EP0456300A1 - Verfahren zur Raffination eines Glyceridols - Google Patents
Verfahren zur Raffination eines Glyceridols Download PDFInfo
- Publication number
- EP0456300A1 EP0456300A1 EP19910200995 EP91200995A EP0456300A1 EP 0456300 A1 EP0456300 A1 EP 0456300A1 EP 19910200995 EP19910200995 EP 19910200995 EP 91200995 A EP91200995 A EP 91200995A EP 0456300 A1 EP0456300 A1 EP 0456300A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- oil
- acid
- hydration
- treatment
- glyceride oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B3/00—Refining fats or fatty oils
- C11B3/02—Refining fats or fatty oils by chemical reaction
Definitions
- the present invention relates to a method of refining glyceride oil, and in particular to such a method comprising an acid treatment in which an acid or acid anhydride is dispersed in the oil, a hydration treatment in which alkali is mixed into the acidified glyceride oil and a separation treatment in which hydrated phosphatides so formed are separated from the glyceride oil.
- Glyceride oils of in particular vegetable origin such as soybean oil, rapeseed oil, sunflower oil, safflower oil, cotton seed oil and the like, are a valuable raw material for the food industries. These oils in crude form are usually obtained from seeds and beans by pressing and/or extraction.
- Such crude glyceride oils mainly consist of triglyceride components. However, they generally also contain a significant amount of non-triglyceride components including phosphatides (gums), waxy substances, partial glycerides, free fatty acids, colouring materials and small amounts of metals. Depending on the intended use of the oil, many of these impurities have an undesirable effect on the (storage) stability, taste, and colour of later products. It is therefore necessary to refine, i.e. to remove the gums and other impurities from the crude glyceride oils as much as possible.
- the first step in the refining of glyceride oils is the so-called degumming step, i.e. the removal of the gums.
- degumming relates to any treatment which eventually results in the removal of gums and associated components from the oil.
- water is added to the crude glyceride oil to hydrate the phosphatides, which are subsequently removed, e.g. by centrifugal separation. Since the resulting degummed oil often still contains unacceptably high levels of "non-hydratable" phosphatides, this water-degumming step is normally followed by chemical treatments with acid and/or alkali to remove the residual phosphatides and to neutralize the free fatty acids ("alkali-refining").
- the soapstock so formed is separated from the neutralized oil by for instance centrifugal separation.
- the resulting oil is then further refined using bleaching and deodorizing treatments.
- US-A-4,049,686 discloses an improved refining method in which the crude or water-degummed oil is treated with a concentrated acid such as in particular citric acid, reducing residual phosphorus levels to within the range of from 20 to 50 ppm.
- EP-A-195,991 discloses a process for producing degummed vegetable oils, in which water degummed oil is first subjected to an acid treatment in which acid is finely dispersed in the water-degummed oil under dispersion conditions yielding at least 10 million acid droplets per gram of oil corresponding to an interface surface area between the acid and oil droplets of at least 0.2 m2 per 100 gram of oil, and subsequently, to an alkali treatment in which sufficient alkali is added to the acid-in-oil dispersion to increase the pH to above 2.5.
- the refining process is carried out at an oil temperature of more than 75°C.
- the present invention now provides a method of refining glyceride oil comprising an acid treatment in which an acid or acid anhydride is dispersed in the oil, a hydration treatment in which alkali is mixed into the acidified glyceride oil and a separation treatment in which hydrated phosphatides so formed are separated from the glyceride oil, characterized in that during the hydration treatment the hydration temperature is equal to or below 70°C.
- An essential aspect of the invention is that during the hydration treatment the hydration temperature is equal to or below 70°C. At higher temperatures the hydrated phosphatides formed are of such nature that they are to a lesser extent, and in some cases even not at all, removable from the oil.
- the hydration of the phosphatides and their removal from the oil is positively affected by applying even lower hydration temperatures.
- Good degumming results are obtained at a hydration temperature of less than 60°C, preferably less than 40°C.
- Excellent refining results are obtained if the hydration temperature is maintained in the range of 10 to 50°C, preferably 20 to 30°C.
- lower hydration temperatures allow less severe separation conditions, i.e. e.g. shorter centrifugation times and/or lower centrifugal forces may be applied in the separation treatment for obtaining excellent refining results.
