 20 MPa. This step allows the formation of a continuous layer while retaining its magnetic or dielectric anisotropy.
  • Zone C corresponds to a temperature recovery from 100 to 160 ° C under a reduced pressure of 0.2 MPa.
  • Zone D corresponds to a second level at a reduced pressure temperature of 0.2 MPa from 160 to 180 ° C. This step causes the polymer to melt and ensures the adhesion of the polymer sheaths of the layer.
  • Zone E represents pressureless cooling to limit the creep of the material
  • step F represents demolding at 120 ° C.
  • the layers of dielectric and magnetic materials produced as described above are then stacked and then assembled to produce absorbent electromagnetic shielding screens, as described in FIGS. 1 and 2.
  • This method of making diapers magnetic or dielectric anisotropy can be used for the production of other materials than that described in FIGS. 1 and 2. In particular, it can be used for the production of essentially magnetic or essentially dielectric shielding.
  • the curve shown in Figure 5 gives the Er / Ei ratio as a function of the frequency of the incident electromagnetic wave.
  • Ei and Er represent the energy of the electromagnetic wave to be absorbed respectively incident and reflected by the material of the invention and the frequencies are expressed in logarithmic form.
  • the curve of Figure 5 was obtained for a composite material consisting of 4 orthotropic layers, that is to say as shown in Figure 1, the dielectric charge being barium titanate and the magnetic charge a nickel ferrite and zinc.
  • the composite material has a maximum absorption efficiency value of 18 db at 1000 MHz and an efficiency of 16.5 db between 10 and 800 MHz.
  • the materials of the invention are therefore capable of absorbing electromagnetic disturbances over extended bandwidths with sufficient efficiency to attenuate 90 to 99% of the incident wave.

Landscapes

  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

The stratified material comprises at least two assembled stacks of layers, a first stack consisting of a layer (2) of first dielectric fibres (4) oriented parallel to a first direction (x), and of a layer (6) of first magnetic fibres (8) oriented parallel to a second direction (y) perpendicular to the first direction (x), and a second stack consisting of a layer (10) of second dielectric fibres (12) oriented parallel to the second direction (y), and of a layer (14) of second magnetic fibres oriented parallel to the first direction (x). Each fibre consists of a thermoplastic polymeric sheath enclosing a magnetic or dielectric pulverulent filler. <IMAGE>

Description

La présente invention a pour objet des couches à anisotropie magnétique ou diélectrique destinées à la fabrication d'un matériau composite stratifié, ayant des propriétés électromagnétiques absorbantes, ainsi que leur procédé de fabrication.The subject of the present invention is layers with magnetic or dielectric anisotropy intended for the manufacture of a laminated composite material, having absorbent electromagnetic properties, as well as their manufacturing process.

En particulier, ce matériau est utilisable comme absorbeur des micro-ondes dans un grand domaine de longueur d'onde. Il peut être utilisé comme matériau de revêtement d'une chambre anéchoïque (chambre sans écho), comme filtre électromagnétique ou comme blindage électromagnétique utilisé notamment dans les domaines des télécommunications et de l'informatique (blindage de circuits complexes, d'ordinateurs,...) mais aussi dans les fours à micro-ondes.In particular, this material can be used as a microwave absorber in a wide wavelength range. It can be used as coating material for an anechoic chamber (chamber without echo), as an electromagnetic filter or as electromagnetic shielding used in particular in the fields of telecommunications and computer science (shielding of complex circuits, computers, etc. .) but also in microwave ovens.

Dans l'application aux fours à micro-ondes, le matériau de l'invention est destiné à être placé à l'intérieur de la porte du four.In the application to microwave ovens, the material of the invention is intended to be placed inside the oven door.

Les matériaux composites permettent d'obtenir des matériaux à perméabilité magnétique et à permittivité électrique adaptées pour chaque type d'application.Composite materials make it possible to obtain materials with magnetic permeability and electrical permittivity suitable for each type of application.

Les matériaux absorbant les micro-ondes actuellement connus se présentent sous forme de couches minces, d'épaisseur inférieure à quelques centimètres, réalisées avec des matériaux denses tels que la ferrite ou à partir de la dispersion de ces matériaux dans un liant organique approprié.The microwave absorption materials currently known are in the form of thin layers, of thickness less than a few centimeters, made with dense materials such as ferrite or from the dispersion of these materials in an appropriate organic binder.

L'invention a pour objet des couches minces à anisotropie magnétique ou diélectrique destinées à la fabrication d'un nouveau matériau composite absorbant les ondes électromagnétiques.The invention relates to thin layers with magnetic or dielectric anisotropy intended for the manufacture of a new composite material absorbing electromagnetic waves.

De façon plus précise, l'invention a pour objet un matériau composite stratifié comportant au moins deux empilements de couches assemblés, un premier empilement constitué d'une couche de premières fibres diélectriques, orientées parallèlement à une première direction, et d'une couche de premières fibres magnétiques, orientées parallèlement à une seconde direction perpendiculaire à la première direction, et un second empilement constitué d'une couche de secondes fibres diélectriques, orientées parallèlement à la seconde direction, et d'une couche de secondes fibres magnétiques, orientées parallèlement à la première direction.More precisely, the subject of the invention is a laminated composite material comprising at least two stacks of assembled layers, a first stack consisting of a layer of first dielectric fibers, oriented parallel to a first direction, and of a layer of first magnetic fibers, oriented parallel to a second direction perpendicular to the first direction, and a second stack consisting of a layer of second dielectric fibers, oriented parallel to the second direction, and a layer of second magnetic fibers, oriented parallel to the first direction.

L'alternance des couches à propriétés magnétique et diélectrique d'une part et l'alternance de la direction d'anisotropie magnétique et diélectrique d'autre part, due au changement de direction des fibres d'une couche à l'autre, permettent de rétablir pour le matériau composite une isotropie de comportement électromagnétique.The alternation of the layers with magnetic and dielectric properties on the one hand and the alternation of the direction of magnetic and dielectric anisotropy on the other hand, due to the change of direction of the fibers from one layer to the other, make it possible to reestablish for the composite material an isotropy of electromagnetic behavior.

Cet agencement de fibres magnétiques et diélectriques permet d'obtenir des matériaux composites à perméabilité magnétique et à permittivité électrique adaptées dont les valeurs sont équivalentes aux moyennes arithmétiques des valeurs des composants de chaque couche, pondérées par les épaisseurs de ces couches.This arrangement of magnetic and dielectric fibers makes it possible to obtain composite materials with suitable magnetic permeability and electrical permittivity, the values of which are equivalent to the arithmetic means of the values of the components of each layer, weighted by the thicknesses of these layers.

