[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0473025B1 - Innenzahnradpumpe für Hydraulikflüssigkeit - Google Patents

Innenzahnradpumpe für Hydraulikflüssigkeit Download PDF

Info

Publication number
EP0473025B1
EP0473025B1 EP91113738A EP91113738A EP0473025B1 EP 0473025 B1 EP0473025 B1 EP 0473025B1 EP 91113738 A EP91113738 A EP 91113738A EP 91113738 A EP91113738 A EP 91113738A EP 0473025 B1 EP0473025 B1 EP 0473025B1
Authority
EP
European Patent Office
Prior art keywords
eccentric
pump
radius
chamber
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91113738A
Other languages
English (en)
French (fr)
Other versions
EP0473025A1 (de
Inventor
Siegfried Hertell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Barmag Luk Automobiltechnik GmbH and Co KG
Original Assignee
Barmag Luk Automobiltechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barmag Luk Automobiltechnik GmbH and Co KG filed Critical Barmag Luk Automobiltechnik GmbH and Co KG
Priority to AT91113738T priority Critical patent/ATE96886T1/de
Publication of EP0473025A1 publication Critical patent/EP0473025A1/de
Application granted granted Critical
Publication of EP0473025B1 publication Critical patent/EP0473025B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C15/064Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston machines or pumps
    • F04C15/066Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston machines or pumps of the non-return type
    • F04C15/068Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston machines or pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • F04C15/0061Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C15/0065Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes

Definitions

  • the invention relates to a gear pump according to the preamble of claim 1.
  • This pump is known from DE-OS 34 48 253 (PP-1372).
  • the inner wheel is mounted eccentrically in the recess of a rotor to the pump axis.
  • the rotor in turn is rotatably supported in the space formed by the outer wheel and is firmly connected to the pump shaft, which serves to drive the rotor.
  • the known pump has a circular-cylindrical inlet space lying in an end wall and a channel system arranged in the rotor, which meshes with the circular-cylindrical insert space and is in permanent communication.
  • the deflection of the pump shaft cannot lead to a tilting of the inner wheel and thus to a leak in the pump and a reduction in its efficiency.
  • This advantage is particularly effective when the pump shaft is also used to drive other machine parts and / or when transverse forces are introduced into the pump shaft via the drive of the pump shaft, which can lead to misalignment.
  • the solution according to claim 2 serves the further purpose of avoiding static overdeterminations, since here the inner wheel is not positively fixed by the outer wheel with regard to its current axis of rotation.
  • the solution according to claim 3 achieves good cooling and lubrication of the eccentric, which is subjected to heat and wear due to the sliding bearings inside and outside.
  • the pump is advantageously operated with suction throttling, in which the inlet is throttled and a separate outlet valve is provided in the outlet for each cell formed by the toothing.
  • a separate outlet valve is provided in the outlet for each cell formed by the toothing.
  • a solution for the position of the inlet throttling results alternatively from claims 4 or 5.
  • the solution according to claim 5 has the advantage that the outer seals of the pump are not under pressure. A vacuum is only created when it is introduced into the pump.
  • the particular advantage of the design according to this invention results when used as a hydraulic pump for the hydraulic converter or the hydraulic clutch of an automatic motor vehicle transmission.
  • the pump according to the invention in its design and centering is independent of the design and centering of the hydraulic converter or the hydraulic clutch.
  • the loads on the pump and turbine wheel of the hydraulic converter cannot affect the hydraulic pump.
  • the compressive forces acting on the inner wheel and on the eccentric, as well as the force with which the clutch flap of the drive shaft engages in the eccentric substantially compensate and are aligned parallel to one another.
  • the driver pocket of the eccentric lies behind the plane of symmetry that passes through the pump axis.
  • the radial boundary wall of the driving pocket pointing in the direction of rotation lies essentially parallel to the secant of the inner wheel, which delimits the pressure zone on the inner wheel.
  • the pump housing is formed by the pump casing 1 and the end plates 2 and 3, which are stacked on top of one another.
  • the housing jacket 1 has a circular cylindrical interior, in the cylindrical inner jacket of which a circumferential groove 4 is pierced.
  • the outer wheel 6 is fastened to the webs 5 which remain to the side.
  • the entire package consisting of housing shell 1, end plates 2 and 3 and outer wheel 6 is held together by a screw 7.
  • the screw connection 7 penetrates the outer wheel in the region of the tooth heads with holes 8.
  • the outer wheel has an internal toothing.
  • the interior of the pump is thus circumscribed by the internal toothing with tip circle 9 of the outer wheel.
  • a pin 10 is firmly inserted at one end.
  • the other end of the pin 10 projects into the interior of the pump.
  • an eccentric 11 is freely rotatable.
  • the axial width of the eccentric corresponds essentially to the axial width of the housing shell 1 and the outer wheel 6.
  • the eccentric has a circular cylindrical outer circumference, the central axis of which is indicated at 12 and which rotates with the eccentricity E about the axis 13 of the pin 10.
  • the inner wheel 14 is freely rotatably mounted on the eccentric 11.
  • the inner wheel 14 has external teeth.
  • the eccentricity E of the eccentric and the external toothing of the inner wheel are dimensioned and the toothings are designed so that the external toothing of the inner wheel meshes with the internal toothing of the outer wheel. Therefore, the top circles 9 and 15 of the toothing intersect in the circumferential intersections 21 and 22. On the inner circumference of the top circle 9 of the outer wheel, this results in between the intersections 21 and 22 on the one hand on the side of the axis 13, in which the eccentricity E points circumferential engagement area and on the other hand on the side of the axis 13, which faces away from the eccentricity, the circumferential inner sickle space 23 of the pump.
  • the teeth are designed so that the teeth of the outer and inner wheel between the intersections 21 and 22 of the tip circles 9 and 15 are in sealing engagement with their flanks. There are therefore several tooth cells between the intersections 21 and 22 in the engagement area, which are sealed by touching their flanks to one another and to the inner crescent space 23 facing away from the eccentricity.
  • the drive shaft 16 is used to drive the pump.
  • the drive shaft 16 is rotatably mounted concentrically to the central axis 13 of the pin 10 in the other end plate 2 and its end is essentially flush with the inside of the pump chamber.
  • the shaft 16 forms an end face on which a coupling tab 17 is attached eccentrically. This coupling tab 17 protrudes axially into a driving pocket 18 which is introduced into the adjacent end face of the eccentric 11 in the region of the eccentricity.
  • the pump has an essentially radial inlet channel 19 in the end plate 3.
  • the inlet channel opens into a distributor space 20 which concentrically surrounds the pin 10.
  • the distribution space is designed as a circular cylindrical recess in the end face of the end plate, which delimits the pump space. Their radius is smaller than the radius Fi of the root circle of the inner wheel.
  • a further circular cylindrical recess is made concentrically with the axis 13.
  • This recess serves as the inlet chamber 28.
  • the distributor chamber 20 and the inlet chamber 28 are connected to one another by channels which penetrate the eccentric axially. These channels are preferably designed as grooves in the inner bore of the eccentric and serve to lubricate the slide bearing of the eccentric on the journal 10 and also to cool the eccentric 11. As such Channel is the driver pocket 18, which therefore axially penetrates the eccentric 11 and rotates with its outer edge on a radius that is slightly larger than the radius of the shaft. Several such channels can also be provided. From Fig.
  • the outer radius R of the inlet chamber 28, based on the axis 13 of the pin 10, has to be kept within certain limits according to the invention, which will be discussed later.
  • the dimensioning of the outer radius R of the inlet chamber 28 is such that the root circle Fi of the inner wheel or the circular area circumscribed by this root circle covers the inlet chamber 28 with the exception of a crescent-shaped inlet surface 27.
  • the inlet surface is also partially covered by the sides of the teeth of the inner wheel.
  • the inlet surface 27 runs on the side of the interior facing away from the eccentricity.
  • the dimensioning according to the invention of the outer radius R of the inlet chamber 28 on the one hand and the root circle Fi of the inner wheel on the other hand ensures that the crescent-shaped inlet surface 27 is never covered by one of the closed tooth cells of the engagement area. This avoids a dead travel of these tooth cells in the pressure area and the hydraulic efficiency improved.
  • the outlet channel 24 is located radially in the housing shell 2 and is connected to the circumferential groove 4 of the housing shell. This circumferential groove is limited on the inside by the outer circumference of the outer wheel and forms an outer chamber.
  • the outer wheel has at least one outlet bore 25 in the region of each tooth gap.
  • Fig. 1 it is shown that two outlet bores 25.1 and 25.2 are adjacent to each other in the axial direction per tooth gap.
  • the outlet bores are each arranged in parallel radial planes.
  • Each radial plane is covered by an elastic valve ring 26.1 and 26.2, which covers all the outlet bores of a normal plane and is thereby severed in an axial plane.
  • One end is e.g. held by a rivet, the other end is free to move.
  • These valve rings 26.1, 26.2 serve as check valves for each of the outlet bores.
  • the drive shaft 16 is driven with the direction of rotation 31.
  • the clutch tab 17 engages in the driving pocket 18 of the eccentric and takes the eccentric with it.
  • the outer wheel 6 executes a wobbling movement in the interior of the pump, whereby it rotates in the direction of rotation 32 as a result of the engagement of its toothing with the toothing of the outer wheel.
  • It forms with the toothing of the outer wheel in the engagement area between the intersection points 21, 22 of the two circles of the head a plurality of tooth cells, which continuously enlarge and reduce.
  • the cells enlarge until they open and come into contact with the inner sickle space 23 filled with oil.
  • the cells shrink on the leading side of the inner wheel. So here the oil is put under pressure. If the pressure in a cell is in the circumferential groove 4 exceeds the prevailing system pressure, there the valve rings 26.1 and 26.2 are lifted off the outlet bores 25.1, 25.2 due to the pressure difference, so that the oil can be expelled from the cell.
  • the width of the crescent-shaped inlet surface 27, which is limited on the outside by the circumferential surface of the inlet chamber 28 and on the inside by the root circle of the inner wheel, may only be one division greater than the width of the crescent-shaped interior 23, which is limited by the two root circles.
  • the width of these crescent-shaped spaces and the division is measured in each case as a central angle about the central axis 13 of the pump.
  • the pump can preferably also be used as a suction-restricted pump.
  • the inlet duct 19 has a throttle 33.
  • This throttle only a limited amount of oil can be drawn in.
  • This time-limited suction quantity is only sufficient to completely fill the pump up to a certain speed.
  • the pump delivery rate is therefore proportional to the speed only up to this speed. When the speed increases no further increase in output. Therefore, increasing the speed is not associated with increased power consumption.
  • the pump is therefore particularly suitable for consumers in motor vehicles who have an oil requirement that is not dependent on the strongly fluctuating engine speed.
  • FIG. 3 schematically shows a hydraulic converter with an integrated hydraulic pump according to this invention.
  • a hydraulic converter is e.g. B. in the book “Dubbel”, Taschenbuch des Maschinenbau, p. 904/905, 14th edition.
  • the pump wheel 34 is driven by the pump shaft 35. The output takes place via turbine wheel 36 and turbine shaft 37. Intermediate is stator wheel 38, which is rotatably mounted on stator pin 10.
  • the pump wheel 34 is connected to a hollow cylindrical drive shaft 16 which concentrically surrounds the stator pin 10.
  • the stator pin 10 is fastened in the converter housing 39.
  • the hydraulic pump is fitted into a recess in the converter housing 39. It consists of end plate 2 and 3 and the outer wheel 6 fastened in between by screw 7.
  • the eccentric 11 On the stator pin 10, the eccentric 11 is freely rotatable by means of plain bearings.
  • the inner wheel 14 is freely rotatably mounted on the eccentric 11.
  • the eccentric 11 has an axially parallel recess (driver pocket 18) into which a coupling tab 17 of the drive shaft 16 engages.
  • a seal 40 is located between the end plate 3 and the drive shaft 16.
  • the inlet chamber 28 described above is delimited by this seal 40.
  • This circular cylindrical inlet chamber 28 is designed such that it only slightly projects beyond the root circle of the inner wheel 14 in the inlet area so that the throttling required for the suction throttle control results directly on the inner wheel. This in turn means that the Inlet chamber 28 is at atmospheric pressure so that the seal 40 is not under pressure.
  • the circular cylindrical distributor space 20 On the opposite side of the eccentric 11, the circular cylindrical distributor space 20 is formed in the
  • a pressure chamber 4 is formed on the outer circumference of the outer wheel.
  • the outlet channels of the pressure cell formed by the toothing connect each cell formed between two teeth of the outer wheel to the pressure chamber 4.
  • a valve ring 26, which surrounds the outer circumference, serves as a check valve.
  • the pressure chamber 4 is delimited on the outside by the converter housing 39.
  • the pressure chamber 4 has a further outlet channel 29.
  • the plane of symmetry here denotes the axial plane of the eccentric, in which both the center of rotation of the eccentric, namely the pump axis 13, and the center of the circle 42 of the eccentric lie.
  • the Driving pocket 18 is placed so that the driving force which the clutch flap 17 exerts on the radial boundary wall of the driving pocket 18 runs essentially parallel to the resultant of the compressive forces which affect the inner wheel and the eccentric. It should be noted that this is a suction-restricted pump.
  • the most unfavorable load case for this pump lies in the lower speed range, in which all of the closed cells formed in the toothing are filled with oil and are therefore subjected to pressure in the pressure zone.
  • the front radial boundary wall of the driving pocket 18 is therefore essentially parallel to the secant which intersects the beginning and end of the pressure zone.
  • the beginning of the pressure zone lies in the plane of symmetry 41 and the end of the pressure zone lies where the tip circles of the inner wheel and the outer wheel intersect, ie where the last meshing of the inner wheel and outer wheel takes place.
  • this is preferably the case at the intersection of the tip circles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Description

