EP0403910B1 - Radiating, diplexing element - Google Patents
Radiating, diplexing element Download PDFInfo
- Publication number
- EP0403910B1 EP0403910B1 EP90110997A EP90110997A EP0403910B1 EP 0403910 B1 EP0403910 B1 EP 0403910B1 EP 90110997 A EP90110997 A EP 90110997A EP 90110997 A EP90110997 A EP 90110997A EP 0403910 B1 EP0403910 B1 EP 0403910B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- radiating
- radiating element
- elements
- slot
- antenna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004020 conductor Substances 0.000 claims description 16
- 230000008878 coupling Effects 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- 125000006850 spacer group Chemical group 0.000 claims description 7
- 230000005855 radiation Effects 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 2
- 230000010287 polarization Effects 0.000 description 7
- 230000005284 excitation Effects 0.000 description 5
- 230000006978 adaptation Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000003486 chemical etching Methods 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- YFXPPSKYMBTNAV-UHFFFAOYSA-N bensultap Chemical compound C=1C=CC=CC=1S(=O)(=O)SCC(N(C)C)CSS(=O)(=O)C1=CC=CC=C1 YFXPPSKYMBTNAV-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/40—Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0414—Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0428—Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
- H01Q9/0435—Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave using two feed points
Definitions
- the invention relates to a diplexing radiating element.
- Such a radiating element operates simultaneously in two frequency bands, which can in particular be close and can generate in each frequency band two orthogonal polarizations: linear or circular.
- any waveguide element requiring operation at two separate frequencies and compact excitation from a TEM line supply for example: coaxial, triplate or microstrip line.
- a multifrequency antenna device produced in microstrip technology.
- the device according to this document comprises three electrically conductive discs, superimposed and separated by dielectric planes.
- a first disk serves as a ground plane for a second disk, forming a first microstrip antenna having a first resonant frequency.
- This first antenna is supplied by a first coaxial access whose central conductor is connected to said second disc, while the external conductor is connected to the first disc making the ground plane.
- Said second disk also serves as a ground plane for the third disk, forming a second microstrip antenna having a second resonant frequency.
- This second antenna is supplied by a second coaxial access, the central conductor of which crosses the first and second disks, disposed on a plane of zero electric field of said first antenna, and on a diameter orthogonal to the diameter on which said first coaxial access is disposed, while the external conductor is connected to the first ground plane disk for the assembly.
- the object of the invention is to overcome these various drawbacks.
- a diplexing radiating device comprising at least two radiating elements, at least two dielectric separators, and a reflective plane, said device being produced by stacking these elements in the following order: a first radiating element constituted by a single electrically conducting element; a first dielectric separator; a second radiating element; a second dielectric separator; said reflective plane; said device further comprising means for supplying said radiating elements; characterized in that said second radiating element is a slot defined by two electrically conductive elements, one of which surrounds the other to define a slot between the two; said slot being supplied by at least one transmission line; and in that during the excitation of said radiating elements, two radiating electric currents circulate in said first radiating element, spaced from one another, and two magnetic radiating currents circulate in said second radiating element, spaced apart from one the other ; so as to minimize the coupling between the two resonant radiating elements.
- the radiating element according to the invention comprises a first radiating element having the form of an annular ring consisting of a conductive ribbon of circular shape, and a radiating element in the form of an annular slot consisting of a conductor making upper ground plane, a conductive disc and a reflective plane rendering the radiation from the unidirectional slot; a first spacer, for example of a dielectric nature separating the first and second radiating elements and a second spacer, for example of a dielectric nature, separating the second radiating element from its reflecting plane.
- the diplexing radiating element of the invention as shown in FIGS. 1, 2 and 3, consists of two resonant radiating elements 10 and 11.
- the first radiating and resonant element 10 can be an annular ring ("annular ring" in English), consisting of a conductive tape of circular shape, for example. This element, operating on the fundamental mode TM11, the average circumference of the ribbon is then close to a wavelength.
- the metallic ribbon can be obtained by chemical etching.
- a dielectric spacer 12 then separates it from the metal conductors 13 and 14. These two conductors 13 and 14 are concentric, the first 13 having the shape of a disc, the second the shape of a crown external to the first.
- the microwave source supplying the antenna 10 is connected to one, two or four ports deduced from each other by a rotation of 90 degrees.
- the connection (s) can be of coaxial nature 15 and 16, or of microstrip line type etched on the substrate 12 or any other technique skilled in the art for feeding the antenna 10.
- the second radiating and resonant element 17 is an annular slot ("annular slot" in English), consisting of the conductor 14 forming an upper ground plane, the conductive disc 13 and a reflective plane 18 rendering the radiation from the unidirectional slot .
- the spacing between the conductors 13 and 14 forms said annular slot 17.
- the conductors 13, 14 and 18 can be obtained by chemical etching on a substrate disposed in the spacing 22, for example.
- the antenna 17 can be powered according to the state of the art, in particular by coaxial connections 19 and 20, or by triplate line 21 (or microstrip), as shown in Figures 4 and 5. L feeding then takes place without contact.
- the average circumference of the slot 17 is of the order of the wavelength.
- FIG. 6 represents the radiating currents 23, of an electrical nature, from the antenna 10 and the main, excited polarization, of the electric field E.
- the active currents are arranged on either side of the axis of symmetry (TM11 mode ).
- FIG. 7 represents the radiating currents, of magnetic nature, of the antenna 17 and the main polarization excited.
- the active currents 24 are arranged, unlike the previous case, along the axis of symmetry, for a radiated field of the same direction as above.
