[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0499244A2 - Treibladungsmodul - Google Patents

Treibladungsmodul Download PDF

Info

Publication number
EP0499244A2
EP0499244A2 EP92102401A EP92102401A EP0499244A2 EP 0499244 A2 EP0499244 A2 EP 0499244A2 EP 92102401 A EP92102401 A EP 92102401A EP 92102401 A EP92102401 A EP 92102401A EP 0499244 A2 EP0499244 A2 EP 0499244A2
Authority
EP
European Patent Office
Prior art keywords
propellant charge
propellant
grains
rings
per unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92102401A
Other languages
English (en)
French (fr)
Other versions
EP0499244A3 (en
EP0499244B1 (de
Inventor
Johannes Eich
Frank Hermann Dr. Blom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynamit Nobel GmbH Explosivstoff und Systemtechnik
Original Assignee
Dynamit Nobel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynamit Nobel AG filed Critical Dynamit Nobel AG
Publication of EP0499244A2 publication Critical patent/EP0499244A2/de
Publication of EP0499244A3 publication Critical patent/EP0499244A3/de
Application granted granted Critical
Publication of EP0499244B1 publication Critical patent/EP0499244B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/02Cartridges, i.e. cases with charge and missile
    • F42B5/16Cartridges, i.e. cases with charge and missile characterised by composition or physical dimensions or form of propellant charge, with or without projectile, or powder

