EP0410979B1 - Hardenable nickel alloy - Google Patents
Hardenable nickel alloy Download PDFInfo
- Publication number
- EP0410979B1 EP0410979B1 EP89903692A EP89903692A EP0410979B1 EP 0410979 B1 EP0410979 B1 EP 0410979B1 EP 89903692 A EP89903692 A EP 89903692A EP 89903692 A EP89903692 A EP 89903692A EP 0410979 B1 EP0410979 B1 EP 0410979B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nickel
- components
- alloy
- quenched
- bis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000990 Ni alloy Inorganic materials 0.000 title claims abstract description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 40
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 20
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 19
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000005260 corrosion Methods 0.000 claims abstract description 18
- 230000007797 corrosion Effects 0.000 claims abstract description 18
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 15
- 239000000956 alloy Substances 0.000 claims abstract description 15
- 239000011651 chromium Substances 0.000 claims abstract description 14
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 13
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 13
- 239000011733 molybdenum Substances 0.000 claims abstract description 13
- 229910052742 iron Inorganic materials 0.000 claims abstract description 12
- 229910052802 copper Inorganic materials 0.000 claims abstract description 11
- 239000010949 copper Substances 0.000 claims abstract description 11
- 239000004411 aluminium Substances 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 claims description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 16
- 229910052799 carbon Inorganic materials 0.000 claims description 16
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 13
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 11
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 10
- 239000010941 cobalt Substances 0.000 claims description 9
- 229910017052 cobalt Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 239000011572 manganese Substances 0.000 claims description 6
- 238000000137 annealing Methods 0.000 claims description 5
- 238000010791 quenching Methods 0.000 claims description 2
- 230000000171 quenching effect Effects 0.000 claims description 2
- 239000010936 titanium Substances 0.000 abstract description 11
- 229910052719 titanium Inorganic materials 0.000 abstract description 11
- 238000010438 heat treatment Methods 0.000 abstract description 7
- 239000002253 acid Substances 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 229910052758 niobium Inorganic materials 0.000 description 8
- 239000010955 niobium Substances 0.000 description 8
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 8
- 238000012360 testing method Methods 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 5
- -1 CORROSION 88 Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/056—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
Definitions
- the invention relates to the use of a hardenable nickel alloy with a 0.2% proof stress of at least 500 N / mm 2 and very good corrosion resistance under acid gas conditions and to a method for producing such components.
- Very good corrosion resistance means that the alloy and parts made from it can be exposed at temperatures between room temperature and 350 ° C and pressures between 10 and 100 bar solutions containing C0 2 , H 2 S, chlorides and free sulfur.
- J.A. Harris, T.F. Lemke, D.F. Smith and R.H. Moeller presented a hardenable nickel-based material with (% by weight) 42 nickel, 21 chromium, 3 molybdenum, 2.2 copper, 2.1 titanium, 0.3 aluminum, 0.02 carbon, the rest iron (The Development of a Corrosion Resistant Alloy for Sour Gas Service, CORROSION 84, Paper No.216, National Association of Corrosion Engineers, Houston, Texas, 1984), which is said to be stable under sour gas conditions. The results reported, however, show that under extreme corrosion conditions, such as those that can occur at greater depths, the material presented is destroyed by stress corrosion cracking.
- the nickel alloy is particularly suitable as a material for the production of components that are to be used under very aggressive sour gas conditions.
- Cast blocks were made, the cast blocks were homogenized at 1220 ° C and then thermoformed above 1000 ° C and the parts obtained were quenched in water, and the thermoformed and quenched parts were cured at 650 to 750 ° C for 4 to 16 hours and then subjected to air cooling.
- the mechanical-technological properties can be further improved by additional curing steps.
- the thermoformed and quenched parts are first annealed for 4 to 10 hours at 700 ° C to 750 ° C, then cooled in an oven at 5 to 25 ° C per hour by 150 ° C and then placed in air.
- the components can also be kept between 730 ° C to 750 ° C for 30 minutes, then cooled in an oven at 5 to 25 ° C per hour to 700 ° C and then at 2 to 15 ° C per hour to 580 ° C. Finally, the components are placed in air.
- thermoformed parts are subjected to solution annealing at 1150 to 1190 ° C. before quenching in water.
- thermoformed, solution-annealed and water-quenched parts can also be kept at 700 to 750 ° C for 4 to 10 hours, then in the furnace at 5 to 25 ° C per hour by 150 ° C and finally further cooled in air.
- Table 1 shows the chemical composition of 7 alloys, which - after different heat treatment - have been examined for their mechanical properties at room temperature (RT) and at 260 ° C. The results are summarized in Tables 2 to 7.
- results show that the required minimum mechanical properties were achieved in all cases and in some cases considerably exceeded. Furthermore, it can be seen from the results as a whole that different values of the mechanical properties can be achieved with the different variants of the heat treatment, which can be advantageous for the adjustment to special requirement profiles. In favor of higher elongation at break values, for example, maximum strength values can be dispensed with and vice versa. Apart from this general tendency, it can also be seen that the highest strength values are achieved if the thermoformed parts are not solution annealed again, but are directly quenched in water and that the maximum achievable strength depends on the total aluminum plus titanium content.