Dans une telle configuration, le premier empilement de couche se comporte comme un polariseur et l'ensemble est par conséquent isotrope. Ainsi, une onde électromagnétique au contact de ce premier empilement peut être fortement atténuée et la réflexion de cette onde peut être nulle si l'accord d'impédance est réalisé avec le milieu de propagation de l'onde.In such a configuration, the first layer stack behaves like a polarizer and the assembly is therefore isotropic. Thus, an electromagnetic wave in contact with this first stack can be strongly attenuated and the reflection of this wave can be zero if the impedance agreement is realized with the medium of propagation of the wave.

De même, le second empilement joue le rôle d'un polariseur, ce polariseur étant croisé à 90° par rapport au premier polariseur.Similarly, the second stack plays the role of a polarizer, this polarizer being crossed at 90 ° relative to the first polarizer.

En jouant sur les valeurs de la permittivité électrique et de la perméabilité magnétique de chaque couche de fibres, il est possible d'obtenir cet accord en impédance avec le milieu de propagation ainsi qu'une forte absorption de cette onde.By playing on the values of the electrical permittivity and the magnetic permeability of each layer of fibers, it is possible to obtain this agreement in impedance with the propagation medium as well as a strong absorption of this wave.

Pour ce faire, on utilise des matériaux magnétiques et des matériaux diélectriques présentant globalement la relation ε=µ , c'est-à-dire présentant une impédance égale à celle du vide.To do this, magnetic materials and dielectric materials are used which generally have the relationship ε = µ, that is to say having an impedance equal to that of vacuum.

En outre, l'accord d'impédance entre le milieu de propagation et le matériau composite est réalisable aussi si le milieu situé au contact du matériau composite a une impédance différente de celle du vide.In addition, the impedance agreement between the propagation medium and the composite material is also achievable if the medium located in contact with the composite material has a different impedance than that of the vacuum.

Ainsi, la permittivité électrique respectivement des premières et secondes fibres diélectriques est approximativement égale à la perméabilité magnétique respectivement des premières et secondes fibres magnétiques et, d'autre part, la perméabilité magnétique respectivement des premières et secondes fibres diélectriques est approximativement égale à la permittivité électrique respectivement des premières et secondes fibres magnétiques.Thus, the electrical permittivity respectively of the first and second dielectric fibers is approximately equal to the magnetic permeability respectively of the first and second magnetic fibers and, on the other hand, the magnetic permeability respectively of the first and second dielectric fibers is approximately equal to the electrical permittivity first and second magnetic fibers respectively.

Pour simplifier la fabrication du matériau composite, on utilise de préférence des premières et secondes fibres diélectriques réalisées en un même matériau bien qu'il soit possible d'utiliser des matériaux différents pour ces premières et secondes fibres diélectriques.To simplify the manufacture of the composite material, use is preferably made of first and second dielectric fibers made of the same material although it is possible to use different materials for these first and second dielectric fibers.

De même, on préfère utiliser le même matériau magnétique pour constituer les différentes couches magnétiques, bien qu'il soit possible d'utiliser des matériaux différents d'une couche à l'autre.Similarly, we prefer to use the same magnetic material to form the different layers magnetic, although it is possible to use different materials from one layer to another.

La double condition ci-dessus est a priori plus facile à réaliser par l'emploi de deux matériaux différents, l'un ayant une permittivité électrique élevée ε1 et une perméabilité magnétique µ1 faible, l'autre matériau ayant une permettivité électrique faible ε2 et une perméabilité magnétique élevée µ2.The double condition above is a priori easier to achieve by the use of two different materials, one having a high electrical permittivity ε1 and a low magnetic permeability µ1, the other material having a low electrical permeability ε2 and a high magnetic permeability µ2.

La présence dans les équations de ε et µ de parties imaginaires élevée et égale permet d'obtenir une absorption importante des ondes.The presence in the equations of ε and µ of high and equal imaginary parts makes it possible to obtain a significant absorption of the waves.

Comme couple de matériau satisfaisant à l'équation globale ε= µ , on peut citer les ferrites magnétiques et les céramiques diélectriques comme les titanates et en particulier le couple ferrite de nickel et de zinc/titanate de baryum. On peut aussi utiliser le couple SiO₂-CoxNbyZrz (avec x allant de 80 à 95 et y+z valant 100-x) ou le couple FeNiCo-SiO₂.As material couple satisfying the global equation ε = µ, mention may be made of magnetic ferrites and dielectric ceramics such as titanates and in particular the ferrite pair of nickel and zinc / barium titanate. One can also use the couple SiO₂-Co x Nb y Zr z (with x going from 80 to 95 and y + z being worth 100-x) or the couple FeNiCo-SiO₂.

De façon avantageuse les fibres diélectriques sont constituées d'une gaine polymérique renfermant une charge diélectrique. De même, les fibres magnétiques sont constituées d'une gaine polymérique renfermant une charge magnétique.Advantageously, the dielectric fibers consist of a polymeric sheath containing a dielectric charge. Likewise, the magnetic fibers consist of a polymeric sheath containing a magnetic charge.

Suivant le procédé mis en oeuvre pour la fabrication des fibres, on peut utiliser soit des polymères thermoplastiques, soit des polymères thermodurcissables. De préférence, on utilise des polymères thermoplastiques.Depending on the process used for the manufacture of the fibers, it is possible to use either thermoplastic polymers or thermosetting polymers. Preferably, thermoplastic polymers are used.

Comme polymère thermoplastique entrant dans la constitution de la gaine, on peut citer les polyamides, les polyesters, les polyphénylènes, les polypropylènes, les polyéthylènes, les silicones, etc.As thermoplastic polymer used in the constitution of the sheath, mention may be made of polyamides, polyesters, polyphenylenes, polypropylenes, polyethylenes, silicones, etc.

Suivant les applications envisagées, les fibres diélectriques et/ou magnétiques peuvent recevoir un renfort structural en vue d'améliorer leur tenue mécanique.According to the envisaged applications, the dielectric and / or magnetic fibers can receive a structural reinforcement in order to improve their resistance. mechanical.

Comme moyen de renfort, on peut utiliser soit de la poudre, soit des fibres, soit des fils de verre, de carbone, de polymère, etc...As reinforcing means, it is possible to use either powder, or fibers, or yarns of glass, carbon, polymer, etc.