Definitions

  • the invention relates to a propellant charge module with a central firing and a propellant charge in which the propellant charge grains are fixed.
  • Modular propellant charge systems have been developed for firing projectiles, and different numbers can be used in the combustion chamber.
  • DE 38 15 436 A1 describes such a modularly designed propellant charge which is designed as a shaped body which contains propellant charge grains embedded in a plastic matrix.
  • the plastic matrix consisting of hard thermosetting foam causes the propellant grains to be mutually fixed, so that the propellant charge module as a whole forms a compact body. Any deformation caused by impacts or pressure points is reduced by the resilience of the foam matrix.
  • the propellant charge modules can be designed as cylindrical or tubular bodies, a central firing device being located on the wall of the longitudinal channel. The propellant charge lighter inserted into the combustion chamber closure ignites the central firings of the propellant charge modules which are axially aligned with one another and which then burn out from the inside to the outside.
  • the known propellant charge modules in which the propellant grains are provided in the matrix in a relatively homogeneous distribution, have the disadvantage that all of the propellant grains burn up within a very short period of time he follows. This very quickly builds up a very high pressure in the combustion chamber, which accelerates the projectile in the gun barrel. The movement of the projectile in the gun barrel increases the volume of the combustion chamber, as a result of which the pressure generated by the fuel gases rapidly decreases. The result of this is that a high pressure peak occurs only at the beginning, which acts on the projectile in a pulsed manner and that the projectile then experiences only a relatively slight acceleration until it leaves the gun barrel. As a result, the energy of the propellant charge module is used only incompletely, so that the known propellant charge modules have a relatively low efficiency.
  • the invention has for its object to provide a propellant charge module that is easy to load, insensitive to damage and whose efficiency is increased compared to the known propellant charge modules.
  • the propellant charge is divided into several concentric rings, which differ in their combustion behavior.
  • the outer ring delivers the highest amount of gas per unit of time.
  • the outer ring which only burns when the projectile has already moved forward in the gun barrel and thereby increases the volume of the combustion chamber, creates an additional thrust at this stage, so that the projectile is effectively accelerated not only in the initial stage of its propulsion movement .
  • the acceleration continues over the length of the constantly expanding combustion chamber away. Instead of a short acceleration pulse, a longer acceleration phase builds up.
  • the peak acceleration in the propellant charge module according to the invention is lower with a comparable total energy than in the case of a conventional propellant charge module, the acceleration phase is extended over a longer period of time.
  • the propellant grains which are contained in the different rings of the propellant charge module, can consist of the same but also of different fuels.
  • fuels for example, one-, two- or multi-base powders based on nitrocellulose but also blowing agents with plastic-bound oxidizers, so-called LOVA fuels, in which secondary explosives such as hexogen or octogen are used as oxidizers, can be used.
  • LOVA fuels in which secondary explosives such as hexogen or octogen are used as oxidizers
  • the amount of gas developing per unit of time depends, among other things, on the size of the surface of the propellant grains.
  • the propellant particles can be in the form of multi-hole powder, ball powder or flake powder, for example. Multi-hole powder is usually used.
  • the different propellant powders develop different amounts of gas per unit of time, even with the same fuel and the same mass, depending on their surface. It is therefore possible to obtain the different amounts of gas required per unit of time by varying the geometries and / or sizes of the propellant particles.
  • fuels which deliver different amounts of gas per unit of time due to their chemical composition or their different burning rates or with the same geometries and fuels by varying the fuel masses used.
  • the dimensions of the individual rings and / or the propellant masses contained in the rings can be the same or different.
  • the burning behavior can also be influenced by adding substances.
  • the propellant charge module consists of at least three rings, the inner ring being responsible for the rapid build-up of pressure.
  • the inner ring contains propellant grains, which ensure rapid burning. These individual propellant grains deliver a larger amount of gas per unit time than the propellant grains in the adjacent, next outer ring. However, the absolute amount of gas generated is less than the amount of gas generated by the next outer ring. This is achieved by a correspondingly small size of the inner ring and / or lower propellant masses.
  • the next outer ring contains propellant grains, which due to their geometry and / or size or due to their chemical composition show a different combustion behavior and deliver a smaller amount of gas per unit time than the propellant grains contained in the inner ring. This fills up the increasing volume of the combustion chamber and compensates for the slowly falling pressure within certain limits. However, the absolute amount of gas generated is significantly larger than the amount of gas generated by the inner ring. This is achieved by an appropriate size of the ring and / or larger propellant masses.
  • propellant grains are contained in the outermost ring, which are fast Ensure burning off, so that a large amount of gas is supplied per unit of time.