  • Die Erfindung betrifft eine Zahnradpumpe nach dem Oberbegriff des Anspruchs 1.
    Diese Pumpe ist bekannt durch die DE-OS 34 48 253 (PP-1372).
  • Dabei ist das Innenrad in der Ausnehmung eines Rotors zur Pumpenachse exzentrisch gelagert. Der Rotor wiederum ist drehbar in dem durch das Außenrad gebildeten Raum gelagert und ist mit der Pumpenwelle, die dem Antrieb des Rotors dient, fest verbunden. Als Einlaß weist die bekannte Pumpe einen in einer Stirnwand liegenden kreiszylindrischen Einlaßraum sowie ein in dem Rotor angeordnetes Kanalsystem auf, welche mit dem kreiszylindrischen Einsatzraum kämmt und dauernd in leitender Verbindung steht.
  • Diese Ausgestaltung ist nur dann zweckmäßig, wenn der gesamte durch den Kopfkreis des Außenrades umschriebene Innenraum, soweit er außerhalb des Eingriffsbereichs der Verzahnung liegt, durch den Rotor ausgefüllt wird.
  • Demgegenüber ist es Aufgabe der Erfindung, eine Innenzahnradpumpe mit exzentrisch umlaufendem Innenrad so auszugestalten, daß die durch den Umlauf des Innenrades und der Druckzone entstehenden, umlaufenden Kräfte sich auf die Antriebswelle nicht auswirken und nicht zu einer Ausbiegung der Welle und einer Verkantung des Innenrades führen.
  • Hierbei wird der ringförmige Einlaßraum durch das umlaufende Rad so überdeckt, daß die Eingriffszone auf der Druckseite keine Verbindung zum Einlaß hat.
    Die Lösung ergibt sich aus dem Kennzeichen des Anspruchs 1.
  • Dabei ergibt sich als besonderer Vorteil, daß statische Überbestimmungen in der Lagerung der Pumpenwelle und der von ihr angetriebenen Teile vermieden werden. Insbesondere kann die Ausbiegung der Pumpenwelle nicht zu einer Verkantung des Innenrades und damit zur Undichtigkeit der Pumpe und Herabsetzung ihres Wirkungsgrades führen. Dieser Vorteil wirkt sich insbesondere dann aus, wenn die Pumpenwelle auch zum Antrieb weiterer Maschinenteile dient und/oder wenn über den Antrieb der Pumpenwelle Querkräfte in die Pumpenwelle eingebracht werden, die zu Fluchtungsfehlern führen können.
  • Aus FR-A-2350469 ist es bekannt, den Rotor einer Drehkolbenpumpe auf einem gehäusefesten Zapfen unabhängig von der Antriebswelle zu lagern, wobei der Rotor durch Mitnehmer der Antriebswelle direkt angetrieben wird.
  • Die Lösung nach Anspruch 2 dient dem weiteren Zweck, statische Überbestimmungen zu vermeiden, da hierbei das Innenrad hinsichtlich seiner momentanen Drehachse nicht durch das Außenrad formschlüssig festgelegt wird.
  • Die Lösung nach Anspruch 3 erzielt eine gute Kühlung und Schmierung des Exzenters, der durch die Gleitlagerungen innen und außen wärme- und verschleißbelastet ist.
  • Vorteilhafterweise wird die Pumpe mit Saugdrosselung betrieben, bei der der Einlaß gedrosselt und im Auslaß für jede durch die Verzahnung gebildete Zelle ein gesondertes Auslaßventil vorgesehen ist. Eine solche Pumpe hat den Vorteil, daß die Förderung nur im unteren Drehzahlbereich drehzahlabhängig ist, im oberen Drehzahlbereich jedoch konstant bleibt.
  • Eine Lösung für die Lage der Einlaßdrosselung ergibt sich alternativ aus den Ansprüche 4 oder 5. Die Lösung nach Anspruch 5 bringt den Vorteil, daß die Außendichtungen der Pumpe nicht druckbelastet sind. Ein Unterdruck entsteht erst beim Einlaß in die Pumpe.
  • Der besondere Vorteil der Bauweise nach dieser Erfindung ergibt sich beim Einsatz als Hydraulikpumpe für den hydraulischen Wandler bzw. die hydraulische Kupplung eines automatischen Kraftfahrzeuggetriebes. Hierbei wird die Pumpe nach der Erfindung in ihrer Auslegung und Zentrierung unabhängig von der Auslegung und Zentrierung des hydraulischen Wandlers bzw. der hydraulischen Kupplung. Bei der Lösung nach Anspruch 6 können sich die Belastungen des Pumpen- und Turbinenrades des hydraulischen Wandlers nicht auf die Hydraulikpumpe auswirken.
  • Eine weitere Verbesserung der Kühlung und Schmierung des Exzenters ergibt sich durch Anspruch 7.
  • Bei der Ausführung nach Anspruch 8 wird erreicht, daß sich die Druckkräfte, die an dem Innenrad und an dem Exzenter angreifen, sowie die Kraft, mit der der Kupplungslappen der Antriebswelle in dem Exzenter angreift, im wesentlichen kompensieren und parallel zueinander ausgerichtet sind. Hierzu liegt die Mitnehmertasche des Exzenters hinter der durch die Pumpenachse gehenden Symmetrieebene. Die in Drehrichtung weisende radiale Begrenzungswand der Mitnehmertasche liegt im wesentlichen parallel zu der Sekante des Innenrades, welche die Druckzone am Innenrad begrenzt.
  • Die Parallelanmeldung EP 91113737 (veröffentlicht als EP-A-475109) hat ebenfalls Ansprüche, die teilweise den Gegenstand des vorliegenden Patents umfassen.
  • Im folgenden wird ein Ausführungsbeispiel anhand der Figuren beschrieben.
    Es zeigen:
  • Fig. 1
    einen Axialschnitt,
    Fig. 2
    einen Radialschnitt durch die Pumpe,
    Fig. 3
    einen Radialschnitt (schematisch) durch einen hydraulischen Wandler mit einer Hydraulikpumpe;
    Fig. 4
    eine Teilansicht der Pumpe bei geöffnetem Deckel 3.
  • Das Pumpengehäuse wird gebildet durch den Pumpenmantel 1 und die Stirnplatten 2 und 3, die aufeinandergeschichtet sind.
