EP0486576B1 - Process for producing manganese-containing zinc phosphate coatings on galvanized steel - Google Patents
Process for producing manganese-containing zinc phosphate coatings on galvanized steel Download PDFInfo
- Publication number
- EP0486576B1 EP0486576B1 EP90912396A EP90912396A EP0486576B1 EP 0486576 B1 EP0486576 B1 EP 0486576B1 EP 90912396 A EP90912396 A EP 90912396A EP 90912396 A EP90912396 A EP 90912396A EP 0486576 B1 EP0486576 B1 EP 0486576B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- phosphating
- galvanized steel
- anions
- steel strip
- electrolytically
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 230000008569 process Effects 0.000 title claims abstract description 39
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims abstract description 36
- 239000008397 galvanized steel Substances 0.000 title claims abstract description 36
- 238000000576 coating method Methods 0.000 title claims description 28
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 title claims description 25
- 229910000165 zinc phosphate Inorganic materials 0.000 title claims description 24
- 239000011572 manganese Substances 0.000 title abstract description 25
- 229910052748 manganese Inorganic materials 0.000 title abstract description 19
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 title abstract description 13
- -1 nickel cations Chemical class 0.000 claims abstract description 31
- 239000002253 acid Substances 0.000 claims abstract description 21
- 230000002378 acidificating effect Effects 0.000 claims abstract description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 230000003213 activating effect Effects 0.000 claims description 4
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 claims description 3
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 3
- 239000000470 constituent Substances 0.000 claims description 2
- ZAUUZASCMSWKGX-UHFFFAOYSA-N manganese nickel Chemical compound [Mn].[Ni] ZAUUZASCMSWKGX-UHFFFAOYSA-N 0.000 claims 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 41
- 239000011701 zinc Substances 0.000 abstract description 33
- 229910052759 nickel Inorganic materials 0.000 abstract description 22
- 229910052725 zinc Inorganic materials 0.000 abstract description 16
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 abstract description 15
- 229910002651 NO3 Inorganic materials 0.000 abstract description 13
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 abstract description 12
- 229910000831 Steel Inorganic materials 0.000 abstract description 6
- 239000010959 steel Substances 0.000 abstract description 6
- 150000007513 acids Chemical class 0.000 abstract description 3
- 150000001450 anions Chemical class 0.000 abstract description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 239000001301 oxygen Substances 0.000 abstract description 2
- 229910052760 oxygen Inorganic materials 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 32
- 239000000243 solution Substances 0.000 description 26
- 230000007797 corrosion Effects 0.000 description 17
- 238000005260 corrosion Methods 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 12
- 239000003973 paint Substances 0.000 description 10
- 229910019142 PO4 Inorganic materials 0.000 description 9
- 239000010452 phosphate Substances 0.000 description 9
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 8
- 150000001768 cations Chemical class 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 239000007921 spray Substances 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 229910001297 Zn alloy Inorganic materials 0.000 description 5
- 238000007598 dipping method Methods 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000001488 sodium phosphate Substances 0.000 description 4
- 229910000162 sodium phosphate Inorganic materials 0.000 description 4
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000004922 lacquer Substances 0.000 description 2
- 229910001437 manganese ion Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910001453 nickel ion Inorganic materials 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 150000003608 titanium Chemical class 0.000 description 2
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical class [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 206010013786 Dry skin Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241001499740 Plantago alpina Species 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000005600 alkyl phosphonate group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 1
- 229940012189 methyl orange Drugs 0.000 description 1
- JCYPECIVGRXBMO-FOCLMDBBSA-N methyl yellow Chemical compound C1=CC(N(C)C)=CC=C1\N=N\C1=CC=CC=C1 JCYPECIVGRXBMO-FOCLMDBBSA-N 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910000159 nickel phosphate Inorganic materials 0.000 description 1
- JOCJYBPHESYFOK-UHFFFAOYSA-K nickel(3+);phosphate Chemical compound [Ni+3].[O-]P([O-])([O-])=O JOCJYBPHESYFOK-UHFFFAOYSA-K 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- SQTLECAKIMBJGK-UHFFFAOYSA-I potassium;titanium(4+);pentafluoride Chemical compound [F-].[F-].[F-].[F-].[F-].[K+].[Ti+4] SQTLECAKIMBJGK-UHFFFAOYSA-I 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910000349 titanium oxysulfate Inorganic materials 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/18—Orthophosphates containing manganese cations
- C23C22/182—Orthophosphates containing manganese cations containing also zinc cations
- C23C22/184—Orthophosphates containing manganese cations containing also zinc cations containing also nickel cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/34—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
- C23C22/36—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
- C23C22/364—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
- C23C22/365—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations containing also zinc and nickel cations
Definitions
- the present invention relates to a method for phosphating electrolytically and / or hot-dip galvanized steel strip with the formation of zinc phosphate layers containing manganese and nickel. These manganese and nickel-containing zinc phosphate layers are applied by spraying, splash-dipping and / or dipping with aqueous solutions.
- manganese-modified zinc phosphate coatings are known as a basis of liability for modern coatings.
- the use of manganese ions in addition to zinc and nickel ions in low-zinc phosphating processes has been shown to improve corrosion protection, in particular when using surface-coated thin sheets.
- the incorporation of manganese into the zinc phosphate coatings leads to smaller and more compact crystals with increased stability to alkali.
- the working range of phosphating baths is increased; Aluminum can also be phosphated in combination with steel and electrolytically or hot-dip galvanized steel to form a layer, whereby the generally achieved quality standard is guaranteed.
- DE-A-32 45 411 discloses a process for the phosphating of electrolytically galvanized metal products, in particular electrolytically galvanized steel strips, by short-term treatment with acid phosphating solutions which, in addition to zinc and phosphate ions, can contain further metal cations and / or anions of oxygen-containing acids with accelerating action .
- acid phosphating solutions which, in addition to zinc and phosphate ions, can contain further metal cations and / or anions of oxygen-containing acids with accelerating action .
- zinc phosphate layers with a mass per unit area of less than 2 g / m 2 are formed. It works with acid phosphating solutions, the content of Zn 2 + cations is about 1 to 2.5 g / I, while the free acid content in the range of 0.8 to 3 points and the total acid / free acid ratio in the range of 5 to 10 are held.
- the duration of the treatment should not be significantly longer than 5 s.
- nitrate-containing phosphating baths are used, the weight ratio of Zn 2+ / NO a - in the range from 1: 1 to 1: 8 and the weight ratio of PO 4 3 - / NO 3 - in the range from 1: 0.1 to 1 : 2.5 is held.
- EP-A-0 106 459 discloses a phosphating process in which zinc phosphate coatings containing manganese and nickel are formed.
- the presence of fluoride ions is considered essential, as is the upper limit of 10 g / l nitrate anions.
- a high nickel phosphating process is known from E-B-0 112 826.
- a molar ratio of nickel to zinc in the range from 5.2: 1 to 16: 1 is assumed.
- a phosphating process is known from EP-A-0 175 606, in which the use of iron-containing phosphating baths in particular is used.
- a number of organic substances are also used as accelerators, while the presence of manganese is not necessary.
- the setting of certain ratios of zinc to nickel and zinc to iron is required.
- JP-A-63-227786 - describes a process for the simultaneous degreasing and phosphating of galvanized steel sheet before cathodic electroplating thereof.
- preformed articles made of galvanized steel sheet are treated with acid phosphating solutions which contain the following components: 0.3 to 1.0 g / I Zn 2+ , 0.4 to 3.5 g / I Ni 2+ , 0.1 up to 3.5 g / I Mn 2+ , 10 to 20 g / I P0 4 3- , 0.5 to 1.5 g / IF, 15 g / I N0 3 -, 0.7 to 6 g / I surfactant , 2 to 6 points accelerator, based on the free acid content of the N0 2 -.
- EP-A-0 060 716 relates to a phosphating process for automobile bodies before a cathodic electro-coating thereof.
- the metal surfaces based on steel or zinc are treated with solutions containing 0.5 to 1.5 g / l zinc ions, 5 to 30 g / l phosphate ions, 0.6 to 3 g / l manganese ions and an accelerator.
- these solutions can contain 0.1 to 4 g / l of nickel ions.
- nitrite ions, m-nitrobenzenesulfonate ions and hydrogen peroxide can be used as accelerators, as well as nitrate and chlorine ions.
- the duration of treatment in the immersion process is at least 15 seconds, in particular 30 to 120 seconds.
- the layer weights of the resulting phosphating layers are in the range from 2.0 to 3.2 g / m 2 .
- EP-A-0 219 779 relates to a process for phosphating electrolytically galvanized metal products, preferably electrolytically galvanized steel strips.
- phosphating solutions which contain 0.1 to 0.8 g / l zinc cations and 0.5 to 2.0 g / l manganese cations and some Free acid content in the range of 4 to 8 points and an acid ratio in the range of 2.5 to 5.
- the solutions may additionally contain cobalt, the cobalt content being 1 part cobalt per 100 to 150 parts (Zn 2+ + Mn 2+ ).
- Layer weights of the phosphating layers of less than 2 g / m 2 result with treatment times that are not significantly more than 5 seconds.
- Nitrate serves as an accelerator.
- the object of the present invention was to avoid darkening of the zinc phosphate layers on electrolytically and / or hot-dip galvanized steel strip at treatment times of 3 to 20 s while maintaining the corrosion protection values.
- the nickel content of processes known from the literature should be greatly reduced by substitution with manganese in order to achieve corrosion protection and paint adhesion, as in the trication processes used in the automotive industry, also in the case of continuous strip phosphating.
- the term “electrolytically and / or hot-dip galvanized steel strip” also includes, of course, generally known zinc alloys (for example “Neuralyt”, ZNE electrolytically applied zinc alloy containing 10 to 13% Ni or “Galvannealed”, ZFE electrolytically applied zinc alloy containing Fe) with a.
- zinc alloys for example “Neuralyt”, ZNE electrolytically applied zinc alloy containing 10 to 13% Ni or “Galvannealed”, ZFE electrolytically applied zinc alloy containing Fe
- zinc alloys is generally understood to mean those zinc alloys which contain at least 45% by weight of zinc.