  • the same propellant grains can be used, for example, as in the inner ring, but the absolutely larger amount of gas required is then produced by a corresponding size of the ring and / or larger propellant masses. This ensures that no major acceleration pulse (recoil) is transmitted to the pipe.
  • the propellant charge module 10 shown in FIG. 1 is a cylindrical body, which is composed of three concentric rings 11, 12, 13. In the inner ring 11 there is a longitudinally continuous channel 14, the wall of which is formed by the central lighting 15 consisting of ignition mixtures. The channel is closed at both ends by a membrane 16 which prevents the penetration of foreign bodies and which is destroyed by the flame or the combustion gases of the propellant charge lighter.
  • the outer ring 13 is surrounded by a combustible or consumable cylindrical envelope 17 made of paper material, e.g. Cardboard, is made and forms a protective coat.
  • the end faces of the propellant charge module are each covered by a cover plate 18, which is combustible or consumable.
  • the end plates 18 preferably consist of the same material or a similar material as the matrix of the rings 11, 12, 13, so that the end plates can be thermally connected to the end faces of the rings. But gluing is also possible.
  • the end disks 18 prevent the rings 11, 12, 13 from being able to be ignited from one end and ensure that these rings are burned off only from the inside out.
  • Each of the rings 11, 12, 13 contains embedded in a matrix of rigid foam, e.g. made of polyurethane, propellant particles 19, 20, 21 from the same fuel, for example from one of the fuels mentioned above.
  • the propellant particles can consist of spherical powder, platelet powder or multi-hole powder.
  • All propellant grains 19, 20 and 21 consist of 19-hole powder. These are cylindrical grains that have through holes that are parallel to the axis.
  • the propellant charge grains 19 of the inner ring 11 consist, for example, of 19-hole powder of the format 4 ⁇ 5 ⁇ 0.1, the axial length being 4 mm, the grain diameter 5 mm and the hole diameter 0.1 mm.
  • the propellant charge grains 20 of the middle ring 12 consist of 19-hole powder of the format 14 x 14 x 0.2 (length 14 mm, grain diameter 14 mm, hole diameter 0.2 mm) and the propellant powder 21 of the outer ring 13 consists of 19-hole powder of the format 4 x 5 x 0.1, ie the same format as the propellant grains 19.
  • the amount of gas that develops when the propellant grains burn off per unit of time depends, among other things, on the size of the surface of the grains and thus also on the size of the hole.
  • the individual propellant grains 19 and 21 deliver the largest amount of gas per unit time, while the propellant charge grains 20 deliver a smaller amount of gas per unit time.
  • the mass of the fuel in ring 12 is increased in comparison to rings 11 and 13. Based on the total mass of the fuel contained in all rings, the ring 11 contains 5-10, the ring 12 60-70 and the ring 13 20-30% by weight of the fuel.
  • propellant charge modules of the type shown in FIG. 1 are inserted one after the other into a tubular combustion chamber of a gun (not shown).
  • the flame of the propellant charge lighter or its combustion gases penetrate into the channels 14 of all propellant charge modules 10 which are in alignment, the membranes 16 being destroyed. This ignites the central lighting 15 so that each module burns from the inside out.
  • the projectile in the gun barrel is accelerated by the pressure building up in the combustion chamber.
  • Fig. 2 shows the course of the pressure p in the combustion chamber over time t when the projectile is fired.
  • the pressure curve of a conventional propellant charge is shown in dash-dot lines and that of the propellant charge according to the invention with a solid line.
  • the dash-dotted line shows that with a conventional propellant charge in which there is only a single ring, the pressure in the combustion chamber builds up quickly and assumes a high maximum value.
  • the pressure drops very steeply until the projectile has left the gun barrel, for example after 200 ms. It can be seen that there is strong acceleration in the initial phase, but that there is no significant acceleration thereafter.
  • the pressure curve along the solid line shows that a pressure build-up to, for example, 1500 bar occurs very quickly and that the pressure then slowly decreases during the propulsion of the projectile, the pressure drop caused by the increase in volume of the combustion chamber to a large extent due to the combustion of the outer ring 13 caused pressure build-up is compensated. It can be seen that if the total energy of the propellant charges to be compared remains the same, the energy distribution in the propellant charge according to the invention is stretched in time, as a result of which an improved efficiency is achieved.
  • the present invention is not limited to the embodiments described in detail above.
  • any desired combination for example also for the above-mentioned "inverse" combinations, for example for versions in which the ignition is from the outside in, is possible in order to meet the most varied requirements with regard to the programmable Combustion behavior.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Die Treibladung des Treibladungsmoduls besteht aus mindestens zwei konzentrischen Ringen (11, 12, 13), von denen der äußere Ring (13) Treibladungskörner (21) enthält, die pro Zeiteinheit die größte Gasmenge liefern. Der Abbrand der Treibladung wird durch eine Zentralanfeuerung (15) eingeleitet, so daß die Ringe von innen nach außen abbrennen. Der zuletzt abbrennende äußere Ring (13) bewirkt einen verstärkten Druckaufbau, so daß der Druckabbau, der durch die Volumenvergrößerung des Verbrennungsraumes entsteht, teilweise kompensiert wird. Dadurch wird der im Verbrennungsraum herrschende Druck zeitlich gestreckt und der Antrieb des Geschosses erfolgt mit verbessertem Wirkungsgrad. <IMAGE>