L'invention a aussi pour objet un procédé de fabrication d'un matériau composite stratifié tel que décrit précédemment. Ce procédé comprend essentiellement les étapes suivantes :

  • a) - former au moins une couche de premières fibres diélectriques parallèles,
  • b) - former au moins une couche de premières fibres magnétiques parallèles,
  • c) - faire au moins un premier empilement des couches de premières fibres diélectriques et des premières fibres magnétiques de sorte que les premières fibres diélectriques et les premières fibres magnétiques soient perpendiculaires,
  • d) - former au moins une couche de secondes fibres diélectriques parallèles,
  • e) - former au moins une couche de secondes fibres magnétiques parallèles,
  • f) - faire au moins un second empilement des couches de secondes fibres diélectriques et de secondes fibres magnétiques de sorte que les secondes fibres diélectriques et les secondes fibres magnétiques soient perpendiculaires,
  • g) assembler le premier et second empilements de sorte que les premières et secondes fibres respectivement diélectriques et magnétiques soient perpendiculaires.
The invention also relates to a method of manufacturing a laminated composite material as described above. This process essentially comprises the following stages:
  • a) - forming at least one layer of first parallel dielectric fibers,
  • b) - forming at least one layer of first parallel magnetic fibers,
  • c) - making at least a first stack of layers of first dielectric fibers and first magnetic fibers so that the first dielectric fibers and the first magnetic fibers are perpendicular,
  • d) - forming at least one layer of second parallel dielectric fibers,
  • e) - forming at least one layer of second parallel magnetic fibers,
  • f) - making at least a second stack of layers of second dielectric fibers and second magnetic fibers so that the second dielectric fibers and the second magnetic fibers are perpendicular,
  • g) assembling the first and second stacks so that the first and second dielectric and magnetic fibers respectively are perpendicular.

De préférence, l'enrobage de charge magnétique ou diélectrique dans une gaine polymérique se fait en coextrudant un polymère thermoplastique et la charge respectivement diélectrique ou magnétique et, si nécessaire, les moyens de renfort. En particulier les charges magnétiques et diélectriques se présentent sous la forme de poudre de 10 à 50 micromètres de granulométrie.Preferably, the coating of magnetic or dielectric charge in a polymeric sheath is done by coextruding a thermoplastic polymer and the respectively dielectric or magnetic charge and, if necessary, the reinforcing means. In particular the magnetic and dielectric charges are in the form of powder with a particle size of 10 to 50 micrometers.

La gaine polymérique a pour fonction d'assurer le maintien des charges magnétiques et diélectriques, de permettre la transformation de ces fibres en couche mince et de conférer une anisotropie des propriétés des charges.The function of the polymeric sheath is to maintain magnetic and dielectric charges, to allow these fibers to be transformed into a thin layer and to impart anisotropy to the properties of the charges.

L'invention a encore pour objet un procédé de fabrication d'une couche à anisotropie magnétique ou diélectrique, comportant les étapes suivantes :

  • a) - enrobage d'une charge magnétique ou diélectrique dans une gaine en polymère thermoplastique pour former des fibres,
  • b) - bobinage des fibres sur un support plan,
  • c) - compactage à froid du bobinage obtenu en b) pour former une couche de fibres,
  • d) - premier pressage à chaud de la couche obtenue en c) dans la zone de température du pseudo­plateau caoutchoutique du polymère, puis
  • e) - deuxième pressage à chaud de la couche obtenue en d) à une température entraînant la fusion du polymère.
The subject of the invention is also a method of manufacturing a layer with magnetic or dielectric anisotropy, comprising the following steps:
  • a) - coating of a magnetic or dielectric charge in a thermoplastic polymer sheath to form fibers,
  • b) - winding of the fibers on a flat support,
  • c) - cold compaction of the winding obtained in b) to form a layer of fibers,
  • d) - first hot pressing of the layer obtained in c) in the temperature zone of the rubber pseudoplate of the polymer, then
  • e) - second hot pressing of the layer obtained in d) at a temperature causing the polymer to melt.

Le premier pressage à chaud permet la fabrication d'une couche continue de fibres et le second pressage le soudage des gaines polymériques. Ce pressage à chaud en deux étapes permet de maintenir les gaines de polymère autour de la charge et de garder ainsi l'anisotropie magnétique ou diélectrique des couches, fixée par l'orientation des fibres les constituant.The first hot pressing allows the manufacture of a continuous layer of fibers and the second pressing the welding of the polymer sheaths. This two-stage hot pressing makes it possible to maintain the polymer sheaths around the load and thus to keep the magnetic or dielectric anisotropy of the layers, fixed by the orientation of the fibers constituting them.

L'invention a encore pour objet des couches minces à anisotropie magnétique ou diélectrique obtenues par ce procédé, pour la fabrication du matériau composite stratifié.The invention also relates to thin layers with magnetic or dielectric anisotropy obtained by this process, for the manufacture of the laminated composite material.

D'autres caractéristiques et avantages de l'invention ressortiront mieux de la description qui va suivre, donnée à titre illustratif et non limitatif, en référence aux dessins dans lesquels :

  • - la figure 1 représente schématiquement en perspective un matériau composite conforme à l'invention,
  • - la figure 2 illustre le principe d'absorption des micro-ondes par le matériau conforme à l'invention,
  • - la figure 3 représente schématiquement en coupe une fibre magnétique ou diélectrique utilisée dans le matériau conforme à l'invention,
  • - la figure 4 donne le cycle théorique pression/température en fonction du temps utilisé pour la fabrication du matériau composite conforme à l'invention, et
  • - la figure 5 donne les valeurs d'efficacité d'absorption d'un matériau conforme à l'invention en fonction de la fréquence de l'onde incidente.
Other characteristics and advantages of the invention will emerge more clearly from the description which follows, given by way of illustration and not limitation, with reference to the drawings in which:
  • FIG. 1 schematically represents in perspective a composite material according to the invention,
  • FIG. 2 illustrates the principle of absorption of microwaves by the material according to the invention,
  • FIG. 3 schematically represents in section a magnetic or dielectric fiber used in the material according to the invention,
  • FIG. 4 gives the theoretical pressure / temperature cycle as a function of the time used for the manufacture of the composite material according to the invention, and
  • - Figure 5 gives the absorption efficiency values of a material according to the invention as a function of the frequency of the incident wave.

Le matériau composite stratifié de l'invention est constitué d'une alternance de couches minces diélectriques et magnétiques anisotropes, rendues solidaires soit par collage à l'aide d'un film adhésif isolant électrique du type colle époxy ou polyester, soit à l'aide d'un cadre isolant. Le nombre de couches empilées dépend de l'application envisagée. En général, ce nombre est un multiple de quatre. L'épaisseur totale du matériau peut varier de 0,6 à 6 mm.The laminated composite material of the invention consists of an alternation of anisotropic thin dielectric and magnetic layers, made integral either by bonding using an electrical insulating adhesive film of the epoxy or polyester adhesive type, or using an insulating frame. The number of layers stacked depends on the intended application. In general, this number is a multiple of four. The total thickness of the material can vary from 0.6 to 6 mm.

Le matériau composite représenté sur les figures 1 et 2 comporte une première couche mince 2 de fibres diélectriques 4 orientée parallèlement à la direction x d'un système orthonormé xyz. A cette couche de fibres diélectriques 2 on associe une couche mince 6 de fibres magnétiques 8, orientée parallèlement à la direction y.The composite material shown in FIGS. 1 and 2 comprises a first thin layer 2 of dielectric fibers 4 oriented parallel to the direction x of an orthonormal system xyz. This layer of dielectric fibers 2 is associated with a thin layer 6 of magnetic fibers 8, oriented parallel to the direction y.

