[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0488862A1 - Lutte contre le brouillard acide dans l'extraction électrolytique de métaux - Google Patents

Lutte contre le brouillard acide dans l'extraction électrolytique de métaux Download PDF

Info

Publication number
EP0488862A1
EP0488862A1 EP91403156A EP91403156A EP0488862A1 EP 0488862 A1 EP0488862 A1 EP 0488862A1 EP 91403156 A EP91403156 A EP 91403156A EP 91403156 A EP91403156 A EP 91403156A EP 0488862 A1 EP0488862 A1 EP 0488862A1
Authority
EP
European Patent Office
Prior art keywords
polyelectrolyte
styrene
foam
metal
sulfonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP91403156A
Other languages
German (de)
English (en)
Inventor
John Reginald Dr. Goulding
Derek Clark
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Chimie SAS
Rhodia Ltd
Original Assignee
Rhone Poulenc Chimie SA
Rhone Poulenc Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Poulenc Chimie SA, Rhone Poulenc Chemicals Ltd filed Critical Rhone Poulenc Chimie SA
Publication of EP0488862A1 publication Critical patent/EP0488862A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/16Electrolytic production, recovery or refining of metals by electrolysis of solutions of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions

Definitions

  • the present invention relates to the problems associated with the formation of acid mist during the electrolytic recovery of metals.
  • electrolysis is used both for electroplating and for the recovery of metals.
  • the goal is to deposit a smooth layer of metal on the substrate; this is generally achieved by using an alkaline electrolytic bath with relatively low current densities, so as to deposit a layer of metal slowly and regularly.
  • strongly acidic conditions are applied with relatively high current densities, since the aim is to cause the deposition of the regenerated metal on the electrode in such a way that it can be easily detached by scraping.
  • a main problem associated with electrolytic recovery processes is the formation of an acid mist which results from the evolution of gases, mainly hydrogen, during the electrolysis process.
  • This acid mist is a health hazard and attempts have been made to remove it by various methods. These were both mechanical and chemical. Chemical treatments usually work by creating a surface layer of foam on the electrolyte. This surface layer of foam covers the fog and thus reduces the risks.
  • the foam layer should be about 2 cm thick. In practice, it generally proves necessary to use an antifoaming agent in conjunction with these surfactants in order to achieve the appropriate foam height. In addition, it has been found that many of these surfactants are attacked by the strongly acidic and oxidative nature of the electrolyte while others affect the efficiency of the electrolysis cell and the quality of the electrolyte. metallic deposit.
  • the foaming agent does not interfere with the "edge" of the metal deposit, since this edge is necessary if the deposit must be effectively detached from the electrode by mechanical scissors.
  • the foaming agent it is desirable for the foaming agent to be effective at temperatures of up to approximately 50 ° C., since it is difficult to keep the cells very below this temperature, especially in hot weather. It is desirable that the atmospheric concentration of sulfuric acid (the acid normally used) is not more than 1 mg.m ⁇ 3.
  • a method for the electrolytic recovery of a metal which consists in electrolyzing an acidic solution of the metal, the solution containing, in the dissolved state, an anionic or cationic polyelectrolyte which is ionized under the conditions of 'electrolysis employed and whose molecule has a hydrophobic fragment so that the surface tension of the surface of the bath is sufficiently reduced to produce a foam.
  • the polyelectrolyte also has a hydrophilic fragment which is not ionized under the conditions of electrolysis; it is believed that this hydrophilic moiety can improve the solubility of the polyelectrolyte.
  • the present invention is applicable to the electrolytic recovery of metals which can be recovered under acidic conditions, typically using sulfuric acid.
  • metals include cobalt, nickel, chromium, thallium and indium and, in particular, zinc, cadmium, copper and manganese, for example.
  • the following description refers in particular to zinc, but those skilled in the art will realize that by making routine modifications the invention can be applied to other metals which can be recovered by carrying out acid electrolysis.
  • the polyelectrolytes used in the present invention are preferably those in which the iosinating groups are not part of the polymer backbone but are presented as side groups.
  • Particularly preferred polyelectrolytes are polymers containing sulfonate side groups, generally derived from styrene sulfonic acid or a salt thereof as a monomer. Note however that the functional group can be anionic or cationic.
  • Other monomers which can be used include vinylsulfonic acid, vinylphosphonic acid, 2-acrylamidomethylpropane-sulfonic acid and 2- and 4-vinylpyridines, and their salts, generally the sodium salt.
  • the molecular weight of the polyelectrolyte is not particularly critical; values from 104 to 107, especially from 105 to 106, are generally appropriate.
  • the polyelectrolyte used in the present invention can be a homopolymer or a copolymer. It will be noted that the balance between the effect of lowering the surface tension and the effect of increasing viscosity can be modified by choosing the relative proportions of the hydrophobic unit and any hydrophilic unit which may be included.
