[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0451521B1 - Embankment protection structure - Google Patents

Embankment protection structure Download PDF

Info

Publication number
EP0451521B1
EP0451521B1 EP91103801A EP91103801A EP0451521B1 EP 0451521 B1 EP0451521 B1 EP 0451521B1 EP 91103801 A EP91103801 A EP 91103801A EP 91103801 A EP91103801 A EP 91103801A EP 0451521 B1 EP0451521 B1 EP 0451521B1
Authority
EP
European Patent Office
Prior art keywords
water
structure according
hollow
figures
hollow body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91103801A
Other languages
German (de)
French (fr)
Other versions
EP0451521A1 (en
Inventor
Fritz Prof. Dr.-Ing. Büsching
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19904011504 external-priority patent/DE4011504A1/en
Application filed by Individual filed Critical Individual
Publication of EP0451521A1 publication Critical patent/EP0451521A1/en
Application granted granted Critical
Publication of EP0451521B1 publication Critical patent/EP0451521B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/12Revetment of banks, dams, watercourses, or the like, e.g. the sea-floor
    • E02B3/14Preformed blocks or slabs for forming essentially continuous surfaces; Arrangements thereof
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/12Revetment of banks, dams, watercourses, or the like, e.g. the sea-floor

Definitions

  • the invention relates to a bank protection structure attached to wave-loaded slope structures, inclined damming walls or the like, consisting of at least partially closed, water-flowable hollow bodies, which together form a revetment parallel to the slope.
  • Revetment constructions and dyke embankments on the one hand and inclined baffle walls of shaft-loaded building constructions on the other hand must be dimensioned for dynamic stresses due to breaking water waves. Since the wave energy to be converted during the wave breaking process on the structure is proportional to the square of the wave height, the maximum possible crusher height on the structure under given geometric conditions represents a significant dimension. Furthermore, the water level, the crusher shape, the crusher position relative to the structure and the structure geometry are of particular importance .
  • the interaction process which also contributes to the development of the load, between the near-surface water particle kinematics of the incoming wave and that of the return water of the preceding wave has not yet been deliberately attempted to be influenced by constructive measures in the sense of lower wave-generated structural loads.
  • the wave-induced water movement in front of and on the structure is significantly changed.
  • the wave energy given in the form of a wave spectrum can be optimally damped by the structural design of the shell delimiting the cavity.
  • the water movement present in the presence of waves on embankments can be understood as a forced oscillating movement with several degrees of freedom (coupling oscillation).
  • the water volume located as a continuum in front of the embankment represents the vibrating system, which is characterized by different natural frequencies depending on the geometrical boundary conditions (water depth, slope inclination).
  • an overall system is used which consists of several partial oscillators with different natural frequencies. The effects of the waves coming from the sea are regarded as the excitation forces in this arrangement.
  • the water level deflections corresponding to the partial reflection on the one hand and the wave run-up return movements (washing movements) on the other hand can thus be assigned to approximately pronounced degrees of freedom of the system. If the system is changed in its degrees of freedom, this has immediate effect also a change in the number and amounts of its natural frequencies.
  • the invention has for its object to improve the kinematics of the water movement in front of and on the embankment structure, in particular in the sense of smaller crusher heights and a reduced wave run-up.
  • the revetment according to the invention should therefore only extend over the dynamically loaded area of the bank protection structure. This results in considerably smaller revetment dimensions and, as a result of the high proportion of voids, also a lower mass requirement.
  • the approaching waves move along a reference water level.
  • a certain volume of water in the wave surge is transported to above the upper horizontal boundary edge of the revetment, in order to flow through the inlet cross-section, the cavity and the outlet cross-section completely or at least partially unhindered after reversal of movement, and so on to be returned to the water volume in front of the building below the reference water level.
  • reference resting water level is to be understood as the so-called design water level, which is usually determined on the basis of nature studies as a "high water level” with a probability of occurrence that can vary widely depending on the location (in the Netherlands it is between 1: 1250 and 1: 10000).
  • This design water level depends on the wind conditions, the tide, the underwater topography and the danger posed by the building in question when it is destroyed. Similar definitions of probability theory also apply to the determination of the design wave according to height and period or length.
  • the "reference resting water level” also represents a design water level to be determined for the location.
  • the water inlet cross-section should not be lower than the lowest wave-generated water level deflection (deepest wave trough) based on the design water level.
  • the performance of the revetment then depends above all on the design of the inlet openings and the flow cross-sections, the optimal location and shape of which, however - as with other special flow structures in hydraulic engineering - can only be found using hydraulic model tests.
  • a theoretical limit for the height arrangement of the lower water outlet results from the fact that the water particle movements associated in the partial clapotis decrease with the distance from the water surface according to an exponential law and have completely subsided at a depth that corresponds to about half the wavelength.
  • an optimization for a given slope slope is to be carried out by means of model tests.
  • hollow body structures with a hydraulically favorable cross-section can be manufactured or used from in-situ concrete, as precast concrete, steel or composite structures, also using plastic elements or from flowable concrete blocks or hollow profile structures.
  • a lower design wave height can be taken as a basis, with the result that manufacturing and maintenance costs can be saved.
  • a component for the creation of a bank protection works, a dike embankment, a dam or the like (building) is characterized according to the invention by a hollow body through which water can flow and which can be laid in conjunction with a protective surface, with a head surface facing outwards in the composite and an opposite one facing inwards Support surface, between which a free water flow cross section is provided, which connects an inlet opening located at the top with a lower outlet opening.
  • While small-sized flow-through concrete moldings can serve as elements of hollow structures for the production of revetments and embankment embankments, it is advantageous to use large-volume flow-through concrete moldings for breakwater-like structures, longitudinal structures, transverse structures or the like.
  • Such components are, according to the invention, characterized, for example, by a water which can flow through more regularly, is polygonal in horizontal section, preferably rectangular, and can be stacked in association or association to form a spatial protective structure, with openings at the top and bottom which have different openings depending on the position of the water in the overall structure.
  • the component can be characterized by a shaped body that can flow through water rather regularly, is structured in a single or multi-chamber structure and can be stacked in association or association to form a spatial protective structure with top and bottom flow, depending on the position relative to the water level in the overall structure Chamber openings and vertically mutually offset inner and outer chamber walls that locally also an approximately regular flow direction deviating from the vertical, preferably parallel to the slope, is generated.
  • the top surfaces of the shaped blocks or concrete slabs can have features (openings) with the result that the water present above the shaped blocks or concrete slabs laid in the composite after the wave breaking process can get into the cavity under the top surfaces.
  • Such large-volume flowable concrete moldings are also suitable to be used as the actual supporting elements of the building structures.
  • dam-like structures can be filled in regular stacks with suitable material.
  • the hollow body structure is formed only from an upper shell 1a and a lower shell 1b.
  • the structural design of the flow cross-section 2a, 2b, 2d was not shown here for reasons of a better overview. The same applies to the waves moving along the reference water level 3 and the water volume of the wave run-up surge transported by them during the wave breaking process above the hollow body boundary 4. After the movement has been reversed, the latter is fed back in full or in part through the inlet cross-section 2a, the cavity 2b and the outlet cross-section 2d as a return flow to the water volume in front of the building below the reference water level 3.
  • the distance 5 of the upper boundary 4 of the hollow body structure from the reference water level at the embankment contour 6 as well as the design of the cross sections 2a, 2b and 2d per running meter of the shoreline 7 and the parallel length 8 of the hollow body structure are dependent on the configuration of the overall structure and the design wave characteristics can be determined by hydraulic model investigations.
  • the hollow body structure can be established separately from the slope cover 9a, 9b, which may be of conventional design, or in conjunction with it.
  • 1b shows an example of the possible (possibly optimal) arrangement of the upper hollow body boundary 4 below the reference water level on the structure 6, depending on the result of the model tests.
  • 1c contains the basic illustration of a hollow body structure which is partially permeable on its upper side. This embodiment is characterized in that it is functional for changing reference water levels between two limit water levels 3a and 3b.
  • the reference water level 3a drawn in above the design water level 3b reflects a temporarily higher water level, which z. B. future climate changes, but must not affect the functionality of the revetment according to the invention.
  • the return water located after the breaking of the waves above the lower limit water level 3b can penetrate through the openings 10 into the cavity 2c underneath and is then returned via the cavity 2b and the outlet cross-section 2d to the water volume in front of the building.
  • the distances 5a and 5b of the upper boundaries 4a and 4b of the upper, permeable shell part 11 and lower impermeable shell part 12 consisting of steps from the intersection of the upper boundary water level 6a and the lower boundary water level 6b with the slope contour and the associated lengths 8a and 8b and the net cross sections of the openings 10 depend on the configuration of the entire structure, the boundary water levels 3a, 3b, and the design wave characteristics and must be determined by model tests.
  • a flowable shaped block 2.1 is formed with funnel-shaped recesses 2.2 and corresponding conical formations 2.3 that it is in the middle a bandage of 4 neighboring shaped blocks 2.4 is fixed horizontally and vertically in its position.
  • the arrangement of the funnel-shaped recesses 2.2 also entails a smaller inlet loss.
  • the inner surfaces 2.6 of the stones can also be made of plastic hollow bodies (possibly pipes) or the like. consist. Since these shaped stones, which are closed on their circumference and laid in a composite, are not very permeable to leachate, they should preferably be arranged above an impermeable cover layer.
  • Shaped stones that 3a to 3d are designed to be permeable on the underside through rectangular (or differently shaped) recesses 3.1, can be directly on an existing permeable cover layer, filter mat or the like. be relocated.
  • Top curbs belonging to FIGS. 4 a and 5 a, cf. FIG. 2 can also have funnel-shaped cut-outs in accordance with FIG. Fig.2a have.
  • All shaped blocks according to FIGS. 3a to 5d can also be made completely closed with the hollow plastic bodies mentioned in FIGS. 2c and 2d and / or on their circumference.
  • the shaped stones acc. 6a to 7d are provided for seepage water-permeable revetments or cover layers and are accordingly laid on a filter mat or the like.
  • Flow cross-sections are here only formed as thin-walled hollow profiles with rectangular sections 6.1 or 7.1 or circular cross sections 6.2 or 7.2, which are provided at their ends with disk-like abutting surfaces 6.3 or 7.3.
  • the composite elements 6.4 and 6.5 on the end plates correspond to the shaped blocks in accordance with. 6a that of FIG. 2a or FIG. 3a and the composite elements 7.4 or 7.5 in the case of the shaped blocks according to FIG. 7a in principle those of FIG.
  • Gaps 6.6 and 7.6, respectively, remain between the hollow profiles of a stone and between the hollow profiles of two shaped stones arranged side by side, which enable an almost unhindered passage of seepage water.
  • the total surface formed by hollow profiles and end plates of the shaped stones laid in the composite advantageously corresponds to the surface of a rough revetment.
  • top curbs to be assigned to FIG. 7a can also be designed with streamlined inlet funnels according to FIG. 2a.
  • the shaped block is gem. 6a to 6c modified by arranging inclined head surfaces in such a way that water entry is possible with molded stones laid in a composite according to FIG. 1c.
  • the bond is ensured in this case by the fact that the end disks 8.1 and 8.2 parallel to the contour lines are of the same height on both sides, the lower end disk 8.2 being designed funnel-shaped 8.3 in the region of the inlets located above the top surfaces.
  • the shaped block according to FIG. Fig.2a to Fig.2c modified by arranging inclined head surfaces 9.1.
  • the bond is ensured in this case by the fact that the intermediate walls 9.2 and side walls 9.3 parallel to the fall line have a constant height.
  • Prefabricated panels with the cross-sectional configuration shown in Fig. 10 essentially consist of hollow sections 10.1, which may be covered with concrete or the like, possibly using structural steel mesh or the like. are shed.
  • the plates should have funnel-shaped widenings in the area of the hollow profile openings at the respective upper end, into which conical locking elements (not shown here), formed on the respective lower end of the plates, in the sense of a Intervene with horizontally offset panels.
  • the support surface of the plates forms a conventionally produced (impermeable) cover layer 10.3. In the case of an in-situ concrete construction, this is preferably rough on its surface 10.4. Hollow profiles laid on top are pushed in the fall line in the usual way with sleeves and with in-situ concrete, colcrete concrete or similar. shed.
  • the Surface can also be designed rough in the sense of greater energy conversion.
  • Panels in prefabricated construction with the cross-sectional configuration shown in FIG. 11 essentially consist of hollow profiles 11.1, which have recesses 11.2 on their underside or are designed to be slotted in order to ensure the infiltration of seepage water into the interior of the profile.
  • the grouting 11.3 is carried out as in Fig. 10 with concrete, asphalt concrete or the like, possibly using structural steel mesh or the like. to elements that are installed using machines.
  • the plates are placed on a sand-retaining filter mat 11.4 or similar. laid, which in turn is arranged over conventional, permeable layers 11.5.
  • the panel assembly is carried out with similar locking elements as for panels according to Fig.10 and in a staggered arrangement as shown in Fig.2 for the shaped blocks.
  • a plastic film 11.6 is arranged in the area between the hollow profiles, which is intended to prevent the potting material from penetrating into the filter mat. Butt joints, potting and surface design are carried out as for the embodiment according to Fig10.
  • FIGS. 12a to 12e show a hollow body construction of prefabricated concrete construction that is partially permeable on its surface according to FIG. 1c.
  • the shell which partially delimits the cavity towards the water side, consists of streamlined steps 12.1, between which openings 12.2 remain, through which the return water can enter the cavity 12.3 below.
  • hollow profiles 13.1 are shown on their circumference in FIG. 13, which are connected at their ends by shaped blocks 13.2.
  • the latter are said to be horizontal and vertical connection thereby ensure that on the one hand they take on the function of socket connections 13.3 along the fall line and, on the other hand, parallel to the contour lines in the area of their abutting surfaces are provided with form-fitting nose-shaped locking elements 13.4 which have correspondingly formed recesses 13.5 on the opposite abutting surfaces in the region of their ends are assigned.
  • the space 13.6 between the hollow profiles and shaped stones can preferably be filled with permeable building materials.
  • hollow profiles are provided in their ridge area or even on their entire circumference with holes or slits through which the water present after the breaking of the waves can enter the hollow body interior in the sense of a drainage.
  • a hollow body structure can be obtained according to FIG. 14 by supporting a second steel sheet shell 14.2 using steel profile support elements 14.3, the recognized design principles with regard to the risk of corrosion being observed.
  • FIG. 15 in turn shows the upper part of a hollow body structure which is partially permeable on its upper side as a hydraulic steel structure according to FIG.
  • the shell partially delimiting the cavity towards the water side consists of flat steel profiles 15.1 which are connected to profile steels 15.2 in an inclined, stepped arrangement. Openings 15.3 remain through the steps through which the return water can enter the cavity 15.4 below.
  • the hollow body structure is principally formed from the outer inclined layer in a spatial association or combination of molded bodies 16.1, 16.2 and 16.9.
  • the lowest shaped bodies 16.2 give off their vertical bearing forces overall to the subsurface (subgrade).
  • the moldings located above are supported on the one hand on the moldings below the same (outer) layer and on the other hand on the parallel to the latter the inclined (inner) layer 16.3 on the support body in such a way that a spatial association or composite effect arises between the two layers.
  • the shaped bodies of the inner layer can be filled with suitable material in the sense of improved flow guidance in connection with the creation of the support body or covered with prefabricated fitting bodies (not shown here; see FIG. 25).
  • the support forces present on the right-hand side of the molded body are transferred into the support body 16.4.
  • FIGS. 17a to 17g and in FIGS. 18a to 18e The details of the shaped concrete body used as a structural element for the cross section shown in FIG. 16 can be seen in FIGS. 17a to 17g and in FIGS. 18a to 18e.
  • Fig.17a to 17g it can be seen that the desired biaxial horizontal composite effect arises from the fact that a molded body with its 4 corner support edges 17.1 projecting at the corners of its underside and T-shaped intermediate support edges 17.2 in correspondingly shaped recesses 17.5 and 17.4 in the head surfaces of each engages 4 shaped bodies arranged above a rectangular base area.
  • the molded body contains a continuous partition 17.5 which divides it into two main chambers 17.6.
  • a flow of the main chambers deviating from the vertical in the longitudinal direction of the chamber is ensured by the fact that partition walls 17.7 are only present in the main chambers transversely to the longitudinal direction of the chamber in the upper region of the molded body.
  • FIGS. 17a to 17g show a shaped body similar to FIGS. 17a to 17g, but with only one main chamber. If this molded body is used as the sole component of a hollow structure, a composite in a uniaxially horizontal direction can be achieved in that a molded body with its 4 corner support edges 18.1 projecting on the underside engages in correspondingly shaped recesses 18.2 in the head surfaces of two identical molded bodies which are offset in each case . A composite effect transverse to the longitudinal direction of the chamber is therefore not achievable in this case.
  • this molded body can also be combined with the Shaped bodies according to FIGS. 17a to 17g are used, in particular for completing the association in the end region of a hollow body structure or in the region of the connection to other slope structures.
  • FIGS. 19a to 19f for a shaped concrete body differs from that of FIGS. 17a to 17g essentially by a different design of the locking elements 19.1 or 19.2 projecting at the support corners and the corresponding recesses 19.3 or 19.4 in the top surfaces.
  • Fig. 21 shows a breakwater-like structure or a longitudinal structure which consists of shaped bodies in its actual supporting structure.
  • the cross section marked A-A in FIG. 22 is shown.
  • the shaped bodies in the core area 21.1 and - depending on the purpose of the structure - are also filled with suitable material on the leeward side 21.2 of the structure, while the structure on the windward side exposed to the wave attack is one of the figures .16 has a similar hollow body structure 21.3 with the effect described there.
  • Fig. 22 a plan view matching to Fig. 21 is shown. In particular, it can be seen that the desired drainage of the return water is achieved constructively using the same shaped concrete body at the end of the dam structure shown.
  • FIGS. 23a to 23e and 24a to 24f The details of the shaped concrete body used as a structural element for the cross section shown in FIG. 21 can be seen in FIGS. 23a to 23e and 24a to 24f.
  • FIGS. 23a to 23e it can be seen that the desired biaxial horizontal composite effect within the spatial association formed from shaped bodies is achieved in that the individual shaped body engages with its lower pyramid-like opening 23.1 in a corresponding opening, the beveled edges 23.2 are formed by the formation of the top surfaces of 4 underlying shaped bodies which are each arranged above a rectangular base surface.
  • the top surface of the individual shaped body has a cruciform structure 23.3 in the plan, which is limited to the upper part of the shaped body.
  • the lower part of the molded body consists of a frame 23.4 which is rectangular in plan and has no intermediate walls in its interior. Accordingly, a flow that deviates from the vertical, preferably parallel to the slope, can form here if the molded body is laid in a spatial association - an element of the flowable hollow body structure.
  • the lower part as a separate partial element consists of a frame 24.2 which is rectangular in plan, on which the separate cruciform upper part 24.3 can be placed.
  • wedge-shaped recesses 24.4 are provided in the area of the abutting surfaces on the lower part, into which the rungs of the upper part, which are hexagonal in cross section, engage with their inclined lower edges 24.5 in a form-fitting manner.
  • FIG. 25 shows an example of the arrangement of flow-guiding prefabricated fitting bodies in the vertical section of a breakwater-like structure or a longitudinal structure. It can be seen from the vertical section 25.1 through the individual fitting body that this engages in the vertical direction over both partial elements of the molded body according to FIGS. 24a to 24f. On the other hand, the top view 25.2 of the individual fitting body shows that it can advantageously also represent a horizontal composite element between two molded bodies arranged next to one another.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Revetment (AREA)