Sur la figure 1, les fibres des différentes couches sont représentées non jointives de façon à mieux voir la structure du matériau, bien que, dans la pratique ces fibres soient jointives. En outre, ces couches sont disposées au contact les unes des autres.In Figure 1, the fibers of the different layers are shown non-contiguous so as to better see the structure of the material, although in practice these fibers are contiguous. In addition, these layers are arranged in contact with each other.

Les fibres diélectriques 4 présentent une permittivité électrique ε1 élevée et une perméabilité magnétique µ1 faible. Parallèlement, les fibres magnétiques 8 présentent une perméabilité magnétique élevée µ2 et une permittivité électrique faible ε2.The dielectric fibers 4 have a high electrical permittivity ε1 and a low magnetic permeability µ1. At the same time, the magnetic fibers 8 have a high magnetic permeability μ2 and a low electrical permittivity ε2.

L'ajustement µ2= ε1 et µ1= ε2 des fibres 8 et 4 permet de réaliser un matériau composite, vérifiant globalement l'équation ε =µ, c'est-à-dire présentant une impédance égale à celle du vide.The adjustment µ2 = ε1 and µ1 = ε2 of fibers 8 and 4 makes it possible to produce a composite material, generally verifying the equation ε = µ, that is to say having an impedance equal to that of the vacuum.

On rappelle que ε et µ satisfont aux équations

  • (1) ε= ε′ + j ε˝ et
  • (2) µ= µ′ + j µ˝.
Recall that ε and µ satisfy the equations
  • (1) ε = ε ′ + j ε˝ and
  • (2) µ = µ ′ + j µ˝.

La présence dans ε ét µ de partie imaginaire élevée et égale permet d'obtenir une absorption importante d'une onde électromagnétique 11 frappant l'empilement de couches 2-6.The presence in ε and µ of a high and equal imaginary part makes it possible to obtain a significant absorption of an electromagnetic wave 11 striking the stack of layers 2-6.

Tout calcul fait, on obtient un facteur de propagation a1 élevé dans la direction x correspondant à ε˝ et µ˝ élevés et un facteur de propagation a2 faible dans la direction perpendiculaire y, satisfaisant aux équations suivantes :
a1 = jw √ε1. µ2
a2 = jw √ε2. µ1
All calculation made, one obtains a propagation factor a1 high in the direction x corresponding to high ε˝ and µ˝ and a propagation factor a2 low in the direction perpendicular y, satisfying the following equations:
a1 = jw √ ε1. µ2
a2 = jw √ ε2. µ1

Dans ces conditions, une onde électromagné­tique 11 frappant la couche 2 puis se propageant dans l'empilement de couches 2-6 est polarisée et les composantes E1 et B2 des champs électrique et magnétique de cette onde, respectivement parallèles à x et y, sont fortement atténuées. L'empilement 2-6 joue le rôle d'un polariseur.Under these conditions, an electromagnetic wave 11 striking layer 2 and then propagating in the stack of layers 2-6 is polarized and the components E1 and B2 of the electric and magnetic fields of this wave, respectively parallel to x and y, are strongly attenuated. Stack 2-6 plays the role of a polarizer.

Pour atténuer l'autre couple des composantes E2 et B1 de l'onde incidente 11, respectivement parallèles à y et x, dans le matériau composite, il suffit d'ajouter un second ensemble de fibres.To attenuate the other pair of components E2 and B1 of the incident wave 11, respectively parallel to y and x, in the composite material, it suffices to add a second set of fibers.

Ce second ensemble comprend une couche mince 10 de fibres diélectriques 12 parallèles entre elles mais perpendiculaires aux fibres diélectriques 4. Autrement dit, les fibres diélectriques 12 sont parallèles à la direction y. De plus, la couche 10 à anisotropie diélectrique est disposée au contact de la couche 8 à anisotropie magnétique.This second assembly comprises a thin layer 10 of dielectric fibers 12 parallel to each other but perpendicular to the dielectric fibers 4. In other words, the dielectric fibers 12 are parallel to the direction y. In addition, layer 10 with dielectric anisotropy is arranged in contact with layer 8 with magnetic anisotropy.

A ces fibres diélectriques 12 on associe une couche mince 14 de fibres magnétiques 16 parallèles entre elles et à la direction x mais perpendiculaires aux fibres diélectriques 12 ainsi qu'aux fibres magnétiques 8.These dielectric fibers 12 are associated with a thin layer 14 of magnetic fibers 16 which are parallel to one another and in the direction x but perpendicular to the dielectric fibers 12 as well as to the magnetic fibers 8.

Les matériaux constituant les fibres 12 et 16 satisfont aussi à la relation globale ε=µ. Les fibres diélectriques 12 sont réalisées dans le même matériau que les fibres diélectriques 4 et les fibres magnétiques 16 sont réalisées dans le même matériau que les fibres magnétiques 8.The materials constituting the fibers 12 and 16 also satisfy the global relationship ε = µ. The dielectric fibers 12 are made of the same material as the dielectric fibers 4 and the magnetic fibers 16 are made of the same material as the magnetic fibers 8.

L'empilement de couches 10-14 constitue un second polariseur croisé à 90° par rapport au premier polariseur 2-6.The stack of layers 10-14 constitutes a second polarizer crossed at 90 ° relative to the first polarizer 2-6.

Des fibres diélectriques 4 ou magnétiques 6 sont constituées, comme représenté sur la figure 3, d'une gaine polymérique 18 mince thermoplastique renfermant une charge pulvérulente 20 respectivement diélectrique ou magnétique, et des fibres de renfort 22.Dielectric 4 or magnetic 6 fibers consist, as shown in FIG. 3, of a thin thermoplastic polymeric sheath 18 containing a pulverulent filler 20 respectively dielectric or magnetic, and reinforcing fibers 22.

En particulier, la gaine 18 est du polyamide 12 de 0,010 à 0,015 mm d'épaisseur renfermant des fibres 22 de verre et une poudre 20 de titanate de baryum ou d'une ferrite de nickel et de zinc suivant que ces fibres sont diélectriques ou magnétiques. Ces fibres ont un diamètre extérieur de 0,2 à 0,7 mm.In particular, the sheath 18 is polyamide 12 of 0.010 to 0.015 mm thick containing glass fibers 22 and a powder 20 of barium titanate or of a nickel and zinc ferrite depending on whether these fibers are dielectric or magnetic. These fibers have an outside diameter of 0.2 to 0.7 mm.

