[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0419378B1 - Dispositif de traitement au moyen de gaz d'un bain liquide d'aluminium de grande surface maintenu à l'état stationnaire dans un four - Google Patents

Dispositif de traitement au moyen de gaz d'un bain liquide d'aluminium de grande surface maintenu à l'état stationnaire dans un four Download PDF

Info

Publication number
EP0419378B1
EP0419378B1 EP90420406A EP90420406A EP0419378B1 EP 0419378 B1 EP0419378 B1 EP 0419378B1 EP 90420406 A EP90420406 A EP 90420406A EP 90420406 A EP90420406 A EP 90420406A EP 0419378 B1 EP0419378 B1 EP 0419378B1
Authority
EP
European Patent Office
Prior art keywords
bath
furnace
rotor
gas
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90420406A
Other languages
German (de)
English (en)
Other versions
EP0419378A1 (fr
Inventor
Olivier Baud
Franck Boeuf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Pechiney Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pechiney Rhenalu SAS filed Critical Pechiney Rhenalu SAS
Priority to AT90420406T priority Critical patent/ATE103992T1/de
Publication of EP0419378A1 publication Critical patent/EP0419378A1/fr
Application granted granted Critical
Publication of EP0419378B1 publication Critical patent/EP0419378B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • C22B21/064Obtaining aluminium refining using inert or reactive gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/05Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge

Definitions

  • the present invention relates to a device for the treatment by means of gas of a large surface aluminum liquid bath maintained in the stationary state in an oven.
  • aluminum is meant here both aluminum containing the usual impurities at rates which are a function of the quality treated, and the various alloys that this element is capable of forming.
  • the word gas relates as well to simple elements such as nitrogen, argon and chlorine, for example, as to their mixtures.
  • impurities are mainly constituted by hydrogen and metallic oxides such as alumina which come mainly from the pollution of the metal by the humidity of the environment to which other bodies and in particular other metals can be added, like magnesium for example, when aluminum comes from the remelting of waste.
  • impurities will either form inclusions and cause defects in the cast products, or give them unwanted mechanical characteristics. It is therefore essential to treat the aluminum to get rid of these impurities before casting it.
  • This treatment generally consists in introducing into the liquid metal bath, possibly in the presence of a flow, one or more reactive and / or inert gases, the former having the function of reacting with certain impurities, such as magnesium for example, the latter causing the impurities present initially or formed during the reactions towards the surface of the bath where they can be separated by skimming and filtration.
  • This treatment can be carried out in ovens, whether it be alloy development ovens, holding ovens where the metal is in a stationary state and / or in pockets in which the metal flows continuously towards the stations of casting.
  • rotary injectors are generally made of graphite, the only material capable of withstanding the abrasive action of the metal and the corrosive effect of chlorine at temperatures close to 800 ° C; but graphite is relatively fragile.
  • a treatment device using gas from a bath (2) of liquid aluminum at rest in an oven (28) where it occupies an area at least equal to 10 m2 including a gantry (21) removable placed above the oven and to which hangs a set (1) of gas injection and mixing of the bath which plunges partly into the bath via an opening (3) which is formed in the vault (4) of the oven, said assembly comprising a rotary shaft (5) pierced along its axis by a cavity (6) closed downwards and opening above the oven in (7), said shaft being equipped at its upper part with '' a motor (17) and at its lower part a rotor (9) provided with blades (10) pierced with channels (11) connected to the cavity, device in which at the gantry are suspended at least three injection assemblies and of length greater than 2 meters, of vertical axis of symmetry which taken two by two are located in different planes, whose submerged parts are separated from each other only by the bath and that each of the trees is surrounded by a stator (13) extending downward
  • the device according to the invention applies not to pockets of restricted surface where most often the metal circulates, but to ovens where the bath is stationary and occupies an area at least equal to 10 m2.
  • ovens are generally closed on top and their vault is pierced with suitable openings through which the sets are introduced.
  • a removable gantry a kind of metal frame which allows, by different mechanical means (pulleys, wheels, jacks, etc.) to move them horizontally from a waiting position to above the openings, simultaneously lower them into the bath and remove them after treatment of the metal.
  • Each of the assemblies is connected to a motor intended to ensure the rotation of the injector and communicates by flexible tubes to the gas inlets.
  • the movements of the gantry, the rotation speed of the motors and the adjustment of the gas flow rates are controlled from a cockpit which simultaneously manages the entire operating chain of the oven.
  • the assemblies From the position point of view, the assemblies have their axes located two by two in different planes so as to obtain an offset and to avoid any alignment of more than two assemblies.
  • the results of tests carried out with and without offset show that the liquid-gas exchange is better in the offset position.
  • the gas injectors consist of a rotary shaft connected at its upper end to a drive motor and at its lower end to a rotor, a kind of disc provided on its side wall with blades.
  • the shaft is pierced along its axis by a cavity which opens on its wall above the furnace and which is closed down and connected to channels which pass through the blades to open into the bath through the face not adjacent to the rotor. This cavity and these channels are used for the distribution of gas in the bath.
  • stator which extends upwards above the furnace where it is fixed and downwards near the upper face of the rotor where it forms a relatively narrow space of a few millimeters so that the layer of metal therein acts as a hydrodynamic bearing for the rotor and facilitates the rotation of the latter.
  • the lateral space which separates the stator from the rotor is filled with metal during the treatment and plays a damping role so that any "whip" effect on the rotor axis and any risk of breakage are eliminated.
  • the measurement of this space is preferably between 10 and 30 mm.
  • the injectors all rotate in the same direction to avoid eddies liable to hinder the rise of impurities on the surface.
  • the axes With identical rotors, which is the most general case, it is preferable to place the axes at equal distances between them. These distances can vary between 2 and 6 times the value of the diameter of the rotors, which is generally between 100 and 500 mm in order to be within a range ensuring both a suitable dimension so as not to excessively multiply the number of injectors and compatible with the mechanical strength of trees.
  • the range of rotational speeds enabling good dispersion to be obtained without resorting to excessive torques is between 150 and 600 revolutions / minute.
  • the gas flow rate it is preferably between 6 and 12 m3 / h per injector, a lower flow unnecessarily lengthening the duration of the treatment and a higher flow resulting in the formation of too large bubbles which open on the surface of the bath without reacting.
  • This gas is preferably distributed by four blades located in planes forming an angle between 3 and 10 degrees relative to the vertical, symmetrically distributed around the rotor and drilled horizontally throughout their width by a channel of diameter from 1 to 3 mm approximately which is connected on one side to the shaft cavity and which opens on the other side at the end of the blade.
  • the rotor is preferably placed at a distance from the bottom of the oven between 1/4 and the 1/2 the height of the bath.
  • the stator is preferably extended up to a distance from the upper face of the rotor of between 10 and 50 mm.
  • FIG. 1 there is a gas injector assembly 1 which partially plunges into the bath 2 via an opening 3 formed in the roof 4 of the oven.
  • This assembly comprises a rotary shaft 5 pierced along its axis by a cavity 6 opening below the furnace at 7 through which the next gas is brought 8.
  • the shaft 5 is equipped at its lower part with a rotor 9 provided with blades 10 each pierced at their end by a channel 11 connected to the cavity 6 and which injects the gas into the next bath 12.
  • the shaft 5 is surrounded by a stator 13 so as to leave a space 14 into which the bath enters.
  • This stator extends downwards to a small distance from the face upper rotor to allow the bath to form an annular zone 15 acting as a hydrodynamic bearing; upwards the stator passes through the roof of the furnace to which it is suspended by a collar 16.
  • the motor 17 ensures the rotation of the rotor via the shaft.
  • FIG. 2 one can see a gantry 21 which rests on rails 22 by means of four wheels 23.
  • This gantry is formed by an upper frame 24 to which the axes of the wheels are fixed, by four vertical uprights 25 and from the lower frame 26 removable along the uprights by means of a jack 27. From this lower frame are suspended the four gas injector assemblies 1 which plunge into the bath of the metal to be treated 2 contained in the furnace 28 according to offset positions the one in relation to the other.
  • the gantry being in the waiting position A, and the lower frame in the high position, it is brought into position B located above the oven, then the lower frame is lowered to the intermediate position C where the elements are preheated before reaching position D where the elements are immersed in the bath. At this time, the injector engines are started and the gas is sent to the blades.
  • the lower frame is gradually raised so as to drain the bath contained in the rotor-stator space. This frame being in high position B is then brought back to position A.
  • a sample of metal thus treated was subjected to the telegas analysis method to determine the hydrogen content.
  • the amount found was 0.10 ⁇ g / g of metal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)
  • Treating Waste Gases (AREA)
  • ing And Chemical Polishing (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Gas Separation By Absorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