Description

Die Erfindung betrifft ein auf wellenbelastete Böschungsstrukturen, geneigte Stauwände oder dgl. angebrachtes Uferschutzbauwerk, bestehend aus zumindest teilweise geschlossenen, wasserdurchströmbaren Hohlkörpern, die gemeinsam ein böschungsparalleles Deckwerk bilden.The invention relates to a bank protection structure attached to wave-loaded slope structures, inclined damming walls or the like, consisting of at least partially closed, water-flowable hollow bodies, which together form a revetment parallel to the slope.

Eine derartige Ausführungsform läßt sich entnehmen den Empfehlungen für die Ausführung von Küstenschutzwerken - EAK 1981, Heft 36, Seite 235, wo wasserdurchströmbare Hohlkörper in Form eines Tetrahedron offenbart sind. Vergleichbar erscheint auch ein Uferschutzwerk gemäß der US-A-4,172,680.Such an embodiment can be found in the recommendations for the implementation of coastal protection works - EAK 1981, issue 36, page 235, where hollow bodies in the form of a tetrahedron through which water can flow are disclosed. A bank protection plant according to US-A-4,172,680 also appears comparable.

Deckwerkskonstruktionen und Deichböschungen einerseits und geneigte Stauwände wellenbelasteter Baukonstruktionen andererseits müssen auf dynamische Beanspruchungen infolge brechender Wasserwellen dimensioniert werden. Da die beim Wellenbrechvorgang am Bauwerk umzusetzende Wellenenergie dem Quadrat der Wellenhöhe proportional ist, stellt die bei gegebenen geometrischen Bedingungen maximal am Bauwerk mögliche Brecherhöhe eine maßgebliche Bemessungsgröße dar. Darüberhinaus sind der Wasserstand, die Brecherform, die Brecherposition relativ zum Bauwerk sowie die Bauwerksgeometrie von besonderer Bedeutung.Revetment constructions and dyke embankments on the one hand and inclined baffle walls of shaft-loaded building constructions on the other hand must be dimensioned for dynamic stresses due to breaking water waves. Since the wave energy to be converted during the wave breaking process on the structure is proportional to the square of the wave height, the maximum possible crusher height on the structure under given geometric conditions represents a significant dimension. Furthermore, the water level, the crusher shape, the crusher position relative to the structure and the structure geometry are of particular importance .

Herkömmliche offene (wasserdurchlässige) oder geschlossene Deckwerkskonstruktionen für Ufer- und Deichböschungen sowie Böschungsabdeckungen werden ein- oder mehrlagig aus unterschiedlichen Baustoff- und/oder Filterschichten gefertigt.Conventional open (water-permeable) or closed revetment constructions for bank and dike embankments as well as embankment covers are made in one or more layers from different building material and / or filter layers.

Da die Komponenten der einzelnen Schichten ihre Gewichtskräfte flächenhaft und unmittelbar auf die jeweilige darunterliegende Schicht übertragen, sind derartige Strukturen sämtlich als einschalige Konstruktionen anzusehen. Letzteres trifft sinngemäß auch auf Stauwandkonstruktionen anderer wellenbelasteter geböschter Baukonstruktionen zu (Empfehlungen für die Ausführung von Küstenschutzwerken - EAK 1981, in Die Küste, Heft 36, S. 179 - 261; auch Auslegeschrift 2038674).Since the components of the individual layers transfer their weight forces over a large area and directly to the respective underlying layer, such structures are all to be regarded as single-shell constructions. The latter also applies analogously to baffle wall constructions of other wave-loaded embankments (recommendations for the execution of coastal protection works - EAK 1981, in Die Ufer, issue 36, pp. 179 - 261; also Auslegeschrift 2038674).

Ferner ist bekannt, daß durch die Gestaltung der Wassertiefenverhältnisse vor dem Bauwerk, durch die Formgebung des Bauwerksquerschnittes, durch die Wahl der Baustoffe und durch die konstruktive Gestaltung der Bauwerksoberfläche der Lastübertragungsmechanismus "Welle - Bauwerk" beeinflußt werden kann (Seedeichbau - Theorie und Praxis, Vereinigung der Naßbaggerunternehmungen e.V. Hamburg 1976, S. 15 - 79).It is also known that the design of the water depth in front of the building, the shape of the building cross-section, the choice of building materials and the structural design of the building surface can influence the load transfer mechanism "shaft - building" (sea dike construction - theory and practice, association) der Nassbaggerunternehmungen eV Hamburg 1976, pp. 15 - 79).