Ces fibres présentent des taux massiques de charge supérieurs à 50% et en particulier à 95% et des taux volumiques de chargement de l'ordre de 60%. La charge se présente sous la forme d'une poudre ayant une granulométrie de 10 à 50 micromètres.These fibers have mass loading rates greater than 50% and in particular 95% and volume loading rates of the order of 60%. The filler is in the form of a powder having a particle size of 10 to 50 micrometers.

On décrit ci-après la réalisation de chaque couche de fibres diélectriques ou magnétiques.The production of each layer of dielectric or magnetic fibers is described below.

Les fibres diélectriques ou magnétiques décrites sur la figure 3 et entrant dans la constitution des matériaux composites de l'invention sont réalisées par coextrusion du polymère, de la charge et des fibres de renfort. Comme procédé connu de coextrusion utilisable dans l'invention, on peut citer celui décrit dans les techniques de l'ingénieur 3240-1 à 4 "Préimprégné souple à matrice thermoplastique (FIT)" de Ganga et Bourdon. Cette coextrusion permet des productions de fibres, reproductibles et adaptables aux différentes caractéristiques de charge en prenant en compte leur condition particulière de coulabilité.The dielectric or magnetic fibers described in FIG. 3 and forming part of the composition of the composite materials of the invention are produced by coextrusion of the polymer, the filler and the reinforcing fibers. As a known coextrusion process which can be used in the invention, mention may be made of that described in the engineering techniques 3240-1 to 4 "Flexible prepreg with thermoplastic matrix (FIT)" by Ganga and Bourdon. This coextrusion allows fiber production, reproducible and adaptable to the different load characteristics taking into account their particular flowability condition.

Les fibres produites sont ensuite mises en forme par bobinage jointif sur une ou deux épaisseurs sur des mandrins plans. Les plaques obtenues sont alors compactées à froid sous une pression de 200 MPa dans des cuves à pression hydrostatique. Enfin, le matériau est transformé sous presse à plateaux chauffants.The fibers produced are then shaped by contiguous winding on one or two thicknesses on flat mandrels. The plates obtained are then cold compacted under a pressure of 200 MPa in hydrostatic pressure tanks. Finally, the material is transformed in a press with heating plates.

Cette dernière étape de pressage à chaud se fait par déformation plastique des gaines polymériques suivie d'une fusion sans pression de ces dernières. La transformation plastique est une transformation irréversible effectuée à pression constante dans la zone de température du pseudo plateau caoutchoutique du polymère constituant la gaine des fibres.This last hot pressing step is carried out by plastic deformation of the polymer sheaths followed by a pressureless melting of the latter. The plastic transformation is an irreversible transformation carried out at constant pressure in the temperature zone of the pseudo rubbery plateau of the polymer constituting the sheath of the fibers.

Les couches minces de fibres obtenues ont une épaisseur de 0,2 à 0,5 mm suivant le diamètre initial des fibres et le nombre de couches bobinées sur les mandrins.The thin layers of fibers obtained have a thickness of 0.2 to 0.5 mm depending on the initial diameter of the fibers and the number of layers wound on the mandrels.

Sur la figure 4, on a représenté la dernière étape de transformation des fibres en couche mince pour des gaines en polyamide. Ce diagramme donne les variations de pression et de température exprimées respectivement en MPa et en °C en fonction du temps exprimé en minute.In Figure 4, there is shown the last step of transforming the fibers into a thin layer for polyamide sheaths. This diagram gives the pressure and temperature variations expressed respectively in MPa and in ° C as a function of the time expressed in minutes.

La zone A correspond à une montée en température de 0 à 100°C sous une pression de 20 MPa.Zone A corresponds to a temperature rise from 0 to 100 ° C under a pressure of 20 MPa.

La zone B correspond à la zone de déformation plastique de la gaine des fibres à 120°C sous une pression de 20 MPa. Cette étape permet la formation d'une couche continue tout en lui conservant son anisotropie magnétique ou diélectrique.Zone B corresponds to the plastic deformation zone of the sheath of the fibers at 120 ° C. under a pressure of 20 MPa. This step allows the formation of a continuous layer while retaining its magnetic or dielectric anisotropy.

La zone C correspond à une reprise de température de 100 à 160°C sous une pression réduite de 0,2 MPa.Zone C corresponds to a temperature recovery from 100 to 160 ° C under a reduced pressure of 0.2 MPa.

La zone D correspond à un deuxième palier en température à pression réduite de 0,2 MPa de 160 à 180°C. Cette étape provoque la fusion du polymère et assure l'adhérence des gaines polymériques de la couche.Zone D corresponds to a second level at a reduced pressure temperature of 0.2 MPa from 160 to 180 ° C. This step causes the polymer to melt and ensures the adhesion of the polymer sheaths of the layer.

La zone E représente un refroidissement sans pression pour limiter le fluage du matériau, et l'étape F représente un démoulage à 120°C.Zone E represents pressureless cooling to limit the creep of the material, and step F represents demolding at 120 ° C.

Les couches de matériaux diélectriques et magnétiques réalisées comme décrit ci-dessus, sont ensuite empilées puis assemblées pour réaliser des écrans de blindage électromagnétique absorbants, comme décrit sur les figures 1 et 2.The layers of dielectric and magnetic materials produced as described above are then stacked and then assembled to produce absorbent electromagnetic shielding screens, as described in FIGS. 1 and 2.

Ce procédé de fabrication de couches à anisotropie magnétique ou diélectrique peut être utilisé pour la réalisation d'autres matériaux que celui décrit aux figures 1 et 2. En particulier, il peut servir pour la réalisation de blindage essentiellement magnétique ou essentiellement diélectrique.This method of making diapers magnetic or dielectric anisotropy can be used for the production of other materials than that described in FIGS. 1 and 2. In particular, it can be used for the production of essentially magnetic or essentially dielectric shielding.

La courbe représentée sur la figure 5 donne le rapport Er/Ei en fonction de la fréquence de l'onde électromagnétique incidente. Ei et Er représentent l'énergie de l'onde électromagnétique à absorber respectivement incidente et réfléchie par le matériau de l'invention et les fréquences sont exprimées sous forme logarithmique.The curve shown in Figure 5 gives the Er / Ei ratio as a function of the frequency of the incident electromagnetic wave. Ei and Er represent the energy of the electromagnetic wave to be absorbed respectively incident and reflected by the material of the invention and the frequencies are expressed in logarithmic form.

La courbe de la figure 5 a été obtenue pour un matériau composite constitué de 4 couches orthotropes, c'est-à-dire tel que représenté sur la figure 1, la charge diélectrique étant du titanate de baryum et la charge magnétique une ferrite de nickel et de zinc.The curve of Figure 5 was obtained for a composite material consisting of 4 orthotropic layers, that is to say as shown in Figure 1, the dielectric charge being barium titanate and the magnetic charge a nickel ferrite and zinc.