  • La présente invention est relative à un dispositif de traitement au moyen de gaz d'un bain liquide d'aluminium de grande surface maintenu à l'état stationnaire dans un four.
  • On entend ici par aluminium à la fois l'aluminium contenant les impuretés habituelles à des taux qui sont fonction de la qualité traitée, et les différents alliages que cet élément est susceptible de former. De même, le mot gaz se rapporte aussi bien aux éléments simples tels que l'azote, l'argon et le chlore, par exemple, qu'à leurs mélanges.
  • L'homme de l'art de la fonderie de l'aluminium sait que le métal qu'il met en oeuvre contient des impuretés. Ces impuretés sont constituées principalement par l'hydrogène et des oxydes métalliques tels que l'alumine qui proviennent surtout de la pollution du métal par l'humidité de l'environnement auxquels peuvent s'ajouter d'autres corps et notamment d'autres métaux, comme le magnésium par exemple, quand l'aluminium provient de la refusion de déchets. Ces impuretés vont soit former des inclusions et provoquer des défauts dans les produits coulés, soit leur conférer des caractéristiques mécaniques non souhaitées. Il est donc indispensable de traiter l'aluminium pour le débarrasser de ces impuretés avant de le couler.
  • Ce traitement consiste généralement à introduire dans le bain de métal liquide, éventuellement en présence de flux, un ou plusieurs gaz réactifs et/ou inertes, les premiers ayant pour fonction de réagir avec certaines impuretés, comme le magnésium par exemple, les seconds entraînant les impuretés présentes initialement ou formées au cours des réactions vers la surface du bain où elles peuvent être séparées par écrémage et filtration. Ce traitement peut être effectué dans les fours que ce soit les fours d'élaboration d'alliages, les fours de maintien où le métal est dans un état stationnaire et/ou dans des poches dans lesquelles le métal s'écoule en continu vers les postes de coulée.
  • Ce qu'on recherche dans le traitement, c'est évidemment l'efficacité, c'est-à-dire l'obtention de la meilleure purification dans le temps le plus court avec la quantité de gaz la plus faible possible. Ce dernier paramètre est particulièrement important dans le cas où on utilise pour le traitement un gaz comme le chlore. En effet, il est bien connu que ce gaz est un élément toxique pour l'homme et qui, de plus, a des propriétés corrosives vis à vis des métaux courants comme le fer, le cuivre, etc... Donc, si une fraction du volume de chlore introduit ne réagit pas avec le bain, certes l'efficacité du traitement diminuera mais elle aura des conséquences fâcheuses sur le plan de la sécurité du personnel et de la pollution de l'environnement. D'où la mise en oeuvre de techniques permettant d'obtenir une efficacité plus ou moins grande.
  • Ces techniques peuvent être regroupées en deux familles :
    • les techniques par injection dans un four comme l'introduction de composés chlorés gazéifiables tels que l'hexachloroéthane ou de gaz à partir d'injecteurs fixes tels que des bouchons poreux, cannes ou lances. Dans ce cas, seule une fonction injection de gaz dans le bain est exercée;
    • les techniques d'injection en poche "in-line" où on utilise des ensembles tournants qui jouent à la fois les fonctions d'injection de gaz dans le bain et de brassage dudit bain.
  • Les lois classiques du génie chimique montrent que l'efficacité d'un traitement par injection de gaz dans du métal liquide dépend en première approximation :
    • d'un coefficient d'échange gaz-métal liquide de nature physico-chimique;
    • de la surface spécifique des bulles qui, pour des bulles supposées sphériques, est inversement proportionnelle à leur diamètre;
    • de la fraction volumique de gaz, c'est-à-dire du quotient de la division du volume total qu'occupent les bulles par le volume total du métal.
  • A débit de gaz constant, plus l'agitation est grande et les bulles petites et dispersées, plus l'interface gaz-métal liquide est importante et meilleure est l'efficacité du système.
    C'est le principe des injecteurs rotatifs qui allient à l'injection un effet important d'agitation du volume de bain traité.
    Cependant, lorsqu'on augmente le débit de gaz en présence d'une agitation donnée, la fraction volumique de gaz croît puis, au-dessus d'une certaine valeur du débit de gaz, l'agitation n'est plus assez efficace pour disperser les bulles qui coalescent : leur diamètre croît alors fortement et l'efficacité du traitement diminue rapidement.
    Ceci est a fortiori vrai lorsqu'il y a injection de gaz sans agitation concomittante comme c'est le cas avec les dispositifs classiques tels que l'hexachlororéthane, les bouchons poreux, les cannes ou les lances d'injection.
    C'est pourquoi lorsqu'on veut obtenir une efficacité maximum, il est préférable d'utiliser des injecteurs rotatifs.
  • Sachant par ailleurs que la pureté du métal à la sortie des poches est fonction de la pureté à l'entrée, on conçoit l'importance de pouvoir disposer dans les fours de moyens de traitement les plus efficaces possible.
  • Certes le document US-A-1,635,037 enseigne un dispositif d'agitation d'un bain de métal placé dans un four constitué par un arbre, des moyens d'agitation portés par ledit arbre, des moyens pour faire tourner ledit arbre, des moyens pour faire basculer ledit arbre, des moyens pour faire avancer ou reculer ledit arbre, des moyens d'introduction d'air dans le bain par l'intermédiaire d'une cavité percée suivant l'axe de l'arbre et munie de canaux.
    Toutefois, aucune précision n'est donnée sur les dimensions des fours utilisés et notamment sur la surface du bain de métal considéré.
    Or, il faut savoir que les fours actuels ont presque toujours une surface de bain au moins égale à 10m².
  • Par ailleurs, les injecteurs rotatifs sont généralement réalisés en graphite, seul matériau capable de résister à l'action abrasive du métal et corrosive du chlore à des températures voisines de 800°C; mais le graphite est relativement fragile.
  • Dans ces conditions, on conçoit mal la transposition de tels injecteurs rotatifs à des fours. En effet, pour qu'ils agissent convenablement dans l'ensemble du bain, il faudrait augmenter notablement le diamètre des rotors et de ce fait le couple important nécessaire à leur rotation conduirait à des efforts incompatibles avec la résistance mécanique du graphite.