  • Suitable hydrophobic monomers which can be used to obtain the copolymers include ethylenically unsaturated hydrocarbons which may be aromatic, such as styrene and alkylstyrenes, or aliphatic such as olefins, for example butene and diisobutylene. It is clear that the monomers must not contain units capable of being attacked by the electrolysis medium such as ester, amide, ether, keto and halogen atoms groups.
  • Suitable monomers of this type which are not necessarily ionized under the conditions of electrolysis, include ethylenically unsaturated acids such as acrylic, methacrylic, crotonic, itaconic and maleic acids.
  • Preferred polymers include those derived from 4-vinylpyridine and 4-styrene-sulfonic acid, especially the copolymers of 4-vinylpyridine and styrene and a poly (4-styrene-sulfonic acid) which is particularly preferred.
  • these substances can be prepared using conventional polymerization techniques such as bulk, emulsion, precipitation and solution polymerization.
  • the preferred polymers not only produce the required amount of foam without affecting the efficiency of the cell or the quality of the metal, but also are substantially attacked by the electrolyte.
  • these polymers are compatible with licorice, gelatin (which promotes the formation of a smooth and even metallic deposit on the electrode) and a silicate, which have been traditionally used.
  • the electrolyte ordinarily contains approximately 25 to 150 g / l, more particularly 40 to 60 g / l, of zinc and 75 to 250 g / l, more particularly 150 to 180 g / l, of free sulfuric acid, usually with an aluminum cathode and a lead anode containing, for example, 0.5 to 1% silver.
  • the current density used in the recovery of zinc is 300 to 500 or 600 A / m2, generally with a cell voltage of 3.4 to 3.6 V, while for copper, it is approximately 200 A / m2.
  • the working temperature is typically 35 to 40 ° C.
  • polyelectrolyte used obviously depend to a certain extent on the nature of the substance, but amounts of 0.1 to 20 parts per million, in particular 0.25 to 5 parts per million are generally suitable.
  • the ability of a foam to reduce the formation of acid fog is estimated qualitatively by keeping a wet strip of litmus paper about 3 cm above it. of the surface of the foam subjected to dynamic foaming.
  • the thickness of foam in steady state is the thickness of foam obtained with an air flow of approximately 1 1 / min maintained for at least 30 min.
  • the term “fleeting” designates a foam which collapses (when the supply of air bubbles stops) in less than 5 seconds; the term “unstable” designates a foam which persists for a maximum of 30 seconds; “average” applies to a foam life of 5 minutes maximum; “stable” indicates a foam life of up to 1 hour.
  • a "good” barrier indicates that the color of litmus paper varied little if not at all in 1 minute; “medium” means that 2 to 5 isolated color spots have developed in 1 minute; “bad” means that large ranges of color have developed within 1 minute.
  • Copoly (4-vinylpyridine / styrene) and poly (4-styrene-sodium sulfonate) were both found to be chemically stable in the electrolysis medium at room temperature and gave dynamic foam thicknesses under steady state conditions. 1-3 cm at concentrations of 0.002-0.01%. Foams were good covers against acid spraying. During storage, the copoly (4-vinylpyridine / styrene) gradually lost its foaming power, while the polysulfonate was not affected.
  • the foaming power of the vinylpyridine polymer decreased progressively at 45 ° C (although it remained effective for at least 40 hours when added at a percentage of 0.01%) and decreased rapidly (> 24 h ) at 55 ° C.
  • Sodium poly (4-styrene-sulfonate) was not affected by storage at 55 ° C for 2 days, the foam continuing to form a good barrier against acid fog.
  • Poly (ethylene-imine) and 80% ethoxylated poly (ethylene-imine) had no effect on the foaming properties of the medium. It also appeared that oxidation by the medium occurred at the temperature ambient, as revealed by the disappearance of color (without precipitate) for the more concentrated solutions (0.1%).
  • All the polymers are introduced into the electrolysis medium in an aqueous solution at 20% by weight.
  • the concentration by weight of the polymer in the electrolysis medium is 10 p.p.m. (parts per milion).
  • 90:10 means in the case for example of copoly (sodium 4-styrene sulfonate / acrylic acid), a copolymer comprising 90% by weight of sodium 4-styrene sulfonate and 10% by weight of acrylic acid.
  • Different polymers are introduced at a concentration of 10 p.p.m. comprising several ionized species.
  • the same polymer is introduced, namely poly (sodium 4-styrene sulfonate) at a concentration of 40 ppm, but having different molecular weights.
  • poly (sodium 4-styrene sulfonate) at a concentration of 40 ppm, but having different molecular weights.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

L'invention concerne un procédé pour la récupération électrolytique d'un métal qui consiste à électrolyser une solution acide du métal, la solution contenant, à l'état dissous, un polyélectrolytique anionique ou cationique qui est ionisé dans les conditions d'électrolyse employées et dont la molécule possède un fragment hydrophobe de sorte que la tension superficielle de la surface du bain soit suffisamment réduite pour produire une mousse. Le procédé selon l'invention est plus particulièrement utilisable dans les procédés de récupération électrolytique du zinc.