- the aluminum and titanium contents cannot be increased arbitrarily, because disadvantageous precipitation phases then occur which cannot be avoided or compensated for even with complex heat treatment.
- the numerous alternatives in the heat treatment it is always possible to achieve optimum strength values in each case without having to put up with disadvantageous microstructures.
- the more complex three-stage curing treatment will be indicated when it comes to avoiding a decrease in the impact strength when setting the highest possible strength values.
- the alloy according to the invention accordingly shows in a novel way a combination of high strength not yet achieved with curable materials and at the same time excellent resistance in very aggressive sour gas media.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Heat Treatment Of Articles (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Die Erfindung bezieht sich auf die Verwendung einer aushärtbaren Nickellegierung mit einer 0,2 %-Dehngrenze von mindestens 500 N/mm2 und unter Sauergas-Bedingungen sehr guter Korrosionsbeständigkeit und auf ein Verfahren zur Herstellung solcher Bauteile.The invention relates to the use of a hardenable nickel alloy with a 0.2% proof stress of at least 500 N / mm 2 and very good corrosion resistance under acid gas conditions and to a method for producing such components.
Sehr gute Korrosionsbeständigkeit bedeutet, daß die Legierung und daraus hergestellte Teile bei Temperaturen zwischen Raumtemperatur und 350 ° C und Drücken zwischen 10 und 100 bar Lösungen ausgesetzt werden können, die C02, H2S, Chloride und freien Schwefel enthalten.Very good corrosion resistance means that the alloy and parts made from it can be exposed at temperatures between room temperature and 350 ° C and pressures between 10 and 100 bar solutions containing C0 2 , H 2 S, chlorides and free sulfur.
Solche Bedingungen sind typisch für die Erdöl- und Erdgas-Suche und -Förderung. Zur Herstellung von Bauteilen, die diesen Bedingungen genügen, sind bisher hoch mit Chrom und Molybdän legierte Nickelbasiswerkstoffe verwendet worden, obwohl deren 0,2 %-Dehngrenze nur bei 310 bis 345 N/mm2 liegt. Durch Kaltumformen kann deren Festigkeit erhöht werden, wobei aber gleichzeitig eine Verringerung der Duktilität toleriert werden muß. Außerdem ist eine Kaltverfestigung bei größeren Querschnitten im allgemeinen nicht mehr anwendbar, so daß in solchen Fällen auf aushärtbare Werkstoffe zurückgegriffen werden muß. Werkstoffe, bei denen durch Aushärten höhere Festigkeiten erzielt werden können, besitzen unter sehr aggressiven Sauergas-Bedingungen aber keine ausreichende Korrosionsbeständigkeit, oder sie enthalten Niob als wesentliches zur Aushärtung erforderliches Legierungselement.Such conditions are typical of oil and gas exploration and production. To date, nickel-base materials with a high chromium and molybdenum alloy have been used to produce components that meet these conditions, although their 0.2% proof stress is only between 310 and 345 N / mm 2 . Cold forming can increase their strength, but a reduction in ductility must be tolerated at the same time. In addition, strain hardening is generally no longer applicable for larger cross sections, so that in such cases it is necessary to use curable materials. However, materials in which higher strengths can be achieved by hardening do not have sufficient corrosion resistance under very aggressive sour gas conditions, or they contain niobium as an essential alloying element required for hardening.
Beispielsweise wurde von J.A. Harris, T.F. Lemke, D.F. Smith und R.H. Moeller ein aushärtbarer Nickelbasiswerkstoff mit (Gew.-%) 42 Nickel, 21 Chrom, 3 Molybdän, 2,2 Kupfer, 2,1 Titan, 0,3 Aluminium, 0,02 Kohlenstoff, Rest Eisen vorgestellt (The Development of a Corrosion Resistant Alloy for Sour Gas Service, CORROSION 84, Paper No.216, National Association of Corrosion Engineers, Houston, Texas, 1984), der unter Sauergas-Bedingungen beständig sein soll. Die mitgeteilten Ergebnisse zeigen jedoch, daß unter extremen Korrosionsbedingungen, wie sie in größeren Tiefen herrschen können, der vorgestellte Werkstoff durch Spannungsrißkorrosion zerstört wird.For example, J.A. Harris, T.F. Lemke, D.F. Smith and R.H. Moeller presented a hardenable nickel-based material with (% by weight) 42 nickel, 21 chromium, 3 molybdenum, 2.2 copper, 2.1 titanium, 0.3 aluminum, 0.02 carbon, the rest iron (The Development of a Corrosion Resistant Alloy for Sour Gas Service, CORROSION 84, Paper No.216, National Association of Corrosion Engineers, Houston, Texas, 1984), which is said to be stable under sour gas conditions. The results reported, however, show that under extreme corrosion conditions, such as those that can occur at greater depths, the material presented is destroyed by stress corrosion cracking.