    De plus, en raison de la distance relativement grande qui sépare le niveau du bain de la voûte du four, il faudrait placer les rotors au bout d'arbres de plus de deux mètres de long qui produiraient inévitablement le phénomène de "fouet", c'est-à-dire une tendance à s'écarter de la verticale, sollicitation à laquelle ne peut répondre le graphite du fait de sa faible élasticité et qui se traduirait par une rupture de l'arbre. En outre, l'introduction d'un tel injecteur dans un four nécessiterait la réalisation d'ouvertures convenables, aménagement difficilement réalisable et en tout cas très coûteux sur les fours existants.
  • Certes, on a également pensé mettre en oeuvre plusieurs injecteurs rotatifs du type utilisé dans les poches, mais au problème de la longueur qui se posait toujours s'ajoutait celui des effets contraires que chacun d'eux peut développer au sein d'un même volume de bain et qui se traduit alors par une diminution globale de l'efficacité.
    Ce handicap qui apparaît déjà dans des poches de volume relativement grand a été surmonté par l'emploi de cloisons intermédiaires.
    Un tel type de poches est décrit dans l'USP 3870511. Mais une telle solution ne peut être envisagée dans un four car elle conduirait à des difficultés énormes de construction, d'exploitation et de maintenance.
  • C'est pourquoi la demanderesse consciente de l'efficacité accrue que présentaient les systèmes où injection et brassage se font simultanément, a cherché malgré tous ces obstacles à trouver une solution au problème de l'installation de ces injecteurs rotatifs dans un four sans avoir recours à aucune modification importante.
  • Elle y est parvenue en concevant un dispositif de traitement au moyen de gaz d'un bain (2) d'aluminium liquide au repos dans un four (28) où il occupe une surface au moins égale à 10 m² comportant un portique (21) amovible placé au-dessus du four et auquel est suspendu un ensemble (1) d'injection de gaz et de brassage du bain qui plonge en partie dans le bain par l'intermédiaire d'une ouverture (3) qui est pratiquée dans la voûte (4) du four, ledit ensemble comprenant un arbre (5) rotatif percé suivant son axe par une cavité (6) fermée vers le bas et débouchant au-dessus du four en (7), ledit arbre étant équipé à sa partie supérieure d'un moteur (17) et à sa partie inférieure d'un rotor (9) muni de pales (10) percées de canaux (11) reliés à la cavité, dispositif dans lequel au portique sont suspendus au moins trois ensembles d'injection et de brassage de longueur supérieure à 2 mètres, d'axe de symétrie vertical qui pris deux à deux sont situés dans des plans différents, dont les parties immergées sont séparées les unes des autres uniquement par le bain et que chacun des arbres est entouré par un stator (13) s'allongeant vers le bas à proximité de la face supérieure du rotor et vers le haut au-dessus de la voûte.
  • Ainsi, le dispositif selon l'invention s'applique non pas à des poches de surface restreinte où le plus souvent le métal circule, mais à des fours où le bain est stationnaire et occupe une surface au moins égale à 10 m².
  • Ces fours sont généralement fermés sur le dessus et leur voûte est percée d'ouvertures convenables par lesquelles on introduit les ensembles. Ceux-ci sont suspendus à un portique amovible : espèce de charpente métallique qui permet, par différents moyens mécaniques (poulies, roues, vérins, etc) de les déplacer horizontalement d'une position d'attente jusqu'au-dessus des ouvertures, de les faire descendre simultanément dans le bain et de les retirer après traitement du métal. Chacun des ensembles est relié à un moteur destiné à assurer la rotation de l'injecteur et communique par des tubes souples aux arrivées de gaz. Les mouvements du portique, la vitesse de rotation des moteurs et le réglage des débits de gaz sont commandés à partir d'un poste de pilotage qui gère simultanément toute la chaîne de fonctionnement du four.
  • Ces ensembles plongent en partie dans le bain et les parties immergées sont séparées les unes des autres uniquement par le bain, c'est-à-dire sans qu'aucune cloison solide ne fasse écran entre eux.
  • Dans ces conditions, et pour éviter toute interférence entre les actions de chacun d'eux, il a fallu également conférer aux ensembles des caractéristiques particulières à la fois en ce qui concerne leur position réciproque et la structure de chacun d'eux.
  • Du point de vue position, les ensembles ont leurs axes situés deux à deux dans des plans différents de manière à obtenir un décalage et à éviter tout alignement de plus de deux ensembles. Les résultats d'essais faits avec et sans décalage montrent que l'échange liquide-gaz est meilleur en position décalée.
  • Du point de vue structure, on a constaté que l'efficacité du traitement était également accrue en l'absence de vortex, phénomène qui se traduit par un entraînement et un abaissement du niveau du bain au contact de chaque ensemble et qui est généralement atténué par l'introduction de baffles dans le bain. Comme cette solution était impossible dans un four, la demanderesse a cherché et trouvé qu'en entourant le rotor par un stator, on parvenait au même résultat.
  • Ainsi, les injecteurs de gaz sont-ils constitués par un arbre rotatif relié à son extrémité supérieure à un moteur d'entraînement et à son extrémité inférieure à un rotor, sorte de disque muni sur sa paroi latérale de pales. L'arbre est percé suivant son axe par une cavité qui s'ouvre sur sa paroi au-dessus du four et qui est fermée vers le bas et reliée à des canaux qui traversent les pales pour déboucher dans le bain par la face non adjacente au rotor. Cette cavité et ces canaux servent à la distribution du gaz dans le bain.
  • Ces arbres sont entourés à faible distance par le stator qui s'allonge vers le haut au-dessus du four où il est fixé et vers le bas à proximité de la face supérieure du rotor où il forme un espace relativement étroit de quelques millimètres de sorte que la couche de métal qui s'y trouve joue le rôle de palier hydrodynamique pour le rotor et facilite la rotation de ce dernier.
  • De plus, l'espace latéral qui sépare le stator du rotor est rempli de métal durant le traitement et joue un rôle amortisseur de sorte que tout effet de "fouet" de l'axe du rotor et tout risque de rupture sont écartés. La mesure de cet espace est de préférence comprise entre 10 et 30 mm.
  • Sans que cela soit obligatoire pour mettre en oeuvre l'invention, mais afin d'en affiner les possibilités, il est préférable que les injecteurs tournent tous dans le même sens pour éviter les remous susceptibles de gêner la remontée des impuretés en surface.