- the antennas 10 and 17 thus have very similar surfaces, similar radiation performance, while having a minimum coupling between the supply lines of the two antennas.
- annular slot and a circular "patch” are used;
- the antenna 10 is then a circular resonant antenna ("circular disk” in English).
- Figure 8 shows a section of such a device. This device facilitates the adjustment of the adaptation of the antenna 10, by displacement towards the center of the disc, of the ports 15 and 16.
- FIG. 9 then shows the radiating currents 25 occurring in such an antenna 10.
- annular slot and a dipole are used.
- the antenna 10 can in fact be advantageously replaced by a simple or crossed, printed or wire dipole. The excitation of this antenna is then done according to the knowledge of a person skilled in the art.
- the circular polarization generation is carried out by an access:
- the circular polarization generated by one of the two, or the two antennas can be obtained by dissymmetrizing the antenna (s), according to techniques known to those skilled in the art (ears or "ear”, recesses or “notches”) as shown in FIGS. 10 and 11 respectively.
- the device is then advantageously usable, when the directions of circular polarization of the radiated electromagnetic waves are identical.
- the coupling between the two antennas is then minimal.
- the waveguide can be circular, hexagonal, elliptical or square.
- the antennas 10 and 17 can be square, elliptical, rectangular: an antenna of one shape can be associated with an antenna of another shape, a type of feed can be associated with another type of feed.
- this device can be associated with other already existing devices to constitute a triband, quadriband element, etc.
- a network antenna can be produced by grouping different radiating elements as described above.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Description
L'invention se rapporte à un élément rayonnant diplexant.The invention relates to a diplexing radiating element.
Un tel élément rayonnant fonctionne simultanément dans deux bandes de fréquences, qui peuvent en particulier être proches et peuvent générer dans chaque bande de fréquence deux polarisations orthogonales : linéaires ou circulaires.Such a radiating element operates simultaneously in two frequency bands, which can in particular be close and can generate in each frequency band two orthogonal polarizations: linear or circular.
L'intérêt d'un tel élement est qu'il présente de bonnes performances de séparation des signaux d'une bande de fréquence par rapport à l'autre, en particulier lorsque ces bandes sont proches.The advantage of such an element is that it has good performance in separating signals from one frequency band relative to the other, in particular when these bands are close.
Il peut également être utilisé dans tout élément en guide d'onde nécessitant un fonctionnement à deux fréquences séparées et une excitation compacte à partir d'une alimentation en ligne TEM (par exemple : ligne coaxiale, triplaque ou microruban).It can also be used in any waveguide element requiring operation at two separate frequencies and compact excitation from a TEM line supply (for example: coaxial, triplate or microstrip line).
Les systèmes de l'art connu, permettant un fonctionnement à deux fréquences, nécessitent généralement :
- . soit un élément rayonnant large bande et un système de filtres diplexeurs assurant la réjection d'une bande de fréquence sur l'autre ;
- . soit la superposition de deux types d'éléments rayonnants fonctionnant chacun dans sa bande de fréquence. Les couplages entre les éléments sont d'autant plus faibles que les zones rayonnantes de ces éléments sont éloignées l'une de l'autre. Il est donc difficile d'améliorer ceux-ci, sans accroître les dimensions de l'un des deux éléments rayonnants.
- . either a broadband radiating element and a system of diplexer filters ensuring the rejection of one frequency band on the other;
- . or the superposition of two types of radiating elements each operating in its frequency band. The couplings between the elements are all the weaker as the radiating zones of these elements are distant from each other. It is therefore difficult to improve these, without increasing the dimensions of one of the two radiating elements.
Dans ce dernier cas, il en résulte une différence entre surfaces rayonnantes équivalentes, mal adaptées à une antenne à échantillonnage par exemple.In the latter case, this results in a difference between equivalent radiating surfaces, ill-suited to a sampling antenna for example.
Il est connu par le document IEEE Trans. AP-35 (1987) Nov. No 11, pp.1281-85, DAHLE et al., intitulé : "Dual Frequency Stacked Annular Ring Microstrip Antenna" un dispositif de l'art antérieur, comprenant deux anneaux circulaires, de géométries identiques, superposés au-dessus d'un plan de masse. La réponse en fréquence du dispositif, et notamment la séparation des deux fréquences résonantes, peut être altérée en jouant sur l'espace entre les anneaux. L'anneau supérieur est alimenté par un accès coaxial, dont le conducteur central est connecté à l'anneau tandis que le conducteur externe est connecté au plan de masse. L'anneau inférieur est couplé uniquement par des champs de fuite ("fringing field" en anglais).It is known from the document IEEE Trans. AP-35 (1987) Nov.