  • Der Gehäusemantel 1 weist einen kreiszylindrischen Innenraum auf, in dessen zylindrischen Innenmantel eine umlaufende Nut 4 eingestochen ist. Auf den seitlich stehen bleibenden Stegen 5 ist das Außenrad 6 befestigt. Das gesamte Paket aus Gehäusemantel 1, Stirnplatten 2 und 3 sowie Außenrad 6 wird durch eine Verschraubung 7 zusammengehalten. Die Verschraubung 7 durchdringt mit Löchern 8 das Außenrad im Bereich der Zahnköpfe.
  • Das Außenrad weist eine Innenverzahnung auf. Der Innenraum der Pumpe wird also durch die Innenverzahnung mit Kopfkreis 9 des Außenrades umschrieben. In der Stirnplatte 3 ist ein Zapfen 10 mit einem Ende fest eingefügt. Das andere Ende des Zapfens 10 ragt in den Innenraum der Pumpe. Auf dem Zapfen 10 ist ein Exzenter 11 frei drehbar gelagert. Die axiale Breite des Exzenters entspricht im wesentlichen der axialen Breite des Gehäusemantels 1 und des Außenrades 6. Der Exzenter besitzt einen kreiszylindrischen Außenumfang, dessen Mittelachse bei 12 angedeutet ist und der mit der Exzentrizität E um die Achse 13 des Zapfens 10 umläuft. Auf dem Exzenter 11 ist das Innenrad 14 frei drehbar gelagert. Das Innenrad 14 weist eine Außenverzahnung auf. Die Exzentrizität E des Exzenters und die Außenverzahnung des Innenrades sind so dimensioniert und die Verzahnungen sind so ausgeführt, daß die Außenverzahnung des Innenrades mit der Innenverzahnung des Außenrades kämmt.
    Daher schneiden sich die Kopfkreise 9 und 15 der Verzahnung in den umlaufenden Schnittpunkten 21 und 22. Auf dem Innenumfang des Kopfkreises 9 des Außenrades entstehen dadurch zwischen den Schnittpunkten 21 und 22 einerseits auf der Seite der Achse 13, in die die Exzentrizität E weist, der umlaufende Eingriffsbereich und andererseits auf der Seite der Achse 13, die von der Exzentrizität abgewandt ist, der umlaufende Innen-Sichelraum 23 der Pumpe.
  • Die Verzahnung ist so ausgeführt, daß die Zähne des Außen- und Innenrades zwischen den Schnittpunkten 21 und 22 der Kopfkreise 9 und 15 mit ihren Flanken in dichtendem Eingriff sind. Es entstehen daher zwischen den Schnittpunkten 21 und 22 im Eingriffsbereich mehrere Zahnzellen, die durch Berührung ihrer Flanken zueinander und zu dem von der Exzentrizität abgewandten Innensichelraum 23 abgedichtet sind.
  • Zum Antrieb der Pumpe dient die Antriebswelle 16. Die Antriebswelle 16 ist konzentrisch zur Mittelachse 13 des Zapfens 10 in der anderen Stirnplatte 2 drehbar gelagert und schließt mit ihrem Ende im wesentlichen bündig mit der Innenseite der Pumpenkammer ab. Dort bildet die Welle 16 eine Stirnfläche, an der exzentrisch ein Kupplungslappen 17 befestigt ist. Dieser Kupplungslappen 17 ragt axial in eine Mitnehmertasche 18, die in die benachbarte Stirnfläche des Exzenters 11 im Bereich der Exzentrizität eingebracht ist.
  • Als Einlaß besitzt die Pumpe einen im wesentlichen radialen Einlaßkanal 19 in der Stirnplatte 3. Der Einlaßkanal mündet in einen Verteilerraum 20 ein, der den Zapfen 10 konzentrisch umgibt. Der Verteilerraum ist als kreiszylindrische Ausnehmung der Stirnfläche der Stirnplatte ausgebildet, die den Pumpenraum begrenzt. Ihr Radius ist kleiner als der Radius Fi des Fußkreises des Innenrades.
  • In der Stirnfläche der gegenüberliegenden Stirnplatte 2 ist eine weitere kreiszylindrische Ausnehmung konzentrisch zu der Achse 13 eingebracht. Diese Ausnehmung dient als Einlaßkammer 28. Der Verteilerraum 20 und die Einlaßkammer 28 sind durch Kanäle, welche den Exzenter axial durchdringen, miteinander verbunden. Diese Kanäle sind vorzugsweise als Nuten der Innenbohrung des Exzenters ausgebildet und dienen der Schmierung des Gleitlagers des Exzenters auf dem Zapfen 10 wie auch der Kühlung des Exzenters 11. Als ein solcher Kanal dient die Mitnehmertasche 18, die deshalb den Exzenter 11 axial durchdringt und mit ihrer äußeren Kante auf einem Radius umläuft, der etwas größer ist als der Radius der Welle. Es können auch mehrere solcher Kanäle vorgesehen sein. Aus Fig. 2 ergeben sich zwei weitere solcher Schmierkanäle 29 und 30 im Gleitlagerbereich des Innenrades, die in Umfangsrichtung des Mantels des Exzenters 11 jeweils um 60° versetzt sind. Entsprechende Kanäle können auch in der Innenbohrung des Exzenters angelegt sein, so daß durch den in diesen Kanälen 29, 30 und in der Mitnehmertasche 18 fließenden Ölstrom eine symmetrische Verteilung des Öls und gleichzeitig hydrodynamische Abstützung des Exzenters bewirkt wird. Dabei kommt diesen Ölströmen aber insbesondere auch die Funktion der Kühlung des Exzenters zu. Diese Funktion der Kühlung ist deswegen von besonderer Wichtigkeit, weil der Exzenter selbst in seiner Innenbohrung drehbar gelagert ist und auf seinem Außenmantel als drehbare Lagerung des Innenrades dient.
  • Der Außenradius R der Einlaßkammer 28, bezogen auf die Achse 13 des Zapfens 10, hat sich erfindungsgemäß in bestimmten Grenzen zu halten, die später noch erörtert werden. Die Dimensionierung des Außenradius R der Einlaßkammer 28 ist so, daß der Fußkreis Fi des Innenrades bzw. die von diesem Fußkreis umschriebene Kreisfläche die Einlaßkammer 28 mit Ausnahme einer sichelförmigen Einlaßfläche 27 überdeckt. Die Einlaßfläche wird teilweise auch von den Seiten der Zähne des Innenrades überdeckt. Die Einlaßfläche 27 läuft auf der der Exzentrizität abgewandten Seite des Innenraums mit um.