Description

  • Die Erfindung betrifft ein Treibladungsmodul mit einer Zentralanfeuerung und einer Treibladung, in der die Treibladungskörner fixiert sind.
  • Für das Abschießen von Geschossen sind modulare Treibladungssysteme entwickelt worden, die in unterschiedlicher Anzahl in den Verbrennungsraum eingesetzt werden können. DE 38 15 436 A1 beschreibt eine solche modular aufgebaute Treibladung, die als Formkörper ausgebildet ist, welcher in eine Kunststoffmatrix eingebettete Treibladungskörner enthält. Die aus hartem duroplastischem Schaum bestehende Kunststoffmatrix bewirkt eine gegenseitige Fixierung der Treibladungskörner, so daß das Treibladungsmodul insgesamt einen kompakten Körper bildet. Etwaige Verformungen durch Stöße oder Druckstellen bilden sich durch die Rückstellfähigkeit der Schaumstoffmatrix zurück. Ferner ist es bekannt, derartige Treibladungsmodule mit einer verbrenn- oder verzehrbaren Umhüllung aus Papiermaterial zu versehen. Die Treibladungsmodule können als zylindrische bzw. rohrförmige Körper ausgebildet sein, wobei sich an der Wand des längslaufenden Kanals eine Zentralanfeuerung befindet. Der in den Verschluß der Verbrennungskammer eingesetzte Treibladungsanzünder zündet die Zentralanfeuerungen der axial zueinander ausgerichteten, hintereinander angeordneten Treibladungsmodule an, die dann von innen nach außen abbrennen.
  • Die bekannten Treibladungsmodule, bei denen die Treibladungskörner in der Matrix in relativ homogener Verteilung vorgesehen sind, haben den Nachteil, daß der Abbrand sämtlicher Treibladungskörner innerhalb einer sehr kurzen Zeitspanne erfolgt. Dabei baut sich im Verbrennungsraum schnell ein sehr hoher Druck auf, der das Geschoß in dem Geschützrohr beschleunigt. Durch die Bewegung des Geschosses im Geschützrohr vergrößert sich das Volumen des Verbrennungsraums, wodurch der von den Brenngasen erzeugte Druck schnell abnimmt. Dies hat zur Folge, daß nur zu Beginn eine hohe Druckspitze auftritt, die impulsartig auf das Geschoß einwirkt und daß anschließend das Geschoß nur noch eine relativ geringe Beschleunigung bis zum Verlassen des Geschützrohres erfährt. Dadurch wird die Energie des Treibladungsmoduls nur unvollständig ausgenutzt, so daß die bekannten Treibladungsmodule einen relativ geringen Wirkungsgrad haben.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Treibladungsmodul zu schaffen, das gut ladbar, gegen Beschädigungen unempfindlich und dessen Wirkungsgrad gegenüber den bekannten Treibladungsmodulen erhöht ist.
  • Die Lösung dieser Aufgabe erfolgt erfindungsgemäß mit den in den Patentansprüchen angegebenen Merkmalen.
  • Bei dem erfindungsgemäßen Treibladungsmodul ist die Treibladung in mehrere konzentrische Ringe unterteilt, die sich durch ihr Abbrandverhalten unterscheiden. Dabei liefert der äußere Ring pro Zeiteinheit die höchste Gasmenge. Der äußere Ring, der erst abbrennt, wenn das Geschoß sich im Geschützrohr bereits vorwärts bewegt hat und das Volumen des Verbrennungsraumes dadurch vergrößert worden ist, ruft in diesem Stadium einen zusätzlichen Schub hervor, so daß das Geschoß nicht nur im Anfangsstadium seiner Vortriebsbewegung wirksam beschleunigt wird. Die Beschleunigung setzt sich über die Länge des sich ständig vergrößernden Verbrennungsraumes fort. Anstelle eines kurzen Beschleunigungsimpulses baut sich eine länger dauernde Beschleunigungsphase auf. Zwar ist die Spitzenbeschleunigung bei dem erfindungsgemäßen Treibladungsmodul bei vergleichbarer Gesamtenergie geringer als bei einem herkömmlichen Treibladungsmodul, jedoch wird die Beschleunigungsphase über einen längeren Zeitraum ausgedehnt.
  • Durch geeignete Wahl der in den einzelnen Ringen enthaltenen Treibladungskörner und durch geeignete Kombination solcher Ringe mit unterschiedlichen Treibladungskörnern kann ein programmiertes Abbrandverhalten erreicht werden, wobei die Gasmengen, die sich in den einzelnen Phasen des Abbrennens des Treibladungsmoduls entwickeln sollen, entsprechend den jeweiligen Anforderungen variiert bzw. eingestellt werden können.
  • Die Treibladungskörner, die in den unterschiedlichen Ringen des Treibladungsmoduls enthalten sind, können aus dem gleichen aber auch aus verschiedenen Brennstoffen bestehen. Als Brennstoffe können beispielsweise ein-, zwei- oder mehrbasige Pulver auf der Basis von Nitrocellulose aber auch Treibmittel mit kunststoffgebundenen Oxidatoren, sogenannte LOVA-Brennstoffe, bei denen als Oxidatoren Sekundärsprengstoffe wie Hexogen oder Oktogen Verwendung finden, eingesetzt werden. Die sich pro Zeiteinheit entwickelnde Gasmenge hängt u.a. von der Größe der Oberfläche der Treibladungskörner ab. Die Treibladungskörner können beispielsweise in Form von Mehrlochpulver, Kugelpulver oder Plättchenpulver vorliegen. In der Regel wird Mehrlochpulver verwendet werden.