Il est connu par le document US-A-4 089 003 de Conroy, un dispositif d'antenne multifréquence réalisé en technologie microruban. Le dispositif selon ce document comprend trois disques électriquement conducteurs, superposés et séparés par des plans diélectriques. Un premier disque sert de plan de masse pour un deuxième disque, formant une première antenne microruban ayant une première fréquence résonante. Cette première antenne est alimentée par un premier accès coaxial dont le conducteur central est connecté audit deuxième disque, tandis que le conducteur externe est connecté au premier disque faisant plan de masse. Ledit deuxième disque sert également de plan de masse pour le troisième disque, formant une deuxième antenne microruban ayant une deuxième fréquence résonante. Cette deuxième antenne est alimentée par un deuxième accès coaxial dont le conducteur central traverse les premier et deuxième disques, disposé sur un plan de champ électrique nul de ladite première antenne, et sur un diamètre orthogonal au diamètre sur lequel ledit premier accès coaxial est disposé, tandis que le conducteur externe est connecté au premier disque faisant plan de masse pour l'ensemble.It is known from document US-A-4 089 003 by Conroy, a multifrequency antenna device produced in microstrip technology. The device according to this document comprises three electrically conductive discs, superimposed and separated by dielectric planes. A first disk serves as a ground plane for a second disk, forming a first microstrip antenna having a first resonant frequency. This first antenna is supplied by a first coaxial access whose central conductor is connected to said second disc, while the external conductor is connected to the first disc making the ground plane. Said second disk also serves as a ground plane for the third disk, forming a second microstrip antenna having a second resonant frequency. This second antenna is supplied by a second coaxial access, the central conductor of which crosses the first and second disks, disposed on a plane of zero electric field of said first antenna, and on a diameter orthogonal to the diameter on which said first coaxial access is disposed, while the external conductor is connected to the first ground plane disk for the assembly.
L'invention a pour objet de pallier ces différents inconvénients.The object of the invention is to overcome these various drawbacks.
Elle propose propose à cet effet un dispositif rayonnant diplexant, comprenant au moins deux éléments rayonnants, au moins deux séparateurs diélectriques, et un plan réflecteur, ledit dispositif étant réalisé par empilage de ces éléments dans l'ordre suivant :
un premier élément rayonnant constitué par un seul élément électriquement conducteur ;
un premier séparateur diélectrique ;
un deuxième élément rayonnant ;
un deuxième séparateur diélectrique ;
ledit plan réflecteur ;
ledit dispositif comprenant en outre des moyens d'alimentation desdits éléments rayonnants ; caractérisé en ce que ledit deuxième élément rayonnant est une fente définie par deux éléments électriquement conducteurs dont l'un entoure l'autre pour définir une fente entre les deux ; ladite fente étant alimentée par au moins une ligne de transmission ; et en ce que lors de l'excitation desdits éléments rayonnants, deux courants électriques rayonnants circulent dans ledit premier élément rayonnant, espacés l'un de l'autre, et deux courants magnétiques rayonnants circulent dans ledit deuxième élément rayonnant, espacés l'un de l'autre ; de manière à minimiser le couplage entre les deux éléments rayonnants résonnants.It proposes for this purpose a diplexing radiating device, comprising at least two radiating elements, at least two dielectric separators, and a reflective plane, said device being produced by stacking these elements in the following order:
a first radiating element constituted by a single electrically conducting element;
a first dielectric separator;
a second radiating element;
a second dielectric separator;
said reflective plane;
said device further comprising means for supplying said radiating elements; characterized in that said second radiating element is a slot defined by two electrically conductive elements, one of which surrounds the other to define a slot between the two; said slot being supplied by at least one transmission line; and in that during the excitation of said radiating elements, two radiating electric currents circulate in said first radiating element, spaced from one another, and two magnetic radiating currents circulate in said second radiating element, spaced apart from one the other ; so as to minimize the coupling between the two resonant radiating elements.
Avantageusement l'élément rayonnant selon l'invention comprend un premier élément rayonnant ayant la forme d'une bague annulaire constituée d'un ruban conducteur de forme circulaire, et un élément rayonnant en forme de fente annulaire constituée d'un conducteur faisant plan de masse supérieur, d'un disque conducteur et d'un plan réflecteur rendant le rayonnement de la fente unidirectionnel ; un premier espaceur par exemple de nature diélectrique séparant le premier et le second éléments rayonnants et un second espaceur par exemple de nature diélectrique séparant le second élément rayonnant de son plan réflecteur.Advantageously, the radiating element according to the invention comprises a first radiating element having the form of an annular ring consisting of a conductive ribbon of circular shape, and a radiating element in the form of an annular slot consisting of a conductor making upper ground plane, a conductive disc and a reflective plane rendering the radiation from the unidirectional slot; a first spacer, for example of a dielectric nature separating the first and second radiating elements and a second spacer, for example of a dielectric nature, separating the second radiating element from its reflecting plane.
Un tel élément rayonnant présente les avantages suivants :
- il est extrêmement compact ; la polarisation circulaire est ici directement générée à partir d'une ligne TEM pour les deux bandes de fréquence sur une longueur inférieure à un quart de longueur d'onde,
- il peut être muni entièrement d'accès arrières longitudinaux, ce qui permet de coupler ces accès, sans câbles coaxiaux supplémentaires, à un répartiteur de puissance TEM émission et/ou réception parallèle à la direction de rayonnement maximum, endroit où peuvent être également implantés les coupleurs hybrides de mise en quadrature,
- le couplage d'un élément sur l'autre est réduit par le choix des éléments rayonnants utilisés,
- dans le cas où le dispositif est utilisé pour l'excitation d'un guide d'onde alimenté en mode fondamental, les surfaces rayonnantes équivalentes sont identiques dans les deux bandes de fréquences.
- it is extremely compact; the circular polarization is here directly generated from a TEM line for the two frequency bands over a length less than a quarter of a wavelength,
- it can be fully fitted with longitudinal rear access, which makes it possible to couple these accesses, without additional coaxial cables, to a TEM power distribution and / or reception distributor parallel to the direction of maximum radiation, place where the quadrature hybrid couplers,
- the coupling of one element on the other is reduced by the choice of the radiating elements used,
- in the case where the device is used for the excitation of a waveguide supplied in fundamental mode, the equivalent radiating surfaces are identical in the two frequency bands.