- the above-mentioned objects are achieved by a method for phosphating electrolytically and / or hot-dip galvanized steel strip with the formation of manganese and nickel-containing zinc phosphate layers, which have a mass per unit area of less than 2 g / m 2 , in particular in the range from 0.7 to 1. 6 g / m 2 , by brief treatment with acid phosphating solutions containing Zn 2 + - , Mn 2 + - , Ni 2 + - , P043 + - and NO 3 - -lons, characterized in that
- the duration of the treatment is 3 to 20 s
- the phosphating is carried out in the temperature range from 40 to 70 ° C. and the phosphating solutions - at least at the beginning of the treatment - contain the following constituents or correspond to the following parameters: in which the weight ratio of Ni 2 + cations to NO 3 - anions in the range from 1:10 to 1:60 and the weight ratio of Mn 2+ cations to N0 3 anions is set in the range from 1: 1 to 1:40.
- the above-mentioned content of PO 4 3- anions also includes HPO 4 2- and H 2 P0 4 - anions and undissociated H 3 PO 4 - in the form of the stoichiometric equivalent of P043- Anions - with a.
- the free acid score is accordingly defined as the number of ml 0.1 N NaOH required to titrate 10 ml bath solution against dimethyl yellow, methyl orange or bromophenol blue.
- the total acid score is calculated as the number of ml of 0.1 N NaOH required to titrate 10 ml of bath solution using phenolphthalein as an indicator until the first pink color.
- the phosphating solutions preferably contain no strong oxidizing agents, such as nitrites, chlorates or hydrogen peroxide.
- An essential part of the present invention is the weight ratio of nickel cations to nitrate anions and the weight ratio of manganese cations to nitrate anions.
- the simultaneous use of nickel and manganese cations leads to improved corrosion protection values, but in the processes known from the literature to a darkening of the zinc phosphate layer.
- the coloring of this zinc phosphate layer does not play a major role in the automotive industry, but the color of the zinc phosphate layer is extremely important, for example, in the manufacture of household appliances due to the very thin layers of lacquer that are often applied in the following.
- Another essential criterion of the present invention is the duration of the phosphating treatment. While times above 120 s are usually used for the phosphating in the automotive industry, a time below 1 min is in any case aimed for in the phosphating of galvanized steel strip. For the purposes of the present invention, the duration of the treatment will therefore be between 3 to 20 s.
- the main advantage of the present invention is that zinc phosphate coatings on galvanized steel strip can be produced according to the invention which have a bright surface appearance, although they contain nickel. At the same time, however, the nickel content could be significantly reduced compared to the prior art by substitution with manganese without loss of the corrosion protection value. This is of ecological as well as economic importance, as it is the first time that a manganese-containing trication process has been described for the band sector.
- a preferred embodiment of the present invention is that the weight ratio of nickel cations to nitrate anions is set in the range from 1:20 to 1:60. In the context of the present invention, it was found that an excessively large amount of nitrate has just as negative an effect on the phosphating process as an excessively low nickel content. This has a negative influence on the corrosion protection values. In a further preferred embodiment of the present invention, the weight ratio of manganese cations to nitrate anions is set in the range from 1: 6 to 1:20. This can have a particularly positive influence on the wet paint adhesion.
- a further preferred embodiment of the present invention is characterized in that the phosphating solutions contain a fluoride anion content of 0.1 to 1.0 g / l, preferably 0.4 to 0.6 g / l.
- fluoride anions is the phosphating solutions in the form of hydrofluoric acid or in the form of sodium or Potassium salts added to this acid.
- complex fluoride compounds such as fluoroborates or fluorosilicates can also be used.
- the phosphating itself takes place at moderately elevated temperatures in the range from about 40 to 70 ° C.
- the temperature range from 55 to 65 ° C. can be particularly suitable. Any technically useful way of applying the treatment solution is suitable. In particular, it is therefore possible to carry out the new method both by means of spraying technology and by immersion.
- the electrolytically and / or hot-dip galvanized surface must be completely water-wettable. This is usually the case in continuously operating conveyor systems. If the surface of the galvanized strip is oiled for storage and corrosion protection, this oil must be removed using suitable means and processes that are already known before phosphating.
- the water-wettable galvanized metal surface is then expediently subjected to an activating pretreatment known per se before the phosphating solution is applied. Suitable pretreatment processes are described in particular in DE-A-20 38 105 and DE-A-20 43 085.
- the metal surfaces to be phosphated subsequently are treated with solutions which contain, as activating agents, essentially titanium salts and sodium phosphate together with organic components such as, for example, alkyl phosphonates or polycarboxylic acids.
- Soluble compounds of titanium such as potassium titanium fluoride and in particular titanyl sulfate can preferably be used as the titanium component.
- Disodium orthophosphate is generally used as the sodium phosphate. Titanium-containing compounds and sodium phosphate are used in such proportions that the titanium content is at least 0.005% by weight, based on the weight of the titanium-containing compound and the sodium phosphate.
- the process according to the invention produces zinc phosphate coatings with a weight per unit area of the zinc phosphate layers of less than 2 g / m 2 , which have a closed, finely crystalline structure and give the electrolytically and / or hot-dip galvanized steel strip a desired, uniform, light gray appearance.
- a steel strip phosphated in this way can also be processed without subsequent coating.
- the thin phosphate layers produced by the method according to the invention behave more favorably in many shaping processes than the phosphate layers of a higher mass per unit area produced with the previously usual methods.
- organic coatings applied subsequently also show significantly improved adhesion compared to the prior art, both during and after the shaping processes.
- surface-based masses of the zinc phosphate layer in the range from 0.7 to 1.6 g / m 2 are produced when using electrolytically galvanized steel strip.
- the production of a mass per unit area of the zinc phosphate layer in the range from 0.8 to 1.6 g / m 2 should be emphasized as particularly advantageous.
- the method according to the invention allows the nickel and manganese-containing zinc phosphate layer to be applied by techniques known per se in the prior art, such as spraying, dipping and / or spray-dipping, in particular their combined methods.
- the acid ratio is determined when using electrolytically galvanized steel strip, i.e. the quotient from “total acid” to “free acid” is set in the range from 25: 1 to 10: 1, preferably in the range from 15: 1 to 10: 1.
- the surface layers produced with the aid of the method according to the invention can be used well in all fields in which phosphate coatings are used.
- a particularly advantageous application is the preparation of the metal surfaces for painting, in particular electrocoating.
- a mass per unit area of 0.6 to 1.6 g / m 2 was produced for electrolytically galvanized steel (ZE) and a mass per unit area of the phosphate layer of 0.8 to 1.6 g / m 2 for hot-dip galvanized steel (Z).
- the substrate to be phosphated was selected to be electrolytically galvanized steel on both sides (7.5 / 7.5 ⁇ m zinc) for the test using the VW-P 1210 alternating climate test and hot-dip galvanized steel (10/10 ⁇ m zinc) for the salt spray test.
- Example 1 The sheets obtained with the aid of Example 1 and the comparative example were used to carry out corrosion tests with an alternating climate in accordance with VW standard P 1210 over a test period of 15 and 30 days, and corrosion tests in a salt spray test in accordance with DIN 50 021 SS, 1008 h.
- blistering that occurs in paints is defined by specifying the degree of blistering.
- the degree of bubbles according to this standard is a measure of the formation of bubbles on a coating according to the frequency of the bubbles per unit area and the size of the bubbles.
- the degree of bubbles is indicated by a code letter and a code number for the frequency of the bubbles per unit area as well as a code letter and a code number for the size of the bubbles.
- the code letter and the code m0 mean no bubbles, while m5 defines a certain frequency of bubbles per unit area according to the degree of bubbles according to DIN 53 209.
- the size of the bubbles is given the code letter g and the code number in the range from 0 to 5.
- Code letter and code number g0 has the meaning of freedom from bubbles, while with g5 the size of the bubbles is shown according to the degree of bubbles in DIN 53 209.
- the degree of bubbles is determined, the image of which is most similar to the appearance of the paint.
- the salt spray test according to this standard is used to determine the behavior of paints, coatings and similar coatings when exposed to sprayed sodium chloride solution. If the coating has weak points, pores or injuries, the coating preferably infiltrates from there. This leads to a reduction in adhesion or to loss of adhesion and corrosion of the metallic surface.
- the salt spray test is used so that such errors can be recognized and the infiltration can be determined.
- the test sheet is bombarded with a defined amount of steel shot with a certain grain size distribution.
- a key figure is assigned to the degree of corrosion.
- the key figure 1 denotes an invisible corrosion, while with a key figure 10 practically the entire surface is corroded.
- the sample is bent for 1 to 2 s with different bending radii parallel to the rolling direction by 180 ° , with the coating on the outside.
- the smallest bending radius which allows the sample to bend without tearing, determines the adherence at a 180 ° bend.
- the sheet is bent evenly through 180 ° within 1 to 2 s without an intermediate layer. The sheet is examined immediately after bending with a magnifying glass that magnifies ten times. The test procedure is made more difficult by firmly pressing an adhesive film onto the edge and tearing it off quickly. The amount of lacquer torn off is then assessed.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft ein Verfahren zur Phosphatierung von elektrolytisch und/oder schmelztauchverzinktem Stahlband unter Ausbildung von mangan- und nickelhaltigen Zinkphosphatschichten. Diese mangan- und nickelhaltigen Zinkphosphatschichten werden durch Spritzen, Spritztauchen und/oder Tauchen mit wäßrigen Lösungen aufgebracht.The present invention relates to a method for phosphating electrolytically and / or hot-dip galvanized steel strip with the formation of zinc phosphate layers containing manganese and nickel. These manganese and nickel-containing zinc phosphate layers are applied by spraying, splash-dipping and / or dipping with aqueous solutions.