  • Die verschiedenen Treibladungspulver entwickeln selbst bei gleichem Brennstoff und gleicher Masse, entsprechend ihrer Oberfläche, unterschiedliche Gasmengen pro Zeiteinheit. Es ist daher möglich, die jeweils erforderlichen, unterschiedlichen Gasmengen pro Zeiteinheit durch Variation der Geometrien und/oder Größen der Treibladungskörner zu erhalten. Außerdem besteht natürlich die Möglichkeit, Brennstoffe zu verwenden, die aufgrund ihrer chemischen Zusammensetzung oder ihrer verschiedenen Abbrandgeschwindigkeiten oder bei gleichen Geometrien und Brennstoffen durch Variation der eingesetzten Brennstoffmassen unterschiedliche Gasmengen pro Zeiteinheit liefern. Die Abmessungen der einzelnen Ringe und/oder die in den Ringen enthaltenen Treibladungsmassen können gleich oder verschieden sein. Durch Zumischen von Stoffen kann weiterhin das Abbrandverhalten beeinflußt werden.
  • Dadurch, daß bei dem erfindungsgemäßen Treibladungsmodul der Druckverlauf im Verbrennungsraum zeitlich gestreckt oder abgeflacht wird, wird auch die mechanische Beanspruchung der Wände des Verbrennungsraums verringert, wobei dennoch die Geschoßenergie vergrößert wird.
  • Da das Brennverhalten von Treibladungen druckabhängig ist, kann es zweckmäßig sein, bereits zu Beginn des Abbrennens einen gewissen Druck schnell aufzubauen, um das weitere Abbrennen zu begünstigen. Daher ist zweckmäßigerweise vorgesehen, daß das Treibladungsmodul aus mindestens drei Ringen besteht, wobei der innere Ring für den schnellen Druckaufbau verantwortlich ist. Hierzu enthält der innere Ring Treibladungskörner, die ein schnelles Abbrennen gewährleisten. Diese einzelnen Treibladungskörner liefern pro Zeiteinheit eine größere Gasmenge als die Treibladungskörner im benachbarten nächst-äußeren Ring. Die absolute Menge des erzeugten Gases ist aber geringer, als die durch den nächst-äusseren Ring erzeugte Gasmenge. Dies wird erreicht durch entsprechend geringe Größe des inneren Ringes und/oder geringere Treibladungsmassen.
  • Der nächst-äußere Ring enthält Treibladungskörner, die aufgrund ihrer Geometrie und/oder Größe oder durch ihre chemische Zusammensetzung ein anderes Abbrandverhalten zeigen und eine geringere Gasmenge pro Zeiteinheit liefern als die im inneren Ring enthaltenen Treibladungskörner. Hierdurch wird das sich vergrößernde Volumen des Verbrennungsraumes aufgefüllt und der langsam abfallende Druck in gewissen Grenzen kompensiert. Die absolute Menge des erzeugten Gases ist aber deutlich größer als die durch den inneren Ring erzeugte Gasmenge. Erreicht wird dies durch eine entsprechende Größe des Ringes und/oder größere Treibladungsmassen.
  • Der in der Endphase des Beschleunigungsprozesses auftretende Druckabfall, bedingt durch die schnell fortschreitende Vergrößerung des Verbrennungsraumes, wird gemäß der vorliegenden Erfindung dadurch nahezu kompensiert, daß im äußersten Ring Treibladungskörner enthalten sind, die ein schnelles Abbrennen gewährleisten, so daß pro Zeiteinheit eine große Gasmenge geliefert wird. Hierzu können als einzelne Treibladungskörner z.B. dieselben eingesetzt werden, wie im inneren Ring, doch wird dann die erforderliche absolut größere Gasmenge durch eine entsprechende Größe des Ringes und/oder größere Treibladungsmassen produziert. Auf diese Weise ist sichergestellt, daß kein größerer Beschleunigungsimpuls (Rückstoß) auf das Rohr übertragen wird.
  • Im folgenden wird unter Bezugnahme auf die Zeichnungen ein Ausführungsbeispiel der Erfindung näher erläutert.
  • Es zeigen:
  • Fig. 1
    einen Längsschnitt eines Treibladungsmoduls und
    Fig. 2
    ein Diagramm des im Verbrennungsraum herrschenden Druckes über der Zeit zum Vergleich der Wirkung einer konventionellen Treibladung und der erfindungsgemäßen Treibladung.
  • Das in Fig. 1 dargestellte Treibladungsmodul 10 ist ein zylindrischer Körper, der sich aus drei konzentrischen Ringen 11, 12, 13 zusammensetzt. In dem inneren Ring 11 befindet sich ein längslaufend durchgehender Kanal 14, dessen Wand von der aus Anzündmischungen bestehenden Zentralanfeuerung 15 gebildet wird. Der Kanal ist an beiden Enden durch eine Membran 16 abgeschlossen, die das Eindringen von Fremdkörpern verhindert und die durch die Flamme bzw. die Verbrennungsgase des Treibladungsanzünders zerstört wird.