- the hydration time necessary for forming hydrated phosphatides that are removable from the oil is dependent of the hydration temperature applied. At higher hydration temperatures shorter hydration times may be used. In general, the hydration time should be more than 3 minutes. Good results are obtained at hydration times of more than 30 minutes, preferably more than 50 minutes. Under practical conditions the hydration time is normally in the range of 30 to 240 minutes, preferably 60 to 240 minutes, most preferably in the range of 60 to 180 minutes.
- the refining method of the invention is generally applicable to both crude (non-degummed) oil, and degummed oils. Whether it is best to use crude or degummed oil, is dependent on the composition of the phosphatides present in the oil.
- Sunflower oil and maize germ oil are examples of oils that may be refined by the method of the invention without prior degumming.
- Rapeseed oil and soybean oil are examples of oils which may need pre-degumming prior to application of the method in accordance with the invention. Although the oil may be predegummed by any suitable degumming process, normally it is sufficient that the oil is water degummed.
- the acid or acid anhydride used in the acid treatment may be any acid or corresponding acid anhydride which converts the phosphatides into hydratable phosphatides.
- the acid or acid anhydride should be non-toxic, miscible with water, and may be of both inorganic and organic origin. Examples of suitable acids are phosphoric acid and citric acid. The use of citric acid is preferred.
- the amount of acid or acid anhydride used should be such, that substantially all phosphatides present are converted in the hydratable form.
- suitable amounts of acid lie in the range of 0.01 to 1 % by weight, preferably 0.01 to 0.5 % by weight of the glyceride oil.
- Citric acid is suitably added in an amount of 0.01 to 0.4 % by weight of the glyceride oil as a 50 % by weight aqueous citric acid solution.
- Phosphoric acid is suitably used in an amount of 0.02 to 0.4 % by weight, e.g. as a 35 % by weight aqueous phosphoric acid solution.
- the conditions under which the acid is dispersed into the glyceride oil may be less severe than the dispersion conditions disclosed in EP-A-195,991.
- Any static or dynamic mixer may be used suitable to achieve an acid-droplets distribution throughout the oil, said acid droplets generally having an average size in the range of from 10 to 20 micrometers.
- the time during which the oil is in contact with the dispersed acid is not critical.
- the oil temperature is as high as possible, and in practical circumstances is in the range of 60 to 95°C, preferably 70 to 90°C.
- the amount of alkali added is such that the hydrated phosphatides formed can be easily removed from the oil.
- the alkali is generally added in an amount sufficient to neutralize 10 to 200 % of the acid or acid anhydride added in the acid treatment.
- the alkali is added in an amount sufficient to neutralize 25 to 100 % of the acid.
- the water content of the oil is such that the hydration of the phosphatides is not inhibited because of a shortage of water.
- Water may be added during any stage of the refining process up to the hydration treatment.
- alkali and water are added simultaneously as an aqueous alkali solution.
- the water content of the oil is generally 0.5 to 5 % by weight, dependent on the phosphatide level in the oil to be refined.
- alkali that may suitably be used in the hydration treatment are sodium hydroxide, potassium hydroxide and ammonia, which are generally added as the aqueous solutions thereof.
- the batches were heated to 90°C and their water contents were adjusted to 0.6 % by weight. Amounts of 0.215 % by weight of concentrated phosphoric acid (85 wt.% aqueous solution) were added to the batches and dispersed in the oils using an Ultra-Turrax R (mixing time 30 seconds). Subsequently, the mixtures were agitated for 2.5 minutes. Thereafter, amounts of 2.5 % by weight of a 5 wt.% aqueous solution of sodium hydroxide were added.
- separation I the hydrated phosphatides were removed by centrifuging for 10 minutes using a centrifugal force of about 100 g, and according to separation II by centrifuging for 45 minutes at about 850 g.
- the oils obtained after separation II were further subjected to a water washing with 2 % by weight of water whereafter the water layer was removed by centrifuging for 45 minutes at about 850 g (separation III).
- oil (1) comprised 230 mg/kg P and 151 mg/kg Ca
- oil (2) comprised 220 mg/kg P and 148 mg/kg Ca.
- These wdg rapeseed oils were heated to 90°C and their water content was adjusted to 0.6 % by weight.