Description

  • La présente invention concerne les problèmes associés à la formation de brouillard acide au cours de la récupération électrolytique de métaux.
  • Il est bien connu que l'électrolyse est utilisée tant pour la la galvanoplastie que pour la récupération de métaux. Dans le premier cas, le but est de déposer une couche lisse de métal sur le substrat ; on y parvient généralement en utilisant un bain électrolytique alcalin avec des densités de courant relativement faibles, de manière à déposer une couche de métal lentement et régulièrement. En revanche, dans la récupération électrolytique de la plupart des métaux, on applique des conditions fortement acides avec des densités de courant relativement élevées, car le but est de provoquer le dépôt du métal régénéré sur l'électrode de telle manière qu'il puisse en être facilement détaché par raclage.
  • Un principal problème associé aux procédés de récupération électrolytique, à la différence des procédés de galvanoplastie, est la formation d'un brouillard acide qui résulte du dégagement de gaz, principalement de l'hydrogène, au cours du processus d'électrolyse. Ce brouillard acide est un danger pour la santé et l'on a tenté de le supprimer par diverses méthodes. Celles-ci ont été aussi bien mécaniques que chimiques. Les traitements chimiques agissent habituellement en créant une couche superficielle de mousse sur l'électrolyte. Cette couche superficielle de mousse recouvre le brouillard et réduit ainsi les risques.
  • Divers agents tensio-actifs abaissant la tension superficielle ont été proposés à cet effet, y compris des alcane-sulfonates, des éthers d'alkylphénol et de polyglycol et des naphtalène-sulfonates, mais aucun d'entre eux ne s'est montré tout à fait satisfaisant car les conditions requises d'une substance satisfaisante sont très rigoureuses.
  • On se rendra compte qu'il est important de maîtriser le niveau de mousse car si celle-ci est trop épaisse, elle risque d'emprisonner l'hydrogène qui est libéré. Par contre, si elle est trop mince, elle ne remplit pas sa fonction prévue. En général, la couche de mousse doit avoir une épaisseur d'environ 2 cm. En pratique, il se révèle généralement nécessaire d'utiliser un agent antimousse conjointement à ces agents tensio-actifs afin de parvenir à la hauteur de mousse appropriée. En outre, il a été constaté qu'un grand nombre de ces agents tensio-actifs sont attaqués par la nature fortement acide et oxydante de l'électrolyte tandis que d'autres affectent l'efficacité de la cellule d'électrolyse et la qualité du dépôt métallique. A cet égard, il importe que l'agent moussant n'interfère pas avec le "bord" du dépôt métallique, car ce bord est nécessaire si le dépôt doit être détaché efficacement de l'électrode par des ciseaux mécaniques. Enfin, il est souhaitable que l'agent moussant soit efficace à des températures allant jusqu'à 50°C environ, car il est difficile de maintenir les cellules très au-dessous de cette température, notamment par temps chaud. Il est souhaitable que la concentration atmosphérique d'acide sulfurique (l'acide normalement utilisé) ne soit pas supérieure à 1 mg.m⁻3.
  • En pratique, l'agent moussant le plus généralement utilisé est la réglisse. Celle-ci produit une mousse robuste, bien maîtrisée, qui n'affecte pas excessivement l'efficacité de la cellule ou la qualité du métal produit. Malheureusement, elle n'est pas efficace comme agent moussant aux températures supérieures à 38°C environ. Cela limite sévèrement son utilisation car il est difficile et coûteux de maintenir la température à cette valeur par temps chaud. On a donc besoin d'une substance qui produise le niveau désirée de mousse et qui soit stable dans les conditions d'électrolyse jusqu'à des 35 températures de l'ordre de 50°C.
  • Selon la présente invention, on a maintenant découvert que ces résultats peuvent être atteints non par l'utilisation d'agents tensio-actifs classiques abaissant la tension superficielle, mais par l'utilisation d'électrolytes polymères. On pense que ces polyélectrolytes agissent en exerçant un effet d'augmentation de viscosité superficielle sur les lamelles de mousse conjugué à un effet suffisant d'abaissement de la tension superficielle, sans produire d'abondantes quantités de mousse ; l'augmentation de viscosité diminue l'écoulement et, par suite, prolonge la vie de la mousse.
  • Selon la présente invention, il est fourni un procédé pour la récupération électrolytique d'un métal qui consiste à électrolyser une solution acide du métal, la solution contenant, à l'état dissous, un polyélectrolyte anionique ou cationique qui est ionisé dans les conditions d'électrolyse employées et dont la molécule possède un fragment hydrophobe de sorte que la tension superficielle de la surface du bain soit suffisamment réduite pour produire une mousse. De préférence, le polyélectrolyte possède également un fragment hydrophile qui n'est pas ionisé dans les conditions d'électrolyse ; on pense que ce fragment hydrophile peut améliorer la solubilité du polyélectrolyte.
  • La présente invention est applicable à la récupération électrolytique de métaux qui peuvent être récupérés dans des conditions acides, typiquement en utilisant l'acide sulfurique. Ces métaux comprennent le cobalt, le nickel, le chrome, le thallium et l'indium et, en particulier, le zinc, le cadmium, le cuivre et le manganèse, par exemple. La description qui suit se réfère en particulier au zinc, mais l'homme de l'art se rendra compte qu'en apportant des modifications de routine l'invention peut s'appliquer aux autres métaux qui peuvent être récupérés en effectuant une électrolyse acide.