  • Der äußere Ring 13 ist von einer verbrenn- oder verzehrbaren zylindrischen Umhüllung 17 umgeben, die aus Papiermaterial, z.B. Pappe, besteht und einen Schutzmantel bildet. Die Stirnseiten des Treibladungsmoduls sind jeweils von einer Abschlußscheibe 18 bedeckt, die verbrennbar oder verzehrbar ist. Vorzugsweise bestehen die Abschlußscheiben 18 aus demselben Material oder einem ähnlichen Material wie die Matrix der Ringe 11, 12, 13, so daß die Abschlußscheiben thermisch mit den Stirnseiten der Ringe fest verbunden werden können. Es ist aber auch eine Verklebung möglich. Die Abschlußscheiben 18 verhindern, daß die Ringe 11, 12, 13 von einem Ende her angezündet werden können und sie stellen sicher, daß der Abbrand dieser Ringe ausschließlich von innen nach außen erfolgt.
  • Jeder der Ringe 11, 12, 13 enthält, eingebettet in eine Matrix aus Hartschaum, z.B. aus Polyurethan, Treibladungskörner 19, 20, 21 aus demselben Brennstoff, beispielsweise aus einem der obengenannten Brennstoffe. Die Treibladungskörner können aus Kugelpulver, Plättchenpulver oder Mehrlochpulver bestehen.
  • Sämtliche Treibladungskörner 19, 20 und 21 bestehen aus 19-Lochpulver. Es handelt sich um zylindrische Körner, die achsparallele durchgehende Löcher aufweisen. Die Treibladungskörner 19 des inneren Ringes 11 bestehen beispielsweise aus 19-Lochpulver des Formats 4 x 5 x 0,1, wobei die axiale Länge 4 mm, der Korndurchmesser 5 mm und der Lochdurchmesser 0,1 mm beträgt. Die Treibladungskörner 20 des mittleren Ringes 12 bestehen aus 19-Lochpulver vom Format 14 x 14 x 0,2 (Länge 14 mm, Korndurchmesser 14 mm, Lochdurchmesser 0,2 mm) und das Treibladungspulver 21 des äußeren Ringes 13 besteht aus 19-Lochpulver vom Format 4 x 5 x 0,1, also dem gleichen Format wie die Treibladungskörner 19. Die Gasmenge, die sich beim Abbrennen der Treibladungskörner pro Zeiteinheit entwickelt, hängt u.a. von der Größe der Oberfläche der Körner ab, und somit auch von der Lochgröße. Die einzelnen Treibladungskörner 19 und 21 liefern bei dem vorliegenden Ausführungsbeispiel die größte Gasmenge pro Zeiteinheit, während die Treibladungskörner 20 eine geringere Gasmenge pro Zeiteinheit liefern. Um in diesem Fall das programmierte Abbrandverhalten und damit die zu den verschiedenen Zeitpunkten günstigen absoluten Gasmengen zu gewährleisten, ist im Ring 12 die Masse des Brennstoffes im Vergleich zum Ring 11 und 13 erhöht. Bezogen auf die gesamte Masse des in allen Ringen zusammen befindlichen Brennstoffes enthält der Ring 11 5-10, der Ring 12 60-70 und der Ring 13 20-30 Gew.-% des Brennstoffes.
  • Mehrere Treibladungsmodule der in Fig. 1 dargestellten Art werden hintereinander in einen rohrförmigen Verbrennungsraum eines (nicht dargestellten) Geschützes eingeschoben. Die Flamme des Treibladungsanzünders bzw. dessen Verbrennungsgase dringen in die miteinander fluchtenden Kanäle 14 sämtlicher Treibladungsmodule 10 ein, wobei die Membranen 16 zerstört werden. Dadurch werden die Zentralanfeuerungen 15 angezündet, so daß jedes Modul von innen nach außen abbrennt. Durch den sich im Verbrennungsraum aufbauenden Druck wird das Geschoß im Geschützrohr beschleunigt.
  • Fig. 2 zeigt den Verlauf des Druckes p im Verbrennungsraum über der Zeit t beim Abschuß des Geschosses. Dabei ist der Druckverlauf einer konventionellen Treibladung strichpunktiert dargestellt und derjenige der erfindungsgemäßen Treibladung mit einer durchgezogenen Linie. Die strichpunktierte Linie zeigt, daß sich bei einer konventionellen Treibladung, bei der nur ein einziger Ring vorhanden ist, der Druck im Verbrennungsraum schnell aufbaut und einen hohen Maximalwert annimmt. Infolge der Vergrößerung des Verbrennungsraums durch das sich im Geschützrohr bewegende Geschoß fällt der Druck sehr steil ab, bis das Geschoß, beispielsweise nach 200 ms, das Geschützrohr verlassen hat. Man erkennt, daß in der Anfangsphase eine starke Beschleunigung entsteht, daß danach aber keine wesentliche Beschleunigung mehr erfolgt.
  • Der Druckverlauf nach der durchgezogenen Linie zeigt, daß sehr schnell ein Druckaufbau bis beispielsweise 1500 bar erfolgt und daß der Druck sich dann während des Vortriebs des Geschosses langsam abbaut, wobei der durch die Volumenvergrößerung des Brennraums hervorgerufene Druckabfall zu einem großen Teil durch den beim Abbrennen des äußeren Ringes 13 verursachten Druckaufbau kompensiert wird. Man erkennt, daß bei etwa gleichbleibender Gesamtenergie der zu vergleichenden Treibladungen die Energieverteilung bei der erfindungsgemäßen Treibladung zeitlich gestreckt ist, wodurch ein verbesserter Wirkungsgrad erzielt wird.
  • Die vorliegende Erfindung beschränkt sich nicht auf die im einzelnen weiter oben beschrieben Ausführungen. Durch die Unterteilung der Treibladung in konzentrische Ringe mit unterschiedlichem Abbrandverhalten wird jede gewünschte Kombination, beispielsweise auch zu den obengenannten Ausführungen "inverse" Kombinationen, etwa für Ausführungen, bei denen die Anzündung von außen nach innen verläuft, möglich, um die verschiedenartigsten Anforderungen hinsichtlich des programmierbaren Abbrandverhaltens zu erfüllen.