Ein anderer Legierungsvorschlag ist mit der European Patent Specification 0 066 361 vorgestellt worden. Dieser Legierungsvorschlag mit (Gew.%) 45 bis 55 Nickel, 15 bis 22 Chrom, 6 bis 9 Molybdän, 2,5 bis 5,5 Niob, 1 bis 2 Titan, bis zu 1 Aluminium, bis zu 0,35 Kohlenstoff und 10 bis 28 Eisen sowie weiteren Begleitelementen enthält Niob als eine für die Aushärtung wesentliche Legierungskomponente. Niobhaltige Legierungen sind für eine großtechnische Herstellung und Verarbeitung aber weitaus weniger gut geeignet als niobfreie, da niobhaltige Schrotte und Fabrikationsabfälle zum Wiedereinschmelzen einen Vakuuminduktionsofen erforderlich machen, wenn beträchtliche Verluste dieses teuren Legierungselements durch Abbrand vermieden werden sollen. Außerdem schränken höhere Niobgehalte, wie sie hier vorgeschlagen sind, die Warmformgebungsmöglichkeiten sehr deutlich ein. Solche Nachteile treffen auch zu auf die von R.B. Frank und T.A. DeBold vorgestellte Legierung mit (Gew.%) 59 bis 63 Nickel, 19 bis 22 Chrom, 7 bis 9,5 Molybdän, 2,75 bis 4 Niob, 1 bis 1,6 Titan, max. 0,35 Aluminium, max. 0,03 Kohlenstoff, Rest Eisen (Properties of an Age-Hardenable, Corrosion-Resistant, Nickel-Base Alloy, CORROSION 88, Paper No.75, National Association of Corrosion Engineers, Houston, Texas, 1988). Von dieser Legierung ist darüber hinaus infolge ihres hohen Nickelgehaltes, eine ausgeprägte Neigung zur Wasserstoffversprödung unter Sauergasbedingungen im Temperaturbereich unter etwa 100°C zu erwarten, und in dieser Hinsicht demgemäß eine eingeschränkte Verwendungsfähigkeit.Another alloy proposal has been presented with European Patent Specification 0 066 361. This alloy proposal with (% by weight) 45 to 55 nickel, 15 to 22 chromium, 6 to 9 molybdenum, 2.5 to 5.5 niobium, 1 to 2 titanium, up to 1 aluminum, up to 0.35 carbon and 10 Up to 28 irons and other accompanying elements contain niobium as an alloy component essential for hardening. However, niobium-containing alloys are much less suitable for large-scale production and processing than niobium-free ones, since niobium-containing scrap and manufacturing waste require a vacuum induction furnace for remelting if considerable losses of this expensive alloying element are to be avoided by burning. In addition, higher levels of niobium, as proposed here, restrict the thermoforming options very clearly. Such disadvantages also apply to the alloy presented by RB Frank and TA DeBold with (% by weight) 59 to 63 nickel, 19 to 22 chromium, 7 to 9.5 molybdenum, 2.75 to 4 niobium, 1 to 1.6 Titanium, max. 0.35 aluminum, max. 0.03 carbon, balance iron (Properties of an Age-Hardenable, Corrosion-Resistant, Nickel-Base Alloy, CORROSION 88, Paper No.75, National Association of Corrosion Engineers, Houston, Texas, 1988). In addition, due to its high nickel content, this alloy can be expected to have a pronounced tendency towards hydrogen embrittlement under sour gas conditions in the temperature range below approximately 100 ° C., and is therefore of limited use in this regard.
Die aus der GB-A-531466 bekannte Stahllegierung mit 25 bis 50 % Nickel, wobei Nickel ganz oder teilweise durch Kobalt ersetzt sein kann, 15 bis 30 % Chrom, 2,5 bis 5 % Molybdän, bis 2 % Kupfer, bis 2 % Mangan, bis 2 % Silizium, bis 0,3 % Kohlenstoff, bis 2 % Aluminium, bis 2 % Vanadium, bis 1 % Uran, 0,1 bis 1,5 % Titan, Rest Eisen ist in ihrer Zusammensetzung so ausgelegt, daß gute Warmfestigkeitseigenschaften erreicht werden und eine ausreichende Beständigkeit gegen Lochfraßkorrosion gegeben ist.The steel alloy known from GB-A-531466 with 25 to 50% nickel, where nickel can be replaced in whole or in part by cobalt, 15 to 30% chromium, 2.5 to 5% molybdenum, up to 2% copper, up to 2% Manganese, up to 2% silicon, up to 0.3% carbon, up to 2% aluminum, up to 2% vanadium, up to 1% uranium, 0.1 to 1.5% titanium, the rest of iron is designed in such a way that good Heat resistance properties are achieved and there is sufficient resistance to pitting corrosion.
Es besteht somit die Aufgabe, einen aushärtbaren Werkstoff vorzuschlagen, der allen genannten Bedingungen entspricht, d.h., der die geforderten Festigkeitswerte besitzt, unter sehr aggressiven Sauergas- Bedingungen eine ausreichende Korrosionsbeständigkeit aufweist und der kein Niob zur Aushärtung benötigt.It is therefore the task to propose a curable material that meets all the conditions mentioned, i.e. that has the required strength values, has sufficient corrosion resistance under very aggressive sour gas conditions and that does not require niobium for curing.