Der darüber hinaus zur Lastentwicklung beitragende Wechselwirkungsprozeß zwischen der oberflächennahen Wasserteilchenkinematik der ankommenden Welle und derjenigen des Rücklaufwassers der vorausgegangenen Welle ist bisher nicht gezielt durch konstruktive Maßnahmen im Sinne geringerer wellenerzeugter Bauwerksbelastungen zu beeinflussen versucht worden.The interaction process, which also contributes to the development of the load, between the near-surface water particle kinematics of the incoming wave and that of the return water of the preceding wave has not yet been deliberately attempted to be influenced by constructive measures in the sense of lower wave-generated structural loads.

Hinsichtlich der Gestaltung wellenbeanspruchter geneigter Böschungsstrukturen wurde bisher das Konzept verfolgt, die Energie der an das Bauwerk gelangenden Wellen beim Brechprozeß und beim anschließenden Wellenauflauf möglichst effektiv in turbulenten durch Mischungs- und Stoßvorgängen umzuwandeln, und zwar insbesondere durch Rauhigkeitselemente, im unmittelbaren Auftreffbereich der Wellen aber auch bezüglich der unregelmäßigen Durchströmung der Deckwerksschichten. Bisher wurde noch nicht versucht, eine Wechselwirkung zwischen der Wasserteilchenkinematik einer partiellen Clapotis (teilweise stehende Welle) und derjenigen der Waschbewegung (Wellenauflauf-Rücklauf-Bewegung) möglichst weitgehend zu unterbinden. Vorliegende Erfindung befaßt sich erstmals mit dieser Problemstellung.With regard to the design of inclined slope structures subject to wave stress, the concept has so far been pursued that the energy of the waves reaching the structure during the breaking process and during the subsequent wave run-up is as effective as possible in turbulent to convert through mixing and impact processes, in particular through roughness elements, in the direct impact area of the waves but also with regard to the irregular flow through the revetment layers. So far, no attempt has been made to prevent an interaction between the water particle kinematics of a partial clapotis (partially standing wave) and that of the washing movement (wave run-up-return movement) as far as possible. The present invention addresses this problem for the first time.

Es wurde festgestellt, daß durch die Rückführung des nach dem Brechvorgang auf der Böschung vorhandenen Wassers (Rücklaufwasser) unter einer etwa böschungsparallelen Schale die welleninduzierte Wasserbewegung vor dem und an dem Bauwerk signifikant verändert wird. Insbesondere kann an einer Böschung mit vorgewählter Neigung die in Form eines Wellenspektrums gegebene Wellenenergie durch die konstruktive Gestaltung der den Hohlraum begrenzenden Schale optimal gedämpft werden. Zur Erklärung dieses Phänomens kann die bei Anwesenheit von Wellen an Böschungen vorhandene Wasserbewegung als erzwungene Schwingbewegung mit mehreren Freiheitsgraden (Koppelschwingung) aufgefaßt werden. Dabei stellt das als Kontinuum vor der Böschung befindliche Wasservolumen das schwingende System dar, das je nach vorliegenden geometrischen Randbedingungen (Wassertiefe, Böschungsneigungen) durch unterschiedliche Eigenfrequenzen gekennzeichnet ist. In Analogie zur elastischen Kette wird ein Gesamtsystem zugrunde gelegt, das aus mehreren Teilschwingern mit unterschiedlichen Eigenfrequenzen besteht. Die Wirkungen der von See kommenden Wellen werden in dieser Anordnung als die Erregerkräfte angesehen.It was found that the return of the water present on the embankment after the crushing process (return water) under an approximately parallel shell, the wave-induced water movement in front of and on the structure is significantly changed. In particular, on an embankment with a preselected incline, the wave energy given in the form of a wave spectrum can be optimally damped by the structural design of the shell delimiting the cavity. To explain this phenomenon, the water movement present in the presence of waves on embankments can be understood as a forced oscillating movement with several degrees of freedom (coupling oscillation). The water volume located as a continuum in front of the embankment represents the vibrating system, which is characterized by different natural frequencies depending on the geometrical boundary conditions (water depth, slope inclination). Analogous to the elastic chain, an overall system is used which consists of several partial oscillators with different natural frequencies. The effects of the waves coming from the sea are regarded as the excitation forces in this arrangement.

Damit können die der partiellen Reflexion entsprechenden Wasserspiegelauslenkungen einerseits und die Wellenauflauf-Rücklaufbewegungen (Waschbewegungen) andererseits etwa ausgeprägten Freiheitsgraden des Systems zugeordnet werden. Wird das System in seinen Freiheitsgraden verändert, so hat dieses unmittelbar auch eine Veränderung der Anzahl und der Beträge seiner Eigenfrequenzen zur Folge.The water level deflections corresponding to the partial reflection on the one hand and the wave run-up return movements (washing movements) on the other hand can thus be assigned to approximately pronounced degrees of freedom of the system. If the system is changed in its degrees of freedom, this has immediate effect also a change in the number and amounts of its natural frequencies.

Ausgehend von den vorstehenden Feststellungen und Erkenntnissen liegt der Erfindung die Aufgabe zugrunde, die Kinematik der Wasserbewegung vor dem und an dem Böschungsbauwerk insbesondere im Sinne kleinerer Brecherhöhen und eines verringerten Wellenauflaufes zu verbessern.Based on the above findings and findings, the invention has for its object to improve the kinematics of the water movement in front of and on the embankment structure, in particular in the sense of smaller crusher heights and a reduced wave run-up.

In Verbindung mit dem Oberbegriff des Anspruchs 1 wird diese Aufgabe erfindungsgemäß gelöst durch die im Kennzeichen des Anspruchs 1 und in einer Alternativlösung durch die im Kennzeichen des Anspruchs 18 aufgelisteten Merkmale.In connection with the preamble of claim 1, this object is achieved according to the invention by the features listed in the characterizing part of claim 1 and in an alternative solution by the features.

Im Gegensatz zu der Offenbarung der gattungsbildenden US-Patentschrift soll sich also das erfindungsgemäße Deckwerk lediglich über den dynamisch belasteten Bereich des Uferschutzbauwerkes erstrecken. Hierdurch ergeben sich erheblich geringere Deckwerksabmessungen und als Folge des hohen Hohlraumanteils auch ein geringerer Massenbedarf. Die herankommenden Wellen bewegen sich entlang eines Bezugswasserspiegels. Durch den beim Auftreffen auf das Uferschutzbauwerk hervorgerufenen Wellenbrechvorgang wird ein bestimmter Wasservolumenanteil des Wellenauflaufschwalles bis über den oberen horizontalen Begrenzungsrand des Deckwerkes transportiert, um dann nach Bewegungsumkehr als Rücklaufwasser vollständig oder doch zumindest teilweise durch den Einlaufquerschnitt, den Hohlraum und den Auslaufquerschnitt weitgehend ungehindert hindurchzuströmen und so dem vor dem Bauwerk vorhandenen Wasservolumen unterhalb des Bezugswasserspiegels wieder zugeleitet zu werden.In contrast to the disclosure of the generic US patent, the revetment according to the invention should therefore only extend over the dynamically loaded area of the bank protection structure. This results in considerably smaller revetment dimensions and, as a result of the high proportion of voids, also a lower mass requirement. The approaching waves move along a reference water level. As a result of the wave breaking process that occurs when it hits the bank protection structure, a certain volume of water in the wave surge is transported to above the upper horizontal boundary edge of the revetment, in order to flow through the inlet cross-section, the cavity and the outlet cross-section completely or at least partially unhindered after reversal of movement, and so on to be returned to the water volume in front of the building below the reference water level.

Hierdurch wird erstmalig gezielt durch konstruktive Maßnahmen der Wechselwirkungsprozeß zwischen der oberflächennahen Wasserteilchenkinematik der ankommenden Welle (partielle Clapotis) und derjenigen des Rücklaufwassers der vorausgegangenen Welle beeinflußt. Aufgrund dieser Beeinflussung werden nicht nur der Wellenauflauf, sondern auch die Brecherhöhe, die Brecherform und Brecherposition im Sinne geringerer Bauwerksbelastungen günstig verändert.In this way, the interaction process between the near-surface water particle kinematics of the incoming wave (partial clapotis) and that of the return water of the previous wave is specifically influenced by constructive measures. Due to this influence, not only the shaft run-up, but also the crusher height, the crusher shape and Crusher position changed favorably in the sense of lower building loads.

Unter dem Begriff "Bezugs-Ruhewasserspiegel" ist der sog. Bemessungswasserstand zu verstehen, der üblicherweise auf der Grundlage von Naturuntersuchungen als "hoher Wasserstand" mit einer Auftretenswahrscheinlichkeit festgelegt wird, die örtlich stark unterschiedlich sein kann (in den Niederlanden liegt sie zwischen 1:1250 und 1:10000). Dieser Bemessungswasserstand ist abhängig von den Windverhältnissen, der Tide, der Unterwassertopographie und der von dem betreffenden Bauwerk bei dessen Zerstörung ausgehenden Gefahr. Ähnliche wahrscheinlichkeitstheoretische Definitionen gelten auch für die Festlegung der Bemessungswelle nach Höhe und Periode bzw. Länge.The term "reference resting water level" is to be understood as the so-called design water level, which is usually determined on the basis of nature studies as a "high water level" with a probability of occurrence that can vary widely depending on the location (in the Netherlands it is between 1: 1250 and 1: 10000). This design water level depends on the wind conditions, the tide, the underwater topography and the danger posed by the building in question when it is destroyed. Similar definitions of probability theory also apply to the determination of the design wave according to height and period or length.

Dem Fachmann geläufig ist ferner, daß für die Bemessung wellenbelasteter geböschter Baukonstruktionen die "Wasserstände am Bauwerk" sowie die "Bemessungswelle(n)" die wichtigsten Bemessungsgrößen darstellen.The person skilled in the art is also familiar with the fact that the "water levels at the building" and the "design wave (s)" represent the most important design parameters for the design of wave-loaded embankments.

So stellt auch der "Bezugs-Ruhewasserspiegel" einen für die Lokation zunächst festzulegenden Bemessungswasserspiegel dar.The "reference resting water level" also represents a design water level to be determined for the location.

Damit das beanspruchte Deckwerk die vorstehend näher erläuterte Funktion hinsichtlich der zu unterbindenden Wechselwirkung auszuüben vermag, soll der Wassereinlaufquerschnitt nicht tiefer liegen als die niedrigste wellenerzeugte Wasserspiegelauslenkung (tiefstes Wellental) bezogen auf den Bemessungswasserstand. Die Leistungsfähigkeit des Deckwerkes ist dann aber abhängig vor allem von der Gestaltung der Einlauföffnungen und der Durchströmquerschnitte, deren optimale Lage und Gestalt jedoch nur - wie auch bei anderen speziellen Durchströmstrukturen des Wasserbaus - durch hydraulische Modellversuche aufgefunden werden können.So that the claimed revetment can perform the function explained in more detail above with regard to the interaction to be prevented, the water inlet cross-section should not be lower than the lowest wave-generated water level deflection (deepest wave trough) based on the design water level. The performance of the revetment then depends above all on the design of the inlet openings and the flow cross-sections, the optimal location and shape of which, however - as with other special flow structures in hydraulic engineering - can only be found using hydraulic model tests.

Für die Höhenanordnung des unteren Wasserauslasses ergibt sich ein theoretischer Grenzwert dadurch, daß die in der partiellen Clapotis zugeordneten Wasserteilchenbewegungen mit dem Abstand von der Wasseroberfläche nach einem Exponentialgesetz abnehmen und in einer Tiefe, die etwa der halben Wellenlänge entspricht, vollständig abgeklungen sind. Auch hier ist eine Optimierung für eine vorgegebene Böschungsneigung durch Modellversuche vorzunehmen.A theoretical limit for the height arrangement of the lower water outlet results from the fact that the water particle movements associated in the partial clapotis decrease with the distance from the water surface according to an exponential law and have completely subsided at a depth that corresponds to about half the wavelength. Here, too, an optimization for a given slope slope is to be carried out by means of model tests.