  • Durch die erfindungsgemäße Dimensionierung des Außenradius R der Einlaßkammer 28 einerseits und des Fußkreises Fi des Innenrades andererseits wird erreicht, daß die sichelförmige Einlaßfläche 27 niemals von einer der geschlossenen Zahnzellen des Eingriffsbereiches überdeckt wird. Dadurch wird ein Totweg dieser Zahnzellen im Druckbereich vermieden und der hydraulische Wirkungsgrad verbessert.
  • Der Auslaßkanal 24 liegt radial im Gehäusemantel 2 und ist mit der Umfangsnut 4 des Gehäusemantels verbunden. Diese Umfangsnut wird nach innen durch den Außenumfang des Außenrades begrenzt und bildet eine Außenkammer.
  • Das Außenrad weist im Bereich jeder Zahnlücke mindestens eine Auslaßbohrung 25 auf. In Fig. 1 ist gezeigt, daß in axialer Richtung pro Zahnlücke jeweils zwei Auslaßbohrungen 25.1 und 25.2 nebeneinander liegen. Dabei sind die Auslaßbohrungen jeweils in parallelen Radialebenen angeordnet. Jede Radialebene wird überdeckt von einem elastischen Ventilring 26.1 und 26.2, der die sämtlichen Auslaßbohrungen einer Normalebene überdeckt und dabei in einer Axialebene durchtrennt ist. Das eine Ende ist z.B. durch einen Niet festgehalten, das andere Ende ist frei beweglich. Diese Ventilringe 26.1, 26.2 dienen als Rückschlagventile für jede der Auslaßbohrungen.
  • Zur Funktion:
    Die Antriebswelle 16 wird mit Drehrichtung 31 angetrieben. Dabei greift der Kupplungslappen 17 in die Mitnehmertasche 18 des Exzenters ein und nimmt den Exzenter mit. Das Außenrad 6 führt dadurch eine taumelnde Bewegung im Innenraum der Pumpe aus, wobei es sich infolge des Eingriffs seiner Verzahnung mit der Verzahnung des Außenrades mit Drehrichtung 32 dreht. Dabei bildet es mit der Verzahnung des Außenrades in dem Eingriffsbereich zwischen den Schnittpunkten 21, 22 der beiden Kopfkreise mehrere Zahnzellen, die sich fortlaufend vergrößern und verkleinern. In dem nachlaufenden Bereich vergrößern sich die Zellen, bis sie sich öffnen und mit dem mit Öl gefüllten Innensichelraum 23 in Verbindung kommen. Auf der vorlaufenden Seite des Innenrades verkleinern sich die Zellen. Hier wird also das Öl unter Druck gesetzt. Wenn der Druck in einer Zelle den in der Umfangsnut 4 herrschenden Systemdruck übersteigt, werden dort die Ventilringe 26.1 und 26.2 von den Auslaßbohrungen 25.1, 25.2 infolge der Druckdifferenz abgehoben, so daß das Öl aus der Zelle ausgestoßen werden kann.
  • Infolge des auf der Einlaßseite entstehenden Unterdrucks wird Öl aus der Einlaßkammer 28 durch die Verbindungskanäle 29, 30 sowie durch die Mitnehmertasche 18 über den Außenumfang des Zapfens 10 aus dem Verteilerraum 20 und Einlaßkanal 19 angesaugt. Im Bereich der Gleitlagerung des Exzenters 11 entsteht hierdurch ein guter Schmierfilm, der gleichzeitig zur Schmierung und zur hydrodynamischen Abstützung dient.
    Der Außendurchmesser der Einlaßkammer 28 ist nun so dimensioniert, daß die Zellen auf der Druckseite keine Verbindung mit der Einlaßkammer 28 haben. Vielmehr wird die Einlaßkammer im Druckbereich von der Stirnfläche des Innenrades, d.h. von der durch den Fußkreis eingeschlossenen Fläche und den Zahnköpfen umschriebenen Fläche überdeckt. Daher darf die Weite der sichelförmigen Einlaßfläche 27, die außen durch die Umfangsfläche der Einlaßkammer 28 und innen durch den Fußkreis des Innenrades begrenzt wird, nur um eine Teilung größer sein als die Weite des sichelförmigen Innenraumes 23, welcher durch die beiden Fußkreise begrenzt wird. Die Weite dieser sichelförmigen Räume und der Teilung wird dabei jeweils als Zentriwinkel um die zentrische Achse 13 der Pumpe gemessen.
  • Die Pumpe ist vorzugsweise auch als sauggedrosselte Pumpe verwendbar. In diesem Falle weist der Einlaßkanal 19 eine Drossel 33 auf. Infolge dieser Drossel kann nur eine zeitlich begrenzte Ölmenge angesaugt werden. Diese zeitlich begrenzte Ansaugmenge reicht nur bis zu einer bestimmten Drehzahl zur vollständigen Füllung der Pumpe aus. Nur bis zu dieser Drehzahl ist daher die Fördermenge der Pumpe proportional zur Drehzahl. Bei Erhöhung der Drehzahl erfolgt keine weitere Steigerung der Fördermenge. Daher ist die Erhöhung der Drehzahl auch nicht mit einer erhöhten Leistungsaufnahme verbunden. Die Pumpe ist daher insbesondere für Verbraucher in Kraftfahrzeugen geeignet, die einen Ölbedarf haben, der nicht von der stark schwankenden Motordrehzahl abhängig ist.
  • In Fig. 3 ist schematisch ein hydraulischer Wandler mit einer integrierten Hydraulikpumpe nach dieser Erfindung gezeigt. Ein solcher hydraulischer Wandler ist z. B. in dem Buch "Dubbel", Taschenbuch des Maschinenbaus, S. 904/905, 14. Aufl., beschrieben. Das Pumpenrad 34 wird von der Pumpenwelle 35 angetrieben. Der Abtrieb erfolgt über Turbinenrad 36 und Turbinenwelle 37. Zwischengeschaltet ist das Leitrad 38, das auf dem Leitradzapfen 10 drehbar gelagert ist. Das Pumpenrad 34 ist mit einer hohlzylindrischen Antriebswelle 16 verbunden, die den Leitradzapfen 10 konzentrisch umgibt. Der Leitradzapfen 10 ist in dem Wandlergehäuse 39 befestigt.