  • A rotors identiques, ce qui est le cas le plus général, il est préférable de placer les axes à des distances égales entre elles. Ces distances peuvent varier entre 2 et 6 fois la valeur du diamètre des rotors, qui est généralement comprise entre 100 et 500 mm afin de se tenir dans une fourchette assurant à la fois une dimension convenable pour ne pas multiplier exagérément le nombre d'injecteurs et compatible avec la tenue mécanique des arbres.
  • Par ailleurs, la gamme de vitesses de rotation permettant d'obtenir une bonne dispersion sans recourir à des couples de rotation trop importants se situe entre 150 et 600 tours/minute.
  • Quant au débit de gaz, il se situe de préférence entre 6 et 12 m³/h par injecteur, un débit plus faible allongeant inutilement lac durée du traitement et un débit plus fort se traduisant par la formation de bulles trop grosses qui débouchent en surface du bain sans avoir réagi. Ce gaz est distribué de préférence par quatre pales situées dans des plans formant un angle compris entre 3 et 10 degrés par rapport à la verticale, distribuées symétriquement autour du rotor et percées horizontalement dans toute leur largeur par un canal de diamètre de 1 à 3 mm environ qui est relié d'un côté à la cavité de l'arbre et qui débouche de l'autre côté au bout de la pale.
  • Pour que la hauteur du bain traversée par les bulles de gaz soit suffisante à l'obtention d'une efficacité convenable, on place le rotor de préférence à une distance du fond du four comprise entre le 1/4 et la 1/2 de la hauteur du bain.
  • Pour réaliser au mieux la fonction de palier hydrodynamique, on prolonge de préférence le stator jusqu'à une distance de la face supérieure du rotor comprise entre 10 et 50 mm.
  • Dans ces conditions, le dispositif selon l'invention présente les avantages suivants :
    • pollution atmosphérique très réduite et donc amélioration des conditions de travail du personnel
    • amélioration de la qualité métallurgique du métal due à une plus grande efficacité du traitement
    • réduction de la durée du traitement
    • réduction de la consommation de gaz
    • diminution de la perte en métal
    • accroissement de la productivité des fours
    • bonne tenue mécanique des ensembles.
  • L'invention sera mieux comprise à l'aide des figures jointes qui réprésentent :
    • figure 1, vue en coupe verticale axiale, un ensemble injecteur de gaz en place sur un four
    • figure 2, vu en perspective, un portique amovible auquel sont suspendus quatre ensembles injecteurs de gaz plongeant dans un four vu en coupe verticale.
  • Plus précisément sur la figure 1, on distingue un ensemble injecteur de gaz 1 qui plonge en partie dans le bain 2 par l'intermédiaire d'une ouverture 3 pratiquée dans la voûte 4 du four. Cet ensemble comprend un arbre 5 rotatif percé suivant son axe par une cavité 6 débouchant au-dessous du four en 7 par où est amené le gaz suivant 8. L'arbre 5 est équipé à sa partie inférieure d'un rotor 9 muni de pales 10 percées chacune à leur extrémité par un canal 11 relié à la cavité 6 et qui injecte le gaz dans le bain suivant 12. L'arbre 5 est entouré par un stator 13 de manière à laisser un espace 14 dans lequel pénètre le bain. Ce stator s'allonge vers le bas jusqu 'à une faible distance de la face supérieure du rotor pour permettre au bain de former une zone annulaire 15 jouant le rôle de palier hydrodynamique; vers le haut le stator passe à travers la voûte du four à laquelle il est suspendu par un collet 16. Le moteur 17 assure la rotation du rotor par l'intermédiaire de l'arbre.
  • Sur la figure 2, on peut voir un portique 21 qui repose sur des rails 22 par l'intermédiaire de quatre roues 23. Ce portique est formé d'un cadre supérieur 24 auquel sont fixés les axes des roues, de quatre montants verticaux 25 et du cadre inférieur 26 amovible le long des montants au moyen d'un vérin 27. A ce cadre inférieur sont suspendus les quatre ensembles injecteurs de gaz 1 qui plongent dans le bain du métal à traiter 2 contenu dans le four 28 suivant des positions décalées les unes par raport aux autres.
  • En fonctionnement, le portique étant en position d'attente A, et le cadre inférieur en position haute, on l'amène en position B située au-dessus du four, puis on descend le cadre inférieur en position intermédiaire C où les éléments sont préchauffés avant d'atteindre la position D où il y a immersion des éléments dans le bain. A ce moment, les moteurs des injecteurs sont mis en route et le gaz est envoyé vers les pales.
  • Après traitement, le cadre inférieur est relevé progressivement de manière à faire s'écouler le bain contenu dans l'espace rotor-stator. Ce cadre étant en position haute B est ensuite ramené à la position A.
  • L'invention peut être illustrée à l'aide de l'exemple d'application suivant :
  • Dans un four de maintien contenant 35 tonnes d'Al 5182 suivant les normes de l'Aluminium Association qui formait un bain de surface 30 m² de profondeur 0,60 m et dont la surface libre était située à 1,60 m de la voûte, on a plongé quatre éléments disperseurs de gaz disposés suivant un carré de 3 m de côté.
    Ces éléments avaient pour caractéristiques :
    • longueur de l'arbre : 2,625 m
    • diamètre du rotor : 0,25 m
    • inclinaison des pales : 4 degrés
    • diamètre des canaux : 0,0025 m
    • espace latéral rotor-stator : 0,016 m
    • espace vertical rotor-stator : 0,050 m.
  • Les conditions de fonctionnement étaient les suivantes :
    • distance du bas des rotors au fond du four : 0,20 m
    • vitesse de rotation : 260 t/min
    • gaz mis en oeuvre : 95 % en volume d'argon et 5 % de chlore
    • débit de gaz : 10 m³/h par injecteur
    • quantité de chlore introduite : 0,06 kg/tonne
    • durée : 20 min.
  • Un échantillon de métal ainsi traité a été soumis à la méthode d'analyse télégaz pour déterminer la teneur en hydrogène. La quantité trouvée était égale à 0,10 µg/g de métal.
  • Pour comparaison, un bain identique au précédent traité avec une quantité d'hexachloroéthane correspondant à 2 kg Cl₂ pendant 120 minutes a conduit à une teneur en hydrogène de 0,35 µg /g alors qu'en utilisant des cannes d'injection il a fallu 60 minutes et 1,5 kg Cl₂ pour obtenir une teneur en hydrogène égale à 0,2 µg/g.
  • On peut constater le progrès important réalisé avec l'invention à la fois en ce qui concerne la durée du traitement, la quantité de chlore mise en oeuvre et la qualité du métal obtenu.