Zur Lösung diesr Aufgabe wird die Verwendung einer aushärtbaren Nickellegierung vorgeschlagen, die gekennzeichnet ist durch
- 43 bis 51 % Nickel
- 19 bis 24 % Chrom
- 5 bis 7,5 % Molybdän
- 0,4 bis 2,5 % Kupfer
- bis 1 % Mangan
- bis 0,5 % Silizium
- bis 0,02 % Kohlenstoff
- bis 2 % Kobalt
- 0,3 bis 1,8 % Aluminium
- 0,9 bis 2,2 % Titan
- Rest Eisen, einschl. unvermeidbarer,
- herstellungsbedingter Verunreinigungen
Die erfindungsgemäße Nickellegierung ist geeignet als Werkstoff zur Herstellung von Bauteilen, die eine 0,2 %-Dehngrenze von mindestens 500 N/mm2, eine Gleichmaßdehnung A5 von mindestens 20 %, eine Brucheinschnürung von mindestens 25 % und bei Raumtemperatur eine Kerbschlagarbeit von mindestens 54 J entsprechend mindestens 40 ft Ibs an ISO-V-Proben aufweisen müssen.To solve this problem, the use of a hardenable nickel alloy, which is characterized by
- 43 to 51% nickel
- 19 to 24% chromium
- 5 to 7.5% molybdenum
- 0.4 to 2.5% copper
- up to 1% manganese
- up to 0.5% silicon
- up to 0.02% carbon
- up to 2% cobalt
- 0.3 to 1.8% aluminum
- 0.9 to 2.2% titanium
- Rest of iron, including inevitable
- manufacturing-related impurities
The nickel alloy according to the invention is suitable as a material for the production of components which have a 0.2% proof stress of at least 500 N / mm 2 , a uniform elongation A 5 of at least 20%, a constriction of fracture of at least 25% and a notch impact energy of at least at room temperature 54 J must have at least 40 ft Ibs of ISO-V samples.
Eine eingeschränkte Zusammensetzung, die sich durch besonders gute Verarbeitungseigenschaften auszeichnet, ist gekennzeichnet durch
- 46 bis 51 % Nickel,
- 20 bis 23,5 % Chrom,
- 5 bis 7 % Molybdän,
- 1,5 bis 2,2 % Kupfer,
- bis 0,8 % Mangan,
- bis 0,1 % Silizium,
- bis 0,015% Kohlenstoff,
- bis 2 % Kobalt
- 0,4 bis 0,9 % Aluminium,
- 1,5 bis 2,1 % Titan,
- Rest Eisen, einschließlich unvermeidbarer,
- herstellungsbedingter Verunreinigungen.
- 46 to 51% nickel,
- 20 to 23.5% chromium,
- 5 to 7% molybdenum,
- 1.5 to 2.2% copper,
- up to 0.8% manganese,
- up to 0.1% silicon,
- up to 0.015% carbon,
- up to 2% cobalt
- 0.4 to 0.9% aluminum,
- 1.5 to 2.1% titanium,
- Rest of iron, including unavoidable,
- manufacturing-related impurities.
Diese kann verwendet werden, wenn eine 0,2 %-Dehngrenze von mindestens 750 N/mm2 gefordert wird, sowie eine Gleichmaßdehnung A5 von mindestens 20 %, eine Brucheinschnürung von mindestens 25 % und bei Raumtemperatur eine Kerbschlagarbeit von mindestens 54 J entsprechend mindestens 40 ft Ibs an ISO-V-Proben.This can be used if a 0.2% proof stress of at least 750 N / mm 2 is required, as well as a uniform elongation A 5 of at least 20%, a constriction of fracture of at least 25% and a notch impact energy of at least 54 J at room temperature 40 ft Ibs of ISO V samples.
Die Nickellegierung ist insbesondere geeignet als Werkstoff zur Herstellung von Bauteilen, die unter sehr aggressiven Sauergas-Bedingungen eingesetzt werden sollen.The nickel alloy is particularly suitable as a material for the production of components that are to be used under very aggressive sour gas conditions.