Verfahren zum Phosphatieren von Oberflächen aus Eisen, Stahl, Zink und deren Legierungen sowie Aluminium sind seit langem Stand der Technik (Ullmann's Encyklopädie der technischen Chemie, 4. Auflage, Band 15, Seiten 686 und 687). Das Phosphatieren der genannten Oberflächen dient zur Erhöhung der Haftfestigkeit von Lackschichten und zur Verbesserung des Korrosionsschutzes.Processes for phosphating surfaces made of iron, steel, zinc and their alloys as well as aluminum have long been state of the art (Ullmann's Encyklopadie der Technische Chemie, 4th edition, volume 15, pages 686 and 687). The phosphating of the surfaces mentioned serves to increase the adhesive strength of paint layers and to improve corrosion protection.
Aus W.A. Roland und K.-H. Gottwald, "Metalloberfläche", 42. Jahrgang, 1988/6 sind manganmodifizierte Zinkphosphatüberzüge als Haftungsgrund für moderne Lackierungen bekannt. Hier wird ausgeführt, daß der Einsatz von Manganionen neben Zink- und Nickelionen in Niedrigzinkphosphatierverfahren den Korrosionsschutz nachweislich verbessert, insbesondere bei der Verwendung oberflächenveredelter Feinbleche. Der Einbau von Mangan in die Zinkphosphatüberzüge führt zu kleineren und kompakteren Kristallen mit erhöhter Alkalistabilität. Gleichzeitig wird die Arbeitsbreite von Phosphatierbädern erhöht; auch Aluminium kann im Verbund mit Stahl und elektrolytisch oder schmelztauchverzinktem Stahl schichtbildend phosphatiert werden, wobei der allgemein erreichte Qualitätsstandard gewährleistet ist.From W.A. Roland and K.-H. Gottwald, "Metallfläche", 42nd year, 1988/6, manganese-modified zinc phosphate coatings are known as a basis of liability for modern coatings. Here it is stated that the use of manganese ions in addition to zinc and nickel ions in low-zinc phosphating processes has been shown to improve corrosion protection, in particular when using surface-coated thin sheets. The incorporation of manganese into the zinc phosphate coatings leads to smaller and more compact crystals with increased stability to alkali. At the same time, the working range of phosphating baths is increased; Aluminum can also be phosphated in combination with steel and electrolytically or hot-dip galvanized steel to form a layer, whereby the generally achieved quality standard is guaranteed.
Aus der DE-A-32 45 411 ist ein Verfahren zur Phosphatierung von elektrolytisch verzinkten Metallwaren, insbesondere elektrolytisch verzinkten Stahlbändern, durch kurzfristige Behandlung mit sauren Phosphatierungslösungen bekannt, die neben Zink- und Phosphationen weitere Metallkationen und/oder Anionen sauerstoffhaltiger Säuren mit Beschleunigerwirkung enthalten können. Bei diesen Verfahren werden Zinkphosphatschichten einer flächenbezogenen Masse unterhalb von 2 g/m2 ausgebildet. Man arbeitet mit sauren Phosphatierungslösungen, deren Gehalt an Zn2+-Kationen etwa 1 bis 2,5 g/I beträgt, während der Gehalt an Freier Säure im Bereich von 0,8 bis 3 Punkten und das Säureverhältnis Gesamtsäure/Freie Säure im Bereich von 5 bis 10 gehalten werden. Die Dauer der Behandlung soll hierbei nicht wesentlich über 5 s betragen.DE-A-32 45 411 discloses a process for the phosphating of electrolytically galvanized metal products, in particular electrolytically galvanized steel strips, by short-term treatment with acid phosphating solutions which, in addition to zinc and phosphate ions, can contain further metal cations and / or anions of oxygen-containing acids with accelerating action . In these processes, zinc phosphate layers with a mass per unit area of less than 2 g / m 2 are formed. It works with acid phosphating solutions, the content of Zn 2 + cations is about 1 to 2.5 g / I, while the free acid content in the range of 0.8 to 3 points and the total acid / free acid ratio in the range of 5 to 10 are held. The duration of the treatment should not be significantly longer than 5 s.
Vorzugsweise wird mit nitrathaltigen Phosphatierungsbädern gearbeitet, wobei das Gewichtsverhältnis von Zn2+/NOa- im Bereich von 1 : 1 bis 1 : 8 und das Gewichtsverhältnis von PO4 3-/NO3- im Bereich von 1 : 0,1 bis 1 : 2,5 gehalten wird.Preferably, nitrate-containing phosphating baths are used, the weight ratio of Zn 2+ / NO a - in the range from 1: 1 to 1: 8 and the weight ratio of PO 4 3 - / NO 3 - in the range from 1: 0.1 to 1 : 2.5 is held.
Aus der EP-A-0 106 459 ist ein Phosphatierungsverfahren bekannt, bei dem mangan- und nickelhaltige Zinkphosphatüberzüge gebildet werden. Die Anwesenheit von Fluoridionen wird ebenso als essentiell angesehen wie die Konzentrationsobergrenze von 10 g/I Nitratanionen.EP-A-0 106 459 discloses a phosphating process in which zinc phosphate coatings containing manganese and nickel are formed. The presence of fluoride ions is considered essential, as is the upper limit of 10 g / l nitrate anions.
Aus der E-B-0 112 826 ist ein Hochnickel-Phosphatierungsverfahren bekannt. Hierbei wird ein Stoffmengenverhältnis von Nickel zu Zink im Bereich von 5,2 : 1 bis 16 : 1 vorausgesetzt.A high nickel phosphating process is known from E-B-0 112 826. A molar ratio of nickel to zinc in the range from 5.2: 1 to 16: 1 is assumed.
Darüber hinaus ist aus der EP-A-0 175 606 ein Phosphatierungsverfahren bekannt, bei dem insbesondere auf die Verwendung von eisenhaltigen Phosphatierungsbädern abgestellt wird. Weiterhin werden als Beschleuniger eine Reihe organischer Substanzen eingesetzt, während die Anwesenheit von Mangan nicht erforderlich ist. Darüber hinaus wird die Einstellung bestimmter Verhältnisse von Zink zu Nickel und Zink zu Eisen gefordert.In addition, a phosphating process is known from EP-A-0 175 606, in which the use of iron-containing phosphating baths in particular is used. A number of organic substances are also used as accelerators, while the presence of manganese is not necessary. In addition, the setting of certain ratios of zinc to nickel and zinc to iron is required.
In Patent Abstracts of Japan, Vo. 13, Nr. 24 (C-561), (3372), vom 19. Januar 1989 - Referat der JP-A-63-227786 - wird ein Verfahren zum gleichzeitigen Entfetten und Phosphatieren von verzinktem Stahlblech vor einer kathodischen Elektrobeschichtung desselben beschrieben. Hierbei werden bereits vorgeformte Gegenstände aus verzinktem Stahlblech mit sauren Phosphatierlösungen behandelt, die die folgenden Komponenten enthalten: 0,3 bis 1,0 g/I Zn2+, 0,4 bis 3,5 g/I Ni2+, 0,1 bis 3,5 g/I Mn2+, 10 bis 20 g/I P04 3-, 0,5 bis 1,5 g/I F, 15 g/I N03-, 0,7 bis 6 g/I Tensid, 2 bis 6 Punkte Beschleuniger, bezogen auf den Gehalt an freier Säure des N02-.In Patent Abstracts of Japan, Vo. 13, No. 24 (C-561), (3372), dated January 19, 1989 - unit of JP-A-63-227786 - describes a process for the simultaneous degreasing and phosphating of galvanized steel sheet before cathodic electroplating thereof. Here, preformed articles made of galvanized steel sheet are treated with acid phosphating solutions which contain the following components: 0.3 to 1.0 g / I Zn 2+ , 0.4 to 3.5 g / I Ni 2+ , 0.1 up to 3.5 g / I Mn 2+ , 10 to 20 g / I P0 4 3- , 0.5 to 1.5 g / IF, 15 g / I N0 3 -, 0.7 to 6 g / I surfactant , 2 to 6 points accelerator, based on the free acid content of the N0 2 -.
Die EP-A-0 060 716 betrifft ein Phosphatierverfahren für Automobilkarosserien vor einer kathodischen Elektrobeschichtung derselben. Die Metalloberflächen auf Basis von Stahl oder Zink werden hierbei mit Lösungen behandelt, die 0,5 bis 1,5 g/I Zinkionen, 5 bis 30 g/I Phosphationen, 0,6 bis 3 g/I Manganionen und einen Beschleuniger enthalten. Zusätzlich können diese Lösungen 0,1 bis 4 g/I Nickelionen enthalten. Als Beschleuniger kommen insbesondere Nitritionen, m-Nitrobenzolsulfonationen und Wasserstoffperoxid in Frage, zusätzlich ferner Nitrat- und Chlorationen. Die Behandlungsdauer im Tauchverfahren beträgt mindestens 15 Sekunden, insbesondere 30 bis 120 Sekunden. Die Schichtgewichte der resultierenden Phosphatierungsschichten liegen im Bereich von 2,0 bis 3,2 g/m2.EP-A-0 060 716 relates to a phosphating process for automobile bodies before a cathodic electro-coating thereof. The metal surfaces based on steel or zinc are treated with solutions containing 0.5 to 1.5 g / l zinc ions, 5 to 30 g / l phosphate ions, 0.6 to 3 g / l manganese ions and an accelerator. In addition, these solutions can contain 0.1 to 4 g / l of nickel ions. In particular, nitrite ions, m-nitrobenzenesulfonate ions and hydrogen peroxide can be used as accelerators, as well as nitrate and chlorine ions. The duration of treatment in the immersion process is at least 15 seconds, in particular 30 to 120 seconds. The layer weights of the resulting phosphating layers are in the range from 2.0 to 3.2 g / m 2 .