  • Les polyélectrolytes utilisés dans la présente invention sont de préférence ceux dans lesquels les groupes iosinants ne font pas partie du squelette du polymère mais se présentent comme des groupes latéraux. Des polyélectrolytes particulièrement préférés sont les polymères contenant des groupes latéraux sulfonate, généralement dérivés d'acide styrène-sulfonique ou d'un sels de celui-ci en tant que monomère. On notera cependant que le groupement fonctionnel peut être anionique ou cationique. D'autres monomères qui peuvent être utilisés comprennent l'acide vinylsulfonique, l'acide vinylphosphonique, l'acide 2-acrylamidométhylpropane-sulfonique et les 2- et 4-vinylpyridines, et leurs sels, généralement le sel de sodium.
  • Le poids moléculaire du polyélectrolyte n'est pas particulièrement déterminant ; des valeurs de 10⁴ à 10⁷, notamment de 10⁵ à 10⁶, sont généralement appropriées.
  • Le polyélectrolyte utilisé dans la présente invention peut être un homopolymère ou un copolymère. On notera que l'équilibre entre l'effet d'abaissement de la tension superficielle et l'effet d'augmentation de viscosité peut être modifié en choisissant les proportions relatives du motif hydrophobe et de tout motif hydrophile qui peut être inclus.
  • Des monomères hydrophobes appropriés que l'on peut utiliser pour obtenir les copolymères comprennent des hydrocarbures éthyléniquement insaturés qui peuvent être aromatiques, tels que le styrène et les alkylstyrènes, ou aliphatiques tels que les oléfines, par exemple le butène et le diisobutylène. Il est clair que les monomères ne doivent pas contenir de motifs susceptibles d'être attaqués par le milieu d'électrolyse tels que des groupes ester, amide, éther, céto et des atomes d'halogènes.
  • La présence de fragments hydrophiles dans les polymères améliore la solubilité. Des monomères appropriés de ce type, quine sont pas nécessairement ionisés dans les conditions d'électrolyse, comprennent des acides éthyléniquement insaturés tels que les acides acrylique, méthacrylique, crotonique, itaconique et maléique.
  • L'homme de l'art reconnaîtra évidemment qu'il est aisé de faire varier les proportions des motifs dans le copolymère pour obtenir les effets de tension superficielle et d'augmentation de viscosité souhaités, ces derniers étant réalisés principalement en ajustant le poids moléculaire du polymère.
  • Les polymères préférés comprennent ceux dérivés de la 4-vinylpyridine et de l'acide 4-styrène-sulfonique, notamment les copolymères de 4-vinylpyridine et de styrène et un poly(acide 4-styrène-sulfonique) qui est particulièrement préféré.
  • On notera que ces substances peuvent être préparées en utilisant des techniques classiques de polymérisation telles que la polymérisation en masse, en émulsion, par précipitation et en solution.
  • Il a été constaté que les polymères préférés non seulement produisent la quantité requise de mousse sans affecter l'efficacité de la cellule ou la qualité du métal, mais également sont sensiblement inattaqués par l'électrolyte. En outre, il a été constaté que ces polymères sont compatibles avec la réglisse, la gélatine (qui favorise la formation d'un dépôt métallique lisse et égal sur l'électrode) et un silicate, qui ont été traditionnellement employés.
  • Dans la récupération électrolytique du zinc, l'électrolyte contient ordinairement environ 25 à 150 g/l, plus particulièrement 40 à 60 g/l, de zinc et 75 à 250 g/l, plus particulièrement 150 à 180 g/l, d'acide sulfurique libre, en général avec une cathode en aluminium et une anode en plomb contenant, par exemple, 0,5 à 1 % d'argent. D'autre part, pour le cuivre par exemple, on utilise généralement 25 à 30 g/l de cuivre avec une quantité similaire d'acide sulfurique libre. Typiquement, la densité de courant utilisée dans la récupération du zinc est de 300 à 500 ou 600 A/m², généralement avec une tension de cellule de 3,4 à 3,6 V, tandis que pour le cuivre, elle est d'environ 200 A/m². La température de travail est typiquement de 35 à 40°C.
  • Les quantités de polyélectrolyte utilisées dépendent évidemment dans une certaine mesure de la nature de la substance, mais des quantités de 0,1 à 20 parties par million, notamment de 0,25 à 5 parties par million- sont généralement appropriées.
  • Les Exemples suivants illustrent davantage la présente invention.
  • EXEMPLES
  • On utilise le milieu synthétique d'électrolyse suivant :
    Figure imgb0001
  • Divers polymères sont ajoutés au milieu d'électrolyse et mis à l'essai. Le pouvoir moussant dynamique est examiné par insufflation de bulles d'air dans le milieu auquel la solution de polymère a été appliquée au moyen d'un distributeur en verre fritté de porosité 3. Pour certains, les propriétés de moussage sont également étudiées par une méthode des normes ASTM (Méthode de la Hauteur de Mousse " Ross-Miles").
  • L'aptitude d'une mousse à réduire la formation de brouillard acide est estimée qualitativement en maintenant un ruban humide de papier tournesol à environ 3 cm au-dessus de la surface de la mousse soumise au moussage dynamique.
  • Les résultats obtenus peuvent être trouvés dans les Tableaux suivants qui incluent l'effet du stockage et de la température sur les résultats. Les polymères examinés sont détaillés ci-dessous :
       Copoly(4-vinylpyridine/styrène) (teneur en styrène : 10 %), poudre (Aldrich)
       Poly(éthylène-imine), solution à 50 % en poids dans l'eau. P.M. moyen = 50 000 à 60 000 (Aldrich).