Claims (10)

  1. Dispositif de traitement au moyen de gaz d'un bain (2) d'aluminium liquide au repos dans un four (28) où il occupe une surface au moins égale à 10 m², dispositif comportant un portique (21) amovible placé au-dessus du four et auquel est suspendu un ensemble (1) d'injection de gaz et de brassage du bain qui plonge en partie dans le bain par l'intermédiaire d'une ouverture (3) qui est pratiquée dans la voûte (4) du four, ledit ensemble comprenant un arbre (5) rotatif percé suivant son axe par une cavité (6) fermée vers le bas et débouchant au-dessus du four en (7), ledit arbre étant équipé à sa partie supérieure d'un moteur (17) et à sa partie inférieure d'un rotor (9) muni de pales (10) percées de canaux (11) relié à la cavité, dispositif dans lequel au portique sont suspendus au moins trois ensembles d'injection et de brassage de longueur supérieure à 2 mètres, d'axe de symétrie vertical qui pris deux à deux sont situés dans des plans différents, dont les parties immergées sont séparées les unes des autres uniquement par le bain et que chacun des arbres est entouré par un stator (13) s'allongeant vers le bas à proximité de la face supérieure du rotor et vers le haut au-dessus de la voûte.
  2. Utilisation du dispositif selon la revendication 1 caractérisée en ce que les arbres tournent tous dans le même sens.
  3. Utilisation du dispositif selon la revendication 1 caractérisée en ce que les axes des arbres sont équidistants les uns des autres.
  4. Utilisation du dispositif selon la revendication 1 caractérisée en ce que les axes sont séparés les uns des autres par une distance comprise entre 2 et 6 fois le diamètre des rotors.
  5. Utilisation du dispositif selon la revendication 1 caractérisée en ce que les rotors ont un diamètre compris entre 100 et 500 mm.
  6. Utilisation du dispositif selon la revendication 1 caractérisée en ce que la vitesse de rotation des rotors est comprise entre 150 et 600 tours minute.
  7. Utilisation du dispositif selon la revendication 1 caractérisée en ce que le débit de gaz est compris entre 6 et 12 m³/h par injecteur.
  8. Utilisation du dispositif selon la revendication 1 caractérisée en ce que les pales sont situées dans des plans formant avec la verticale un angle compris entre 3 et 10 degrés.
  9. Utilisation du dispositif selon la revendication 1 caractérisée en ce que le rotor est placé à une distance du fond du four comprise entre le 1/4 et le 1/2 de la hauteur du bain.
  10. Utilisation du dispositif selon la revendication 1 caractérisée en ce que le bas du stator est situé à une distance de la face supérieure du rotor compris entre 10 et 50 mm.
EP90420406A 1989-09-20 1990-09-17 Dispositif de traitement au moyen de gaz d'un bain liquide d'aluminium de grande surface maintenu à l'état stationnaire dans un four Expired - Lifetime EP0419378B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90420406T ATE103992T1 (de) 1989-09-20 1990-09-17 Begasungsvorrichtung fuer ein stationaeres aluminium-schmelzbad mit grosser oberflaeche.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8912540 1989-09-20
FR8912540A FR2652018B1 (fr) 1989-09-20 1989-09-20 Dispositif de traitement au moyen de gaz d'un bain liquide d'aluminium de grande surface maintenu a l'etat stationnaire dans un four.