Gegenstand der EP-A-0 219 779 ist ein Verfahren zur Phosphatierung elektrolytisch verzinkter Metallwaren, vorzugsweise von elektrolytisch verzinkten Stahlbändern. Hierbei wird mit Phosphatierungslösungen gearbeitet, die 0,1 bis 0,8 g/I Zink-Kationen sowie 0,5 bis 2,0 g/I Mangan-Kationen enthalten und die einen Gehalt an freier Säure im Bereich von 4 bis 8 Punkten sowie ein Säureverhältnis im Bereich von 2,5 bis 5 aufweisen. Zusätzlich können die Lösungen Kobalt enthalten, wobei der Gehalt an Kobalt bei 1 Teil Kobalt auf 100 bis 150 Teile (Zn2+ + Mn2+) liegt. Es resultieren Schichtgewichte der Phosphatierungsschichten von unterhalb 2 g/m2 bei Behandlungszeiten, die nicht wesentlich über 5 Sekunden liegen. Als Beschleuniger dient Nitrat.EP-A-0 219 779 relates to a process for phosphating electrolytically galvanized metal products, preferably electrolytically galvanized steel strips. Here, phosphating solutions are used which contain 0.1 to 0.8 g / l zinc cations and 0.5 to 2.0 g / l manganese cations and some Free acid content in the range of 4 to 8 points and an acid ratio in the range of 2.5 to 5. The solutions may additionally contain cobalt, the cobalt content being 1 part cobalt per 100 to 150 parts (Zn 2+ + Mn 2+ ). Layer weights of the phosphating layers of less than 2 g / m 2 result with treatment times that are not significantly more than 5 seconds. Nitrate serves as an accelerator.
Die heute in der Praxis eingesetzten Verfahren zur Phosphatierung von elektrolytisch und/oder schmelztauchverzinktem Stahlband weisen nach wie vor Beschränkungen auf, deren Beseitigung wünschenswert ist. So wird es zur Gewährleistung eines ausreichenden Korrosionsschutzes für erforderlich gehalten, flächenbezogene Massen der Phosphatauflagen von weniger als 2 g/m2 auszubilden. Die Folge einer vergleichsweise hohen flächenbezogenen Masse ist häufig eine unbefriedigende bis schlechte Haftung nachfolgender Beschichtungen, insbesondere dann, wenn phosphatiertes und beschichtetes Material verformt wird. Die Dauer der Phosphatierung liegt bei den in der Praxis eingesetzten Verfahren üblicherweise oberhalb von 2 s, insbesondere bei Bandgeschwindigkeiten von etwa 60 bis 120 m/min.The methods currently used in practice for the phosphating of electrolytically and / or hot-dip galvanized steel strip still have restrictions, the elimination of which is desirable. Thus, in order to ensure adequate protection against corrosion, it is considered necessary to form surface-related masses of the phosphate layer of less than 2 g / m 2 . The result of a comparatively high mass per unit area is often unsatisfactory to poor adhesion of subsequent coatings, especially when phosphated and coated material is deformed. The duration of the phosphating in the processes used in practice is usually above 2 s, in particular at belt speeds of about 60 to 120 m / min.
Es ist bekannt, daß durch die Anwendung von Nickelkationen in den Phosphatierungslösungen verbesserte Haftungs- und Korrosionsschutzwerte erzielt werden können. Hierbei ist jedoch im Rahmen der vorliegenden Erfindung festgestellt worden, daß eine Erhöhung der Nickelkonzentration, die zur Verbesserung des Korrosionsschutzwertes führt, gleichzeitig eine Dunkelfärbung der mangan- und nickelhaltigen Zinkphosphatschicht bewirkt.It is known that improved adhesion and corrosion protection values can be achieved by using nickel cations in the phosphating solutions. However, it has been found in the context of the present invention that an increase in the nickel concentration, which leads to an improvement in the corrosion protection value, simultaneously causes a darkening of the manganese and nickel-containing zinc phosphate layer.
Die Aufgabe der vorliegenden Erfindung bestand nun darin, bei Behandlungszeiten von 3 bis 20 s unter Erhalt der Korrosionsschutzwerte eine Dunkelfärbung der Zinkphosphatschichten auf elektrolytisch und/oder schmelztauchverzinktem Stahlband zu vermeiden. Zugleich sollte der Nickelgehalt literaturbekannter Verfahren über Substitution durch Mangan stark abgesenkt werden, um einen Korrosionsschutz und eine Lackhaftung wie bei den in der Automobilindustrie eingesetzten Trikationverfahren auch bei der kontinuierlichen Bandphosphatierung zu erzielen. Dabei war selbstverständlich geboten, daß dichte, geschlossene Schichten der Phosphatauflage bei den genannten Behandlungszeiten gebildet werden und auch die Verformungseigenschaften zufriedenstellend ausfallen. Bewußt will dabei die Erfindung dünne Auflagenmassen der Phosphatschichten in Kauf nehmen, ohne dabei jedoch die gleichmäßige Bedeckung des verzinkten Stahlbandes mit einer feinkristallinen, fest haftenden, in sich geschlossenen Zinkphosphatschicht aufgeben zu müssen. Erfindungsgemäß schließt der verwendete Begriff "elektrolytisch und/oder schmelztauchverzinktes Stahlband" auch selbstverständlich allgemein bekannte Zink-Legierungen (beispielsweise "Neuralyt", ZNE-elektrolytisch aufgebrachte, 10 bis 13 % Ni enthaltende Zinklegierung oder "Galvannealed", ZFEelektrolytisch aufgebrachte, Fe enthaltende Zinklegierung) mit ein. Hierbei werden unter dem Begriff "Zink-Legierungen" generell solche Zink-Legierungen verstanden, die mindestens 45 Gew.-% Zink enthalten.The object of the present invention was to avoid darkening of the zinc phosphate layers on electrolytically and / or hot-dip galvanized steel strip at treatment times of 3 to 20 s while maintaining the corrosion protection values. At the same time, the nickel content of processes known from the literature should be greatly reduced by substitution with manganese in order to achieve corrosion protection and paint adhesion, as in the trication processes used in the automotive industry, also in the case of continuous strip phosphating. Of course, it was imperative that dense, closed layers of the phosphate overlay be formed during the treatment times mentioned and that the deformation properties also be satisfactory. The invention deliberately intends to accept thin overlays of the phosphate layers without, however, having to give up the uniform covering of the galvanized steel strip with a finely crystalline, firmly adhering, self-contained zinc phosphate layer. According to the invention, the term “electrolytically and / or hot-dip galvanized steel strip” also includes, of course, generally known zinc alloys (for example “Neuralyt”, ZNE electrolytically applied zinc alloy containing 10 to 13% Ni or “Galvannealed”, ZFE electrolytically applied zinc alloy containing Fe) with a. The term “zinc alloys” is generally understood to mean those zinc alloys which contain at least 45% by weight of zinc.
Die vorstehend genannten Aufgaben werden gelöst durch ein Verfahren zur Phosphatierung von elektrolytisch und/oder schmelztauchverzinktem Stahlband unter Ausbildung von mangan- und nickelhaltigen Zinkphosphatschichten, die eine flächenbezogene Masse von weniger als 2 g/m2, insbesondere im Bereich von 0,7 bis 1,6 g/m2, aufweisen, durch kurzzeitige Behandlung mit sauren Phosphatierungslösungen, enthaltend Zn2+-, Mn2+-, Ni2+-, P043+- und NO3 --lonen,
dadurch gekennzeichnet, daßThe above-mentioned objects are achieved by a method for phosphating electrolytically and / or hot-dip galvanized steel strip with the formation of manganese and nickel-containing zinc phosphate layers, which have a mass per unit area of less than 2 g / m 2 , in particular in the range from 0.7 to 1. 6 g / m 2 , by brief treatment with acid phosphating solutions containing Zn 2 + - , Mn 2 + - , Ni 2 + - , P043 + - and NO 3 - -lons,
characterized in that
die Dauer der Behandlung 3 bis 20 s beträgt, die Phosphatierung im Temperaturbereich von 40 bis 70 ° C durchgeführt wird und die Phosphatierungslösungen - mindestens zu Beginn der Behandlung - die folgenden Bestandteile enthalten beziehungsweise den folgenden Parametern entsprechen:
das Gewichtsverhältnis von Ni2+-Kationen zu NO3 --Anionen im Bereich von 1 : 10 bis 1 : 60 und
das Gewichtsverhältnis von Mn2+-Kationen zu N03--Anionen im Bereich von 1 : 1 bis 1 : 40 eingestellt wird.the duration of the treatment is 3 to 20 s, the phosphating is carried out in the temperature range from 40 to 70 ° C. and the phosphating solutions - at least at the beginning of the treatment - contain the following constituents or correspond to the following parameters:
the weight ratio of Ni 2 + cations to NO 3 - anions in the range from 1:10 to 1:60 and
the weight ratio of Mn 2+ cations to N0 3 anions is set in the range from 1: 1 to 1:40.
Der vorstehend angegebene Gehalt an PO4 3--Anionen schließt im Sinne der Erfindung auch gegebenenfalls in den Phosphatierungslösungen vorliegende HPO4 2- - und H2P04- - Anionen sowie undissoziiertes H3PO4 - in Form des stöchiometrischen Äquivalentes an P043--Anionen - mit ein.The above-mentioned content of PO 4 3- anions also includes HPO 4 2- and H 2 P0 4 - anions and undissociated H 3 PO 4 - in the form of the stoichiometric equivalent of P043- Anions - with a.
In Chr. Ries, "Überwachung von Phosphatierungsbädern", Galvanotechnik, 59 (1968) Nr. 1, Seiten 37-39 (Eugen G. Leuze-Verlag, Saulgau) sind sowohl die Begriffe der hier genannten Parameter als auch ihre Bestimmung im einzelnen geschildert. Die Punktzahl der Freien Säure ist dementsprechend definiert als die Anzahl ml 0,1 N NaOH, die zur Titration von 10 ml Badlösung gegen Dimethylgelb, Methylorange oder Bromphenolblau erforderlich ist. Die Gesamtsäure-Punktzahl ergibt sich als die Anzahl ml 0,1 N NaOH, die bei der Titration von 10 ml Badlösung unter Verwendung von Phenolphthalein als Indikator bis zur ersten Rosafärbung erforderlich ist.Chr. Ries, "Monitoring of Phosphating Baths", Galvanotechnik, 59 (1968) No. 1, pages 37-39 (Eugen G. Leuze-Verlag, Saulgau) describes both the terms of the parameters mentioned here and their determination in detail . The free acid score is accordingly defined as the number of ml 0.1 N NaOH required to titrate 10 ml bath solution against dimethyl yellow, methyl orange or bromophenol blue. The total acid score is calculated as the number of ml of 0.1 N NaOH required to titrate 10 ml of bath solution using phenolphthalein as an indicator until the first pink color.