Um die durchströmbare Hohlkörperstruktur kostengünstig auch in dynamisch hoch belasteten Bereichen bereits bestehender Uferschutzwerke, Deichaußenböschungen, Stauwände oder dgl. zu realisieren, werden je nach vorhandener Unterkonstruktion und je nach für die betreffenden Bauwerke maßgeblichen Wasserständen an ihrer Unterseite offene, teilweise offene oder geschlossene und an ihrer Oberseite geschlossene oder teilweise offene Hohlraumelemente in böschungsparalleler Ausrichtung auf der vorhandenen Uferkonstruktion in geeigneter Weise aufgelagert.In order to realize the flowable hollow body structure cost-effectively even in areas of already existing bank protection works, dike outer embankments, dam walls or the like, depending on the existing substructure and the water levels relevant for the structures concerned, open, partially open or closed and on their bottom The top of closed or partially open cavity elements in an alignment parallel to the slope are supported in a suitable manner on the existing bank structure.

Je nach örtlichen Gegebenheiten können Hohlkörperstrukturen mit hydraulisch günstigem Querschnitt aus Ortbeton, als Betonfertigteil-, Stahl oder Verbundkonstruktionen, auch unter Verwendung von Kunststoffelementen oder aus durchströmbaren Betonformstein- oder Hohlprofilkonstruktionen hergestellt bzw. verwendet werden.Depending on the local conditions, hollow body structures with a hydraulically favorable cross-section can be manufactured or used from in-situ concrete, as precast concrete, steel or composite structures, also using plastic elements or from flowable concrete blocks or hollow profile structures.

Die mit der Erfindung erzielten Vorteile bestehen im wesentlichen darin, daß die insgesamt für die Bemessung relevante Belastungscharakteristik wellenbeanspruchter Bauwerke günstig beeinflußt wird.The advantages achieved with the invention consist essentially in the fact that the overall load characteristic relevant to the design is favorably influenced by structures subject to shaft loads.

Insbesondere kann eine geringere Bemessungswellenhöhe zugrundegelegt werden mit der Folge, daß Herstellung- und Unterhaltungskosten eingespart werden können.In particular, a lower design wave height can be taken as a basis, with the result that manufacturing and maintenance costs can be saved.

Bei Küstensenkungen und/oder steigenden mittleren Wasserständen und/oder zunehmender Sturmflutwahrscheinlichkeit kann durch die Nachrüstung bestehender Bauwerke mit durchströmbaren Hohlkörperstrukturen eine ggfs. vorgesehene kostenintensive Bauwerkserhöhung oder Neukonstruktion zwischenzeitlich entfallen oder zumindest zeitlich später durchgeführt werden.In the event of coastal subsidence and / or increasing mean water levels and / or increasing storm surge probability, the retrofitting of existing structures with flow-through hollow structures a cost-intensive building increase or new construction, which may be provided, can be omitted in the meantime or at least carried out later.

Ein Bauelement zur Erstellung eines Uferschutzwerkes, einer Deichböschung, einer Stauwand oder dgl. (Bauwerk) ist erfindungsgemäß gekennzeichnet durch einen von Wasser durchströmbaren, im Verbund zu einer Schutzfläche verlegbaren Hohlkörper mit einer im Verbund nach außen gerichteten Kopffläche und einer dieser gegenüberliegenden, nach innen gerichteten Auflagefläche, zwischen denen ein freier Wasserdurchströmquerschnitt vorgesehen ist, der eine im Verbund oben liegende Einlauföffnung mit einer unteren Auslaßöffnung verbindet.A component for the creation of a bank protection works, a dike embankment, a dam or the like (building) is characterized according to the invention by a hollow body through which water can flow and which can be laid in conjunction with a protective surface, with a head surface facing outwards in the composite and an opposite one facing inwards Support surface, between which a free water flow cross section is provided, which connects an inlet opening located at the top with a lower outlet opening.

Während kleinformatige durchströmbare Betonformkörper als Elemente von Hohlstrukturen zur Herstellung von Deckwerken und Deichaußenböschungen dienen können, ist es vorteilhaft, großvolumige durchströmbare Betonformkörper für wellenbrecherartige Bauwerke, Längswerke, Querwerke oder dgl. zu verwenden. Derartige Bauelemente sind erfindungsgemäß z.B. gekennzeichnet durch einen von Wasser eher regelmäßig durchströmbaren, im Horizontalschnitt polygonalen, verzugsweise rechteckigen, im Verband bzw. Verbund zu einer räumlichen Schutzstruktur stapelbaren Formkörper mit oben und unten liegenden, je nach relativer Lage zum Wasserstand im Gesamtbauwerk unterschiedlich durchströmten Öffnungen. In einer abgewandelten Ausführungsform kann das Bauelement gekennzeichnet sein durch einen von Wasser eher regelmäßig durchströmbaren, ein- oder mehrkammerig strukturierten, im Verband bzw. Verbund zu einer räumlichen Schutzstruktur stapelbaren Formkörper mit oben und unten liegenden, je nach relativer Lage zum Wasserstand im Gesamtbauwerk unterschiedlich durchströmten Kammeröffnungen und vertikal derart gegeneinander versetzten inneren und äußeren Kammerwänden, daß örtlich auch eine etwa regelmäßige, von der Vertikalen abweichende, vorzugsweise böschungsparallele Durchströmrichtung erzeugt wird.While small-sized flow-through concrete moldings can serve as elements of hollow structures for the production of revetments and embankment embankments, it is advantageous to use large-volume flow-through concrete moldings for breakwater-like structures, longitudinal structures, transverse structures or the like. Such components are, according to the invention, characterized, for example, by a water which can flow through more regularly, is polygonal in horizontal section, preferably rectangular, and can be stacked in association or association to form a spatial protective structure, with openings at the top and bottom which have different openings depending on the position of the water in the overall structure. In a modified embodiment, the component can be characterized by a shaped body that can flow through water rather regularly, is structured in a single or multi-chamber structure and can be stacked in association or association to form a spatial protective structure with top and bottom flow, depending on the position relative to the water level in the overall structure Chamber openings and vertically mutually offset inner and outer chamber walls that locally also an approximately regular flow direction deviating from the vertical, preferably parallel to the slope, is generated.

Die Kopfflächen der Formsteine bzw. Betonplatten können Ausprägungen (Öffnungen) aufweisen mit der Folge, daß das oberhalb der im Verbund verlegten Formsteine bzw. Betonplatten nach dem Wellenbruchvorgang vorhandene Wasser in den unter den Kopfflächen vorhandenen Hohlraum gelangen kann.The top surfaces of the shaped blocks or concrete slabs can have features (openings) with the result that the water present above the shaped blocks or concrete slabs laid in the composite after the wave breaking process can get into the cavity under the top surfaces.

Derartige großvolumige durchströmbare Betonformkörper sind darüberhinaus auch dazu geeignet, als eigentliche Tragelemente der Baukonstruktionen Verwendung zu finden. Beispielsweise können sie als Bausteine des Stützkörpers dammartiger Strukturen in regelmäßiger Stapelung mit geeignetem Material verfüllt werden.Such large-volume flowable concrete moldings are also suitable to be used as the actual supporting elements of the building structures. For example, as building blocks of the supporting body, dam-like structures can be filled in regular stacks with suitable material.

Die mit der Erfindung erzielbaren Vorteile bestehen vor allem darin, daß die im Anschluß an das Wellenbrechen über dem Bauwerk vorhandenen Wassermassen in vornehmlich vertikaler Richtung effektiver in das Bauwerk eingeleitet werden und dadurch eine Steuerung des Reflexionsprozesses durch den Wellenauflauf-Rücklauf-Bewegung weitgehend unterbunden wird.The advantages that can be achieved with the invention consist primarily in the fact that the water masses that follow the breaking of the waves above the structure are introduced more effectively into the structure in a primarily vertical direction, thereby largely preventing control of the reflection process by the wave run-up and return movement.

In der Zeichnung sind einige als Beispiele dienende Ausführungsformen der Erfindung dargestellt. Es zeigen:

  • Fig.1a in axonometrischer Darstellung die prinzipielle Anordnung einer Hohlraumstruktur pro lfd. m Uferlinie als integrales Konstruktionselement einer Böschungskonfiguration,
  • Fig.1b den Vertikalschnitt durch eine Böschungsabdeckung, die prinzipiell durch Anordnung einer zusätzlichen Schale zu einer Hohlstruktur ergänzt ist,
  • Fig.1c den Vertikalschnitt durch eine Hohlkörperstruktur, die prinzipiell in ihrem oberen Bereich an der durch Wellen beanspruchten Seite durchlässig gestaltet ist,
  • Fig.2 eine Draufsicht auf eine im Verbund gelegte Schicht von Formsteinen mit Hohlkörperkreisquerschnitt oder Hohlkörperrechteckquerschnitt,
  • Fig.2a eine Draufsicht auf einen einzelnen Formstein gemäß Fig.2,
  • Fig.2b eine Seitenansicht von links des Formsteines gemäß Fig.2a,
  • Fig.2c eine Ansicht des Formsteines gemäß Fig.2a von unten mit Rechteckhohlquerschnitten,
  • Fig.2d eine Ansicht des Formsteines gemäß Fig.2a von unten mit Kreisrohrhohlquerschnitten,
  • Fig.3a eine Draufsicht auf eine weitere Ausführungsform eines Formsteines mit Aussparungen in der Lagerfläche,
  • Fig.3b eine Seitenansicht von links des Formsteines gemäß Fig.3a,
  • Fig.3c eine Ansicht des Formsteines gemäß Fig.3a von unten mit Rechteckhohlquerschnitten,
  • Fig.3d eine Ansicht des Formsteines gemäß Fig.3a von unten mit Kreisrohrhohlquerschnitten,
  • Fig.3e eine Seitenansicht von links des Formsteines gemäß Fig.3a jedoch mit großer Sockelhöhe
  • Fig.3f eine Ansicht des Formsteines gemäß Fig.3a von unten mit Rechteckhohlquerschnitten und großer Sockelhöhe,
  • Fig.3g eine Ansicht des Formsteines gemäß Fig.3a von unten mit Kreisrohrhohlquerschnitten und großer Sockelhöhe,
  • Fig.4a eine Draufsicht auf eine weitere Ausführungsform eines Formsteines mit bzw. ohne Aussparungen in der Lagerfläche,
  • Fig.4b eine Seitenansicht von links des Formsteines gemäß Fig.4a,
  • Fig.4c eine Ansicht des Formsteines gemäß Fig.4a von unten mit Rechteckhohlquerschnitten,
  • Fig.4d eine Ansicht des Formsteines gemäß Fig.4a von unten mit Kreisrohrhohlquerschnitten,
  • Fig.5a eine Draufsicht auf eine weitere Ausführungsform eines Formsteines mit bzw. ohne Aussparungen in der Lagerfläche,
  • Fig.5b eine Seitenansicht von links des Formsteines gemäß Fig.5a,
  • Fig.5c eine Ansicht des Formsteines gemäß Fig.5a von unten mit Rechteckhohlquerschnitten,
  • Fig.5d eine Ansicht des Formsteines gemäß Fig.5a von unten mit Kreisrohrhohlquerschnitten,
  • Fig.5e eine Seitenansicht von rechts des Formsteines gemäß Fig.5a,
  • Fig.6a eine Draufsicht auf eine weitere Ausführungsform eines Formsteines mit Lücken zwischen den Durchströmprofilen,
  • Fig.6b eine Seitenansicht von links des Formsteines gemäß Fig.6a,
  • Fig.6c eine Ansicht des Formsteines gemäß Fig.6a von unten mit Rechteckhohlquerschnitten,
  • Fig.6d eine Ansicht des Formsteines gemäß Fig.6a von unten mit Kreisrohrhohlquerschnitten,
  • Fig.6e eine Seitenansicht analog Fig.6b jedoch eines ähnlichen Formsteines mit höheren Endscheiben,
  • Fig.7a eine Draufsicht auf eine weitere Ausführungsform eines Formsteines mit Lücken zwischen den Durchströmprofilen,
  • Fig.7b eine Seitenansicht von links des Formsteines gemäß Fig.7a,
  • Fig.7c eine Ansicht des Formsteines gemäß Fig.7a von unten mit Rechteckhohlquerschnitten,
  • Fig.7d eine Ansicht des Formsteines gemäß Fig.7a von unten mit Kreisrohrhohlquerschnitten,
  • Fig.7e eine Seitenansicht analog Fig.7b jedoch eines ähnlichen Formsteines mit höheren Endscheiben,
  • Fig.8a eine Draufsicht auf eine weitere Ausführungsform eines Formsteines mit geneigten Kopfflächen und Lücken zwischen den Durchströmprofilen,
  • Fig.8b eine Seitenansicht von links des Formsteines gemäß Fig. 8a,
  • Fig.8c eine Ansicht des Formsteines gemäß Fig. 8a von oben,
  • Fig.8d eine Ansicht des Formsteines gemäß Fig.8a von unten,
  • Fig.9a eine Draufsicht auf eine weitere Ausführungsform eines Formsteines mit geneigter Kopffläche,
  • Fig.9b eine Seitenansicht von links des Formsteines gemäß Fig. 9a,
  • Fig.9c eine Ansicht des Formsteines gemäß Fig. 9a von oben,
  • Fig.9d eine Ansicht des Formsteines gemäß Fig. 9a von unten,
  • Fig. 10 den Ausschnitt eines Querschnittes durch eine plattenartige Hohlkörperkonfiguration,
  • Fig.11 den Ausschnitt eines Querschnittes durch eine weitere plattenartige Hohlkörperkonfiguration,
  • Fig.12a Aufsichten auf eine weitere plattenartige und eine säulenartige Hohlkörperkonfiguration,
  • Fig.12b eine Ansicht von links auf eine der Hohlkörperstrukturen gemäß Fig.12a,
  • Fig.12c einen Längsschnitt durch eine der Hohlkörperstrukturen gemäß Fig.12a,
  • Fig.12d eine Ansicht der Hohlkörperkonfigurationen gemäß Fig.12a von oben,
  • Fig.12e eine Ansicht der Hohlkörperkonfigurationen gemäß Fig.12a von unten,
  • Fig.13a die Draufsicht auf einen Ausschnitt einer aus Hohlprofilen und Formsteinen gebildeten Hohlköperstruktur,
  • Fig.13b eine Ansicht von rechts der Hohlkörperstruktur gemäß Fig.13a,
  • Fig.13c eine Ansicht der Hohlkörperstruktur gemäß Fig.13a von unten,
  • Fig.14 den Ausschnitt eines Querschnittes durch eine als Stahlwasserbaukonstruktion ausgeführte Hohlkörperstruktur,
  • Fig.15a die Draufsicht auf einen Ausschnitt einer als Stahlwasserbaukonstruktion ausgebildete, partiell von oben durchlässigen Hohlköperstruktur,
  • Fig.15b einen Längsschnitt A - A durch die Stahlwasserbaukonstruktion gemäß Fig.15a,
  • Fig.15c eine Ansicht der Stahlwasserbaukonstruktion gemäß Fig.15a von rechts,
  • Fig.15d einen Querschnitt B - B durch die Stahlwasserbaukonstruktion gemäß Fig.15a.
  • Fig.16 den Vertikalschnitt durch eine etwa böschungsparallele Hohlkörperstruktur, die prinzipiell durch die Stapelung von durchströmbaren Formkörpern (vorzugsweise etwa gemäß Fig.17a bis Fig.20e) zu einem Verband an einem Stützkörper entsteht,
  • Fig.17a die Draufsicht auf eine Ausführungsform eines Formkörpers mit 4 Öffnungen an seiner Oberseite und 2 Öffnungen an seiner Unterseite, vergl. Fig.16,
  • Fig.17b eine Seitenansicht des Formkörpers gemäß Fig.17a,
  • Fig.17c den Vertikalschnitt A-A des Formkörpers gemäß Fig.17a,
  • Fig.17d den Vertikalschnitt B-B des Formkörpers gemäß Fig.17a,
  • Fig.17e eine Vorderansicht des Formkörpers gemäß Fig.17a,
  • Fig.17f den Vertikalschnitt C-C des Formkörpers gemäß Fig.17a,
  • Fig.17g den Vertikalschnitt D-D des Formkörpers gemäß Fig.17a,
  • Fig.18a die Draufsicht auf eine weitere Ausführungsform eines Formkörpers mit 2 Öffnungen an seiner Oberseite und einer Öffnung an seiner Unterseite,
  • Fig.18b eine Seitenansicht des Formkörpers gemäß Fig.18a,
  • Fig.18c den Vertikalschnitt A-A des Formkörpers gemäß Fig.18a,
  • Fig.18d eine Vorderansicht des Formkörpers gemäß Fig.18a,
  • Fig.18e den Vertikalschnitt B-B des Formkörpers gemäß Fig.18a
  • Fig.19a die Draufsicht auf eine weitere Ausführungsform eines Formkörpers mit 4 Öffnungen an seiner Oberseite und 2 Öffnungen an seiner Unterseite,
  • Fig.19b eine Seitenansicht des Formkörpers gemäß Fig.19a,
  • Fig.19c den Vertikalschnitt A-A des Formkörpers gemäß Fig.19a,
  • Fig.19d eine Vorderansicht des Formkörpers gemäß Fig.19a,
  • Fig.19e den Vertikalschnitt B-B des Formkörpers gemäß Fig.19a,
  • Fig.19f den Vertikalschnitt C-C des Formkörpers gemäß Fig.19a,
  • Fig.20a die Draufsicht auf eine weitere Ausführungsform eines Formkörpers mit 2 Öffnungen an seiner Oberseite und einer Öffnung an seiner Unterseite,
  • Fig.20b eine Seitenansicnt des Formkörpers gemäß Fig.20a,
  • Fig.20c den Vertikalschnitt A-A des Formkörpers gemäß Fig.20a,
  • Fig.20d eine Vorderansicht des Formkörpers gemäß Fig.20a,
  • Fig.20e den Vertikalschnitt B-B des Formkörpers gemäß Fig.20a
  • Fig.21 den Vertikalschnitt durch eine Dammstruktur, die prinzipiell durch einen Verband von formkörpern (vorzugsweise gemäß Fig.23a bis 24f) gebildet wird,
  • Fig.22 die Draufsicht auf die Endausbildung einer aus Formkörpern gemäß Fig.23a bis 23e oder gemäß Fig.24a bis 24f gebildeten Dammstruktur.
  • Fig.23a die Draufsicht auf eine weitere Ausführungrform eines Formkörpers mit 4 Öffnungen an seiner Oberseite und einer Öffnung an seiner Unterseite,
  • Fig.23b eine Seitenansicht des Formkörpers gemäß Fig.23a,
  • Fig.23c den Vertikalschnitt A-A des Formkörpers gemäß Fig.23a,
  • Fig.23d eine Vorderansicht des Formkörpers gemäß Fig.23a,
  • Fig.23e den Vertikalschnitt B-B des Formkörpers gemäß Fig.23a,
  • Fig.24a die Draufsicht auf eine Formkörperkombination, die aus 2 Teilstrukturen zu einem der Fig.23a bis 23e entsprechenden Formkörper mit 4 Öffnungen an der Oberseite und einer Öffnung an der Unterseite zusammengesetzt wird,
  • Fig.24b eine Draufsicht auf das Unterteil der Formkörperkombination gemäß Fig.24a,
  • Fig.24c eine Draufsicht auf das Oberteil der Formkörperkombination gemäß Fig.24a,
  • Fig.24d eine Vorderansicht der Formkörperkombination gemäß Fig.24a,
  • Fig.24e eine Vorderansicht des Unterteils der Formkörperkombination gemäß Fig.24a,
  • Fig.24f eine Vorderansicht des Oberteils der Formkörperkombination gemäß Fig.24a,
  • Fig.25 den Vertikalschnitt durch die Dammstruktur gemaß Fig.21 ergänzt durch strömungsleitende Fertigteil-Paßkörper.
Some exemplary embodiments of the invention are shown in the drawing. Show it:
  • 1a in axonometric representation the basic arrangement of a cavity structure per running meter of bank line as an integral construction element of an embankment configuration,
  • 1b the vertical section through an embankment cover, which is in principle supplemented by arranging an additional shell to form a hollow structure,
  • 1c shows the vertical section through a hollow body structure which, in principle, is designed to be permeable in its upper region on the side which is stressed by waves,
  • 2 shows a plan view of a layer of shaped stones with a hollow body cross section or hollow body rectangular cross section laid in a composite,
  • 2a shows a plan view of an individual shaped block according to FIG. 2,
  • 2a shows a side view from the left of the shaped block according to FIG. 2a,
  • 2a shows a view of the shaped block according to FIG. 2a from below with rectangular hollow cross sections,
  • 2d shows a view of the shaped block according to FIG. 2a from below with circular tubular hollow cross sections,
  • 3a shows a plan view of a further embodiment of a shaped block with cutouts in the bearing surface,
  • 3a shows a side view from the left of the shaped block according to FIG. 3a,
  • 3a shows a view of the shaped block according to FIG. 3a from below with rectangular hollow cross sections,
  • 3d shows a view of the shaped block according to FIG. 3a from below with circular tubular hollow cross sections,
  • 3a shows a side view from the left of the shaped block according to Figure 3a, but with a large base height
  • 3a shows a view of the shaped block according to FIG. 3a from below with rectangular hollow cross sections and a large base height,
  • 3g shows a view of the shaped block according to FIG. 3a from below with hollow tubular cross sections and a large base height,
  • 4a shows a plan view of a further embodiment of a shaped block with or without cutouts in the bearing surface,
  • 4b is a side view from the left of the shaped block according to Fig.4a,
  • 4c shows a view of the shaped block according to FIG. 4a from below with rectangular hollow cross sections,
  • 4d shows a view of the shaped block according to FIG. 4a from below with circular tubular hollow cross sections,
  • 5a shows a plan view of a further embodiment of a shaped block with or without cutouts in the bearing surface,
  • 5b shows a side view from the left of the shaped block according to FIG. 5a,
  • 5c shows a view of the shaped block according to FIG. 5a from below with rectangular hollow cross sections,
  • 5d shows a view of the shaped block according to FIG. 5a from below with circular tubular hollow cross sections,
  • 5e shows a side view from the right of the shaped block according to FIG. 5a,
  • 6a shows a plan view of a further embodiment of a shaped block with gaps between the flow profiles,
  • 6b shows a side view from the left of the shaped block according to FIG. 6a,
  • 6c shows a view of the shaped block according to FIG. 6a from below with rectangular hollow cross sections,
  • 6d shows a view of the shaped block according to FIG. 6a from below with circular tubular hollow cross sections,
  • 6e shows a side view analogous to FIG. 6b but of a similar shaped block with higher end plates,
  • 7a shows a plan view of a further embodiment of a shaped block with gaps between the flow profiles,
  • 7b shows a side view from the left of the shaped block according to FIG. 7a,
  • 7c shows a view of the shaped block according to FIG. 7a from below with rectangular hollow cross sections,
  • 7d shows a view of the shaped block according to FIG. 7a from below with circular tubular hollow cross sections,
  • 7e shows a side view analogous to FIG. 7b but of a similar shaped block with higher end plates,
  • 8a shows a plan view of a further embodiment of a shaped block with inclined top surfaces and gaps between the flow profiles,
  • 8b shows a side view from the left of the shaped block according to FIG. 8a,
  • 8c is a view of the shaped block according to FIG. 8a from above,
  • 8d shows a view of the shaped block according to FIG. 8a from below,
  • 9a shows a plan view of a further embodiment of a shaped block with an inclined head surface,
  • 9b shows a side view from the left of the shaped block according to FIG. 9a,
  • 9c shows a view of the shaped block according to FIG. 9a from above,
  • 9d is a view of the shaped block according to FIG. 9a from below,
  • 10 shows the detail of a cross section through a plate-like hollow body configuration,
  • 11 shows the detail of a cross section through a further plate-like hollow body configuration,
  • 12a top views of a further plate-like and a column-like hollow body configuration,
  • 12b shows a view from the left of one of the hollow body structures according to FIG. 12a,
  • 12c shows a longitudinal section through one of the hollow body structures according to FIG. 12a,
  • 12d shows a view of the hollow body configurations according to FIG. 12a from above,
  • 12e shows a view of the hollow body configurations according to FIG. 12a from below,
  • 13a the top view of a section of a hollow body structure formed from hollow profiles and shaped stones,
  • 13b shows a view from the right of the hollow body structure according to FIG. 13a,
  • 13c a view of the hollow body structure according to FIG. 13a from below,
  • 14 shows the detail of a cross section through a hollow body structure designed as a hydraulic steel structure,
  • 15a the top view of a section of a hollow body structure designed as a hydraulic steel structure, partially permeable from above,
  • 15b shows a longitudinal section A - A through the hydraulic steel construction according to FIG. 15a,
  • 15c shows a view of the hydraulic steel construction according to FIG. 15a from the right,
  • 15d shows a cross section BB through the hydraulic steel construction according to FIG.15a.
  • 16 shows the vertical section through an approximately parallel hollow body structure, which in principle arises from the stacking of moldings through which flow can flow (preferably approximately according to FIGS. 17a to 20e) to form a bandage on a supporting body,
  • 17a is a top view of an embodiment of a shaped body with 4 openings on its top and 2 openings on its underside, see FIG. 16,
  • 17b shows a side view of the shaped body according to FIG. 17a,
  • 17c the vertical section AA of the shaped body according to FIG. 17a,
  • 17d shows the vertical section BB of the shaped body according to FIG. 17a,
  • 17e shows a front view of the molded body according to FIG. 17a,
  • 17f the vertical section CC of the shaped body according to FIG. 17a,
  • 17g shows the vertical section DD of the shaped body according to FIG. 17a,
  • 18a is a top view of a further embodiment of a shaped body with 2 openings on its top and one opening on its bottom,
  • 18b shows a side view of the shaped body according to FIG. 18a,
  • 18c shows the vertical section AA of the shaped body according to FIG. 18a,
  • 18d shows a front view of the molded body according to FIG. 18a,
  • 18e the vertical section BB of the shaped body according to FIG. 18a
  • 19a shows the top view of a further embodiment of a shaped body with 4 openings on its top and 2 openings on its underside,
  • 19b shows a side view of the shaped body according to FIG. 19a,
  • 19c shows the vertical section AA of the shaped body according to FIG. 19a,
  • 19d shows a front view of the molded body according to FIG. 19a,
  • 19e shows the vertical section BB of the shaped body according to FIG. 19a,
  • 19f shows the vertical section CC of the shaped body according to FIG. 19a,
  • 20a shows the top view of a further embodiment of a shaped body with 2 openings on its top and one opening on its bottom,
  • 20b shows a side view of the molded body according to FIG. 20a,
  • 20c shows the vertical section AA of the shaped body according to FIG. 20a,
  • 20d shows a front view of the molded body according to FIG. 20a,
  • 20e shows the vertical section BB of the shaped body according to FIG. 20a
  • 21 shows the vertical section through a dam structure which is in principle formed by an association of shaped bodies (preferably according to FIGS. 23a to 24f),
  • 22 shows the top view of the final formation of a dam structure formed from shaped bodies according to FIGS. 23a to 23e or according to FIGS. 24a to 24f.
  • 23a is a top view of a further embodiment of a molded body with 4 openings on its top and one opening on its bottom,
  • 23b shows a side view of the shaped body according to FIG. 23a,
  • 23c shows the vertical section AA of the shaped body according to FIG. 23a,
  • 23d shows a front view of the molded body according to FIG. 23a,
  • 23e the vertical section BB of the molded body according to FIG. 23a,
  • 24a is a top view of a molded body combination which is composed of two partial structures to form a molded body corresponding to FIGS. 23a to 23e with 4 openings on the top and one opening on the bottom,
  • 24b shows a plan view of the lower part of the molded body combination according to FIG. 24a,
  • 24c shows a top view of the upper part of the molded body combination according to FIG. 24a,
  • 24d shows a front view of the molded body combination according to FIG. 24a,
  • 24e shows a front view of the lower part of the molded body combination according to FIG. 24a,
  • 24f shows a front view of the upper part of the molded body combination according to FIG. 24a,
  • Fig. 25 the vertical section through the dam structure according to Fig. 21 supplemented by flow-guiding prefabricated fitting bodies.