Les caractéristiques et avantages de l'invention ressortiront d'ailleurs de la description qui va suivre, à titre d'exemple non limitatif, en référence aux figures annexées sur lesquelles :
- les figures 1, 2 et 3 illustrent, schématiquement, respectivement une vue en coupe longitudinale, une vue en coupe transversale suivant le plan II-II représenté à la figure 1, et une vue en coupe transversale suivant le plan III-III d'une réalisation de l'élément rayonnant diplexant de l'invention.
- les figures 4 et 5 illustrent respectivement une vue en coupe longitudinale et une vue en coupe transversale d'une autre réalisation de l'élément rayonnant diplexant de l'invention ;
- les figure 6 et 7 sont des vues explicatives du fonctionnement de l'élément rayonnant diplexant selon l'invention ;
- les figures 8 et 9 illustrent une coupe longitudinale d'une variante de réalisation de l'élément rayonnant diplexant selon l'invention et une vue explicative de son fonctionnement ;
- les figures 10, 11 et 12 illustrent plusieurs variantes de réalisation de l'élément rayonnant diplexant selon l'invention.
- Figures 1, 2 and 3 illustrate, schematically, respectively a longitudinal sectional view, a cross-sectional view along the plane II-II shown in Figure 1, and a cross-sectional view along the plane III-III of a realization of the diplexing radiating element of the invention.
- Figures 4 and 5 respectively illustrate a longitudinal sectional view and a cross-sectional view of another embodiment of the diplexing radiating element of the invention;
- Figures 6 and 7 are explanatory views of the operation of the diplexing radiating element according to the invention;
- Figures 8 and 9 illustrate a longitudinal section of an alternative embodiment of the radiating diplexing element according to the invention and an explanatory view of its operation;
- Figures 10, 11 and 12 illustrate several alternative embodiments of the radiating diplexing element according to the invention.
L'élément rayonnant diplexant de l'invention, tel que représenté aux figures 1, 2 et 3, est constitué par deux éléments rayonnants résonnants 10 et 11.The diplexing radiating element of the invention, as shown in FIGS. 1, 2 and 3, consists of two resonant
Le premier élément rayonnant et résonnant 10 peut être une bague annulaire ("annular ring" en anglo-saxon), constituée d'un ruban conducteur de forme circulaire, par exemple. Cet élément, fonctionnant sur le mode fondamental TM11, la circonférence moyenne du ruban est alors proche d'une longueur d'onde. Le ruban métallique peut être obtenu par gravure chimique. Un espaceur de nature diélectrique 12 le sépare alors des conducteurs métalliques 13 et 14. Ces deux conducteurs 13 et 14 sont concentriques, le premier 13 ayant la forme d'un disque, le second la forme d'une couronne extérieure au premier. La source hyperfréquence alimentant l'antenne 10 est connectée à un, deux ou quatre accès déduits les uns des autres par une rotation de 90 degrés. La ou les connections peuvent être de nature coaxiale 15 et 16, ou de type ligne microruban gravée sur le substrat 12 ou toute autre technique de l'homme de l'art pour alimenter l'antenne 10.The first radiating and
Le second élément rayonnant et résonnant 17 est une fente annulaire ("annular slot" en anglo-saxon), constitué du conducteur 14 faisant plan de masse supérieur, du disque conducteur 13 et d'un plan réflecteur 18 rendant le rayonnement de la fente unidirectionnel. L'espacement entre les conducteurs 13 et 14 forme ladite fente annulaire 17. Les conducteurs 13, 14 et 18 peuvent être obtenus par gravure chimique sur un substrat disposé dans l'espacement 22, par exemple.The second radiating and
L'alimentation de l'antenne 17 peut être effectuée selon l'état de l'art, en particulier par des connections coaxiales 19 et 20, ou par ligne triplaque 21 (ou microruban), comme représenté sur les figures 4 et 5. L'alimentation se faisant alors sans contact.The
La circonférence moyenne de la fente 17 est de l'ordre de la longueur d'onde.The average circumference of the
Afin de supprimer une éventuelle différence de potentiel entre les conducteurs 18 et 14, des liaisons électriques par plots métalliques, ou vis peuvent être disposées autour de la fente 17.In order to eliminate any potential difference between the
Dans le cas d'alimentation par ligne coaxiale de l'antenne 10, 11 est nécessaire de prévoir le passage des accès (15, 16 dans le cas de deux accès) à travers les différentes épaisseurs de substrats ou de conducteurs (18, 22, 13 et 12). Ces jonctions, tendant à neutraliser le champ électrique naissant entre les conducteurs 13 et 18, ne perturbent pas fondamentalement le fonctionnement de la fente 17.In the case of feed by coaxial line of the
La figure 6 représente les courants 23 rayonnants, de nature électrique, de l'antenne 10 et la polarisation principale, excitée, du champ électrique E. Les courants actifs sont disposés de part et d'autre de l'axe de symétrie (Mode TM₁₁).FIG. 6 represents the radiating
La figure 7 représente les courants rayonnants, de nature magnétique, de l'antenne 17 et la polarisation principale excitée. Les courants actifs 24 sont disposés, contrairement au cas précédent, le long de l'axe de symétrie, pour un champ rayonné de même direction que précédemment.FIG. 7 represents the radiating currents, of magnetic nature, of the
De par la nature et la disposition de ces courants rayonnants 23 et 24 des antennes 10 et 17, le couplage entre les deux antennes est minimal, ce qui constitue un des avantages de l'invention. Les antennes 10 et 17 présentent ainsi des surfaces très voisines, des performances de rayonnement semblables, tout en présentant un couplage minimum entre les lignes d'alimentation des deux antennes.Due to the nature and arrangement of these radiating
L'adaptation des divers accès à une impédance choisie et l'élargissement de la bande passante peuvent être obtenus selon les techniques de l'homme de l'art, par modifications de :
- la largeur du ruban métallique 10 et la largeur de la fente 17 ;
- la hauteur des espaceurs 12
et 22 ; - la nature diélectrique des espaceurs 12
et 22 ; - les caractéristiques électriques des lignes d'alimentation des antennes 10
et 17.