Publications (2)

Publication Number Publication Date
EP0419378A1 EP0419378A1 (fr) 1991-03-27
EP0419378B1 true EP0419378B1 (fr) 1994-04-06

Family

ID=9385802

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90420406A Expired - Lifetime EP0419378B1 (fr) 1989-09-20 1990-09-17 Dispositif de traitement au moyen de gaz d'un bain liquide d'aluminium de grande surface maintenu à l'état stationnaire dans un four

Country Status (9)

Country Link
US (1) US5028035A (fr)
EP (1) EP0419378B1 (fr)
AT (1) ATE103992T1 (fr)
AU (1) AU621531B2 (fr)
CA (1) CA2023753C (fr)
DE (1) DE69007921T2 (fr)
ES (1) ES2050989T3 (fr)
FR (1) FR2652018B1 (fr)
NO (1) NO176925C (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2645456B1 (fr) * 1989-04-11 1994-02-11 Air Liquide Procede et installation de traitement d'un liquide avec un gaz
US5160693A (en) * 1991-09-26 1992-11-03 Eckert Charles E Impeller for treating molten metals
US6056803A (en) * 1997-12-24 2000-05-02 Alcan International Limited Injector for gas treatment of molten metals
US9127332B2 (en) * 2008-03-11 2015-09-08 Pyrotek, Inc. Molten aluminum refining and gas dispersion system
CN110607461B (zh) * 2018-11-16 2023-05-09 柳州职业技术学院 一种铝合金精炼用长效复合式石墨搅拌装置及制备方法
CN117701893B (zh) * 2024-02-01 2024-04-26 北京航空航天大学 一种合金熔体旋转喷吹精炼装置及方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1635037A (en) * 1925-09-28 1927-07-05 Edwards John Means for agitating and stirring molten metal in open-hearth and like furnaces
US3227547A (en) * 1961-11-24 1966-01-04 Union Carbide Corp Degassing molten metals
US3703340A (en) * 1970-10-09 1972-11-21 Us Reduction Co Mechanical puddler
US3870511A (en) * 1971-12-27 1975-03-11 Union Carbide Corp Process for refining molten aluminum
US3743263A (en) * 1971-12-27 1973-07-03 Union Carbide Corp Apparatus for refining molten aluminum
AT336900B (de) * 1974-04-04 1977-05-25 Vmw Ranshofen Berndorf Ag Vorrichtung zur einbringung von gasen in flussigkeiten, insbesondere schmelzen
AT330470B (de) * 1974-07-17 1976-07-12 Vmw Ranshofen Berndorf Ag Begasungsvorrichtung fur metallurgische gefasse, insbesondere schmelzofen
US4203581A (en) * 1979-03-30 1980-05-20 Union Carbide Corporation Apparatus for refining molten aluminum
US4327901A (en) * 1980-03-10 1982-05-04 Kaiser George S Melt and hold furnace for non-ferrous metals
FR2514370B1 (fr) * 1981-10-14 1989-09-29 Pechiney Aluminium Dispositif pour le traitement, au passage, d'un courant de metal ou alliage liquide a base d'aluminium ou de magnesium
FR2568267B1 (fr) * 1984-07-27 1987-01-23 Pechiney Aluminium Poche de chloruration d'alliages d'aluminium destinee a eliminer le magnesium
JPS62205235A (ja) * 1986-03-05 1987-09-09 Showa Alum Corp 溶融金属の処理装置
JP2505525B2 (ja) * 1988-04-08 1996-06-12 三菱重工業株式会社 スラリ―の気液接触処理装置
US4884786A (en) * 1988-08-23 1989-12-05 Gillespie & Powers, Inc. Apparatus for generating a vortex in a melt
IL93349A0 (en) * 1989-02-17 1990-11-29 Carborundum Co Method and apparatus for injecting gas into molten metal