Für das erfindungsgemäße Verfahren ist dementsprechend die Kombination aller genannten Parameter wesentlich:
- Die Konzentration von Zn21-Kationen wird in einem sehr niedrig begrenzten Bereich gehalten. Geringe Mengen an Zinkionen werden dem Behandlungsbad bereits zu Beginn zugesetzt, um die Einstellung des Kationengleichgewichts zu beschleunigen. Zink wird bekanntlich durch die sauren Phosphatierungslösungen aus dem verzinkten Band schnell herausgelöst. Wenn der Zinkgehalt der Phosphatierungslösung vor Beginn der Phosphatierung mehr als 0,75 g/I beträgt, kann die Haftung eines anschließend aufgebrachten Lackes deutlich verschlechtert werden. Unter bestimmten Anlagenbedingungen stellt sich im Betrieb aufgrund des üblichen Eintrags von Zn21-Kationen durch das verzinkte Stahlband auch ein höherer Zinkgehalt im Phosphatierungsbad ein, der jedoch das Verfahren nicht beeinflußt. Hierbei wird erfahrungsgemäß, bedingt durch die Gleichgewichtseinstellung, ein Gehalt an Zn21-Kationen im Bereich von 1,1 bis 3 g/I, vorzugsweise 1,1 bis 2,2 g/I erhalten.
- The concentration of Zn 21 cations is kept in a very low limited range. Small amounts of zinc ions are added to the treatment bath at the beginning in order to accelerate the establishment of the cation equilibrium. As is well known, the acidic phosphating solutions quickly remove zinc from the galvanized strip. If the zinc content of the phosphating solution before the start of phosphating is more than 0.75 g / l, the adhesion of a varnish applied subsequently can deteriorate significantly. Under certain system conditions, a higher zinc content in the phosphating bath also occurs in operation due to the usual entry of Zn 21 cations through the galvanized steel strip, but this does not influence the process. Experience has shown that, due to the establishment of equilibrium, a content of Zn 21 cations in the range from 1.1 to 3 g / l, preferably 1.1 to 2.2 g / l, is obtained.
Die gleichzeitige Anwesenheit von Nickelkationen und Mangankationen bewirkt eine außerordentlich gute Lackhaftung sowie außerordentlich gute Korrionsschutzwerte der Zinkphosphatbeschichtung nach der Lackbeschichtung.The simultaneous presence of nickel cations and manganese cations results in extremely good paint adhesion and extraordinarily good corrosion protection values for the zinc phosphate coating after the paint coating.
Im Sinne der Erfindung enthalten die Phosphatierungslösungen vorzugsweise keine starken Oxidationsmittel, wie Nitrite, Chlorate oder Wasserstoffperoxid.For the purposes of the invention, the phosphating solutions preferably contain no strong oxidizing agents, such as nitrites, chlorates or hydrogen peroxide.
Wesentlicher Bestandteil der vorliegenden Erfindung ist das Gewichtsverhältnis von Nickelkationen zu Nitratanionen und das Gewichtsverhältnis von Mangankationen zu Nitratanionen. Bekanntermaßen führt die gleichzeitige Verwendung von Nickel- und Mangankationen zu verbesserten Korrosionsschutzwerten, jedoch bei den literaturbekannten Verfahren zu einer Dunkelfärbung der Zinkphosphatschicht. Die Färbung dieser Zinkphosphatschicht spielt zwar in der Automobilindustrie nicht eine überragende Rolle, jedoch ist beispielsweise bei der Herstellung von Haushaltsgeräten aufgrund der nachfolgend häufig aufgebrachten sehr dünnen Lackschichten der Farbton der Zinkphosphatschicht von außerordentlicher Bedeutung.An essential part of the present invention is the weight ratio of nickel cations to nitrate anions and the weight ratio of manganese cations to nitrate anions. As is known, the simultaneous use of nickel and manganese cations leads to improved corrosion protection values, but in the processes known from the literature to a darkening of the zinc phosphate layer. The coloring of this zinc phosphate layer does not play a major role in the automotive industry, but the color of the zinc phosphate layer is extremely important, for example, in the manufacture of household appliances due to the very thin layers of lacquer that are often applied in the following.
Ein weiteres wesentliches Kriterium der vorliegenden Erfindung ist die Behandlungsdauer der Phosphatierung. Während in der Automobilindustrie für die Phosphatierung üblicherweise Zeiten oberhalb von 120 s verwendet werden, wird bei der Phosphatierung von verzinktem Stahlband auf jeden Fall eine Zeit unterhalb 1 min erstrebt. Im Sinne der vorliegenden Erfindung wird daher die Dauer der Behandlung zwischen 3 bis 20 s betragen.Another essential criterion of the present invention is the duration of the phosphating treatment. While times above 120 s are usually used for the phosphating in the automotive industry, a time below 1 min is in any case aimed for in the phosphating of galvanized steel strip. For the purposes of the present invention, the duration of the treatment will therefore be between 3 to 20 s.
Der wesentliche Vorteil der vorliegenden Erfindung besteht darin, daß Zinkphosphatüberzüge auf verzinktem Stahlband erfindungsgemäß hergestellt werden können, die ein helles Oberflächenaussehen aufweisen, obwohl sie Nickel enthalten. Zugleich konnte aber der Gehalt an Nickel gegenüber dem Stand der Technik durch Substitution mit Mangan ohne Einbuße des Korrosionsschutzwertes deutlich gesenkt werden. Dies hat sowohl ökologische als auch ökonomische Bedeutung, da hier erstmals ein manganhaltiges Trikation-Verfahren für den Bandsektor beschrieben wird.The main advantage of the present invention is that zinc phosphate coatings on galvanized steel strip can be produced according to the invention which have a bright surface appearance, although they contain nickel. At the same time, however, the nickel content could be significantly reduced compared to the prior art by substitution with manganese without loss of the corrosion protection value. This is of ecological as well as economic importance, as it is the first time that a manganese-containing trication process has been described for the band sector.
Eine bevorzugte Ausführungsform der vorliegenden Erfindung besteht darin, daß das Gewichtsverhältnis von Nickelkationen zu Nitratanionen im Bereich von 1 : 20 bis 1 : 60 eingestellt wird. Im Rahmen der vorliegenden Erfindung wurde gefunden, daß sich eine zu große Nitratmenge ebenso negativ auf das Phosphatierungsverfahren auswirkt, wie ein zu geringer Nickelgehalt. Hierdurch werden die Korrosionsschutzwerte negativ beeinflußt. In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung wird das Gewichtsverhältnis von Mangankationen zu Nitratanionen im Bereich von 1 : 6 bis 1 : 20 eingestellt. Hierdurch kann insbesondere die Naß-Lackhaftung positiv beeinflußt werden.A preferred embodiment of the present invention is that the weight ratio of nickel cations to nitrate anions is set in the range from 1:20 to 1:60. In the context of the present invention, it was found that an excessively large amount of nitrate has just as negative an effect on the phosphating process as an excessively low nickel content. This has a negative influence on the corrosion protection values. In a further preferred embodiment of the present invention, the weight ratio of manganese cations to nitrate anions is set in the range from 1: 6 to 1:20. This can have a particularly positive influence on the wet paint adhesion.
Von besonderer Bedeutung für das vorliegende Verfahren ist die Einsetzbarkeit sowohl zur Phosphatierung von elektrolytisch als auch von schmelztauchverzinktem Stahlband. Bei elektrolytisch verzinktem Stahlband ist die Anwesenheit von Fluoridanionen in der Praxis nicht erforderlich, jedoch stört auch die Anwesenheit von Fluorid das Verfahren zur Phosphatierung nicht. Beim Einsatz von schmelztauchverzinktem Stahlband kann jedoch die Verwendung von Fluoridanionen geboten sein, insbesondere wenn es gilt, Aluminiumkationen zu komplexieren. Demgemäß ist eine weitere bevorzugte Ausführungsform der vorliegenden Erfindung dadurch gekennzeichnet, daß die Phosphatierungslösungen einen Gehalt an Fluoridanionen von 0,1 bis 1,0 g/I, vorzugsweise 0,4 bis 0,6 g/I enthalten. Die entsprechende Menge an Fluoridanionen wird den Phosphatierungslösungen in Form von Flußsäure beziehungsweise in Form der Natrium- oder Kaliumsalze dieser Säure zugefügt. Anstelle dieser Verbindungen können auch komplexe Fluoridverbindungen, wie Fluoroborate oder Fluorosilicate, Verwendung finden.Of particular importance for the present process is the applicability for phosphating both electrolytically and hot-dip galvanized steel strip. In the case of electrolytically galvanized steel strip, the presence of fluoride anions is not necessary in practice, but the presence of fluoride does not interfere with the phosphating process. When using hot-dip galvanized steel strip, however, the use of fluoride anions may be necessary, especially when it comes to complexing aluminum cations. Accordingly, a further preferred embodiment of the present invention is characterized in that the phosphating solutions contain a fluoride anion content of 0.1 to 1.0 g / l, preferably 0.4 to 0.6 g / l. The corresponding amount of fluoride anions is the phosphating solutions in the form of hydrofluoric acid or in the form of sodium or Potassium salts added to this acid. Instead of these compounds, complex fluoride compounds such as fluoroborates or fluorosilicates can also be used.
Die Phosphatierung selbst erfolgt bei mäßig erhöhten Temperaturen im Bereich von etwa 40 bis 70 °C. Besonders geeignet kann der Temperaturbereich von 55 bis 65 °C sein. Jede technisch brauchbare Möglichkeit des Aufbringens der Behandlungslösung ist geeignet. Insbesondere ist es also möglich, das neue Verfahren sowohl mittels Spritztechnik als auch im Tauchverfahren durchzuführen.The phosphating itself takes place at moderately elevated temperatures in the range from about 40 to 70 ° C. The temperature range from 55 to 65 ° C. can be particularly suitable. Any technically useful way of applying the treatment solution is suitable. In particular, it is therefore possible to carry out the new method both by means of spraying technology and by immersion.