- the width of the
metal strip 10 and the width of theslot 17; - the height of the
12 and 22;spacers - the dielectric nature of the
12 and 22;spacers - the electrical characteristics of the feed lines of the
10 and 17.antennas
Dans une autre réalisation de l'invention, on utilise une fente annulaire et un "patch" circulaire ; L'antenne 10 est alors une antenne résonnante circulaire ("circular disk" en anglo-saxon).In another embodiment of the invention, an annular slot and a circular "patch" are used; The
La figure 8 montre alors une coupe d'un tel dispositif. Ce dispositif facilite le réglage de l'adaptation de l'antenne 10, par déplacement vers le centre du disque, des accès 15 et 16.Figure 8 then shows a section of such a device. This device facilitates the adjustment of the adaptation of the
La figure 9 montre alors les courants rayonnants 25 intervenant dans une telle antenne 10.FIG. 9 then shows the radiating
Dans une autre réalisation de l'invention, on utilise une fente annulaire et un dipôle. L'antenne 10 peut être, en effet, avantageusement remplacée par un dipôle simple ou croisé, imprimé ou filaire. L'excitation de cette antenne se fait alors selon les connaissances de l'homme de l'art.In another embodiment of the invention, an annular slot and a dipole are used. The
Dans une autre réalisation de l'invention, on effectue la génération de polarisation circulaire par un accès : Dans le cas où les bandes de fréquence spécifiées sont suffisamment étroites selon les performances recherchées, la polarisation circulaire générée par une des deux, ou les deux antennes peut être obtenue en dissymétrisant la ou les antenne(s), selon des techniques connues de l'homme de l'art (oreilles ou "ear", évidements ou "notches") comme représenté respectivement aux figures 10 et 11.In another embodiment of the invention, the circular polarization generation is carried out by an access: In the case where the specified frequency bands are sufficiently narrow according to the desired performances, the circular polarization generated by one of the two, or the two antennas can be obtained by dissymmetrizing the antenna (s), according to techniques known to those skilled in the art (ears or "ear", recesses or "notches") as shown in FIGS. 10 and 11 respectively.
Indépendamment du positionnement de l'antenne 17 par rapport à l'antenne 10, le dispositif est alors avantageusement utilisable, lorsque les sens de polarisation circulaire des ondes électromagnétiques rayonnées sont identiques. Le couplage entre les deux antennes est alors minimal.Regardless of the positioning of the
Quelque soit la réalisation du dispositif décrite précédemment, celle-ci peut être avantageusement utilisée pour exciter deux ondes à des fréquences différentes dans un guide d'onde 26 selon la figure 12. Ce dispositif est particulièrement adapté lorsque les ondes sont polarisées circulairement et de même sens, la génération de l'ellipticité de l'onde se faisant par irrégularités sur les antennes ou alimentations par deux ou quatre accès à l'aide des coupleurs 0°, 90° ou 0, 90°, 180°, 270°Whatever the embodiment of the device described above, it can be advantageously used to excite two waves at different frequencies in a
Il est bien entendu que la présente invention n'a été décrite et représentée qu'à titre d'exemple préférentiel et que l'on pourra remplacer ses éléments constitutifs par des éléments équivalents sans, pour autant, sortir du cadre de l'invention.It is understood that the present invention has only been described and shown as a preferred example and that its constituent elements can be replaced by equivalent elements without, however, departing from the scope of the invention.
Ainsi le guide d'onde peut être circulaire, hexagonal, elliptique ou carré.Thus the waveguide can be circular, hexagonal, elliptical or square.
Ainsi les antennes 10 et 17 peuvent être de forme carrée, elliptique, rectangulaire : une antenne d'une forme peut être associée à une antenne d'une autre forme, un type d'alimentation peut être associé à un autre type d'alimentation.Thus the
Ainsi un élargissement de bande peut être obtenu par empilage d'éléments rayonnants non alimentés par accroissement de la complexité du circuit d'adaptation.Thus a band widening can be obtained by stacking radiating elements which are not supplied by increasing the complexity of the adaptation circuit.
Ainsi ce dispositif peut être associé à d'autres dispositifs déjà existant pour constituer un élément tribande, quadribande etc...Thus, this device can be associated with other already existing devices to constitute a triband, quadriband element, etc.
Ainsi une antenne réseau peut être réalisée en regroupant différents éléments rayonnants tels que décrits précédemment.Thus, a network antenna can be produced by grouping different radiating elements as described above.
Claims (10)
- A diplexing radiating device, comprising at least two radiating elements (10; 13, 14), at least two dielectric separators (12, 22) and a reflecting plane (18), said device being made by stacking these elements in the following order:
a first radiating element (10) constituted by a single electrically conductive element;
a first dielectric separator (12);
a second radiating element (13, 14);
a second dielectric separator (22); and
said reflecting plane (18);
said device further comprising means (15, 16) of feeding said radiating elements;
the device being characterized in that said second radiating element is a slot defined by two electrically conductive elements (13, 14) of which one (14) surrounds the other (13) in order to define a slot between them; said slot being fed by at least one transmission line;
and in that at the time of exciting said radiating elements, two radiating electrical currents which are spaced apart from each other flow in said first radiating element (10), and two radiating magnetic currents which are spaced apart from each other flow in said second radiating element (13, 14), in a manner as to minimize the coupling between the two resonant radiating elements. - A device according to claim 1, characterized in that the first radiating element (10) in the form of an annular ring constituted by a conductive strip which is circular in shape.