       Poly(éthylène-imine) éthoxylée à 80 %, solution à 37 % en poids dans l'eau. P.M. du polymère de base = 5000 (Aldrich).
       Poly( 4-styrène-sulfonate de sodium ), solution à 20 % en poids dans l'eau (Aldrich). P. M. approximatif = 4 x 10⁵.
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005
    Figure imgb0006
  • Sur le Tableau 1, l'épaisseur de mousse en régime permanent est l'épaisseur de mousse obtenue avec un débit d'air d'environ 1 1/min maintenu pendant au moins 30 min. Le terme "fugace" désigne une mousse qui s'effondre (à l'arrêt de l'alimentation en bulles d'air ) en moins de 5 secondes ; le terme "instable" désigne une mousse qui persiste 30 secondes au maximum ; "moyenne" s'applique à une vie de mousse de 5 minutes au maximum ; "stable" indique une durée de vie de mousse allant jusqu'à 1 heure. Dans l'essai concernant la formation de brouillard acide, une barrière "bonne" indique que la couleur du papier tournesol a peu sinon pas du tout varié en 1 minute ; "moyenne" signifie que 2 à 5 taches de couleur isolées se sont développés en 1 minute ; "mauvaise" signifie que de grandes plages de couleur se sont développées en 1 minute.
  • Le copoly(4-vinylpyridine/styrène) et le poly(4-styrène-sulfonate de sodium) se sont montrés tous deux chimiquement stables dans le milieu d'électrolyse à la température ambiante et ont donné des épaisseurs de mousse dynamiques en régime permanent de 1-3 cm à des concentrations de 0,002-0,01 %. Les mousses constituaient de bonnes couvertures contre la pulvérisation d'acide. Au stockage, le copoly(4-vinylpyridine/styrène) a perdu progressivement son pouvoir moussant, tandis que le polysulfonate n'a pas été affecté. De même, le pouvoir moussant du polymère de vinylpyridine a diminué progressivement à 45°C (bien qu'il soit resté efficace pendant au moins 40 heures en étant ajouté à un pourcentage de 0,01 %) et a diminué rapidement (>24 h) à 55°C. Le poly(4-styrène-sulfonate de sodium) n'a pas été affecté par un stockage à 55°C pendant 2 jours, la mousse continuant à former une bonne barrière contre le brouillard acide.
  • La poly(éthylène-imine) et la poly(étylène-imine) éthoxylée à 80 % n'avaient pas d'effet sur les propriétés de moussage du milieu. Il est également apparu qu'une oxydation par le milieu se produisait à la température ambiante, comme révélé par la disparition de couleur (sans précipité) pour les solutions plus concentrées (0,1%).
  • D'après le Tableau 2, on peut voir que les deux agents tensio-actifs non polymères offrent un moussage beaucoup plus important et des mousses bien plus stables.
  • Des essais à l'échelle réelle ont montré que des quantités bien plus faibles des polyélectrolytes sont efficaces. Ainsi, on a constaté que le poly(4-styrène-sulfonate de sodium) agit de façon satisfaisante dans une installation en vraie grandeur à une concentration de 1 partie par million.
  • Dans les exemples suivants, on utilise toujours le même milieu d'électrolyse décrit en détail ci-dessus dans les exemples précédents et le pouvoir moussant est également examiné par insufflation de bulles d'air dans le milieu auquel la solution de polymère a été appliquée au moyen d'un distributeur en verre fritté de porosité 3.
  • Tous les polymères sont introduits dans le milieu d'électrolyse en solution aqueuse à 20 % en poids.
  • Première série d'essais :
  • On introduit différents polymères comportant des parties hydrophiles et non ionisés dans les conditions électrolytiques.
  • La concentration en poids du polymère dans le milieu d'électrolyse est de 10 p.p.m. (parties par milion).
  • Les résultats obtenus sont rassemblés dans le tableau 3 ci-après
    Figure imgb0007
  • 90:10 veut dire dans le cas par exemple du copoly(4-styrène sulfonate de sodium/acide acrylique), un copolymère comportant 90 % en poids de 4-styrène sulfonate de sodium et 10 % en poids d'acide acrylique.
  • Du tableau 3, il apparaît que la hauteur de mousse peut être réglée par la sélection de comomères hydrophiles non ionisés.
  • Deuxième série d'essais :
  • On introduit différents polymères comportant des parties hydrophobes à la concentration de 10 p.p.m. Les résultats obtenus sont rassemblés dans le tableau 4 ci-après.
    Figure imgb0008
  • Du tableau 4, il pparaît que la hauteur de la mousse peut être réglée par l'incorporation d'un comonomère hydrophobe.
  • Troisième série d'essais :
  • On introduit différents polymères à une concentration de 10 p.p.m. comportant plusieurs espèces ionisées.
  • Les résultats obtenus sont rassemblés dans le tableau 5 ci-après.
    Figure imgb0009
  • Il ressort du tableau 5 que l'on peut régler la hauteur de la mousse en copolymérisant plusieurs espèces ionisées sous les conditions électrolytiques. Comme on pouvait le prévoir, l'effet n'est pas aussi important qu'avec des comonomères non ionisés.
  • Quatrième série d'essais
  • On introduit le même polymère, à savoir le poly(4-styrène sulfonate de sodium) à une concentration de 40 p.p.m., mais présentant des poids moléculaires différents. Les résultats sont rassemblés dans le tableau 6 ci-après.
    Figure imgb0010
  • Du tableau 6, il apparaît qu'on peut contrôler la hauteur de mousse et sa stabilité, en règlant le poids moléculaire du polymère.
  • En faisant varier les paramètres illustrés dans les 4 séries d'essais ci-dessus, on voit que l'on peut choisir un polymère qui soit adapté à l'obtention d'une hauteur de mousse et d'une stabilité de mousse optimum pour un système donné.