  • Die Hydraulikpumpe ist in eine Ausnehmung des Wandlergehäuses 39 eingepaßt. Sie besteht aus Stirnplatte 2 und 3 und dem dazwischen durch Verschraubung 7 befestigten Außenrad 6. Auf dem Leitradzapfen 10 ist der Exzenter 11 frei drehbar mittels Gleitlagerung gelagert. Auf dem Exzenter 11 ist das Innenrad 14 frei drehbar gelagert. Der Exzenter 11 besitzt eine achsparallele Ausnehmung (Mitnehmertasche 18), in die ein Kupplungslappen 17 der Antriebswelle 16 eingreift. Zwischen der Stirnplatte 3 und der Antriebswelle 16 befindet sich eine Dichtung 40. Durch diese Dichtung 40 wird die zuvor beschriebene Einlaßkammer 28 abgegrenzt. Diese kreiszylindrische Einlaßkammer 28 ist so ausgelegt, daß sie den Fußkreis des Innenrades 14 im Einlaßbereich nur so geringfügig überragt, daß sich die für die Saugdrosselregelung erforderliche Drosselung unmittelbar an dem Innenrad ergibt. Das hat wiederum zur Folge, daß die Einlaßkammer 28 unter Atmosphärendruck steht, so daß die Dichtung 40 nicht druckbelastet ist. Auf der gegenüberliegenden Seite des Exzenters 11 ist im Deckel 3 der kreiszylindrische Verteilerraum 20 gebildet. Im übrigen wird auf die vorangegangene Beschreibung der Pumpe Bezug genommen.
  • Aus Fig. 4 ergibt sich eine weitere Einzelheit zum Antrieb des Exzenters. Gezeigt ist eine Teilansicht der Pumpe bei geöffnetem Deckel 3. Die Darstellung ist schematisch. Auf dem Zapfen 10 ist der Exzenter 11 frei drehbar gelagert. Auf dem Exzenter 11 ist das Innenrad 14 frei drehbar gelagert. Die Verzahnung des Innenrades kämmt mit der Verzahnung des Außenrades 6. Auf dem Außenumfang des Außenrades wird ein Druckraum 4 gebildet. Die Auslaßkanäle der durch die Verzahnung gebildeten Druckzelle verbinden jede zwischen zwei Zähnen des Außenrades gebildeten Zelle mit dem Druckraum 4. Als Rückschlagventil dient ein Ventilring 26, der den Außenumfang umgibt. Der Druckraum 4 ist nach außen durch das Wandlergehäuse 39 begrenzt. Der Druckraum 4 weist einen weiterführenden Auslaßkanal 29 auf.
  • Bezogen auf Fig. 3 und Fig. 1 wird darauf hingewiesen, daß beidseits des Exzenters einerseits der Verteilerraum 20 und andererseits die Einlaßkammer 28 liegen. In Fig. 4 sind nun kreiszylindrische Kanäle 29 dargestellt, die den Exzenter durchdringen und die Einlaßkammer 28 mit dem Verteilerraum 20 verbinden. Dieser Verbindung dient weiterhin die mit rechteckigem Querschnitt ausgeführte Mitnehmertasche 18, die ebenfalls den Exzenter axial durchdringt. In die Mitnehmertasche 18 greift der Kupplungslappen 17 der Antriebswelle 16 (nicht zu sehen) ein. Die Mitnehmertasche 18 ist, in Drehrichtung 31 des Exzenters gesehen, hinter der Symmetrieebene 41 des Exzenters angeordnet. Als Symmetrieebene wird hier die Axialebene des Exzenters bezeichnet, in der sowohl der Drehmittelpunkt des Exzenters, nämlich die Pumpenachse 13, als auch der Kreismittelpunkt 42 des Exzenters liegen. Die Mitnehmertasche 18 ist so gelegt, daß die Vortriebskraft, die der Kupplungslappen 17 auf die radiale Begrenzungswand der Mitnehmertasche 18 ausübt, im wesentlichen parallel läuft zu der Resultierenden der Druckkräfte, die sich auf das Innenrad und den Exzenter auswirken. Dabei ist zu berücksichtigen, daß es sich hier um eine sauggedrosselte Pumpe handelt. Der ungünstigste Belastungsfall liegt bei dieser Pumpe im unteren Drehzahlbereich, in dem sämtliche, in der Verzahnung gebildeten, abgeschlossenen Zellen mit Öl gefüllt und daher in der Druckzone einem Druck unterworfen sind. Die vordere radiale Begrenzungswand der Mitnehmertasche 18 liegt daher im wesentlichen parallel zu der Sekante, welche Beginn und Ende der Druckzone schneidet. Der Beginn der Druckzone liegt in der Symmetrieebene 41 und das Ende der Druckzone liegt dort, wo sich die Kopfkreise des Innenrades und des Außenrades schneiden, d. h. dort, wo der letzte Zahneingriff von Innenrad und Außenrad stattfindet. Dies ist bei der sauggedrosselten Pumpe vorzugsweise im Schnittpunkt der Kopfkreise der Fall.
  • BEZUGSZEICHENAUFSTELLUNG
  • 1
    Gehäusemantel, Pumpenmantel
    2
    Stirnplatte
    3
    Stirnplatte
    4
    Nut, Druckraum
    5
    Stege
    6
    Außenrad
    7
    Verschraubung
    8
    Löcher
    9
    Kopfkreis
    10
    Zapfen, Leitradzapfen
    11
    Exzenter
    12
    Mittelachse
    13
    Achse
    14
    Innenrad
    15
    Kopfkreis
    16
    Antriebswelle
    17
    Kupplungslappen
    18
    Mitnehmertasche
    19
    Einlaßkanal
    20
    Verteilerraum
    21
    Schnittpunkt
    22
    Schnittpunkt
    23
    Innensichelraum
    24
    Auslaßkanal
    25.1
    Auslaßbohrung
    25.2
    Auslaßbohrung
    26.1
    Ventilring
    26.2
    Ventilring
    27
    Einlaßfläche
    28
    Einlaßkammer
    29
    Schmierkanal, Verbindungskanal
    30
    Schmierkanal, Verbindungskanal
    31
    Drehrichtung
    32
    Drehrichtung
    33
    Drossel
    34
    Pumpenrad
    35
    Pumpenwelle
    36
    Turbinenrad
    37
    Turbinenwelle
    38
    Leitrad
    39
    Wandlergehäuse
    40
    Dichtung