Claims (6)

  1. Treibladungsmodul mit einer Treibladung, in der Treibladungskörner (19, 20, 21) fixiert sind und das einen längslaufenden Kanal (14) mit Zentralanfeuerung (15) enthält, dadurch gekennzeichnet, daß die Treibladung von innen nach außen in mehrere konzentrische Ringe (11, 12, 13) mit unterschiedlichem Abbrandverhalten unterteilt ist, wobei der äußere Ring (13) pro Zeiteinheit die größte Gasmenge liefert.
  2. Treibladungsmodul mit einer Treibladung, in der Treibladungskörner (19, 20, 21) fixiert sind und das einen längslaufenden Kanal (14) mit Zentralanfeuerung (15) enthält, dadurch gekennzeichnet, daß die Treibladung von innen nach außen in mindestens drei konzentrische Ringe (11, 12, 13) mit unterschiedlichem Abbrandverhalten unterteilt ist, wobei der äußere Ring (13) pro Zeiteinheit die größte Gasmenge liefert und der innere Ring (11) Treibladungskörner (19) enthält, die pro Zeiteinheit eine größere Gasmenge liefern als die im benachbarten nächst-äußeren Ring (12) enthaltene Treibladungskörner.
  3. Treibladungsmodul mit einer Treibladung, in der Treibladungskörner (19, 20, 21) fixiert sind und das einen längslaufenden Kanal (14) mit Zentralanfeuerung (15) enthält, dadurch gekennzeichnet, daß die Treibladung von innen nach außen in mehrere konzentrische Ringe (11, 12, 13) mit unterschiedlichem Abbrandverhalten unterteilt ist, wobei der innere Ring (11) pro Zeiteinheit die größte Gasmenge liefert.
  4. Treibladungsmodul nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß in den Ringen (11, 12, 13) die Treibladungskörner in eine Kunststoffmatrix, vorzugsweise aus Schaumstofff, eingebettet sind.
  5. Treibladungsmodul nach einem der Ansprüche 1-4, dadurch gekennzeichnet, daß die Treibladungskörner (19, 20, 21) in den einzelnen Ringen (11, 12, 13) unterschiedliche Geometrien und/oder Größen und somit unterschiedliche spezifische Oberflächen haben.
  6. Treibladungsmodul nach einem der Ansprüche 1-5, dadurch gekennzeichnet, daß auf den Stirnflächen der Treibladung verzehrbare Abschlußscheiben (18) vorgesehen sind, die ein vorzeitiges Anbrennen der äußeren Ringe (12, 13) verhindern.
EP92102401A 1991-02-15 1992-02-13 Treibladungsmodul Expired - Lifetime EP0499244B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4104646 1991-02-15
DE4104646 1991-02-15

Publications (3)

Publication Number Publication Date
EP0499244A2 true EP0499244A2 (de) 1992-08-19
EP0499244A3 EP0499244A3 (en) 1993-03-24
EP0499244B1 EP0499244B1 (de) 1997-04-16

Family

ID=6425102

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92102401A Expired - Lifetime EP0499244B1 (de) 1991-02-15 1992-02-13 Treibladungsmodul

Country Status (2)

Country Link
EP (1) EP0499244B1 (de)
DE (2) DE4204318A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0706025A1 (de) * 1994-10-06 1996-04-10 Giat Industries Patronenhülse für eine Treibladung
EP0754927A1 (de) * 1995-07-20 1997-01-22 Giat Industries System zum Zünden einer Treibladung insbesondere für Feldgeschütze und sein Herstellungsverfahren
EP2045568A1 (de) * 2007-10-03 2009-04-08 Saab Ab Treibladung für rückstossfreie Gewehre
JP2012021685A (ja) * 2010-07-13 2012-02-02 Asahi Kasei Chemicals Corp 発射装薬
CN103267453A (zh) * 2013-05-27 2013-08-28 湖北航天化学技术研究所 一种燃气发生剂药柱

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2572888C2 (ru) * 2014-03-25 2016-01-20 Николай Евгеньевич Староверов Бинарный пороховой заряд староверова /варианты/

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3815436A1 (de) 1988-05-06 1989-11-16 Muiden Chemie B V Treibladungen fuer grosskalibrige geschosse