Also Published As

Publication number Publication date
DE69007921D1 (de) 1994-05-11
AU621531B2 (en) 1992-03-12
NO176925B (no) 1995-03-13
ATE103992T1 (de) 1994-04-15
CA2023753A1 (fr) 1991-03-21
NO176925C (no) 1995-06-21
FR2652018A1 (fr) 1991-03-22
DE69007921T2 (de) 1994-10-06
AU6230390A (en) 1991-03-28
ES2050989T3 (es) 1994-06-01
US5028035A (en) 1991-07-02
CA2023753C (fr) 1997-10-07
NO903464D0 (no) 1990-08-07
NO903464L (no) 1991-03-21
FR2652018B1 (fr) 1994-03-25
EP0419378A1 (fr) 1991-03-27

Similar Documents

Publication Publication Date Title
EP0073729B1 (fr) Dispositif rotatif de dispersion de gaz pour le traitement d'un bain de métal liquide
EP0262058B1 (fr) Dispositif rotatif à pales de mise en solution d'éléments d'alliage et de dispersion de gaz dans un bain d'aluminium
CA1165117A (fr) Dispositif de traitement d'un bain de metal liquide par injection de gaz
EP0419378B1 (fr) Dispositif de traitement au moyen de gaz d'un bain liquide d'aluminium de grande surface maintenu à l'état stationnaire dans un four
CA1178052A (fr) Lance de soufflage de gaz oxydant, notamment d'oxygene, pour le traitement des metaux en fusion
Lazaro-Nebreda et al. Improved degassing efficiency and mechanical properties of A356 aluminium alloy castings by high shear melt conditioning (HSMC) technology
EP1042224B1 (fr) Procede et installation d'affinage du silicium
CN1754005A (zh) 处理熔化的金属的转动搅拌装置
EP0077282B1 (fr) Dispositif pour le traitement, au passage, d'un courant de métal ou alliage liquide à base d'aluminium ou de magnésium
FR2502997A1 (fr) Procede de fabrication d'acier de decolletage au plomb par coulee continue
CA2426268A1 (fr) Dispositif rotatif de dispersion de gaz pour le traitement d'un bain de metal liquide
EP0007884A1 (fr) Procédé et dispositif de traitement d'un métal ou alliage liquide au moyen de flux liquide et solide, application au traitement de l'aluminium, du magnésium ou de leurs alliages respectifs
EP0290360B1 (fr) Procédé de séparation par filtration des inclusions contenues dans un bain métallique liquide
FR2567909A1 (fr) Procede de traitement par gaz de balayage de bains metalliques
EP0252785B1 (fr) Appareillage mélangeur-décanteur à goulotte noyée
FR2604107A1 (fr) Dispositif rotatif de mise en solution d'elements d'alliage et de dispersion de gaz dans un bain d'aluminium
CH621365A5 (en) Process for refining magnesium, copper, zinc, tin and lead
JP2007204843A (ja) ガス吹込みノズル装置およびそれを備えたガス吹込み設備
US4904420A (en) Method and a device for introducing a gas into a liquid
Shoji et al. Dissolution of copper cylinder in molten tin under dynamic conditions
EP0223722A1 (fr) Dispositif et procédé d'injection continue sous faible pression d'un additif pulvérulent dans un courant de métal fondu
CA1335695C (fr) Procede de brassage en poche d'acier a l'aide d'anhydride carbonique
EP0152332B1 (fr) Nouveau procédé de purification du plomb
JPH07190639A (ja) 溶湯処理装置
FR2593520A1 (fr) Procede d'elimination de soufre et d'hydrogene de l'acier

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19910417

17Q First examination report despatched

Effective date: 19930303

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Effective date: 19940406

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940406

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19940406

Ref country code: AT

Effective date: 19940406

REF Corresponds to:

Ref document number: 103992

Country of ref document: AT

Date of ref document: 19940415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69007921

Country of ref document: DE

Date of ref document: 19940511

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940418

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2050989

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040716

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040809

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040819

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040915

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040929

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20041015

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050917

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060401

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050917

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050919

BERE Be: lapsed

Owner name: *PECHINEY RHENALU

Effective date: 20050930

REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: AU

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091006

Year of fee payment: 20