- A device according to claim 1, characterized in that the second radiating element is an annular slot (17) constituted by a conductor (14) constituting an upper ground plane, by a conductive disk (13), and by a reflecting plane (18) making the radiation from the slot unidirectional.
- A device according to claim 2 or 3, characterized in that a dielectric spacer separates the first and second radiating elements (10; 13, 14).
- A device according to any one of claims 2 to 4, characterized in that a second dielectric spacer (22) separates the second radiating element (13, 14) from its reflecting plane (18).
- A device according to claim 4, characterized in that a microwave source feeding the first radiating element (10) is connected to one or at least two accesses offset from each other by rotation through 90°.
- A device according to claim 1, characterized in that the first radiating element (10) is a circular resonant antenna.
- A device according to any preceding claim, characterized in that it is disposed in a waveguide for the purpose of exciting the waveguide.
- A device according to any preceding claim, characterized in that the waves it generates are linearly polarized, are polarized linearly in two different directions, are circularly polarized, or are polarized circularly in two different directions.
- An array antenna, characterized in that it comprises a group of devices according to any preceding claim.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8908190A FR2648626B1 (en) | 1989-06-20 | 1989-06-20 | RADIANT DIPLEXANT ELEMENT |
FR8908190 | 1989-06-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0403910A1 EP0403910A1 (en) | 1990-12-27 |
EP0403910B1 true EP0403910B1 (en) | 1995-07-19 |
Family
ID=9382938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90110997A Expired - Lifetime EP0403910B1 (en) | 1989-06-20 | 1990-06-11 | Radiating, diplexing element |
Country Status (6)
Country | Link |
---|---|
US (1) | US5055852A (en) |
EP (1) | EP0403910B1 (en) |
JP (1) | JPH0332202A (en) |
CA (1) | CA2019181A1 (en) |
DE (1) | DE69020965T2 (en) |
FR (1) | FR2648626B1 (en) |
Families Citing this family (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2672437B1 (en) * | 1991-02-01 | 1993-09-17 | Alcatel Espace | RADIANT DEVICE FOR FLAT ANTENNA. |
KR920022585A (en) * | 1991-05-14 | 1992-12-19 | 오오가 노리오 | Planar antenna |
JP2584698B2 (en) * | 1991-10-17 | 1997-02-26 | ヒロセ電機株式会社 | Electromagnetic coupling type loop antenna for circular polarization |
DE4135828A1 (en) * | 1991-10-30 | 1993-05-06 | Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V., 5300 Bonn, De | ANTENNA ARRANGEMENT |
GB2274548B (en) * | 1993-01-25 | 1996-07-24 | Securicor Datatrak Ltd | Dual purpose, low profile antenna |
FR2703190B1 (en) * | 1993-03-26 | 1995-05-12 | Alcatel Espace | Radiant structure with variable directivity. |
DE4313397A1 (en) * | 1993-04-23 | 1994-11-10 | Hirschmann Richard Gmbh Co | Planar antenna |
FR2706085B1 (en) * | 1993-06-03 | 1995-07-07 | Alcatel Espace | Multilayer radiating structure with variable directivity. |
US5440319A (en) * | 1993-10-01 | 1995-08-08 | California Amplifier | Integrated microwave antenna/downconverter |
GB9417450D0 (en) | 1994-08-25 | 1994-10-19 | Symmetricom Inc | An antenna |
US5793258A (en) * | 1994-11-23 | 1998-08-11 | California Amplifier | Low cross polarization and broad bandwidth |
JPH08213829A (en) * | 1995-02-07 | 1996-08-20 | Matsushita Electric Ind Co Ltd | Microstrip antenna |
US5835057A (en) * | 1996-01-26 | 1998-11-10 | Kvh Industries, Inc. | Mobile satellite communication system including a dual-frequency, low-profile, self-steering antenna assembly |
SE511907C2 (en) * | 1997-10-01 | 1999-12-13 | Ericsson Telefon Ab L M | Integrated communication device |
US6064347A (en) * | 1997-12-29 | 2000-05-16 | Scientific-Atlanta, Inc. | Dual frequency, low profile antenna for low earth orbit satellite communications |
US6078297A (en) * | 1998-03-25 | 2000-06-20 | The Boeing Company | Compact dual circularly polarized waveguide radiating element |
FR2778802B1 (en) * | 1998-05-15 | 2000-09-08 | Alsthom Cge Alcatel | CIRCULARLY POLARIZED MICROWAVE TRANSMISSION AND RECEPTION DEVICE |
DE69914528T2 (en) * | 1998-06-04 | 2004-07-08 | Matsushita Electric Industrial Co., Ltd., Kadoma | monopole antenna |
GB9813002D0 (en) | 1998-06-16 | 1998-08-12 | Symmetricom Inc | An antenna |
US6329958B1 (en) * | 1998-09-11 | 2001-12-11 | Tdk Rf Solutions, Inc. | Antenna formed within a conductive surface |
GB9828768D0 (en) | 1998-12-29 | 1999-02-17 | Symmetricom Inc | An antenna |
GB9902765D0 (en) | 1999-02-08 | 1999-03-31 | Symmetricom Inc | An antenna |
GB9912441D0 (en) | 1999-05-27 | 1999-07-28 | Symmetricon Inc | An antenna |