De cette courbe, il ressort que le matériau composite présente une valeur d'efficacité d'absorption maximum de 18 db à 1000 MHz et une efficacité de 16,5 db entre 10 et 800 MHz.From this curve, it appears that the composite material has a maximum absorption efficiency value of 18 db at 1000 MHz and an efficiency of 16.5 db between 10 and 800 MHz.

Les matériaux de l'invention sont donc capables de résorber les nuisances électromagnétiques sur des largeurs de bande étandues avec une efficacité suffisante pour atténuer 90 à 99% de l'onde incidente.The materials of the invention are therefore capable of absorbing electromagnetic disturbances over extended bandwidths with sufficient efficiency to attenuate 90 to 99% of the incident wave.

Claims (18)

1. Couche mince à anisotropie magnétique ou diélectrique, caractérisée en ce qu'elle est constituée de fibres jointives (4, 6) compactées à chaud, parallèles à une direction donnée (x, y) et constituées d'une gaine en polymère thermoplastique renfermant une charge pulvérulente magnétique ou diélectrique, la cohésion des fibres de la couche résultant d'une fusion du polymère.1. Thin layer with magnetic or dielectric anisotropy, characterized in that it consists of contiguous fibers (4, 6) compacted hot, parallel to a given direction (x, y) and constituted by a sheath of thermoplastic polymer containing a magnetic or dielectric powder charge, the cohesion of the fibers of the layer resulting from a melting of the polymer. 2. Couche mince selon la revendication 1, caractérisée en ce que la gaine polymérique (18) est en polyamide.2. Thin layer according to claim 1, characterized in that the polymeric sheath (18) is made of polyamide. 3. Couche mince selon la revendication 1 ou 2, caractérisée en ce que la charge diélectrique est une poudre de titanate de baryum.3. Thin layer according to claim 1 or 2, characterized in that the dielectric charge is a powder of barium titanate. 4. Couche mince selon la revendication 1 ou 2, caractérisée en ce que la charge magnétique est une poudre de ferrite de nickel et de zinc.4. Thin layer according to claim 1 or 2, characterized in that the magnetic charge is a powder of nickel and zinc ferrite. 5. Couche mince selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la gaine (18) renferme en outre des moyens de renfort (22).5. Thin layer according to any one of claims 1 to 4, characterized in that the sheath (18) further contains reinforcing means (22). 6. Couche mince selon la revendication 5, caractérisée en ce que les moyens de renfort (22) se présentent sous forme de fibres.6. Thin layer according to claim 5, characterized in that the reinforcing means (22) are in the form of fibers. 7. Procédé de fabrication d'une couche mince à anisotropie magnétique ou diélectrique, comportant les étapes suivantes : a) - enrobage d'une charge (20) magnétique ou diélectrique dans une gaine en polymère thermoplastique (18) pour former des fibres (4, 6), b) - bobinage des fibres sur un support plan, c) - compactage à froid du bobinage obtenu en b) pour former une couche de fibres, d) - premier pressage à chaud (B) de la couche obtenue en c) dans la zone de température du pseudo­plateau caoutchoutique du polymère, puis e) - deuxième pressage à chaud (D) de la couche obtenue en d) à une température entraînant la fusion du polymère. 7. Method for manufacturing a thin layer with magnetic or dielectric anisotropy, comprising the following steps: a) - coating of a magnetic or dielectric charge (20) in a thermoplastic polymer sheath (18) to form fibers (4, 6), b) - winding of the fibers on a flat support, c) - cold compaction of the winding obtained in b) to form a layer of fibers, d) - first hot pressing (B) of the layer obtained in c) in the temperature zone of the rubber pseudoplate of the polymer, then e) - second hot pressing (D) of the layer obtained in d) at a temperature causing the polymer to melt. 8. Procédé selon la revendication 7, caractérisé en ce que l'étape a) d'enrobage se fait par coextrusion.8. Method according to claim 7, characterized in that step a) of coating is done by coextrusion. 9. Procédé selon la revendication 7 ou 8, caractérisé en ce que l'on enrobe, en outre, dans la gaine en polymère, des moyens de renfort au cours de l'étape a).9. Method according to claim 7 or 8, characterized in that there is coated, in addition, in the polymer sheath, reinforcing means during step a). 10. Matériau composite stratifié comportant au moins deux empilements de couches assemblés, un premier empilement constitué d'une couche (2) de premières fibres diélectriques (4), orientées parallèlement à une première direction (x), et d'une couche (6) de premières fibres magnétiques (8), orientées parallèlement à une seconde direction (y) perpendiculaire à la première direction (x), et un second empilement constitué d'une couche (10) de secondes fibres diélectriques (12), orientées parallèlement à la seconde direction (y), et d'une couche (14) de secondes fibres magnétiques, orientées parallèlement à la première direction (x).10. A laminated composite material comprising at least two stacks of assembled layers, a first stack consisting of a layer (2) of first dielectric fibers (4), oriented parallel to a first direction (x), and of a layer (6 ) first magnetic fibers (8), oriented parallel to a second direction (y) perpendicular to the first direction (x), and a second stack consisting of a layer (10) of second dielectric fibers (12), oriented parallel to the second direction (y), and a layer (14) of second magnetic fibers, oriented parallel to the first direction (x). 