In Fig.1a wird die Hohlkörperstruktur lediglich aus einer oberen Schale 1a und einer unteren Schale 1b gebildet. Die konstruktive Gestaltung des Durchströmquerschnittes 2a, 2b, 2d wurde aus Gründen der besseren Übersicht hier nicht dargestellt. Dasselbe gilt für die sich entlang des Bezugswasserspiegels 3 bewegenden Wellen und das durch diese beim Wellenbrechvorgang oberhalb der Hohlkörperbegrenzung 4 transportierte Wasservolumen des Wellenauflaufschwalles. Letzteres wird nach Bewegungsumkehr vollständig oder teilweise durch den Einlaufquerschnitt 2a, den Hohlraum 2b und den Auslaufquerschnitt 2d als Rücklauf dem vor dem Bauwerk vorhandenen Wasservolumen unterhalb des Bezugswasserspiegels 3 wieder zugeleitet. Die Entfernung 5 der oberen Begrenzung 4 der Hohlkörperstruktur vom Bezugswasserspiegel an der Böschungskontur 6 sowie die Gestaltung der Querschnitte 2a, 2b und 2d pro lfd. m Uferlinie 7 und die neigungsparallele Länge 8 der Hohlkörperstruktur sind von der Konfiguration des Gesamtbauwerkes und der Auslegungswellencharakteristik abhängig und müssen durch hydraulische Modelluntersuchungen bestimmt werden. Die Hohlkörperstruktur kann sowohl separat von der oberhalb und/oder unterhalb ggf. herkömmlich gestalteten Böschungsabdeckung 9a, 9b als auch im Verbund mit dieser gegründet werden.In Figure 1a, the hollow body structure is formed only from an upper shell 1a and a lower shell 1b. The structural design of the flow cross-section 2a, 2b, 2d was not shown here for reasons of a better overview. The same applies to the waves moving along the reference water level 3 and the water volume of the wave run-up surge transported by them during the wave breaking process above the hollow body boundary 4. After the movement has been reversed, the latter is fed back in full or in part through the inlet cross-section 2a, the cavity 2b and the outlet cross-section 2d as a return flow to the water volume in front of the building below the reference water level 3. The distance 5 of the upper boundary 4 of the hollow body structure from the reference water level at the embankment contour 6 as well as the design of the cross sections 2a, 2b and 2d per running meter of the shoreline 7 and the parallel length 8 of the hollow body structure are dependent on the configuration of the overall structure and the design wave characteristics can be determined by hydraulic model investigations. The hollow body structure can be established separately from the slope cover 9a, 9b, which may be of conventional design, or in conjunction with it.

In Fig.1b ist exemplarisch die je nach Ergebnis der Modellversuche auch mögliche (ggf. optimale) Anordnung der oberen Hohlkörperbegrenzung 4 unterhalb des Bezugswasserstandes am Bauwerk 6 dargestellt.1b shows an example of the possible (possibly optimal) arrangement of the upper hollow body boundary 4 below the reference water level on the structure 6, depending on the result of the model tests.

Fig.1c enthält die prinzipielle Darstellung einer an ihrer Oberseite partiell durchlässigen Hohlkörperstruktur. Diese Ausführungsform zeichnet sich dadurch aus, daß sie für wechselnde Bezugswasserstände zwischen zwei Grenzwasserständen 3a und 3b funktionsfähig ist.1c contains the basic illustration of a hollow body structure which is partially permeable on its upper side. This embodiment is characterized in that it is functional for changing reference water levels between two limit water levels 3a and 3b.

Der oberhalb des Bemessungswasserstandes 3b eingezeichnete Bezugswasserstand 3a gibt einen zeitweilig höheren Wasserstand wieder, der sich z. B. künftiger Klimaveränderungen ergeben kann, aber nicht die Funktionsfähigkeit des erfindungsgemäßen Deckwerkes beeinträchtigen darf.The reference water level 3a drawn in above the design water level 3b reflects a temporarily higher water level, which z. B. future climate changes, but must not affect the functionality of the revetment according to the invention.

Das nach dem Wellenbrechen oberhalb des unteren Grenzwasserstandes 3b befindliche Rücklaufwasser kann durch die Öffnungen 10 in den darunterliegenden Hohlraum 2c eindringen und wird anschließend über den Hohlraum 2b und den Austrittsquerschnitt 2d dem vor dem Bauwerk vorhandenen Wasservolumen wieder zugeleitet. Die Entfernungen 5a und 5b der oberen Begrenzungen 4a bzw. 4b des oberen, aus Stufen bestehenden, durchlässigen Schalenteiles 11 bzw. unteren undurchlässigen Schalenteils 12 von den Schnittpunkten des oberen Grenzwasserstandes 6a bzw. unteren Grenzwasserstandes 6b mit der Böschungskontur sowie die zugehörigen Längen 8a bzw. 8b und die Nettoquerschnitte der Öffnungen 10 sind von der Konfiguration des Gesamtbauwerkes, den Grenzwasserständen 3a, 3b, und der Auslegungswellencharakteristik abhängig und müssen durch Modellversuche bestimmt werden.The return water located after the breaking of the waves above the lower limit water level 3b can penetrate through the openings 10 into the cavity 2c underneath and is then returned via the cavity 2b and the outlet cross-section 2d to the water volume in front of the building. The distances 5a and 5b of the upper boundaries 4a and 4b of the upper, permeable shell part 11 and lower impermeable shell part 12 consisting of steps from the intersection of the upper boundary water level 6a and the lower boundary water level 6b with the slope contour and the associated lengths 8a and 8b and the net cross sections of the openings 10 depend on the configuration of the entire structure, the boundary water levels 3a, 3b, and the design wave characteristics and must be determined by model tests.

Nachfolgend werden bevorzugte Querschnittsausführungsformen der Hohlkörperstruktur im einzelnen erläutert:Preferred cross-sectional embodiments of the hollow body structure are explained in detail below:

In Fig.2 in Verbindung mit Fig.2a bis Fig.2d ist erkennbar, daß ein durchströmbarer Formstein 2.1 derart mit trichterförmigen Aussparungen 2.2 und korrespondierenden, konischen Anformungen 2.3 ausgebildet ist, daß er in Mitten eines Verbandes von 4 benachbarten Formsteinen 2.4 in seiner Lage horizontal und vertikal fixiert wird.In Fig.2 in connection with Fig.2a to Fig.2d it can be seen that a flowable shaped block 2.1 is formed with funnel-shaped recesses 2.2 and corresponding conical formations 2.3 that it is in the middle a bandage of 4 neighboring shaped blocks 2.4 is fixed horizontally and vertically in its position.

Bei den an der oberen Hohlkörperbegrenzung 2.5 verlegten Randsteinen ist mit der Anordnung der trichterförmigen Aussparungen 2.2 zugleich ein geringerer Einlaufverlust verbunden.In the case of the curb stones laid on the upper hollow body boundary 2.5, the arrangement of the funnel-shaped recesses 2.2 also entails a smaller inlet loss.

Zur weiteren Verringerung von Strömungswiderständen und /oder aus Gründen einer günstigeren Herstellung können die Innenflächen 2.6 der Steine (Fig.2c und Fig.2d) auch aus Kunststoffhohlkörpern (ggf. Rohren) o.ä. bestehen. Da diese auf ihrem Umfang geschlossenen im Verbund verlegten Formsteine für Sickerwasser wenig durchlässig sind, sollen diese bevorzugt über undurchlässiger Deckschicht angeordnet werden.To further reduce flow resistance and / or for reasons of cheaper production, the inner surfaces 2.6 of the stones (FIGS. 2c and 2d) can also be made of plastic hollow bodies (possibly pipes) or the like. consist. Since these shaped stones, which are closed on their circumference and laid in a composite, are not very permeable to leachate, they should preferably be arranged above an impermeable cover layer.