US20020122820A1 (en) * | 2001-01-16 | 2002-09-05 | Hildebrand William H. | Soluble MHC artificial antigen presenting cells |
US6624787B2 (en) * | 2001-10-01 | 2003-09-23 | Raytheon Company | Slot coupled, polarized, egg-crate radiator |
US6646614B2 (en) * | 2001-11-07 | 2003-11-11 | Harris Corporation | Multi-frequency band antenna and related methods |
FR2834837A1 (en) * | 2002-01-14 | 2003-07-18 | Thomson Licensing Sa | DEVICE FOR RECEIVING AND / OR TRANSMITTING ELECTROMAGNETIC WAVES WITH RADIATION DIVERSITY |
DE10209996A1 (en) * | 2002-03-07 | 2003-10-09 | Kathrein Werke Kg | Combined antenna arrangement for receiving terrestrial and satellite signals |
US6809686B2 (en) * | 2002-06-17 | 2004-10-26 | Andrew Corporation | Multi-band antenna |
US7403158B2 (en) * | 2005-10-18 | 2008-07-22 | Applied Wireless Identification Group, Inc. | Compact circular polarized antenna |
US9172145B2 (en) | 2006-09-21 | 2015-10-27 | Raytheon Company | Transmit/receive daughter card with integral circulator |
US9019166B2 (en) | 2009-06-15 | 2015-04-28 | Raytheon Company | Active electronically scanned array (AESA) card |
US7671696B1 (en) * | 2006-09-21 | 2010-03-02 | Raytheon Company | Radio frequency interconnect circuits and techniques |
US8279131B2 (en) * | 2006-09-21 | 2012-10-02 | Raytheon Company | Panel array |
CN101179148B (en) * | 2006-11-10 | 2012-01-25 | 鸿富锦精密工业(深圳)有限公司 | Wideband antenna |
US7859835B2 (en) * | 2009-03-24 | 2010-12-28 | Allegro Microsystems, Inc. | Method and apparatus for thermal management of a radio frequency system |
US8102330B1 (en) * | 2009-05-14 | 2012-01-24 | Ball Aerospace & Technologies Corp. | Dual band circularly polarized feed |
US8537552B2 (en) * | 2009-09-25 | 2013-09-17 | Raytheon Company | Heat sink interface having three-dimensional tolerance compensation |
US8508943B2 (en) | 2009-10-16 | 2013-08-13 | Raytheon Company | Cooling active circuits |
US8766854B2 (en) * | 2010-01-07 | 2014-07-01 | National Taiwan University | Bottom feed cavity aperture antenna |
JP5048092B2 (en) * | 2010-02-16 | 2012-10-17 | 東芝テック株式会社 | Antenna and portable device |
JP2011171839A (en) * | 2010-02-16 | 2011-09-01 | Toshiba Tec Corp | Antenna and portable apparatus |
US8427371B2 (en) | 2010-04-09 | 2013-04-23 | Raytheon Company | RF feed network for modular active aperture electronically steered arrays |
US8363413B2 (en) | 2010-09-13 | 2013-01-29 | Raytheon Company | Assembly to provide thermal cooling |
US8810448B1 (en) | 2010-11-18 | 2014-08-19 | Raytheon Company | Modular architecture for scalable phased array radars |
US8355255B2 (en) | 2010-12-22 | 2013-01-15 | Raytheon Company | Cooling of coplanar active circuits |
US9124361B2 (en) | 2011-10-06 | 2015-09-01 | Raytheon Company | Scalable, analog monopulse network |
US9130278B2 (en) | 2012-11-26 | 2015-09-08 | Raytheon Company | Dual linear and circularly polarized patch radiator |
CN103346402B (en) * | 2013-06-18 | 2015-05-13 | 哈尔滨工业大学 | Omni-directional ultra-wide band wafer antenna |
US10381725B2 (en) | 2015-07-20 | 2019-08-13 | Optimum Semiconductor Technologies Inc. | Monolithic dual band antenna |
KR101989820B1 (en) * | 2017-03-14 | 2019-06-18 | 주식회사 아모텍 | Multilayer patch antenna |
CN110400779B (en) * | 2018-04-25 | 2022-01-11 | 华为技术有限公司 | Packaging structure |
JP7149820B2 (en) * | 2018-11-26 | 2022-10-07 | 日本特殊陶業株式会社 | waveguide slot antenna |
JP7363467B2 (en) * | 2019-12-24 | 2023-10-18 | Tdk株式会社 | antenna |
EP3910735B1 (en) * | 2020-05-11 | 2024-03-06 | Nokia Solutions and Networks Oy | An antenna arrangement |
US12009915B2 (en) | 2021-01-29 | 2024-06-11 | Eagle Technology, Llc | Compact receiver system with antijam and antispoof capability |
US11502414B2 (en) | 2021-01-29 | 2022-11-15 | Eagle Technology, Llc | Microstrip patch antenna system having adjustable radiation pattern shapes and related method |
US20240170851A1 (en) * | 2021-10-01 | 2024-05-23 | The Boeing Company | Ring slot patch radiator unit cell for phased array antennas |
US20230106696A1 (en) * | 2021-10-01 | 2023-04-06 | The Boeing Company | Low cost electronically scanning antenna array architecture |
US20230104894A1 (en) * | 2021-10-01 | 2023-04-06 | The Boeing Company | Ultra-low-cost 1d-scanning antenna array |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0375415A2 (en) * | 1988-12-23 | 1990-06-27 | Harada Industry Co., Ltd. | Plane slot antennas and their use in motor vehicles |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU509182A1 (en) * | 1974-05-06 | 1976-11-25 | Ордена Трудового Красного Знамени Институт Радиотехники Ан Ссср | Antenna |
US4089003A (en) * | 1977-02-07 | 1978-05-09 | Motorola, Inc. | Multifrequency microstrip antenna |
US4138684A (en) * | 1977-05-12 | 1979-02-06 | The United States Of America As Represented By The Secretary Of The Army | Loaded microstrip antenna with integral transformer |