Vor dem Aufbringen der Phosphatierungslösung muß die elektrolytisch und/oder schmelztauchverzinkte Oberfläche vollständig wasserbenetzbar sein. Dies ist in kontinuierlich arbeitenden Bandanlagen in der Regel gegeben. Falls die Oberfläche des verzinkten Bandes zwecks Lagerung und Korrosionsschutz beölt sein sollte, so ist dieses ÖI vor der Phosphatierung mit bereits bekannten geeigneten Mitteln und Verfahren zu entfernen. Die wasserbenetzbare verzinkte Metalloberfläche wird anschließend vor dem Aufbringen der Phosphatierungslösung zweckmäßig einer an sich bekannten, aktivierenden Vorbehandlung unterworfen. Geeignete Vorbehandlungsverfahren sind insbesondere in DE-A-20 38 105 und DE-A-20 43 085 beschrieben. Demgemäß werden die anschließend zu phosphatierenden Metalloberflächen mit Lösungen behandelt, die als Aktivierungsmittel im wesentlichen Titansalze und Natriumphosphat zusammen mit organischen Komponenten wie beispielsweise Alkylphosphonaten oder Polycarbonsäuren enthalten. Als Titankomponente können bevorzugt lösliche Verbindungen des Titans wie Kaliumtitanfluorid und insbesondere Titanylsulfat verwendet werden. Als Natriumphosphat kommt im allgemeinen Dinatriumorthophosphat zum Einsatz. Titanhaltige Verbindungen und Natriumphosphat werden in solchen Mengenverhältnissen verwendet, daß der Titangehalt mindestens 0,005 Gew.-% beträgt, bezogen auf das Gewicht der titanhaltigen Verbindung und des Natriumphosphats.Before the phosphating solution is applied, the electrolytically and / or hot-dip galvanized surface must be completely water-wettable. This is usually the case in continuously operating conveyor systems. If the surface of the galvanized strip is oiled for storage and corrosion protection, this oil must be removed using suitable means and processes that are already known before phosphating. The water-wettable galvanized metal surface is then expediently subjected to an activating pretreatment known per se before the phosphating solution is applied. Suitable pretreatment processes are described in particular in DE-A-20 38 105 and DE-A-20 43 085. Accordingly, the metal surfaces to be phosphated subsequently are treated with solutions which contain, as activating agents, essentially titanium salts and sodium phosphate together with organic components such as, for example, alkyl phosphonates or polycarboxylic acids. Soluble compounds of titanium such as potassium titanium fluoride and in particular titanyl sulfate can preferably be used as the titanium component. Disodium orthophosphate is generally used as the sodium phosphate. Titanium-containing compounds and sodium phosphate are used in such proportions that the titanium content is at least 0.005% by weight, based on the weight of the titanium-containing compound and the sodium phosphate.
Wie im Stand der Technik - beispielsweise in der DE-A-32 45 411 - beschrieben, kann es auch für das erfindungsgemäße Verfahren bzw. die danach hergestellten Zinkphosphatschichten vorteilhaft sein, in einer nachfolgenden Verfahrensstufe die erzeugten Phosphatschichten zu passivieren. Eine solche Passivierung kann beispielsweise mit verdünnter Chromsäure oder Mischungen von Chrom- und Phosphorsäure erfolgen. Die Konzentration der Chromsäure liegt dabei im allgemeinen zwischen 0,01 und 1,0 g/I. Zwischen dem Phosphatierungs- und dem Nachbehandlungsschritt wird mit Wasser gespült.As described in the prior art - for example in DE-A-32 45 411 - it can also be advantageous for the process according to the invention or the zinc phosphate layers produced thereafter to passivate the phosphate layers produced in a subsequent process step. Such passivation can take place, for example, with dilute chromic acid or mixtures of chromic and phosphoric acid. The concentration of chromic acid is generally between 0.01 and 1.0 g / l. Between the phosphating and the post-treatment step, rinsing with water is carried out.
Durch das erfindungsgemäße Verfahren werden Zinkphosphatauflagen mit einer flächenbezogenen Masse der Zinkphosphatschichten von weniger als 2 g/m2 erzeugt, die eine geschlossene feinkristalline Struktur aufweisen und dem elektrolytisch und/oder schmelztauchverzinktem Stahlband ein erwünschtes, gleichmäßiges, hellgraues Aussehen verleihen. Ein derart phosphatiertes Stahlband kann auch ohne nachfolgende Lackierung weiterverarbeitet werden. Die nach dem erfindungsgemäßen Verfahren erzeugten dünnen Phosphatschichten verhalten sich bei vielen Verformungsvorgängen günstiger als die mit den bisher üblichen Verfahren erzeugten Phosphatschichten einer höheren flächenbezogenen Masse. Aber auch nachträglich aufgebrachte organische Beschichtungen zeigen gegenüber dem Stand der Technik deutlich verbesserte Haftung, sowohl während als auch nach den Verformungsvorgängen.The process according to the invention produces zinc phosphate coatings with a weight per unit area of the zinc phosphate layers of less than 2 g / m 2 , which have a closed, finely crystalline structure and give the electrolytically and / or hot-dip galvanized steel strip a desired, uniform, light gray appearance. A steel strip phosphated in this way can also be processed without subsequent coating. The thin phosphate layers produced by the method according to the invention behave more favorably in many shaping processes than the phosphate layers of a higher mass per unit area produced with the previously usual methods. However, organic coatings applied subsequently also show significantly improved adhesion compared to the prior art, both during and after the shaping processes.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden beim Einsatz von elektrolytisch verzinktem Stahlband flächenbezogene Massen der Zinkphosphatschicht im Bereich von 0,7 bis 1,6 g/m2 hergestellt. Beim Einsatz von schmelztauchverzinktem Stahlband ist die Herstellung einer flächenbezogenen Masse der Zinkphosphatschicht im Bereich von 0,8 bis 1,6 g/m2 als besonders vorteilhaft hervorzuheben.In a preferred embodiment of the present invention, surface-based masses of the zinc phosphate layer in the range from 0.7 to 1.6 g / m 2 are produced when using electrolytically galvanized steel strip. When using hot-dip galvanized steel strip, the production of a mass per unit area of the zinc phosphate layer in the range from 0.8 to 1.6 g / m 2 should be emphasized as particularly advantageous.
Das erfindungsgemäße Verfahren erlaubt die Aufbringung der nickel- und manganhaltigen Zinkphosphatschicht durch an sich im Stand der Technik bekannte Techniken wie Spritzen, Tauchen und/oder Spritztauchen, insbesondere deren kombinierte Verfahren.The method according to the invention allows the nickel and manganese-containing zinc phosphate layer to be applied by techniques known per se in the prior art, such as spraying, dipping and / or spray-dipping, in particular their combined methods.
In einer bevorzugten Ausführungsform der Erfindung wird das Säureverhältnis bei der Verwendung von elektrolytisch verzinktem Stahlband, d.h. der Quotient aus "Gesamtsäure" zu "freier Säure", im Bereich von 25 : 1 bis 10 : 1, vorzugsweise im Bereich von 15 : 1 bis 10 : 1 eingestellt.In a preferred embodiment of the invention the acid ratio is determined when using electrolytically galvanized steel strip, i.e. the quotient from “total acid” to “free acid” is set in the range from 25: 1 to 10: 1, preferably in the range from 15: 1 to 10: 1.
Die mit Hilfe des erfindungsgemäßen Verfahrens erzeugten Oberflächenschichten sind auf allen Gebieten, auf denen Phosphatüberzüge angewendet werden, gut einsetzbar. Ein besonders vorteilhafter Anwendungsfall liegt in der Vorbereitung der Metalloberflächen für die Lackierung, insbesondere die Elektrotauchlackierung.The surface layers produced with the aid of the method according to the invention can be used well in all fields in which phosphate coatings are used. A particularly advantageous application is the preparation of the metal surfaces for painting, in particular electrocoating.
Innerhalb der üblichen Prozeßfolge mit den Stufen:
- 1. Reinigen und Entfetten:
- Verwendung von tensidhaltigen alkalischen Reinigungsmitteln (wie RIDOLINER C 72) im Spritzen bei 50 bis 60 ° C und Behandlungszeiten von 5 bis 20 s.
- 2. Spülen
- 3. Aktivieren:
- Verwendung von titansalzhaltigen Mitteln (wie FIXODINER 950) im Spritzen bei 20 bis 40 °C und Behandlungszeiten von 2 bis 4 s.
- 4. Phosphatieren:
- Zusammensetzung siehe Tabelle 1.
- 5. Spülen
- 6. Nachpassivieren:
- Verwendung von chromhaltigen oder chromfreien Nachpassivierungsmitteln (wie DEOXYLYTER 41B oder DEOXYLYTER 80) im Spritzen oder Tauchen bei 20 bis 50 °C und Behandlungszeiten von 2 bis 6 s.
- 7. Abquetschen:
- Überstehende Flüssigkeit wird ohne Verdichtung der Schicht mittels Abquetschwalzen entfernt.
- 8. Trocknen
- Das Band trocknet nach dem Abquetschen durch Eigenwärme.
erfolgte die Oberflächenbehandlung von elektrolytisch verzinktem Stahl (Auflage beidseitig 7,5 um Zn) und schmelztauchverzinktem Stahl (Auflage beidseitig 10 um Zn).
- Das Band trocknet nach dem Abquetschen durch Eigenwärme.
- 1.Cleaning and degreasing:
- Use of alkaline cleaning agents containing surfactants (such as RIDOLINE R C 72) in spraying at 50 to 60 ° C and treatment times of 5 to 20 s.
- 2. Rinse
- 3. Activate:
- Use of agents containing titanium salt (such as FIXODINE R 950) in syringes at 20 to 40 ° C and treatment times of 2 to 4 s.
- 4. Phosphating:
- For composition, see table 1.
- 5. Rinse
- 6. Post-passivation:
- Use of chrome-containing or chrome-free post-passivation agents (such as DEOXYLYTE R 41B or DEOXYLYTE R 80) in spraying or dipping at 20 to 50 ° C and treatment times of 2 to 6 s.