Bei der Herstellung von Bauteilen, die eine ausreichende Korrosionsbeständigkeit unter sehr aggressiven Sauergas-Bedingungen und eine 0,2 %-Dehngrenze von mindestens 500 N/mm2 aufweisen müssen, geht man zweckmäßigerweise so vor, daß aus einer Legierung mit
- 43 bis 51 % Nickel
- 19 bis 24 % Chrom
- 5 bis 7,5 % Molybdän
- 0,4 bis 2,5 % Kupfer
- bis 1 % Mangan
- bis 0,5 % Silizium
- bis 0,02 % Kohlenstoff
- bis 2 % Kobalt
- 0,3 bis 1,8 % Aluminium
- 0,9 bis 2,2 % Titan
- Rest Eisen, einschl. unvermeidbarer,
- herstellungsbedingter Verunreinigungen
- 43 to 51% nickel
- 19 to 24% chromium
- 5 to 7.5% molybdenum
- 0.4 to 2.5% copper
- up to 1% manganese
- up to 0.5% silicon
- up to 0.02% carbon
- up to 2% cobalt
- 0.3 to 1.8% aluminum
- 0.9 to 2.2% titanium
- Rest of iron, including inevitable
- manufacturing-related impurities
Gußblöcke gefertigt, die Gußblöcke bei 1220° C homogenisiert und danach oberhalb von 1000 °C warmverformt und die erhaltenen Teile in Wasser abgeschreckt, sowie die warmgeformten und abgeschreckten Teile 4 bis 16 Stunden bei 650 bis 750 °C ausgehärtet und danach einer Luftabkühlung unterworfen werden.Cast blocks were made, the cast blocks were homogenized at 1220 ° C and then thermoformed above 1000 ° C and the parts obtained were quenched in water, and the thermoformed and quenched parts were cured at 650 to 750 ° C for 4 to 16 hours and then subjected to air cooling.
Für Gußblöcke, die besonders gute Verarbeitungseigenschaften besitzen sollen, wird vorzugsweise die folgende Legierung mit
- 46 bis 51 % Nickel,
- 20 bis 23,5 % Chrom,
- 5 bis 7 % Molybdän,
- 1,5 bis 2,2 % Kupfer,
- bis 0,8 % Mangan,
- bis 0,1 % Silizium,
- bis 0,015% Kohlenstoff,
- bis 2 % Kobalt
- 0,4 bis 0,9 % Aluminium,
- 1,5 bis 2,1 % Titan,
- Rest Eisen, einschließlich unvermeidbarer,
- herstellungsbedingter Verunreinigungen verwendet.
- 46 to 51% nickel,
- 20 to 23.5% chromium,
- 5 to 7% molybdenum,
- 1.5 to 2.2% copper,
- up to 0.8% manganese,
- up to 0.1% silicon,
- up to 0.015% carbon,
- up to 2% cobalt
- 0.4 to 0.9% aluminum,
- 1.5 to 2.1% titanium,
- Rest of iron, including unavoidable,
- manufacturing-related impurities used.
Neben der erwähnten einstufigen Wärmbehandlung lassen sich durch zusätzliche Aushärtungsschritte die mechanisch-technologischen Eigenschaften weiter verbessern. In diesem Fall werden die warmgeformten und abgeschreckten Teile zunächst 4 bis 10 Stunden bei 700 °C bis 750 °C geglüht, danach im Ofen mit 5 bis 25 °C pro Stunde um 150 °C kontrolliert abgekühlt und anschließend an Luft abgelegt. Alternativ können die Bauteile auch 30 min zwischen 730 °C bis 750 °C gehalten, danach im Ofen mit 5 bis 25 °C pro Stunde auf 700 °C und anschließend mit 2 bis 15 °C pro Stunde auf 580 °C kontrolliert abgekühlt werden. Zuletzt werden die Bauteile an Luft abgelegt.In addition to the single-stage heat treatment mentioned, the mechanical-technological properties can be further improved by additional curing steps. In this case, the thermoformed and quenched parts are first annealed for 4 to 10 hours at 700 ° C to 750 ° C, then cooled in an oven at 5 to 25 ° C per hour by 150 ° C and then placed in air. Alternatively, the components can also be kept between 730 ° C to 750 ° C for 30 minutes, then cooled in an oven at 5 to 25 ° C per hour to 700 ° C and then at 2 to 15 ° C per hour to 580 ° C. Finally, the components are placed in air.
Nach einer weiteren Abwandlung des Herstellungsverfahrens ist vorgesehen, daß die warmgeformten Teile vor dem Abschrecken in Wasser einer Lösungsglühung bei 1150 bis 1190°C unterworfen werden. Schließlich kann man die warmgeformten, lösungsgeglühten und in Wasser abgeschreckten Teile auch 4 bis 10 Stunden bei 700 bis 750 °C halten, danach im Ofen mit 5 bis 25 °C pro Stunde um 150°C und schließlich weiter an Luft abkühlen.According to a further modification of the production process, the thermoformed parts are subjected to solution annealing at 1150 to 1190 ° C. before quenching in water. Finally, the thermoformed, solution-annealed and water-quenched parts can also be kept at 700 to 750 ° C for 4 to 10 hours, then in the furnace at 5 to 25 ° C per hour by 150 ° C and finally further cooled in air.
Weitere Einzelheiten und Vorteile des Erfindungsgedankens werden anhand der nachfolgenden Versuchsergebnisse näher erläutert.Further details and advantages of the inventive concept are explained in more detail on the basis of the following test results.
In Tabelle 1 ist die chemische Zusammensetzung von 7 Legierungen angegeben, die - nach unterschiedlicher Wärmebehandlung - auf ihre mechanischen Eigenschaften bei Raumtemperatur (RT) und bei 260 °C untersucht worden sind. Die Ergebnisse sind in den Tabellen 2 bis 7 zusammengestellt.Table 1 shows the chemical composition of 7 alloys, which - after different heat treatment - have been examined for their mechanical properties at room temperature (RT) and at 260 ° C. The results are summarized in Tables 2 to 7.