Formsteine, die gem. Fig.3a bis Fig.3d an der Unterseite durch rechteckige (oder anders geformte) Ausnehmungen 3.1 durchlässig gestaltet sind, können direkt auf ggf. vorhandener durchlässiger Deckschicht, Filtermatte o.ä. verlegt werden.Shaped stones that 3a to 3d are designed to be permeable on the underside through rectangular (or differently shaped) recesses 3.1, can be directly on an existing permeable cover layer, filter mat or the like. be relocated.

Ähnliches gilt für die Formsteine gem. Fig.3e bis Fig.3g, die mit einer größeren Sockelhöhe 3.2 in die Unterkonstruktion eines Uferschutzwerkes einbinden und damit eher als integrale Bauelemente zu dessen Stabilität beitragen können.The same applies to the shaped stones according to Fig.3e to Fig.3g, which incorporate a larger base height 3.2 in the substructure of a bank protection plant and thus can contribute more to its stability as integral components.

An die Stelle der trichterförmigen Aussparungen und konischen Anformungen der Formsteine gem. Fig.2a und Fig.3a treten bei der Ausbildung der Formsteine gem. Fig.4a bis Fig.4d entsprechende Verriegelungselemente als Nasen 4.1 und korrespondierende Aussparungen 4.2 im Bereich der Lagerflächen.In place of the funnel-shaped recesses and conical shapes of the shaped stones acc. 2a and 3a occur in the formation of the shaped stones acc. 4 a to 4 d corresponding locking elements as lugs 4.1 and corresponding cutouts 4.2 in the area of the bearing surfaces.

Bei den Formsteinen gem. Fig.5a bis Fig.5e entsteht durch Anordnung von Nasen 5.1 an zwei aufeinanderstoßenden Lagerflächenkanten und korrespondierenden Aussparungen 5.2 an den gegenüberliegenden Lagerflächenkanten eine eher diagonal ausgerichtete Verbundwirkung, die jedoch ebenfalls dadurch gekennzeichnet ist, daß ein einzelner Formstein durch 4 benachbarte Formsteine horizontal und vertikal in seiner Lage fixiert ist.For the shaped stones acc. 5a to 5e, the arrangement of lugs 5.1 on two abutting bearing surface edges and corresponding recesses 5.2 on the opposite bearing surface edges creates a more diagonally oriented composite effect, which, however, is also characterized in that a single molded block is represented by 4 Adjacent shaped blocks are fixed horizontally and vertically in their position.

Zu Fig.4a und Fig.5a gehörige obere Randsteine, vergl. Fig.2, können im Sinne eines geringeren Einlaufverlustes zusätzlich trichterförmige Aussparungen gem. Fig.2a aufweisen.Top curbs belonging to FIGS. 4 a and 5 a, cf. FIG. 2, can also have funnel-shaped cut-outs in accordance with FIG. Fig.2a have.

Sämtliche Formsteine gemäß Fig.3a bis Fig.5d können auch mit den bei Fig.2c und Fig.2d erwähnten Kunststoffhohlkörpern und/oder auf ihrem Umfang vollständig geschlossen ausgeführt werden.All shaped blocks according to FIGS. 3a to 5d can also be made completely closed with the hollow plastic bodies mentioned in FIGS. 2c and 2d and / or on their circumference.

Die Formsteine gem. Fig.6a bis Fig.7d sind für Sickerwasser durchlässige Deckwerke oder Deckschichten vorgesehen und werden demnach auf einer Filtermatte od. dgl. verlegt. Durchströmquerschnitte werden hier lediglich als dünnwandige Hohlprofile mit Rechteck- 6.1 bzw. 7.1 oder Kreisquerschnitten 6.2 bzw. 7.2 ausgebildet, die an ihren Enden mit scheibenartigen Stoßflächen 6.3 bzw. 7.3 versehen sind. Die Verbundelemente 6.4 bzw. 6.5 an den Endscheiben entsprechen bei den Formsteinen gem. Fig.6a denjenigen der Fig.2a oder der Fig.3a und die Verbundelemente 7.4 bzw. 7.5 bei den Formsteinen gemäß Fig.7a prinzipiell denjenigen der Fig.4a. Zwischen den Hohlprofilen eines Steines sowie zwischen den Hohlprofilen jeweils zweier seitlich nebeneinander angeordneter Formsteine bleiben Lücken 6.6 bzw. 7.6, durch die ein nahezu ungehinderter Sickerwasserdurchtritt ermöglicht wird. Die insgesamt durch Hohlprofile und Endscheiben gebildete Oberfläche der im Verbund gelegten Formsteine entspricht vorteilhaft der Oberfläche eines Rauhdeckwerkes.The shaped stones acc. 6a to 7d are provided for seepage water-permeable revetments or cover layers and are accordingly laid on a filter mat or the like. Flow cross-sections are here only formed as thin-walled hollow profiles with rectangular sections 6.1 or 7.1 or circular cross sections 6.2 or 7.2, which are provided at their ends with disk-like abutting surfaces 6.3 or 7.3. The composite elements 6.4 and 6.5 on the end plates correspond to the shaped blocks in accordance with. 6a that of FIG. 2a or FIG. 3a and the composite elements 7.4 or 7.5 in the case of the shaped blocks according to FIG. 7a in principle those of FIG. Gaps 6.6 and 7.6, respectively, remain between the hollow profiles of a stone and between the hollow profiles of two shaped stones arranged side by side, which enable an almost unhindered passage of seepage water. The total surface formed by hollow profiles and end plates of the shaped stones laid in the composite advantageously corresponds to the surface of a rough revetment.

Falls diese Formsteine zur Erzielung einer größeren Stabilität mit einer Deckschicht beschwert werden, kann eine bessere Verbundwirkung mit dem Füllmaterial dadurch erreicht werden, daß sie mit höheren Endscheiben, vergl. Fig.6e bzw. Fig.7e ausgeführt werden. Im Sinne einer günstigeren Formsteinherstellung und/oder zur Erzielung geringerer Strömungsverluste kann eine Ausbildung der Innen- und/oder Außenflächen der Hohlprofile aus Kunststoffelementen (ggf. Rohren) vorteilhaft sein.If these shaped stones are weighed down with a cover layer to achieve greater stability, a better bonding effect with the filler material can be achieved by carrying them out with higher end plates, see Fig. 6e and Fig. 7e. In the sense of a more economical production of molded blocks and / or to achieve lower flow losses, the inside and / or Outer surfaces of the hollow profiles made of plastic elements (possibly pipes) may be advantageous.

Auch die der Fig.7a zuzuordnenden oberen Randsteine können mit strömungsgünstigen Einlauftrichtern gemäß Fig.2a ausgeführt werden.The top curbs to be assigned to FIG. 7a can also be designed with streamlined inlet funnels according to FIG. 2a.

In Fig.8a bis Fig.8d ist der Formstein gem. Fig.6a bis Fig.6c durch Anordnung geneigter Kopfflächen derart modifiziert, daß der Wassereintritt bei im Verbund verlegten Formsteinen entsprechend Fig.1c möglich ist. Der Verbund wird in diesem Falle dadurch gewährleistet, daß die zu den Höhenlinien parallelen Endscheiben 8.1 und 8.2 an beiden Seiten mit gleicher Höhe ausgeführt werden, wobei die untere Endscheibe 8.2 in Bereich der oberhalb der Kopfflächen befindlichen Einläufe trichterförmig 8.3 gestaltet ist.In Fig.8a to Fig.8d the shaped block is gem. 6a to 6c modified by arranging inclined head surfaces in such a way that water entry is possible with molded stones laid in a composite according to FIG. 1c. The bond is ensured in this case by the fact that the end disks 8.1 and 8.2 parallel to the contour lines are of the same height on both sides, the lower end disk 8.2 being designed funnel-shaped 8.3 in the region of the inlets located above the top surfaces.

Ebenfalls mit dem Zweck, den Wassereintritt entsprechend Fig.1c zu ermöglichen, ist in Fig.9a bis Fig.9d der Formstein gem. Fig.2a bis Fig.2c durch Anordnung geneigter Kopfflächen 9.1 modifiziert. Der Verbund wird in diesem Falle dadurch gewährleistet, daß die zur Fallinie parallelen Zwischenwände 9.2 und Seitenwände 9.3 konstante Höhe aufweisen.Also with the purpose of allowing the water to enter in accordance with FIG. 1c, the shaped block according to FIG. Fig.2a to Fig.2c modified by arranging inclined head surfaces 9.1. The bond is ensured in this case by the fact that the intermediate walls 9.2 and side walls 9.3 parallel to the fall line have a constant height.

Platten in Fertigteilbauweise mit der in Fig.10 dargestellten Querschnittskonfiguration bestehen im wesentlichen aus Hohlprofilen 10.1, die mit Beton od. dgl. ggf. unter Verwendung von Baustahlgewebe o.ä. vergossen sind. Analog zu den Verbundkonstruktionen für die Formsteine gemäß Fig.2 sollen die Platten im Bereich der Hohlprofilöffnungen am jeweils oberen Ende trichterförmige Aufweitungen aufweisen, in die korrospondierend ausgebildete, an das jeweilige untere Ende der Platten angeformte, konische Verriegelungselemente (hier nicht dargestellt) im Sinne eines Verbundes mit horizontal versetzten Platten eingreifen. Die Auflagerfläche der Platten bildet eine ggf. konventionell hergestellte (undurchlässige) Deckschicht 10.3. Im Falle einer Ortbetonkonstruktion ist diese an ihrer Oberfläche 10.4 vorzugsweise rauh gestaltet. Darauf verlegte Hohlprofile werden in der Fallinie in üblicher Weise mit Muffen gestoßen und mit Ortbeton, Colcrete-Beton o.ä. vergossen. Die Oberfläche kann darüber hinaus im Sinne größerer Energieumwandlung auch rauh gestaltet sein.Prefabricated panels with the cross-sectional configuration shown in Fig. 10 essentially consist of hollow sections 10.1, which may be covered with concrete or the like, possibly using structural steel mesh or the like. are shed. Analogous to the composite constructions for the shaped blocks according to FIG. 2, the plates should have funnel-shaped widenings in the area of the hollow profile openings at the respective upper end, into which conical locking elements (not shown here), formed on the respective lower end of the plates, in the sense of a Intervene with horizontally offset panels. The support surface of the plates forms a conventionally produced (impermeable) cover layer 10.3. In the case of an in-situ concrete construction, this is preferably rough on its surface 10.4. Hollow profiles laid on top are pushed in the fall line in the usual way with sleeves and with in-situ concrete, colcrete concrete or similar. shed. The Surface can also be designed rough in the sense of greater energy conversion.

Platten in Fertigteilbauweise mit der in Fig.11 dargestellten Querschnittskonfiguration bestehen im wesentlichen aus Hohlprofilen 11.1, die an ihrer Unterseite Ausnehmungen 11.2 aufweisen oder geschlitzt ausgeführt werden, um den Sickerwassereintritt in die Profilinnenräume zu gewährleisten.Panels in prefabricated construction with the cross-sectional configuration shown in FIG. 11 essentially consist of hollow profiles 11.1, which have recesses 11.2 on their underside or are designed to be slotted in order to ensure the infiltration of seepage water into the interior of the profile.

Der Verguß 11.3 erfolgt wie in Fig.10 mit Beton, Asphaltbeton od. dgl. ggf. unter Verwendung von Baustahlgewebe o.ä. zu Elementen, die unter Maschineneinsatz verlegt werden.The grouting 11.3 is carried out as in Fig. 10 with concrete, asphalt concrete or the like, possibly using structural steel mesh or the like. to elements that are installed using machines.

Im Sinne der Ausbildung als Komponente offener, für Sickerwasser durchlässiger Uferschutzwerke werden die Platten auf einer sandrückhaltenden Filtermatte 11.4 o.ä. verlegt, die ihrerseits über herkömmlichen, durchlässigen Schichten 11.5 angeordnet wird.In the sense of training as a component of open bank protection works that are permeable to leachate, the plates are placed on a sand-retaining filter mat 11.4 or similar. laid, which in turn is arranged over conventional, permeable layers 11.5.