Claims (8)

  1. Innenzahnradpumpe für Hydraulikflüssigkeit,
    bei der das Außenrad mit Innenverzahnung stationär ist und einen geschlossenen Innenraum bildet,
    bei der das kleinere Innenrad mit Außenverzahnung mit dem Außenrad kämmt und auf einem Exzenter frei drehbar gelagert ist
    und bei der der Exzenter (11) um die zum Außenrad (6) konzentrische Pumpenachse (13) und durch die dazu ebenfalls konzentrische Antriebswelle (16) drehbar angetrieben ist,
    dadurch gekennzeichnet, daß
    der Exzenter (11) auf einem im Gehäuse fest stehenden und auskragend gelagerten, zur Pumpenachse (13) konzentrischen Zapfen (10) frei drehbar gelagert ist und durch eine Kupplung (17), (18) mit der Antriebswelle (16) drehfest verbunden ist.
  2. Pumpe nach Anspruch 1,
    dadurch gekennzeichnet, daß
    die Differenz der Zähnezahl von Außenrad (6) und Innenrad (14) mindestens 2 beträgt.
  3. Pumpe nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß
    der Einlaß eine in der Stirnwand angeordnete, zum Außenrad konzentrische, kreiszylindrische Einlaßkammer (28) aufweist, deren Außenradius kleiner ist als die Summe von Exzentrizität und Radius des Fußkreises des Innenrades (14) und größer ist als die Differenz zwischen dem Radius des Fußkreises des Innenrades und der Exzentrizität,
    daß das Innenrad (14) die Einlaßkammer (28) teilweise überdeckt und eine umlaufende, sichelförmige Einlaßfläche (27) freiläßt, die sich über einen an der Pumpenachse (13) gemessenen Zentriwinkel erstreckt, der kleiner ist als die Summe aus Teilungswinkel und dem an der Pumpenachse (13) gemessenen Zentriwinkel des umlaufenden Innen-Sichelraums (23), der auf der von der Exzentrizität abgewandten Seite definiert wird durch die Kopfkreise.
  4. Pumpe nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, daß
    der Einlaßkanal (19) eine Drossel (33) aufweist.
  5. Pumpe nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, daß
    der Verteilerraum (28) kreisringförmig und konzentrisch zur Pumpenachse ausgelegt ist und einen Radius hat, der geringfügig größer ist als die Differenz zwischen Fußkreisradius des Innenrades und Exzentrizität und mit den durch die Verzahnung gebildeten Zellen lediglich drosselnd verbunden ist.
  6. Pumpe nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, daß
    der Exzenter auf dem Zapfen (10) des Leitrades eines hydraulischen Wandlers drehbar gelagert ist und mit der Pumpenantriebswelle des hydraulischen Wandlers drehfest gekuppelt ist.
  7. Pumpe nach Anspruch 3,
    dadurch gekennzeichnet, daß
    der Exzenter (11) einerseits an der Einlaßkammer (28) und andererseits an einem kreiszylindrischen Verteilerraum (20) anliegt, welcher Verteilerraum mit dem Einlaßkanal (19) verbunden ist und einen Außenradius hat, der kleiner ist als der Fußkreisradius des Innenradius,
    und daß die Verteilerkammer und die Einlaßkammer durch achsparallele Kanäle (19, 29, 30) verbunden sind, die den Exzenter durchdringen und vorzugsweise in die Gleitlagerung des Exzenters auf dem Zapfen und/oder in die Gleitlagerung des Innenrades auf dem Exzenter in Form von axialen Nuten eingebracht sind, wobei auch die zur Kupplung mit der Antriebswelle dienende Mitnehmertasche (18) als ein solcher Kanal dienen kann.
  8. Pumpe nach einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, daß
    die Antriebswelle (16) mit dem Exzenter (11) durch einen axialen Kupplungslappen (17) verbunden ist, der in eine Mitnehmertasche (18) des Exzenters eingreift, und daß die Mitnehmertasche (18) bezüglich der Drehrichtung der Antriebswelle hinter der Symmetrieebene des Exzenters, d.h. die Axialebene, in der sowohl die Pumpenachse (13) als auch der Kreismittelpunkt des Exzenters liegen angeordnet ist, und zwar derart, daß sich die Anlagekraft des Kupplungslappens in der Mitnehmertasche und die Resultierende der Druckkräfte im wesentlichen kompensieren.
EP91113738A 1990-08-20 1991-08-16 Innenzahnradpumpe für Hydraulikflüssigkeit Expired - Lifetime EP0473025B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT91113738T ATE96886T1 (de) 1990-08-20 1991-08-16 Innenzahnradpumpe fuer hydraulikfluessigkeit.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4026261 1990-08-20
DE4026261 1990-08-20