Aus etwa 45 Kg schweren Gußblöcken wurden nach dem Lösungsglühen bei 1220°C Stangen mit einem Durchmesser von etwa 18 mm warmgeschmiedet und zwar bei Temperaturen oberhalb 1000°C. Danach wurden die Stangen entweder direkt in Wasser abgeschreckt oder nochmals lösungsgeglüht und dann in Wasser abgeschreckt. Anschließend wurden die so vorbereiteten Proben einer ein- bis dreistufigen Aushärtungsbehandlung unterworfen. In der ersten Stufe wurden Glühtemperaturen von 730 oder 750 °C und Glühzeiten von 8, 4 oder 0,5 Stunden angewandt. Beim zweistufigen Verfahren schloß sich hieran eine gesteuerte Abkühlung mit 15°C/h auf 600 oder 580 °C an, während beim dreistufigen Verfahren zunächst eine gesteuerte Abkühlung mit 5°C/h auf 700 °C und dann eine weitere gesteuerte Abkühlung mit 15°C/h auf 580 °C vorgenommen wurde, bevor die Proben der unbeeinflußten weiteren Abkühlung an Luft ausgesetzt wurden.After solution annealing at 1220 ° C., rods with a diameter of approximately 18 mm were hot forged from cast blocks weighing approximately 45 kg and at temperatures above 1000 ° C. The bars were then either directly quenched in water or solution annealed again and then quenched in water. The samples prepared in this way were then subjected to a one to three-stage curing treatment. In the first stage, annealing temperatures of 730 or 750 ° C and annealing times of 8, 4 or 0.5 hours were used. In the two-stage process, this was followed by controlled cooling at 15 ° C / h to 600 or 580 ° C, while in the three-stage process, first a controlled cooling at 5 ° C / h to 700 ° C and then a further controlled cooling at 15 ° C / h was carried out to 580 ° C before the samples were exposed to the unaffected further cooling in air.
Die Ergebnisse zeigen, daß die geforderten Mindestwerte der mechanischen Eigenschaften in allen Fällen erreicht und zum Teil erheblich übertroffen wurden. Ferner ist aus den Ergebnissen insgesamt zu ersehen, daß mit den verschiedenen Varianten der Wärmebehandlung unterschiedliche Werte der mechanischen Eigenschaften erreicht werden können, was für die Einstellung auf spezielle Anforderungsprofile vorteilhaft sein kann. Zugunsten höherer Bruchdehnungswerte kann man beispielsweise auf maximale Festigkeitswerte verzichten und umgekehrt. Abgesehen von dieser allgemeinen Tendenz, erkennt man aber auch, daß die höchsten Festigkeitswerte erreicht werden, wenn die warmgeformten Teile nicht noch einmal lösungsgeglüht, sondern direkt in Wasser abgeschreckt werden und daß die maximal erreichbare Festigkeit vom Summengehalt Aluminium plus Titan abhängig ist.The results show that the required minimum mechanical properties were achieved in all cases and in some cases considerably exceeded. Furthermore, it can be seen from the results as a whole that different values of the mechanical properties can be achieved with the different variants of the heat treatment, which can be advantageous for the adjustment to special requirement profiles. In favor of higher elongation at break values, for example, maximum strength values can be dispensed with and vice versa. Apart from this general tendency, it can also be seen that the highest strength values are achieved if the thermoformed parts are not solution annealed again, but are directly quenched in water and that the maximum achievable strength depends on the total aluminum plus titanium content.
Die Aluminium- und Titangehalte können aber nicht beliebig erhöht werden, weil dann nachteilige Ausscheidungsphasen auftreten, die selbst bei aufwendiger Wärmebehandlung nicht zu vermeiden bzw. zu kompensieren sind. Andererseits ist das im Rahmen der erfindungsgemäßen Zusammensetzung wegen der zahlreichen Alternativen bei der Wärmebehandlung immer möglich, jeweils optimale Festigkeitswerte zu erreichen, ohne nachteilige Gefügestrukturen in Kauf nehmen zu müssen. So wird die aufwendigere dreistufige Aushärtungsbehandlung beispielsweise dann angezeigt sein, wenn es darum geht, ein Absinken der Kerbschlagzähigkeit bei der Einstellung möglichst hoher Festigkeitswerte zu vermeiden.However, the aluminum and titanium contents cannot be increased arbitrarily, because disadvantageous precipitation phases then occur which cannot be avoided or compensated for even with complex heat treatment. On the other hand, in the context of the composition according to the invention, because of the numerous alternatives in the heat treatment, it is always possible to achieve optimum strength values in each case without having to put up with disadvantageous microstructures. For example, the more complex three-stage curing treatment will be indicated when it comes to avoiding a decrease in the impact strength when setting the highest possible strength values.