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3194851A (en) * 1955-06-20 1965-07-13 Charles W Sauer Process for forming propellant grains having a composite structure
US3706278A (en) * 1971-02-25 1972-12-19 Us Army Distributed propulsion for guns
DE2313856C3 (de) * 1973-03-20 1978-05-24 Josef Schaberger & Co Gmbh, 6535 Gau-Algesheim Treibladungsaufbau
FR2518736B1 (fr) * 1981-12-17 1986-09-26 Poudres & Explosifs Ste Nale Chargements mixtes pour munitions avec douille constitues de poudre propulsive agglomeree et de poudre propulsive en grains
DE3432291A1 (de) * 1984-09-01 1986-03-13 Rheinmetall GmbH, 4000 Düsseldorf Treibladungsmodul

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3815436A1 (de) 1988-05-06 1989-11-16 Muiden Chemie B V Treibladungen fuer grosskalibrige geschosse

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0706025A1 (de) * 1994-10-06 1996-04-10 Giat Industries Patronenhülse für eine Treibladung
FR2725510A1 (fr) * 1994-10-06 1996-04-12 Giat Ind Sa Etui pour un chargement propulsif
US5672842A (en) * 1994-10-06 1997-09-30 Giat Industries Case for propellant charge
EP0754927A1 (de) * 1995-07-20 1997-01-22 Giat Industries System zum Zünden einer Treibladung insbesondere für Feldgeschütze und sein Herstellungsverfahren
FR2737002A1 (fr) * 1995-07-20 1997-01-24 Giat Ind Sa Systeme d'allumage d'une charge propulsive, notamment pour munition d'artillerie de campagne, et son procede de fabrication
US5712444A (en) * 1995-07-20 1998-01-27 Giat Industries Priming mechanism for a propellant charge notably for field artillery ammunition and its manufacturing process
EP2045568A1 (de) * 2007-10-03 2009-04-08 Saab Ab Treibladung für rückstossfreie Gewehre
US7908971B2 (en) 2007-10-03 2011-03-22 Saab Ab Propellant charge for recoilless gun
JP2012021685A (ja) * 2010-07-13 2012-02-02 Asahi Kasei Chemicals Corp 発射装薬
CN103267453A (zh) * 2013-05-27 2013-08-28 湖北航天化学技术研究所 一种燃气发生剂药柱

Also Published As

Publication number Publication date
EP0499244A3 (en) 1993-03-24
EP0499244B1 (de) 1997-04-16
DE59208344D1 (de) 1997-05-22
DE4204318A1 (de) 1992-08-20

Similar Documents

Publication Publication Date Title
DE2402431A1 (de) Treibmittelladung fuer eine patrone
DE2753721A1 (de) Anzuendelement mit verstaerkungsladung
DE69123434T2 (de) Teleskopische Munitionskartrische
DE2804270A1 (de) Artilleriegeschoss mit bodensogreduzierung
DE3500784A1 (de) Verfahren zur herstellung von progressiv brennendem artillerietreibladungspulver und hierfuer geeignetes agens
EP0163886B1 (de) Treibladungsanzünder
DE3316440C2 (de)
EP0499244B1 (de) Treibladungsmodul
DE1011781B (de) Patrone mit mindestens zwei hintereinander angeordneten Geschossen
DE69925247T2 (de) Verfahren zum zünden von geschütztreibladungen, geschütztreibladungsmodul und geschütztreibladung
DE60221659T2 (de) Treibladungspulver für rohrwaffen
EP0238959A2 (de) Selbsttragender Treibladungskörper und daraus hergestellte Kompaktladung
DE4445990C2 (de) Patrone mit einer Patronenhülse und einem Pfeilgeschoß
DE69109982T2 (de) Anzündeinlage für die Haupttreibladung einer teleskopischen Munition.
DE3915148C2 (de) Beschleunigungstriebwerk
EP0237711B1 (de) Treibladungsanzünder
DE19844488A1 (de) Pyrotechnischer Antrieb,insbesondere für Fahrzeuginsassen-Rückhaltesysteme
DE3701145A1 (de) Treibladungsanzuender
DE1553990A1 (de) Raketen-Boostersystem
CH691410A5 (de) Patrone mit einer Patronenhülse und einem Pfeilgeschoss.
DE3821276C1 (de)
DE3543939A1 (de) Anordnung zum verhindern einer vorzeitigen zuendung eines geschosses
DE2520882C1 (de) Ein- oder mehrbasige Pulverk¦rper für Treibladungen und Verfahren zu ihrer Herstellung
DE2437869A1 (de) Geschoss zum abfeuern aus einem geschuetz
DE1915878C3 (de) Raketenbrennkammer für ein Raketengeschoß

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19930429

17Q First examination report despatched

Effective date: 19941114

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DYNAMIT NOBEL GMBH EXPLOSIVSTOFF- UND SYSTEMTECHNI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59208344

Country of ref document: DE

Date of ref document: 19970522

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970715

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020115

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020207

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020425

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030902

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050213