Claims (11)

  1. Un procédé pour la récupération électrolytique d'un métal qui consiste à électrolyser une solution acide du métal, la solution contenant, à l'état dissous, un polyélectrolyte anionique ou cationique qui est ionisé dans les conditions d'électrolyse employées et dont la molécule possède un fragment hydrophobe de sorte que la tension superficielle de la surface du bain soit suffisamment réduite pour produire une mousse.
  2. Un procédé selon la revendication 1, dans lequel le métal est le zinc.
  3. Un procédé selon la revendication 1 ou 2, dans lequel le polyélectrolyte possède un fragment hydrophile qui n'est pas ionisé dans les conditions d'électrolyse.
  4. Un procédé selon l'une quelconque des revendications 1 à 3, dans lequel les groupes ionisants dudit polyélectrolyte ne font pas partie du squelette du polymère.
  5. Un procédé selon la revendication 4, dans lequel le polyélectrolyte contient des groupes sulfonate latéraux.
  6. Un procédé selon l'une quelconque des revendications 1 à 4, dans lequel le polyélectrolyte est dérivé d'acide styrène-sulfonique, d'acide vinylsulfonique, d'acide vinylphosphonique, d'acide 2-acrylamidométhylpropane-sulfonique ou de 2- ou 4-vinylpyridine, ou d'un sel de ceux-ci.
  7. Un procédé selon l'une quelconque des revendications précédentes, dans lequel le fragment hydrophobe est dérivé de styrène, d'un alkylstyrène ou d'une oléfine aliphatique.
  8. Un procédé selon l'une quelconque des revendications 3 à 7, dans lequel le fragment hydrophile est dérivé d'acide acrylique, méthacrylique, crotonique, itaconique ou maléique.
  9. Un procédé selon la revendication 1 ou 2, dans lequel le polyélectrolyte est un copolymère de 4-vinylpyridine et de styrène ou un poly(acide 4-styrène-sulfonique).
  10. Un procédé selon l'une quelconque des revendications précédentes, dans lequel le polyélectrolyte est présent en une quantité de 0,25 à 5 parties par million.
  11. Un procédé selon l'une quelconque des revendications précédentes, dans lequel le polyélectrolyte a un poids moléculaire de 10⁴ à 10⁷.
EP91403156A 1990-11-27 1991-11-22 Lutte contre le brouillard acide dans l'extraction électrolytique de métaux Ceased EP0488862A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9025780A GB2250515B (en) 1990-11-27 1990-11-27 Controlling acid misting during electrolytic recovery of metals
GB9025780 1990-11-27