Zur Überprüfung der Spannungsrißkorrosionsbeständigkeit wurden Dreipunkt-Biegeproben im Autoklaven zwei verschiedenen Korrosionsmedien ausgesetzt. Je nach vorausgegangener Wärmebehandlung wurden die Proben mit unterschiedlichen Prüfspannungen belastet, wobei als Bezugsgröße die Werte 100 % Rpo,2 sowie 120 % Rpo,2 gewählt worden sind. Die Prüftemperaturen betrugen 232 ° C und 260 ° C.To check the resistance to stress corrosion cracking, three-point bending samples were exposed to two different corrosion media in an autoclave. Depending on the previous heat treatment, the samples were loaded with different test voltages, whereby the values 100% Rp o , 2 and 120% Rp o , 2 were chosen as reference values. The test temperatures were 232 ° C and 260 ° C.
Die Lösungen A und B, mit denen die Sauergas-Bedingungen simuliert werden, enthielten:
- Lösung A: 25 % NaCI, 10 bar H2S und 50 bar C02
- Lösung B: 25 % NaCI, 0,5 % Essigsäure, 1 g/I Schwefel und 12 bar H2S.
- Solution A: 25% NaCI, 10 bar H 2 S and 50 bar C0 2
- Solution B: 25% NaCI, 0.5% acetic acid, 1 g / I sulfur and 12 bar H 2 S.
Die Ergebnisse dieser Korrosionsuntersuchungen mit Angabe der Prüfbedingungen sind in den Tabellen 8 bis 13 zusammengefaßt.The results of these corrosion tests and the test conditions are summarized in Tables 8 to 13.
Man erkennt, daß nach einem Prüfzyklus, der zwischen 23 bis 26 Tagen lag, keine der Proben einen Bruch zeigt oder einen Angriff, der auf Spannungsrißkorrosion hinweist.It can be seen that after a test cycle that was between 23 and 26 days, none of the samples showed a break or an attack that indicated stress corrosion cracking.
Die erfindungsgemäße Legierung zeigt demnach in neuartiger Weise eine mit aushärtbaren Werkstoffen bisher nicht erreichte Kombination hoher Festigkeit bei zugleich ausgezeichneter Beständigkeit in sehr aggressiven Sauergas-Medien.
Claims (10)
residue iron, including unavoidable impurities due to manufacture
as a material for the production of structural components for use in sour gas conditions and having a 0.2% proof stress of at least 500 N/mm2.
residue iron, including unavoidable impurities due to manufacture.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT89903692T ATE102262T1 (en) | 1988-03-26 | 1989-03-23 | HARDENABLE NICKEL ALLOY. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3810336 | 1988-03-26 | ||
DE3810336A DE3810336A1 (en) | 1988-03-26 | 1988-03-26 | CURABLE NICKEL ALLOY |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0410979A1 EP0410979A1 (en) | 1991-02-06 |
EP0410979B1 true EP0410979B1 (en) | 1994-03-02 |
Family
ID=6350790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89903692A Expired - Lifetime EP0410979B1 (en) | 1988-03-26 | 1989-03-23 | Hardenable nickel alloy |
Country Status (5)
Country | Link |
---|---|
US (1) | US5429690A (en) |
EP (1) | EP0410979B1 (en) |
CA (1) | CA1334344C (en) |
DE (2) | DE3810336A1 (en) |
WO (1) | WO1989009292A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19645186A1 (en) * | 1996-11-02 | 1998-05-07 | Asea Brown Boveri | Heat treatment process for material bodies made of a highly heat-resistant iron-nickel superalloy as well as heat-treated material bodies |
US7785532B2 (en) * | 2006-08-09 | 2010-08-31 | Haynes International, Inc. | Hybrid corrosion-resistant nickel alloys |
CN104451339B (en) * | 2014-12-23 | 2017-12-12 | 重庆材料研究院有限公司 | Low nickel ageing strengthening sections abros and preparation method |
US10718042B2 (en) * | 2017-06-28 | 2020-07-21 | United Technologies Corporation | Method for heat treating components |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE546036A (en) * | ||||
GB531466A (en) * | 1939-04-06 | 1941-01-06 | Harry Etchells | Improvements in alloys |
US2777766A (en) * | 1952-06-04 | 1957-01-15 | Union Carbide & Carbon Corp | Corrosion resistant alloys |
US2977222A (en) * | 1955-08-22 | 1961-03-28 | Int Nickel Co | Heat-resisting nickel base alloys |
US4358511A (en) * | 1980-10-31 | 1982-11-09 | Huntington Alloys, Inc. | Tube material for sour wells of intermediate depths |
JPS57207143A (en) * | 1981-06-12 | 1982-12-18 | Sumitomo Metal Ind Ltd | Alloy for oil well pipe with superior stress corrosion cracking resistance and hot workability |
US4421571A (en) * | 1981-07-03 | 1983-12-20 | Sumitomo Metal Industries, Ltd. | Process for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking |
NO831752L (en) * | 1982-05-17 | 1983-11-18 | Kobe Steel Ltd | AUSTENITIC Alloys with high nickel content. |
US4652315A (en) * | 1983-06-20 | 1987-03-24 | Sumitomo Metal Industries, Ltd. | Precipitation-hardening nickel-base alloy and method of producing same |
US4685977A (en) * | 1984-12-03 | 1987-08-11 | General Electric Company | Fatigue-resistant nickel-base superalloys and method |