- Amounts of 0.215 % by weight concentrated phosphoric acid (85 wt.%) were added to the oils and dispersed in the oils using a Ultra-Turrax R (mixing time 30 seconds). Subsequently, the mixtures were agitated during 2.5 minutes. Thereafter, 2.5 % by weight of a 5 wt.% aqueous solution of sodium hydroxide was added.
- the hydration temperature T (°C) was varied between 8 and 90°C and the hydration time t (min.) was varied between 3 and 157 minutes.
- the hydrated phosphatides were removed from the oils by respectively separation I and separation III (see example 1).
- the residual phosphorus levels in the resulting oils were measured and are shown in Table 2.
- Wdg maize oil (oil 1), non-degummed sunflower oil (oil 2), two wdg soybean oils (oils 3 and 4) and wdg rapeseed oil (oil 5) were mixed with 0.2 % by weight of a 45 wt.% solution of citric monohydrate using an Ultra Turrax R (30 seconds) followed by 10 minutes turbine stirring at 600 rpm, or with 0.1 % by weight of a 34 wt.% phosphoric acid solution using an Ultra Turrax R (60 seconds). Subsequently, amounts of 2 % by weight 1 N sodium hydroxide solution were added to the oils under turbine stirring (10 minutes, 600 rpm). An alkali hydration temperature of 30°C was maintained two hours under turbine stirring at 300 rpm.
- Non-degummed maize germ oil heated to 70°C was mixed with 0.1 % by weight citric monohydrate. Thereafter, the oil was cooled to 20°C and at this temperature 2 % by weight of an aqueous sodium hydroxide solution was added in an amount sufficient to neutralise 2/3 of the citric acid present in the oil. After two hours at 20°C the hydrated phosphatides were removed by centrifuge (10 minutes at 1000 rpm corresponding to about 100 g).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Edible Oils And Fats (AREA)
- Fats And Perfumes (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP90201135 | 1990-05-04 | ||
EP90201135 | 1990-05-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0456300A1 true EP0456300A1 (de) | 1991-11-13 |
EP0456300B1 EP0456300B1 (de) | 1997-08-06 |
Family
ID=8205008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19910200995 Expired - Lifetime EP0456300B1 (de) | 1990-05-04 | 1991-04-25 | Verfahren zur Raffination eines Glyceridols |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0456300B1 (de) |
DE (1) | DE69127127T2 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0473985A2 (de) * | 1990-08-23 | 1992-03-11 | Krupp Maschinentechnik Gesellschaft Mit Beschränkter Haftung | Entschleimungsverfahren |
EP3164010A4 (de) * | 2014-07-03 | 2017-12-20 | Arisdyne Systems, Inc. | Verfahren zur entbastung von ölen |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009049950A1 (de) | 2009-10-19 | 2011-04-21 | Lurgi Gmbh | Verfahren zur Aufarbeitung von leicht verseifbarem Rohöl pflanzlicher oder tierischer Herkunft, für die Weiterverarbeitung zu Biodiesel |
DE102010007138B4 (de) * | 2010-02-05 | 2016-10-20 | Jungbunzlauer Ladenburg Gmbh | Verfahren zur Raffination von Ölen und Fetten und Verwendung einer vollständig oder teilweise mit Alkali neutralisierten Carbonsäure als Zusatzmittel bei der Dämpfung |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB539262A (en) * | 1939-02-28 | 1941-09-03 | Sharples Corp | Improvements in or relating to the refining of fatty oils |
US2678325A (en) * | 1949-07-19 | 1954-05-11 | Lever Brothers Ltd | Alkali-refining of fatty glycerides in the presence of a tartaric compound |
FR2303849A1 (fr) * | 1975-03-10 | 1976-10-08 | Unilever Nv | Procede de demucilagination de triglycerides huileux |
FR2442882A1 (fr) * | 1978-11-30 | 1980-06-27 | Showa Sangyo Co | Procede de raffinage d'huiles et de graisses animales ou vegetales |
EP0269277A2 (de) * | 1986-11-13 | 1988-06-01 | The Cambrian Engineering Group Limited | Verfahren zum Entschleimen von Triglyceridölen |
-
1991
- 1991-04-25 EP EP19910200995 patent/EP0456300B1/de not_active Expired - Lifetime
- 1991-04-25 DE DE1991627127 patent/DE69127127T2/de not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB539262A (en) * | 1939-02-28 | 1941-09-03 | Sharples Corp | Improvements in or relating to the refining of fatty oils |