US4329689A (en) * | 1978-10-10 | 1982-05-11 | The Boeing Company | Microstrip antenna structure having stacked microstrip elements |
DE3150235A1 (en) * | 1981-12-18 | 1983-06-30 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Passive radiating element |
JPS5916402A (en) * | 1982-07-19 | 1984-01-27 | Nippon Telegr & Teleph Corp <Ntt> | Broad band microstrip antenna uses two-frequencies in common |
US4660048A (en) * | 1984-12-18 | 1987-04-21 | Texas Instruments Incorporated | Microstrip patch antenna system |
US5005019A (en) * | 1986-11-13 | 1991-04-02 | Communications Satellite Corporation | Electromagnetically coupled printed-circuit antennas having patches or slots capacitively coupled to feedlines |
-
1989
- 1989-06-20 FR FR8908190A patent/FR2648626B1/en not_active Expired - Fee Related
-
1990
- 1990-06-11 DE DE69020965T patent/DE69020965T2/en not_active Expired - Lifetime
- 1990-06-11 EP EP90110997A patent/EP0403910B1/en not_active Expired - Lifetime
- 1990-06-18 CA CA002019181A patent/CA2019181A1/en not_active Abandoned
- 1990-06-20 US US07/540,737 patent/US5055852A/en not_active Expired - Fee Related
- 1990-06-20 JP JP2162549A patent/JPH0332202A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0375415A2 (en) * | 1988-12-23 | 1990-06-27 | Harada Industry Co., Ltd. | Plane slot antennas and their use in motor vehicles |
Non-Patent Citations (1)
Title |
---|
IEEE TRANSACTIONS ON ANTENNAS & PROPAGATION AP-35,no. 11, novembre 1987, pages 1281-1285; DAHELE et al.:"Dual-Frequency Stacked Annular- Ring Microstrip Antenna" * |
Also Published As
Publication number | Publication date |
---|---|
US5055852A (en) | 1991-10-08 |
EP0403910A1 (en) | 1990-12-27 |
DE69020965T2 (en) | 1995-11-30 |
JPH0332202A (en) | 1991-02-12 |
DE69020965D1 (en) | 1995-08-24 |
FR2648626A1 (en) | 1990-12-21 |
CA2019181A1 (en) | 1990-12-20 |
FR2648626B1 (en) | 1991-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0403910B1 (en) | Radiating, diplexing element | |
EP3547450B1 (en) | Radiating element with circular polarisation implementing a resonance in a fabry-perot cavity | |
CA1290449C (en) | Device for exciting a circularly polarized wage guide by means of a planar antenna | |
EP0426972B1 (en) | Flat antenna | |
EP0108463B1 (en) | Radiating element for cross-polarized microwave signals and planar antenna consisting of an array of such elements | |
EP1172885B1 (en) | Short-circuit microstrip antenna and dual-band transmission device including that antenna | |
EP0427654B1 (en) | Tuned helical antennae consisting of two quadrifilar antennas fit into each other | |
EP0954055B1 (en) | Dual-frequency radiocommunication antenna realised according to microstrip technique | |
EP0899814B1 (en) | Radiating structure | |
EP1407512B1 (en) | Antenna | |
FR2641904A1 (en) | ANTENNA DEVICE FOR CIRCULAR POLARIZATION | |
FR2775835A1 (en) | FLAT ANTENNA | |
EP1416586A1 (en) | Antenna with an assembly of filtering material | |
WO2014202498A1 (en) | Source for parabolic antenna | |
EP3180816B1 (en) | Multiband source for a coaxial horn used in a monopulse radar reflector antenna. | |
EP0377155B1 (en) | Dual frequency radiating device | |
EP1516392B1 (en) | Wire antenna | |
WO2012095365A1 (en) | Dielectric resonator antenna | |
EP1470614A1 (en) | Circular polarization antenna | |
EP0860893A1 (en) | Concentric set of microwave antennas | |
EP0463263B1 (en) | Circularly-polarized omnidirectionnal antenna with maximum horizontal gain | |
FR2552273A1 (en) | Omnidirectional microwave antenna | |
EP0860895A1 (en) | Resonant antenna for emitting or receiving polarized waves | |
EP0477102B1 (en) | Directional network with adjacent radiator elements for radio communication system and unit with such a directional network | |
EP0088681B1 (en) | Dual-reflector antenna with incorporated polarizer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT SE |
|
17P | Request for examination filed |
Effective date: 19910624 |
|
17Q | First examination report despatched |
Effective date: 19921216 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT SE |
|
REF | Corresponds to: |
Ref document number: 69020965 Country of ref document: DE Date of ref document: 19950824 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19951019 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090625 Year of fee payment: 20 Ref country code: FR Payment date: 20090615 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090622 Year of fee payment: 20 Ref country code: GB Payment date: 20090618 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20100610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20100610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20100611 |