- 7. Squeeze:
- Surplus liquid is removed without squeezing the layer using squeeze rollers.
- 8. Drying
- The tape dries after being squeezed by its own heat.
the surface treatment was carried out on electrolytically galvanized steel (coating on both sides 7.5 µm Zn) and hot-dip galvanized steel (coating on both sides 10 µm Zn).
- The tape dries after being squeezed by its own heat.
Es wurde bei elektrolytisch verzinktem Stahl (ZE) eine flächenbezogene Masse von 0,6 bis 1,6 g/m2 und bei schmelztauchverzinktem Stahl (Z) eine flächenbezogene Masse der Phosphatschicht von 0,8 bis 1,6 g/m2 hergestellt.A mass per unit area of 0.6 to 1.6 g / m 2 was produced for electrolytically galvanized steel (ZE) and a mass per unit area of the phosphate layer of 0.8 to 1.6 g / m 2 for hot-dip galvanized steel (Z).
Die in der nachstehenden Tabelle 1 angeführten Ionen wurden in Form der folgenden Verbindungen in die Phosphatierungslösungen eingebracht:
- Zn: als Oxid oder Nitrat; Mn: als Carbonat; Ni: als Nitrat oder Phosphat; F: als Flußsäure oder Natriumfluorid; P04: als H3P04 oder Nickelphosphat; N03: als HN03 oder Nickelnitrat.
- Zur Herstellung der Phosphatierungslösungen wurden die vorstehend genannten Verbindungen - in den für die jeweiligen Ionen angegebenen Mengen - in Wasser gelöst.
- Zn: as oxide or nitrate; Mn: as carbonate; Ni: as nitrate or phosphate; F: as hydrofluoric acid or sodium fluoride; P0 4 : as H 3 P0 4 or nickel phosphate; N0 3 : as HN0 3 or nickel nitrate.
- To prepare the phosphating solutions, the compounds mentioned above were dissolved in water in the amounts specified for the respective ions.
Als zu phosphatierendes Substrat wurden in den Beispielen elektrolytisch beidseitig (7,5/7,5 um Zink) verzinkter Stahl für die Prüfung mittels VW-P 1210 Wechselklimatest und schmelztauchverzinkter Stahl (10/10 um Zink) für den Salzsprühtest ausgewählt.In the examples, the substrate to be phosphated was selected to be electrolytically galvanized steel on both sides (7.5 / 7.5 μm zinc) for the test using the VW-P 1210 alternating climate test and hot-dip galvanized steel (10/10 μm zinc) for the salt spray test.
Typische Schichtanalyse (Bestimmung quantitativ durch Atomabsorptionsspektroskopie, AAS) des Verfahrens auf elektrolytisch verzinktem Stahl:
Mit den mit Hilfe des Beispiels 1 sowie des Vergleichsbeispiels erhaltenen Blechen wurden Korrosionstests mit Wechselklima nach VW-Norm P 1210 über 15 und 30 Tage Prüfzeit und Korrosionstests im Salzsprühtest nach DIN 50 021 SS, 1008 h, durchgeführt.The sheets obtained with the aid of Example 1 and the comparative example were used to carry out corrosion tests with an alternating climate in accordance with VW standard P 1210 over a test period of 15 and 30 days, and corrosion tests in a salt spray test in accordance with DIN 50 021 SS, 1008 h.
Als Lackbeschichtung für den Test VW P1210 wurde der Standard KET-Primer FT 85 7042, Hersteller BASF Lacke und Farben AG, verwandt, während für den Salzsprühtest der Polyester Primer BASF Universal Nr. 21110, 4 um, und Unitecta Polyester Decklack Nr. 509 293 5002, 16 um, eingesetzt wurde.The standard KET primer FT 85 7042, manufacturer BASF Lacke und Farben AG, was used as the coating for the test VW P1210, while for the salt spray test the polyester primer BASF Universal No. 21110, 4 μm, and Unitecta Polyester topcoat No. 509 293 5002, 16 µm, was used.
Bei der Bestimmung des Blasengrades von Anstrichen gemäß DIN 53 209 wird eine bei Anstrichen auftretende Blasenbildung durch Angabe des Blasengrades definiert. Der Blasengrad nach dieser Norm ist ein Maß für eine an einem Anstrich aufgetretene Blasenbildung nach Häufigkeit der Blasen je Flächeneinheit und Größe der Blasen. Der Blasengrad wird durch einen Kennbuchstaben und eine Kennzahl für die Häufigkeit der Blasen je Flächeneinheit sowie einen Kennbuchstaben und eine Kennzahl für die Größe der Blasen angegeben.When determining the degree of blistering of paints in accordance with DIN 53 209, blistering that occurs in paints is defined by specifying the degree of blistering. The degree of bubbles according to this standard is a measure of the formation of bubbles on a coating according to the frequency of the bubbles per unit area and the size of the bubbles. The degree of bubbles is indicated by a code letter and a code number for the frequency of the bubbles per unit area as well as a code letter and a code number for the size of the bubbles.
Der Kennbuchstabe und die Kennzahl m0 bedeutet keine Blasen, während m5 entsprechend den Blasengradbildern gemäß der DIN 53 209 eine gewisse Häufigkeit der Blasen je Flächeneinheit definiert.The code letter and the code m0 mean no bubbles, while m5 defines a certain frequency of bubbles per unit area according to the degree of bubbles according to DIN 53 209.
Die Größe der Blasen wird mit dem Kennbuchstaben g und der Kennzahl im Bereich von 0 bis 5 versehen. Kennbuchstabe und Kennzahl g0 hat die Bedeutung von Blasenfreiheit, während mit g5 die Größe der Blasen entsprechend den Blasengradbildern der DIN 53 209 wiedergegeben ist.The size of the bubbles is given the code letter g and the code number in the range from 0 to 5. Code letter and code number g0 has the meaning of freedom from bubbles, while with g5 the size of the bubbles is shown according to the degree of bubbles in DIN 53 209.
Durch Vergleich des Anstriches nach dem Test mit den Blasengradbildern wird der Blasengrad ermittelt, dessen Bild dem Aussehen des Anstrichs am ähnlichsten ist.By comparing the paint after the test with the bubbles degree images, the degree of bubbles is determined, the image of which is most similar to the appearance of the paint.
Gemäß DIN 53 167 dient die Salzsprühnebelprüfung nach dieser Norm dazu, das Verhalten von Lackierungen, Anstrichen und ähnlichen Beschichtungen bei Einwirkung versprühter Natriumchloridlösung zu ermitteln. Weist die Beschichtung Schwachstellen, Poren oder Verletzungen auf, dann findet von dort aus bevorzugt eine Unterwanderung der Beschichtung statt. Dies führt zu einer Haftungsverminderung oder zu Haftungsverlust und Korrosion des metallischen Untergrundes.According to DIN 53 167, the salt spray test according to this standard is used to determine the behavior of paints, coatings and similar coatings when exposed to sprayed sodium chloride solution. If the coating has weak points, pores or injuries, the coating preferably infiltrates from there. This leads to a reduction in adhesion or to loss of adhesion and corrosion of the metallic surface.
Die Salzsprühnebelprüfung wird angewendet, damit solche Fehler erkannt und die Unterwanderung ermittelt werden können.The salt spray test is used so that such errors can be recognized and the infiltration can be determined.
Unterwanderung im Sinne dieser Norm ist das von einer definiert angebrachten Verletzungsstelle (Ritz) oder von vorhandenen Schwachstellen (z. B. Poren, Kanten) ausgehende Eindringen von Natriumchloridlösung in die Grenzfläche zwischen Beschichtung und Untergrund oder in die Grenzfläche zwischen einzelnen Beschichtungen. Die Breite der Zone mit verminderter oder verlorener Haftung dient als Maß für die Widerstandsfähigkeit der Beschichtung auf dem jeweiligen Untergrund gegen das Einwirken versprühter Natriumchloridlösung.Infiltration within the meaning of this standard is the penetration of sodium chloride solution into the interface between coating and substrate or into the interface between individual coatings, starting from a defined point of injury (Ritz) or from existing weak points (e.g. pores, edges). The width of the zone with reduced or lost adhesion serves as a measure of the resistance of the coating on the respective substrate to the action of sprayed sodium chloride solution.
Die VW-Norm P 1210 definiert einen Wechseltest, der aus einer Kombination verschiedener, genormter Prüfverfahren besteht. So wird im Verlauf von - im vorliegenden Fall - 15 und 30 Tagen ein Prüfzyklus eingehalten, der besteht aus
- 4 h Salzsprüh-Test gemäß DIN 50 021,
- 4 h Ruhezeit bei Raumtemperatur und
- 16 h Schwitzwasser-Konstantklima gemäß DIN 50 017.
- 4 h salt spray test according to DIN 50 021,
- 4 h rest at room temperature and
- 16 h condensation constant climate according to DIN 50 017.
Zu Beginn des Tests wird das Prüfblech mit einer definierten Menge Stahlschrot bestimmter Korngrößenverteilung beschossen. Nach Ablauf der Prüfzeit wird dem Korrosionsgrad eine Kennzahl zugeordnet. Entsprechend den Kennzahlen von 1 bis 10 bezeichnet die Kennzahl 1 eine nicht sichtbare Korrosion, während bei einer Kennzahl 10 praktisch die gesamte Oberfläche korrodiert ist.At the beginning of the test, the test sheet is bombarded with a defined amount of steel shot with a certain grain size distribution. After the test period has expired, a key figure is assigned to the degree of corrosion. Corresponding to the key figures from 1 to 10, the key figure 1 denotes an invisible corrosion, while with a key figure 10 practically the entire surface is corroded.