11. Matériau composite selon la revendication 10, caractérisé en ce que la permittivité électrique respectivement des premières et secondes fibres diélectriques (4, 12) est approximativement égale à la perméabilité magnétique respectivement des premières et secondes fibres magnétiques (8, 16) et en ce que la perméabilité magnétique respectivement des premières et secondes fibres diélectriques (4, 12) est approximativement égale à la permittivité électrique respectivement des premières et secondes fibres magnétiques (8, 16).11. Composite material according to claim 10, characterized in that the electrical permittivity respectively of the first and second dielectric fibers (4, 12) is approximately equal to the magnetic permeability respectively of the first and second magnetic fibers (8, 16) and in that that the magnetic permeability respectively of the first and second dielectric fibers (4, 12) is approximately equal to the electrical permittivity respectively of the first and second fibers magnetic (8, 16). 12. Matériau composite selon la revendication 10 ou 11, caractérisé en ce que les fibres diélectriques sont constituées d'une gaine polymérique (18) renfermant une charge diélectrique (20) et éventuellement des moyens de renfort (22).12. Composite material according to claim 10 or 11, characterized in that the dielectric fibers consist of a polymeric sheath (18) containing a dielectric charge (20) and optionally reinforcing means (22). 13. Matériau composite selon l'une quelconque des revendications 10 à 12, caractérisé en ce que les fibres magnétiques sont constituées d'une gaine polymérique (18) renfermant une charge magnétique (20) et éventuellement des moyens de renfort (22).13. Composite material according to any one of claims 10 to 12, characterized in that the magnetic fibers consist of a polymeric sheath (18) containing a magnetic charge (20) and optionally reinforcing means (22). 14. Matériau composite selon l'une quelconque des revendications 10 à 13, caractérisé en ce que les fibres diélectriques sont en titanate de baryum et les fibres magnétiques en ferrite de nickel et de zinc.14. Composite material according to any one of claims 10 to 13, characterized in that the dielectric fibers are made of barium titanate and the magnetic fibers made of nickel and zinc ferrite. 15. Procédé de fabrication d'un matériau composite stratifié consistant à : a) - former au moins une couche (2) de premières fibres diélectriques (4) parallèles, b) - former au moins une couche (6) de premières fibres magnétiques (8) parallèles, c) - faire au moins un premier empilement des couches de premières fibres diélectriques et des premières fibres magnétiques de sorte que les premières fibres diélectriques et les premières fibres magnétiques soient perpendiculaires, d) - former au moins une couche (10) de secondes fibres diélectriques (12) parallèles, e) - former au moins une couche (14) de secondes fibres magnétiques (16) parallèles, f) - faire au moins un second empilement des couches de secondes fibres diélectriques et de secondes fibres magnétiques de sorte que les secondes fibres diélectriques et les secondes fibres magnétiques soient perpendiculaires, g) assembler le premier et second empilements de sorte que les premières et secondes fibres respectivement diélectriques et magnétiques soient perpendiculaires. 15. Method for manufacturing a laminated composite material consisting of: a) - forming at least one layer (2) of first parallel dielectric fibers (4), b) - forming at least one layer (6) of first parallel magnetic fibers (8), c) - making at least a first stack of layers of first dielectric fibers and first magnetic fibers so that the first dielectric fibers and the first magnetic fibers are perpendicular, d) - forming at least one layer (10) of second parallel dielectric fibers (12), e) - forming at least one layer (14) of second parallel magnetic fibers (16), f) - making at least a second stack of layers of second dielectric fibers and second magnetic fibers so that the second dielectric fibers and the second magnetic fibers are perpendicular, g) assembling the first and second stacks so that the first and second dielectric and magnetic fibers respectively are perpendicular. 16. Procédé selon la revendication 15, caractérisé en ce que les fibres diélectriques et les fibres magnétiques sont formées en coextrudant un polymère thermoplastique et une charge respectivement diélectrique et magnétique avec éventuellement des moyens de renfort.16. The method of claim 15, characterized in that the dielectric fibers and the magnetic fibers are formed by coextruding a thermoplastic polymer and a respectively dielectric and magnetic filler with optionally reinforcing means. 17. Procédé selon la revendication 15 ou 16, caractérisé en ce que les couches de fibres sont formées par bobinage sur un support plan, compactage à froid du bobinage puis pressage à chaud.17. The method of claim 15 or 16, characterized in that the fiber layers are formed by winding on a flat support, cold compaction of the winding then hot pressing. 18. Procédé selon la revendication 17, caractérisé en ce que le pressage à chaud comporte une étape de déformation plastique du polymère puis de fusion dudit polymère.18. Method according to claim 17, characterized in that the hot pressing comprises a step of plastic deformation of the polymer then of melting of said polymer.
EP90402944A 1989-10-23 1990-10-19 Layers with magnetic or dielectric anisotropy, stratified composite material comprising these layers and their process of manufacture Withdrawn EP0425350A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8913840A FR2653599B1 (en) 1989-10-23 1989-10-23 LAMINATE COMPOSITE MATERIAL HAVING ABSORBENT ELECTROMAGNETIC PROPERTIES AND ITS MANUFACTURING METHOD.
FR8913840 1989-10-23