Publications (1)

Publication Number Publication Date
EP0488862A1 true EP0488862A1 (fr) 1992-06-03

Family

ID=10686066

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91403156A Ceased EP0488862A1 (fr) 1990-11-27 1991-11-22 Lutte contre le brouillard acide dans l'extraction électrolytique de métaux

Country Status (5)

Country Link
EP (1) EP0488862A1 (fr)
JP (1) JPH0794717B2 (fr)
CA (1) CA2056822A1 (fr)
FI (1) FI915562A (fr)
GB (1) GB2250515B (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995030783A1 (fr) * 1994-05-05 1995-11-16 Minnesota Mining And Manufacturing Company Suppression de brouillard acide pour l'extraction electrolytique de metal par solvant
US6258245B1 (en) * 1998-11-19 2001-07-10 Betzdearborn Inc. Copper leach process aids
US11807952B2 (en) 2021-10-07 2023-11-07 Freeport Minerals Corporation Acid mist suppression in copper electrowinning

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2845928T3 (pl) 2013-09-05 2020-05-18 Macdermid Enthone Inc. Wodna kompozycja elektrolitu o obniżonej emisji do atmosfery
RU2628946C2 (ru) * 2015-10-29 2017-08-23 Игорь Владимирович Федосеев СПОСОБ ПРИГОТОВЛЕНИЯ ЧИСТОГО ЭЛЕКТРОЛИТА CuSO4 ИЗ МНОГОКОМПОНЕНТНЫХ РАСТВОРОВ И ЕГО РЕГЕНЕРАЦИЯ ПРИ ПОЛУЧЕНИИ КАТОДНОЙ МЕДИ ЭЛЕКТРОЛИЗОМ С НЕРАСТВОРИМЫМ АНОДОМ
RU2667927C1 (ru) * 2017-12-28 2018-09-25 Общество С Ограниченной Ответственностью "Сдп-М" Способ получения меди высокой чистоты
WO2020188839A1 (fr) * 2019-03-20 2020-09-24 東ソー・ファインケム株式会社 Nouveau polyampholyte à base de polystyrène ayant une température critique supérieure, et application associée

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2913377A (en) * 1956-06-11 1959-11-17 Udylite Res Corp Aqueous electrolytic process
US2978394A (en) * 1958-02-25 1961-04-04 American Cyanamid Co Polyelectrolytes in electrolysis
EP0027322A1 (fr) * 1979-10-10 1981-04-22 Inco Limited Procédé pour la production électrolytique de métaux
GB2077765A (en) * 1980-06-16 1981-12-23 Minnesota Mining & Mfg Mist suppressant