Bei dem T-Bend-Test wird die Probe während 1 bis 2 s mit verschiedenen Biegeradien parallel zur Walzrichtung um 180 ° gebogen, wobei sich die Beschichtung auf der Außenseite befindet. Der kleinste Biegeradius, der eine abrißfreie Biegung der Probe erlaubt, bestimmt das Haftvermögen bei einer 180°-Biegung. Bei dem Test TO wird das Blech ohne Zwischenlage gleichmäßig innerhalb von 1 bis 2 s um 180 ° gebogen. Das Blech wird sofort nach dem Biegen mit einer zehnfach vergrößernden Lupe untersucht. Eine Verschärfung des Testverfahrens besteht darin, auf die Kante einen Klebefilm fest aufzudrücken und schnell abzureißen. Anschließend wird die Menge des abgerissenen Lackes beurteilt.In the T-Bend test, the sample is bent for 1 to 2 s with different bending radii parallel to the rolling direction by 180 ° , with the coating on the outside. The smallest bending radius, which allows the sample to bend without tearing, determines the adherence at a 180 ° bend. In the TO test, the sheet is bent evenly through 180 ° within 1 to 2 s without an intermediate layer. The sheet is examined immediately after bending with a magnifying glass that magnifies ten times. The test procedure is made more difficult by firmly pressing an adhesive film onto the edge and tearing it off quickly. The amount of lacquer torn off is then assessed.
Claims (11)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3927131 | 1989-08-17 | ||
DE3927131A DE3927131A1 (en) | 1989-08-17 | 1989-08-17 | METHOD FOR THE PRODUCTION OF MANGANIZED ZINC PHOSPHATE LAYERS ON GALVANIZED STEEL |
PCT/EP1990/001295 WO1991002829A2 (en) | 1989-08-17 | 1990-08-08 | Process for producing manganese-containing zinc phosphate coatings on galvanized steel |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0486576A1 EP0486576A1 (en) | 1992-05-27 |
EP0486576B1 true EP0486576B1 (en) | 1995-04-26 |
Family
ID=6387273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90912396A Expired - Lifetime EP0486576B1 (en) | 1989-08-17 | 1990-08-08 | Process for producing manganese-containing zinc phosphate coatings on galvanized steel |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP0486576B1 (en) |
JP (1) | JPH04507436A (en) |
CN (1) | CN1034681C (en) |
AT (1) | ATE121803T1 (en) |
AU (1) | AU633135B2 (en) |
CA (1) | CA2065004A1 (en) |
DE (2) | DE3927131A1 (en) |
ES (1) | ES2071110T3 (en) |
WO (1) | WO1991002829A2 (en) |
ZA (1) | ZA906507B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4326388A1 (en) * | 1993-08-06 | 1995-02-09 | Metallgesellschaft Ag | Process for the phosphating treatment of one-sided galvanized steel strip |
DE4443882A1 (en) * | 1994-12-09 | 1996-06-13 | Metallgesellschaft Ag | Process for applying phosphate coatings on metal surfaces |
DE19808755A1 (en) | 1998-03-02 | 1999-09-09 | Henkel Kgaa | Layer weight control for strip phosphating |
DE10010355A1 (en) * | 2000-03-07 | 2001-09-13 | Chemetall Gmbh | Applying phosphate coatings to metallic surfaces comprises wetting with an aqueous acidic phosphatizing solution containing zinc ions, manganese ions and phosphate ions, and drying the solution |
KR100551583B1 (en) * | 2000-05-30 | 2006-02-13 | 제이에프이 스틸 가부시키가이샤 | Organic coating covered steel sheet |
JP4603502B2 (en) * | 2006-03-30 | 2010-12-22 | 新日本製鐵株式会社 | Coated steel |
CN101660164B (en) * | 2008-08-26 | 2011-12-28 | 宝山钢铁股份有限公司 | Lubricating electro-galvanized steel plate and production method thereof |
CN102677034A (en) * | 2012-05-25 | 2012-09-19 | 衡阳市金化科技有限公司 | Medium-temperature low-sediment zinc phosphorizing solution |
AT516956B1 (en) * | 2015-06-29 | 2016-10-15 | Andritz Ag Maschf | DEVICE AND METHOD FOR PRODUCING A ZINCED STEEL STRIP |
CN112195429B (en) * | 2020-09-25 | 2022-08-23 | 河钢股份有限公司承德分公司 | Zinc-free flower 900g/m 2 Production method of galvanized sheet with double-sided ultra-thick zinc layer |
CN112410768B (en) * | 2020-10-30 | 2023-06-23 | 马鞍山钢铁股份有限公司 | Galvanized steel sheet surface treating agent, preparation method of surface treating agent, self-lubricating galvanized steel sheet and preparation method of steel sheet |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57152472A (en) * | 1981-03-16 | 1982-09-20 | Nippon Paint Co Ltd | Phosphating method for metallic surface for cation type electrodeposition painting |
JPS5935681A (en) * | 1982-08-24 | 1984-02-27 | Nippon Paint Co Ltd | Method for phosphating metallic surface for coating by cationic electrodeposition |
DE3245411A1 (en) * | 1982-12-08 | 1984-07-05 | Gerhard Collardin GmbH, 5000 Köln | METHOD FOR PHOSPHATING ELECTROLYTICALLY GALVANIZED METAL GOODS |
DE3689442T2 (en) * | 1985-08-27 | 1994-06-16 | Nippon Paint Co Ltd | Acidic, aqueous phosphate coating solutions for a process for phosphate coating of metallic surfaces. |
DE3537108A1 (en) * | 1985-10-18 | 1987-04-23 | Collardin Gmbh Gerhard | METHOD FOR PHOSPHATING ELECTROLYTICALLY GALVANIZED METALWARE |
DE3631759A1 (en) * | 1986-09-18 | 1988-03-31 | Metallgesellschaft Ag | METHOD FOR PRODUCING PHOSPHATE COATINGS ON METAL SURFACES |
JPS63227786A (en) * | 1987-03-16 | 1988-09-22 | Nippon Parkerizing Co Ltd | Phosphating method for pretreating steel sheet before coating by electrodeposition |
-
1989
- 1989-08-17 DE DE3927131A patent/DE3927131A1/en not_active Withdrawn
-
1990
- 1990-08-08 EP EP90912396A patent/EP0486576B1/en not_active Expired - Lifetime
- 1990-08-08 CA CA002065004A patent/CA2065004A1/en not_active Abandoned
- 1990-08-08 ES ES90912396T patent/ES2071110T3/en not_active Expired - Lifetime
- 1990-08-08 AT AT90912396T patent/ATE121803T1/en not_active IP Right Cessation
- 1990-08-08 DE DE59008978T patent/DE59008978D1/en not_active Expired - Fee Related
- 1990-08-08 WO PCT/EP1990/001295 patent/WO1991002829A2/en active IP Right Grant
- 1990-08-08 AU AU61675/90A patent/AU633135B2/en not_active Ceased
- 1990-08-08 JP JP2511444A patent/JPH04507436A/en active Pending
- 1990-08-15 CN CN90106684A patent/CN1034681C/en not_active Expired - Fee Related
- 1990-08-16 ZA ZA906507A patent/ZA906507B/en unknown
Also Published As
Publication number | Publication date |
---|---|
CA2065004A1 (en) | 1991-02-18 |
CN1034681C (en) | 1997-04-23 |
AU633135B2 (en) | 1993-01-21 |
ATE121803T1 (en) | 1995-05-15 |
DE59008978D1 (en) | 1995-06-01 |
WO1991002829A3 (en) | 1991-04-04 |
DE3927131A1 (en) | 1991-02-21 |
WO1991002829A2 (en) | 1991-03-07 |
ZA906507B (en) | 1991-04-24 |
EP0486576A1 (en) | 1992-05-27 |
AU6167590A (en) | 1991-04-03 |
ES2071110T3 (en) | 1995-06-16 |
JPH04507436A (en) | 1992-12-24 |
CN1049531A (en) | 1991-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0774016B1 (en) | No-rinse phosphatising process | |
DE3234558C2 (en) | ||
EP0796356B1 (en) | Method of applying phosphate coatings to metal surfaces | |
EP0478648B1 (en) | Process for producing zinc phosphate coatings containing manganese and magnesium | |
EP0359296B1 (en) | Phosphating process | |
EP0155547B1 (en) | Process for the zinc-calcium phosphatizing of metal surfaces at a low treating temperature | |
EP0069950B1 (en) | Process for phosphating metal surfaces | |
EP0486576B1 (en) | Process for producing manganese-containing zinc phosphate coatings on galvanized steel | |
EP0361375A1 (en) | Phosphate-coating process | |
EP0656957B1 (en) | Process for phosphatizing steel zinc-coated on one side only | |
EP0134895B1 (en) | Process and compounds for applying accelerated and grain-refined phosphate coatings to metallic surfaces | |
EP0111246B1 (en) | Process for phosphatizing zinc-electroplated metal objects | |
WO2004007799A2 (en) | Method for coating metallic surfaces | |
EP0931179B1 (en) | Method for phosphating a steel band | |
EP0264811B1 (en) | Process for producing phosphate coatings | |
DE3927614A1 (en) | METHOD OF GENERATING PHOSPHATURE SUPPLIES ON METALS | |
DE4232292A1 (en) | Process for phosphating galvanized steel surfaces | |
DE69024774T2 (en) | Process for the chemical conversion of metal objects, bath used therefor and concentrate for producing the bath | |
EP1019564A1 (en) | Method for phosphatizing a steel strip | |
DE2851432A1 (en) | CONTINUOUS PROCEDURE FOR APPLYING A PHOSPHATE COATING TO A FERONIC OR ZINCIC METAL SUBSTRATE | |
EP0866888B1 (en) | Method of phosphating metal surfaces | |
DE3239088A1 (en) | Process for phosphating metal surfaces | |
DE10236526A1 (en) | Process for treating or pre-treating parts, profiles, strips, sheets and/or wires having metallic surfaces comprises using an aqueous acidic solution containing fluoride, zinc and phosphate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19920210 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB IT LI NL SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE DE ES FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 19940420 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE ES FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 121803 Country of ref document: AT Date of ref document: 19950515 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59008978 Country of ref document: DE Date of ref document: 19950601 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2071110 Country of ref document: ES Kind code of ref document: T3 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950807 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19960828 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980301 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19980301 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20010824 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020809 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030912 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20050803 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050808 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20060803 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060808 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20060811 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20061013 Year of fee payment: 17 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060808 |
|
BERE | Be: lapsed |
Owner name: *HENKEL K.G.A.A. Effective date: 20070831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070808 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20080430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070831 |