Publications (1)

Publication Number Publication Date
EP0425350A1 true EP0425350A1 (en) 1991-05-02

Family

ID=9386660

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90402944A Withdrawn EP0425350A1 (en) 1989-10-23 1990-10-19 Layers with magnetic or dielectric anisotropy, stratified composite material comprising these layers and their process of manufacture

Country Status (4)

Country Link
US (1) US5110651A (en)
EP (1) EP0425350A1 (en)
CA (1) CA2028243A1 (en)
FR (1) FR2653599B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0600387A1 (en) * 1992-11-30 1994-06-08 Mitsubishi Cable Industries, Ltd. Wideband wave absorber
WO2014198832A1 (en) * 2013-06-14 2014-12-18 Commissariat à l'énergie atomique et aux énergies alternatives Magnetic shielding for an antenna, using a composite based on thin magnetic layers, and antenna comprising such a shielding

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202688A (en) * 1989-10-02 1993-04-13 Brunswick Corporation Bulk RF absorber apparatus and method
JPH04354103A (en) * 1991-05-31 1992-12-08 Yoshiyuki Naito Wideband radio wave absorbing device
TW224561B (en) * 1991-06-04 1994-06-01 Akocho Co
JP3037821B2 (en) * 1992-04-10 2000-05-08 日本フエルト株式会社 Magnetic object to be detected
US5522602A (en) * 1992-11-25 1996-06-04 Amesbury Group Inc. EMI-shielding gasket
US5661484A (en) * 1993-01-11 1997-08-26 Martin Marietta Corporation Multi-fiber species artificial dielectric radar absorbing material and method for producing same
ATE172837T1 (en) * 1993-02-02 1998-11-15 Ast Research Inc CIRCUIT BOARD ASSEMBLY WITH SHIELDING GRIDS AND PRODUCTION METHOD
CA2092371C (en) * 1993-03-24 1999-06-29 Boris L. Livshits Integrated circuit packaging
US5334800A (en) * 1993-07-21 1994-08-02 Parlex Corporation Flexible shielded circuit board
US5601931A (en) * 1993-12-02 1997-02-11 Nhk Spring Company, Ltd. Object to be checked for authenticity and a method for manufacturing the same
KR0176773B1 (en) * 1995-05-09 1999-05-15 구자홍 Microwave oven having induction heater and its control method
US5642118A (en) * 1995-05-09 1997-06-24 Lockheed Corporation Apparatus for dissipating electromagnetic waves
US10899106B1 (en) * 1996-02-05 2021-01-26 Teledyne Brown Engineering, Inc. Three-dimensional, knitted, multi-spectral electro-magnetic detection resistant, camouflaging textile
US5675299A (en) * 1996-03-25 1997-10-07 Ast Research, Inc. Bidirectional non-solid impedance controlled reference plane requiring no conductor to grid alignment
US6225939B1 (en) 1999-01-22 2001-05-01 Mcdonnell Douglas Corporation Impedance sheet device
IL162494A0 (en) * 2003-06-30 2005-11-20 Daido Steel Co Ltd Powder for use in an electromagnetic wave absorber
US7706103B2 (en) 2006-07-25 2010-04-27 Seagate Technology Llc Electric field assisted writing using a multiferroic recording media
US7511653B2 (en) * 2007-07-20 2009-03-31 Chang-Sui Yu Radar wave camouflage structure and method for fabricating the same
US8354158B2 (en) * 2010-09-01 2013-01-15 GM Global Technology Operations LLC Microfibrous article and method of forming same
US9995822B2 (en) * 2013-06-13 2018-06-12 Continental Automotive Systems, Inc. Integration of a radar sensor in a vehicle
US10336006B1 (en) * 2015-05-19 2019-07-02 Southern Methodist University Methods and apparatus for additive manufacturing
WO2017127388A1 (en) 2016-01-18 2017-07-27 Rogers Corporation A magneto-dielectric material comprising hexaferrite fibers, methods of making, and uses thereof
US11756985B2 (en) 2017-11-16 2023-09-12 Georgia Tech Research Corporation Substrate-compatible inductors with magnetic layers
CN113994443A (en) 2019-07-16 2022-01-28 罗杰斯公司 Magneto-dielectric material, method for producing same and use thereof
US11679991B2 (en) 2019-07-30 2023-06-20 Rogers Corporation Multiphase ferrites and composites comprising the same
TW202116700A (en) 2019-09-24 2021-05-01 美商羅傑斯公司 Bismuth ruthenium m-type hexaferrite, a composition and composite comprising the same, and a method of making
US11783975B2 (en) 2019-10-17 2023-10-10 Rogers Corporation Nanocrystalline cobalt doped nickel ferrite particles, method of manufacture, and uses thereof
US11457515B2 (en) * 2020-01-23 2022-09-27 Haier Us Appliance Solutions, Inc. Hybrid cooking appliance with microwave and induction heating features
US11691892B2 (en) 2020-02-21 2023-07-04 Rogers Corporation Z-type hexaferrite having a nanocrystalline structure
CN111890655B (en) * 2020-07-22 2021-11-23 宿迁市金田塑业有限公司 Multi-layer co-extrusion production process of biaxially oriented polyethylene antibacterial antifogging film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725490A (en) * 1986-05-05 1988-02-16 Hoechst Celanese Corporation High magnetic permeability composites containing fibers with ferrite fill
US4728554A (en) * 1986-05-05 1988-03-01 Hoechst Celanese Corporation Fiber structure and method for obtaining tuned response to high frequency electromagnetic radiation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2951247A (en) * 1946-02-19 1960-08-30 Halpern Otto Isotropic absorbing layers
US2771602A (en) * 1953-02-16 1956-11-20 Electroacustic Gmbh Absorption device for electro-magnetic waves
US3721982A (en) * 1970-11-10 1973-03-20 Gruenzweig & Hartmann Absorber for electromagnetic radiation
JPS5599800A (en) * 1979-01-26 1980-07-30 Sadaaki Takagi Electromagnetic wave absorber and method of fabricating same
JPS6021966A (en) * 1983-07-12 1985-02-04 カネボウ株式会社 Production of polishing fiber
US4726980A (en) * 1986-03-18 1988-02-23 Nippon Carbon Co., Ltd. Electromagnetic wave absorbers of silicon carbide fibers
US4996097A (en) * 1989-03-16 1991-02-26 W. L. Gore & Associates, Inc. High capacitance laminates

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725490A (en) * 1986-05-05 1988-02-16 Hoechst Celanese Corporation High magnetic permeability composites containing fibers with ferrite fill
US4728554A (en) * 1986-05-05 1988-03-01 Hoechst Celanese Corporation Fiber structure and method for obtaining tuned response to high frequency electromagnetic radiation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0600387A1 (en) * 1992-11-30 1994-06-08 Mitsubishi Cable Industries, Ltd. Wideband wave absorber
WO2014198832A1 (en) * 2013-06-14 2014-12-18 Commissariat à l'énergie atomique et aux énergies alternatives Magnetic shielding for an antenna, using a composite based on thin magnetic layers, and antenna comprising such a shielding
FR3007214A1 (en) * 2013-06-14 2014-12-19 Commissariat Energie Atomique MAGNETIC ANTENNA SHIELD USING A COMPOSITE BASED ON MAGNETIC THIN FILMS AND ANTENNA COMPRISING SUCH SHIELD

Also Published As

Publication number Publication date
FR2653599A1 (en) 1991-04-26
FR2653599B1 (en) 1991-12-20
US5110651A (en) 1992-05-05
CA2028243A1 (en) 1991-04-24

Similar Documents

Publication Publication Date Title
EP0425350A1 (en) Layers with magnetic or dielectric anisotropy, stratified composite material comprising these layers and their process of manufacture
EP0763420B2 (en) Sound damping laminated glazing
EP0086922B1 (en) Method of production of piezo-electric polymer transducers
Wang et al. Preparation and characterization of piezoelectric foams based on cyclic olefin copolymer
FR2620853A1 (en) COMPOSITE MAGNETIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME
WO2019186011A1 (en) Hybrid structure for surface acoustic wave device and associated production method
CA2254314C (en) Structural composite material that absorbs radar waves, and uses of such a material
EP1278707A1 (en) Transparent substrate comprising metal elements and use thereof
EP3205180B1 (en) Heated glass panel for electromagnetic shielding
FR2781789A1 (en) Transparent substrate, for plasma screens, flat high frequency lamps and building or aircraft glazing, is assembled with a thermoplastic film containing adjacent metal wires having different undulations
FR2653940A1 (en) Layer having magnetic or dielectric anisotropy and its method of manufacture
FR2535650A3 (en) Multilayer heat insulation system
KR20040094346A (en) Method for manufacturing an optical lowpass filter
EP3465759B1 (en) Optically transparent electromagnetically shielding element comprising a plurality of zones
FR2688345A1 (en) STRUCTURE ABSORBING ELECTROMAGNETIC WAVES.
US3279938A (en) Infrared transmitting optical filter having porous antimony triselenide layer
FR3054080B1 (en) COMPOSITE STRUCTURE HAVING RECONFIGURABLE DIELECTRIC CHARACTERISTICS AND ASSEMBLY COMPRISING SUCH A COMPOSITE STRUCTURE
FR2784000A1 (en) DEVICE FOR PROTECTING AN ELECTRICAL CIRCUIT AGAINST THE PHENOMENA OF INTERFACE MICROLOADS
FR2678132A1 (en) METHOD FOR MANUFACTURING AN ELECTROMAGNETIC RADIATION ABSORBING SCREEN.
EP0671049B1 (en) Anisotropic microwave composite
Vong et al. 3D-Printed Multi-Material Multilayer Wideband Microwave Absorber
FR2666439A1 (en) ABSORBENT SCREEN BASED ON ELECTRONIC CONDUCTIVE POLYMER.
EP0166629B1 (en) Composite metal-polymer sheets and methods and devices for making them
JPH0533524B2 (en)
EP1087242B1 (en) Infrared transmitting, microwave absorbing multilayer structures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19911004

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19940503