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1102692A (en) * 1964-03-03 1968-02-07 Canning And Company Ltd W Fluorinated aromatic compounds
US3657080A (en) * 1968-09-25 1972-04-18 M & T Chemicals Inc Mist suppression in electroplating solutions
SU579348A1 (ru) * 1976-06-28 1977-11-05 Норильский Ордена Ленина И Ордена Трудового Красного Знамени Горнометаллургический Комбинат Им.А.П. Завенягина Способ электролитического обезмеживани растворов
SU596661A1 (ru) * 1976-12-06 1978-03-05 Всесоюзный Ордена Трудового Красного Знамени Научно-Исследовательский Горнометаллургический Институт Цветных Металлов "Вниицветмет" Способ электроосаждени цинка
US4770814A (en) * 1983-08-31 1988-09-13 The Dow Chemical Company Shear stable antimisting formulations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2913377A (en) * 1956-06-11 1959-11-17 Udylite Res Corp Aqueous electrolytic process
US2978394A (en) * 1958-02-25 1961-04-04 American Cyanamid Co Polyelectrolytes in electrolysis
EP0027322A1 (fr) * 1979-10-10 1981-04-22 Inco Limited Procédé pour la production électrolytique de métaux
GB2077765A (en) * 1980-06-16 1981-12-23 Minnesota Mining & Mfg Mist suppressant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995030783A1 (fr) * 1994-05-05 1995-11-16 Minnesota Mining And Manufacturing Company Suppression de brouillard acide pour l'extraction electrolytique de metal par solvant
US6258245B1 (en) * 1998-11-19 2001-07-10 Betzdearborn Inc. Copper leach process aids
US11807952B2 (en) 2021-10-07 2023-11-07 Freeport Minerals Corporation Acid mist suppression in copper electrowinning
US12098474B2 (en) 2021-10-07 2024-09-24 Freeport Minerals Corporation Acid mist suppression in copper electrowinning

Also Published As

Publication number Publication date
FI915562A (fi) 1992-05-28
GB2250515A (en) 1992-06-10
GB2250515B (en) 1994-09-28
JPH06220678A (ja) 1994-08-09
CA2056822A1 (fr) 1992-05-28
JPH0794717B2 (ja) 1995-10-11
GB9025780D0 (en) 1991-01-09
FI915562A0 (fi) 1991-11-26

Similar Documents

Publication Publication Date Title
FR2699556A1 (fr) Bains pour former un dépôt électrolytique de cuivre et procédé de dépôt électrolytique utilisant ce bain.
EP0071512B1 (fr) Procédé de préparation d'un additif pour bain de cuivrage électrolytique acide et son application
EP0113931B1 (fr) Cathode pour la production électrolytique d'hydrogène et son utilisation
EP0488862A1 (fr) Lutte contre le brouillard acide dans l'extraction électrolytique de métaux
FR2658536A1 (fr) Compositions et procedes d'electrodeposition.
CA1182257A (fr) Diaphragme, son procede de preparation et le procede d'electrolyse le mettant en oeuvre
EP1423557B1 (fr) Bain electrolytique pour le depot electrochimique de l'or et de ses alliages
EP1272691B1 (fr) Bain electrolytique destine au depot electrochimique du palladium ou de ses alliages
Low et al. The influence of a perfluorinated cationic surfactant on the electrodeposition of tin from a methanesulfonic acid bath
US3928149A (en) Weak acidic bright ductile zinc electrolyte
FR2551078A1 (fr) Perfectionnements aux compositions pour la dissolution de metaux et procede de dissolution
BE1011218A3 (fr) Procede de fabrication d'une membrane echangeuse d'ions utilisable comme separateur dans une pile a combustible.
EP1268347A1 (fr) Sel complexe de palladium et son utilisation pour ajuster la concentration en palladium d'un bain electrolytique destine au depot du palladium ou d'un de ses alliages
LU83102A1 (fr) Procede de depot electrolytique de chrome au moyen d'un bain de chrome trivalent
FR2899600A1 (fr) Inhibiteurs conditionnels tensioactifs pour le depot electrolytique du cuivre sur une surface
FR2493349A1 (fr) Procede d'obtention de revetements d'or, resistant a la corrosion, sur un substrat et revetements d'or durci notamment par du cobalt ainsi obtenus
CH647009A5 (fr) Bains de galvanisation et procede pour leur mise en oeuvre.
EP0206202A1 (fr) Procédé de stabilisation des générateurs électrochimiques primaires à anodes réactives en zinc, aluminium ou magnesium, anode stabilisée obtenue par ce procédé, et générateur comportant une telle anode
WO2004013382A1 (fr) Bains electrolytiques pour depot d'etain ou d'alliage d'etain
FR2492415A1 (fr)
BE891722A (fr) Bain et procede pour l'electrodeposition d'un alliage nickel-fer brillant
FR2551079A1 (fr) Compositions perfectionnees pour la dissolution de metaux et procede de dissolution
SU1035099A1 (ru) Способ цинковани стальных изделий
FR2600676A1 (fr) Procede d'electrodeposition d'un alliage chrome-fer
JPH05311483A (ja) 錫またははんだめっき浴

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19920629

17Q First examination report despatched

Effective date: 19941006

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19960822