US2678325A (en) * | 1949-07-19 | 1954-05-11 | Lever Brothers Ltd | Alkali-refining of fatty glycerides in the presence of a tartaric compound |
FR2303849A1 (fr) * | 1975-03-10 | 1976-10-08 | Unilever Nv | Procede de demucilagination de triglycerides huileux |
FR2442882A1 (fr) * | 1978-11-30 | 1980-06-27 | Showa Sangyo Co | Procede de raffinage d'huiles et de graisses animales ou vegetales |
EP0269277A2 (de) * | 1986-11-13 | 1988-06-01 | The Cambrian Engineering Group Limited | Verfahren zum Entschleimen von Triglyceridölen |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0473985A2 (de) * | 1990-08-23 | 1992-03-11 | Krupp Maschinentechnik Gesellschaft Mit Beschränkter Haftung | Entschleimungsverfahren |
EP0473985A3 (en) * | 1990-08-23 | 1992-06-03 | Krupp Maschinentechnik Gesellschaft Mit Beschraenkter Haftung | Process for degumming |
US5239096A (en) * | 1990-08-23 | 1993-08-24 | Krupp Maschinentechnik Gmbh | Degumming process for plant oils |
EP3164010A4 (de) * | 2014-07-03 | 2017-12-20 | Arisdyne Systems, Inc. | Verfahren zur entbastung von ölen |
Also Published As
Publication number | Publication date |
---|---|
DE69127127D1 (de) | 1997-09-11 |
EP0456300B1 (de) | 1997-08-06 |
DE69127127T2 (de) | 1998-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0195991B1 (de) | Verfahren zur Herstellung von entschleimten pflanzlichen Ölen und Schleim mit hohem Gehalt an phosphatidischer Säure | |
US6033706A (en) | Refining of edible oil retaining maximum antioxidative potency | |
US5696278A (en) | Degumming of crude glyceride oils not exposed to prior enzymatic activity | |
EP0348004B1 (de) | Verfahren zur Raffination von Glyceridölen | |
EP0269277B1 (de) | Verfahren zum Entschleimen von Triglyceridölen | |
EP0936266A1 (de) | Raffinieren von essbaren Ölen mit höchstem antioxidativem Wirkungsgrad | |
US3943155A (en) | Simultaneous refining and dewaxing of crude vegetable oil | |
US20050158445A1 (en) | Soybean oil process | |
US3895042A (en) | Clay-heat refining process | |
EP0478090B1 (de) | Verfahren zum Raffinieren von Glyceridöl | |
EP0122727A1 (de) | Verfahren betreffend Triglyceridöle | |
JPH0153999B2 (de) | ||
EP0077528B1 (de) | Raffiniertes geniessbares Öl und Verfahren zur Herstellung desselben | |
WO2013163112A1 (en) | Improved fractionation processes | |
US4609500A (en) | Refining of oil and product thereof | |
Jawad et al. | Quality characteristics of physically refined soyabean oil: effects of pre‐treatment and processing time and temperature | |
EP0456300B1 (de) | Verfahren zur Raffination eines Glyceridols | |
EP0170242B1 (de) | Stufenweise Entfernung von Wachsen aus essbaren pflanzlichen Ölen | |
CA2372762A1 (en) | Refining of glyceride oils by treatment with silicate solutions and filtration | |
US2182767A (en) | Process of obtaining phosphatides from soap stock | |
US5449797A (en) | Process for the removal of soap from glyceride oils and/or wax esters using an amorphous adsorbent | |
US5210242A (en) | Process for soap splitting using a high temperature treatment | |
US2078428A (en) | Process of obtaining phosphatides from soapstock | |
US5066501A (en) | Fluidization of soapstock | |
GB2144143A (en) | Refining of palm oils |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB NL |
|
17P | Request for examination filed |
Effective date: 19911028 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: UNILEVER PLC Owner name: UNILEVER N.V. |
|
17Q | First examination report despatched |
Effective date: 19940118 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19970806 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19970806 Ref country code: BE Effective date: 19970806 |
|
REF | Corresponds to: |
Ref document number: 69127127 Country of ref document: DE Date of ref document: 19970911 |
|
EN | Fr: translation not filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980425 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19980425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990202 |