Publications (2)

Publication Number Publication Date
EP0473025A1 EP0473025A1 (de) 1992-03-04
EP0473025B1 true EP0473025B1 (de) 1993-11-03

Family

ID=6412533

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91113738A Expired - Lifetime EP0473025B1 (de) 1990-08-20 1991-08-16 Innenzahnradpumpe für Hydraulikflüssigkeit

Country Status (4)

Country Link
EP (1) EP0473025B1 (de)
JP (1) JP3011797B2 (de)
AT (1) ATE96886T1 (de)
DE (1) DE59100553D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016217267A1 (de) 2016-09-09 2018-03-15 Mahle International Gmbh Anordnung für eine Kälteanlage mit einem Spiralverdichter

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1271052B (it) * 1993-11-18 1997-05-26 Pompa ad ingranaggi interni con sporgenze volumetriche
DE10393578D2 (de) * 2002-11-14 2005-07-07 Luk Automobiltech Gmbh & Co Kg Pumpe
JP2008251687A (ja) 2007-03-29 2008-10-16 Toshiba Corp プリント回路板、およびこれを備えた電子機器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2350469A1 (fr) * 1976-05-03 1977-12-02 Bosch Gmbh Robert Groupe de refoulement de carburant constitue d'une pompe et d'un moteur electrique

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1099560A (fr) * 1954-02-15 1955-09-07 Perfectionnements aux machines à engrenages conjugués et leurs applications
DE3005657C2 (de) * 1980-02-15 1987-01-02 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen Zahnradpumpe
DE3444859A1 (de) * 1983-12-14 1985-06-27 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Rotationszellenpumpe fuer hydrauliksysteme
DE3504783A1 (de) * 1984-02-15 1985-10-24 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Zahnradpumpe mit innenverzahnung
GB2219631B (en) * 1988-06-09 1992-08-05 Concentric Pumps Ltd Improvements relating to gerotor pumps

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2350469A1 (fr) * 1976-05-03 1977-12-02 Bosch Gmbh Robert Groupe de refoulement de carburant constitue d'une pompe et d'un moteur electrique

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016217267A1 (de) 2016-09-09 2018-03-15 Mahle International Gmbh Anordnung für eine Kälteanlage mit einem Spiralverdichter

Also Published As

Publication number Publication date
ATE96886T1 (de) 1993-11-15
DE59100553D1 (de) 1993-12-09
JPH04255585A (ja) 1992-09-10
EP0473025A1 (de) 1992-03-04
JP3011797B2 (ja) 2000-02-21

Similar Documents

Publication Publication Date Title
EP0682756B1 (de) Getriebe mit einer verdrängerpumpe
EP0362906B1 (de) Innenzahnradpumpe
DE102011104324B4 (de) Hocheffiziente Konstantförderflügelzellenpumpe
WO1992000449A1 (de) Aggregat zum fördern von kraftstoff vom vorratstank zur brennkraftmaschine eines kraftfahrzeuges
DE3334919A1 (de) Fluegelradpumpe mit variabler foerderleistung
WO2007039013A1 (de) Flügelzellenpumpe
EP1141551A1 (de) Pumpenanordnung mit zwei hydropumpen
DE102016121241B4 (de) Hydraulischer Antrieb, hydraulischer Motor und integrierte Pumpe mit dem hydraulischen Antrieb
WO1999017030A1 (de) Radialer schwenkmotor
EP3929439A1 (de) Axiale druckentlastung in gleitlagern von pumpen
DE102011108767B4 (de) Hocheffiziente Drehschieberkonstantpumpe
EP0473025B1 (de) Innenzahnradpumpe für Hydraulikflüssigkeit
DE60031459T2 (de) Gerotormotor mit Schmiernuten
EP0475109B1 (de) Innenzahnradpumpe für Hydraulikflüssigkeit
EP0474001B1 (de) Innenzahnradpumpe für Hydraulikflüssigkeit
DE10142263C1 (de) Regelbare Kühlmittelpumpe
EP0579981A1 (de) Innenzahnradpumpe für Hydraulikflüssigkeit
DE3841329C2 (de) Flügelzellenvakuumpumpe
DE3242983A1 (de) Regelbare fluegelzellenpumpe
DE10040711C2 (de) Flügelzellenpumpe
WO1996026326A1 (de) Drehvorrichtung für baggergreifer
EP0381682B1 (de) Drehkolbenverdichter
EP0320795B1 (de) Flügelzellen-Vakuumpumpe
EP0315878B1 (de) Innenzahnradpumpe
EP2625427A2 (de) Strömungsgetriebe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT SE

17P Request for examination filed

Effective date: 19920204

17Q First examination report despatched

Effective date: 19921211

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT SE

REF Corresponds to:

Ref document number: 96886

Country of ref document: AT

Date of ref document: 19931115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59100553

Country of ref document: DE

Date of ref document: 19931209

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940126

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 91113738.8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040820

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070904

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070723

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070823

Year of fee payment: 17

Ref country code: SE

Payment date: 20070820

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070821

Year of fee payment: 17

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080816

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090303

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080901

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080817