JPS61201759A (en) * | 1985-03-04 | 1986-09-06 | Sumitomo Metal Ind Ltd | High strength and toughness welded steel pipe for line pipe |
JPS6223950A (en) * | 1985-07-23 | 1987-01-31 | Kubota Ltd | Alloy for electrically conductive roll for electroplating |
US4750950A (en) * | 1986-11-19 | 1988-06-14 | Inco Alloys International, Inc. | Heat treated alloy |
-
1988
- 1988-03-26 DE DE3810336A patent/DE3810336A1/en not_active Withdrawn
-
1989
- 1989-03-23 US US07/582,862 patent/US5429690A/en not_active Expired - Fee Related
- 1989-03-23 EP EP89903692A patent/EP0410979B1/en not_active Expired - Lifetime
- 1989-03-23 CA CA000594562A patent/CA1334344C/en not_active Expired - Fee Related
- 1989-03-23 WO PCT/DE1989/000188 patent/WO1989009292A1/en active IP Right Grant
- 1989-03-23 DE DE89903692T patent/DE58907125D1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
WO1989009292A1 (en) | 1989-10-05 |
CA1334344C (en) | 1995-02-14 |
US5429690A (en) | 1995-07-04 |
DE3810336A1 (en) | 1989-10-05 |
EP0410979A1 (en) | 1991-02-06 |
DE58907125D1 (en) | 1994-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60316212T2 (en) | Nickel-based alloy, hot-resistant spring made of this alloy and method of making this spring | |
DE60123065T2 (en) | TITANIUM ALLOY AND HEAT TREATMENT METHOD FOR LARGE DIMENSIONAL, SEMI-FINISHED MATERIALS FROM THIS ALLOY | |
AT502294B1 (en) | AL-ZN KNET ALLOY AND USE OF SUCH ALLOY | |
DE102013002483B4 (en) | Nickel-cobalt alloy | |
DE102006005250B4 (en) | Iron-nickel alloy | |
DE1964992C3 (en) | Process for increasing the ductility and creep rupture strength of a wrought nickel alloy and application of the process | |
DE69836569T3 (en) | Process for increasing the fracture toughness in aluminum-lithium alloys | |
DE69413461T2 (en) | Nickel-based alloy with high breaking strength and very good grain size control | |
EP3176275B2 (en) | Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component | |
DE2264997A1 (en) | PRECIPITABLE NICKEL, IRON ALLOY | |
DE2730452A1 (en) | NICKEL-CHROME-IRON ALLOY | |
DE10329899B3 (en) | Beta titanium alloy, process for producing a hot rolled product from such alloy and its uses | |
EP1683882A1 (en) | Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy | |
DE102020106433A1 (en) | Nickel alloy with good corrosion resistance and high tensile strength as well as a process for the production of semi-finished products | |
DE2052000B2 (en) | USING A HIGH STRENGTH ALUMINUM ALLOY | |
WO2005045080A1 (en) | Aluminium alloy | |
DE1301586B (en) | Austenitic precipitation hardenable steel alloy and process for its heat treatment | |
EP1017867A1 (en) | Aluminium based alloy and method for subjecting it to heat treatment | |
DE2704765A1 (en) | COPPER ALLOY, METHOD OF MANUFACTURING IT AND ITS USE FOR ELECTRIC CONTACT SPRINGS | |
AT394058B (en) | HIGH MOLYBDAIC ALLOY ON A NICKEL BASE | |
DE1270825B (en) | Process for the solution annealing treatment of a titanium-based alloy and the use of titanium alloys heat-treated in this way | |
DE1483228A1 (en) | Aluminum alloys and articles made from these | |
EP0410979B1 (en) | Hardenable nickel alloy | |
DE2641924C2 (en) | Austenitic Ni-Cv alloy with high corrosion resistance and hot formability | |
DE2023446B2 (en) | Cast aluminum alloy with high strength |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900804 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT DE FR GB IT SE |
|
17Q | First examination report despatched |
Effective date: 19920904 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT DE FR GB IT SE |
|
REF | Corresponds to: |
Ref document number: 102262 Country of ref document: AT Date of ref document: 19940315 Kind code of ref document: T |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940224 |
|
REF | Corresponds to: |
Ref document number: 58907125 Country of ref document: DE Date of ref document: 19940407 |
|
ITF | It: translation for a ep patent filed | ||
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: OTIS ENGINEERING CORPORATION Owner name: KRUPP VDM GMBH |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
EAL | Se: european patent in force in sweden |
Ref document number: 89903692.5 |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19970429 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19970508 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19980219 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19980331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990301 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990324 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19990503 Year of fee payment: 11 |
|
EUG | Se: european patent has lapsed |
Ref document number: 89903692.5 |
|
EUG | Se: european patent has lapsed |
Ref document number: 89903692.5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000323 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050323 |