Der Plattenverbund erfolgt mit ähnlichen Verriegelungselementen wie für Platten nach Fig.10 und in versetzter Anordnung wie in Fig.2 für die Formsteine dargestellt.The panel assembly is carried out with similar locking elements as for panels according to Fig.10 and in a staggered arrangement as shown in Fig.2 for the shaped blocks.

Im Falle der Ausbildung der Hohlkörperstruktur in Ortbetonbauweise wird im Bereich zwischen den Hohlprofilen eine Kunststoffolie 11.6 angeordnet, die das Eindringen des Vergußmaterials in die Filtermatte verhindern soll. Stoßverbindungen, Verguß und Oberflächengestaltung erfolgen wie für die Ausführungsform entsprechend Fig10.In the case of the construction of the hollow body structure in in-situ concrete construction, a plastic film 11.6 is arranged in the area between the hollow profiles, which is intended to prevent the potting material from penetrating into the filter mat. Butt joints, potting and surface design are carried out as for the embodiment according to Fig10.

Fig.12a bis Fig.12e zeigt eine gemäß Fig.1c an ihrer Oberfläche partiell durchlässige Hohlkörperkonstruktion in Betonfertigteilbauweise. Die den Hohlraum zur Wasserseite hin partiell abgrenzende Schale besteht aus strömungsgünstig geformten Treppenstufen 12.1, zwischen denen Öffnungen 12.2 verbleiben, durch die das Rücklaufwasser in den darunter liegenden Hohlraum 12.3 eintreten kann.FIGS. 12a to 12e show a hollow body construction of prefabricated concrete construction that is partially permeable on its surface according to FIG. 1c. The shell, which partially delimits the cavity towards the water side, consists of streamlined steps 12.1, between which openings 12.2 remain, through which the return water can enter the cavity 12.3 below.

Als weitere Ausführungsform vorzugsweise für durchlässige Deckschichten sind in Fig.13 auf ihrem Umfang geschlossene Hohlprofile 13.1 dargestellt, die an ihren Enden durch Formsteine 13.2 verbunden sind. Letztere sollen horizontalen und vertikalen Verbund dadurch gewährleisten, daß sie einerseits entlang der Fallinie die Funktion von Muffenverbindungen 13.3 übernehmen und andererseits parallel zu den Höhenlinien im Bereich ihrer Stoßflächen mit formschlüssigen nasenförmigen Verriegelungselementen 13.4 versehen sind, denen an den gegenüberliegenden Stoßflächen im Bereich von deren Enden korrespondierend ausgebildete Ausnehmungen 13.5 zugeordet sind.As a further embodiment, preferably for permeable cover layers, hollow profiles 13.1 are shown on their circumference in FIG. 13, which are connected at their ends by shaped blocks 13.2. The latter are said to be horizontal and vertical connection thereby ensure that on the one hand they take on the function of socket connections 13.3 along the fall line and, on the other hand, parallel to the contour lines in the area of their abutting surfaces are provided with form-fitting nose-shaped locking elements 13.4 which have correspondingly formed recesses 13.5 on the opposite abutting surfaces in the region of their ends are assigned.

Der Raum 13.6 zwischen den Hohlprofilen und Formsteinen kann vorzugsweise mit durchlässigen Baumaterialien verfüllt werden.The space 13.6 between the hollow profiles and shaped stones can preferably be filled with permeable building materials.

Eine weitere Variante kann darin bestehen, daß die Hohlprofile in ihrem Firstbereich oder sogar auf ihrem gesamten Umfange mit Löchern oder Schlitzen versehen sind, durch die das nach dem Wellenbrechen oberhalb vorhandene Wasser im Sinne einer Drainage in den Hohlkörperinnenraum eintreten kann.Another variant can be that the hollow profiles are provided in their ridge area or even on their entire circumference with holes or slits through which the water present after the breaking of the waves can enter the hollow body interior in the sense of a drainage.

Bei geneigten Stauwänden 14.1 von Stahlwasserbaukonstruktionen kann nach Fig.14 eine Hohlkörperstruktur durch Abstützung einer zweiten Stahlblechschale 14.2 unter Verwendung von Stahlprofiltragelementen 14.3 erhalten werden, wobei die anerkannten Konstruktionsgrundsätze hinsichtlich der Korrosionsgefahr zu beachten sind.In the case of inclined baffle walls 14.1 of hydraulic steel structures, a hollow body structure can be obtained according to FIG. 14 by supporting a second steel sheet shell 14.2 using steel profile support elements 14.3, the recognized design principles with regard to the risk of corrosion being observed.

Fig.15 zeigt wiederum den oberen Teil einer gemäß Fig.1c an ihrer Oberseite partiell durchlässigen Hohlkörperstruktur als Stahlwasserbaukonstruktion. Die den Hohlraum zur Wasserseite hin partiell abgrenzende Schale besteht aus Flachstahlprofilen 15.1, die in geneigt abgetreppter Anordnung an Profilstählen 15.2 angeschlossen sind. Zwischen den Stufen bleiben Öffnungen 15.3, durch die das Rücklaufwasser in den darunterliegenden Hohlraum 15.4 eintreten kann.FIG. 15 in turn shows the upper part of a hollow body structure which is partially permeable on its upper side as a hydraulic steel structure according to FIG. The shell partially delimiting the cavity towards the water side consists of flat steel profiles 15.1 which are connected to profile steels 15.2 in an inclined, stepped arrangement. Openings 15.3 remain through the steps through which the return water can enter the cavity 15.4 below.

In Fig.16 (in Verbindung mit Fig.17a bis 18e) wird die Hohlkörperstruktur prinzipiell aus der äußeren geneigten Schicht in räumlichem Verband bzw. Verbund angeordneter Formkörper 16.1, 16.2 und 16.9 gebildet. Dabei geben die untersten Formkörper 16.2 ihre vertikalen Auflagerkräfte insgesamt an den Untergrund (Planum) ab. Die darüber befindlichen Formkörper stützen sich einerseits auf die jeweils darunter liegenden Formkörper derselben (äußeren) Schicht und andererseits auf die zu letzteren parallel verlegten der stützkörperseitigen geneigten (inneren) Schicht 16.3 derart ab, daß zwischen beiden Schichten eine räumliche Verband- bzw. Verbundwirkung entsteht.In Fig. 16 (in connection with Figs. 17a to 18e), the hollow body structure is principally formed from the outer inclined layer in a spatial association or combination of molded bodies 16.1, 16.2 and 16.9. The lowest shaped bodies 16.2 give off their vertical bearing forces overall to the subsurface (subgrade). The moldings located above are supported on the one hand on the moldings below the same (outer) layer and on the other hand on the parallel to the latter the inclined (inner) layer 16.3 on the support body in such a way that a spatial association or composite effect arises between the two layers.

Die Formkörper der inneren Schicht können im Sinne einer verbesserten Strömungsführung im Zusammenhang mit der Erstellung des Stützkörpers mit geeignetem Material verfüllt oder mit Fertigteil-Paßkörpern (hier nicht dargestellt; vergl. Fig.25) abgedeckt werden. Die an der rechten Seite der Formkörper jeweils vorhandenen Auflagerkräfte werden in den Stützkörper 16.4 abgetragen.The shaped bodies of the inner layer can be filled with suitable material in the sense of improved flow guidance in connection with the creation of the support body or covered with prefabricated fitting bodies (not shown here; see FIG. 25). The support forces present on the right-hand side of the molded body are transferred into the support body 16.4.

Die sich entlang des Bezugswasserspiegels 16.5 auf das Bauwerk zu bewegenden Wellen (an der Luvseite) und das durch diese beim Wellenbrechvorgang am Bauwerk oberhalb der Bezugswasserspiegels transportierte Wasservolumen des Wellenauflaufschwalles sind nicht dargestellt. Letzteres wird nach Bewegungsumkehr vollständig oder teilweise durch die Einlaufquerschnitte 16.6, den strukturierten Hohlraum 16.7 und die Austrittsquerschnitte 16.8 dem vor dem Bauwerk vorhandenen Wasservolumen unterhalb des Bezugswasserspiegels 16.5 wieder zugeleitet. Die Bauwerkshöhe und die damit zusammenhängende Position der obersten Formkörper 16.9 ist vom Zweck des Gesamtbauwerkes und der Auslegungswellencharakteristik abhängig und muß durch hydraulische Modelluntersuchungen bestimmt werden.The towards the building along the reference water level 16.5 Moving waves (on the windward side) and the water volume of the wave run-up surge transported by them during the wave breaking process on the structure above the reference water level are not shown. After the reversal of movement, the latter is completely or partially fed back through the inlet cross-sections 16.6, the structured cavity 16.7 and the outlet cross-sections 16.8 to the water volume in front of the building below the reference water level 16.5. The height of the structure and the related position of the uppermost shaped bodies 16.9 depends on the purpose of the overall structure and the design wave characteristics and must be determined by hydraulic model examinations.

Der als Strukturelement für den in Fig.16 dargestellten Querschnitt verwendete Betonformkörper ist in seinen Einzelheiten der Fig.17a bis 17g bzw. der Fig.18a bis 18e zu entnehmen. In Fig.17a bis 17g ist erkennbar, daß die angestrebte zweiachsig horizontale Verbundwirkung dadurch zustandekommt, daß ein Formkörper mit seinen 4 an den Ecken seiner Unterseite vorspringenden Eckauflagerkanten 17.1 und T-förmigen Zwischenauflagerkanten 17.2 in korrespondierend geformte Aussparungen 17.5 bzw. 17.4 in den Kopfflächen von jeweils 4 über einer rechteckigen Grundfläche angeordneten darunterliegenden Formkörpern eingreift.The details of the shaped concrete body used as a structural element for the cross section shown in FIG. 16 can be seen in FIGS. 17a to 17g and in FIGS. 18a to 18e. In Fig.17a to 17g it can be seen that the desired biaxial horizontal composite effect arises from the fact that a molded body with its 4 corner support edges 17.1 projecting at the corners of its underside and T-shaped intermediate support edges 17.2 in correspondingly shaped recesses 17.5 and 17.4 in the head surfaces of each engages 4 shaped bodies arranged above a rectangular base area.

Der Formkörper enthält eine durchgehende Zwischenwand 17.5, die ihn in zwei Hauptkammern 17.6 teilt. Eine in Kammerlängsrichtung von der Vertikalen abweichende Durchströmung der Hauptkammern ist dadurch gewährleistet, daß Zwischenwände 17.7 quer zur Kammerlängsrichtung in den Hauptkammern nur im oberen Bereich des Formkörpers vorhanden sind.The molded body contains a continuous partition 17.5 which divides it into two main chambers 17.6. A flow of the main chambers deviating from the vertical in the longitudinal direction of the chamber is ensured by the fact that partition walls 17.7 are only present in the main chambers transversely to the longitudinal direction of the chamber in the upper region of the molded body.

In Fig.18a bis 18e ist ein der Fig.17a bis 17g ähnlicher Formkörper dargestellt, jedoch mit nur einer Hauptkammer. Wird dieser Formkörper als alleiniges Bauelement einer Hohlstruktur verwendet, so kann ein Verbund in einachsig horizontaler Richtung dadurch erreicht werden, daß ein Formkörper mit seinen 4 an der Unterseite vorspringenden Eckauflagerkanten 18.1 in korrespondierend geformte Aussparungen 18.2 in den Kopfflächen von jeweils 2 versetzt darunterliegenden gleichartigen Formkörpern eingreift. Eine Verbundwirkung quer zur Kammerlängsrichtung ist demnach in diesem Falle nicht erreichbar.18a to 18e show a shaped body similar to FIGS. 17a to 17g, but with only one main chamber. If this molded body is used as the sole component of a hollow structure, a composite in a uniaxially horizontal direction can be achieved in that a molded body with its 4 corner support edges 18.1 projecting on the underside engages in correspondingly shaped recesses 18.2 in the head surfaces of two identical molded bodies which are offset in each case . A composite effect transverse to the longitudinal direction of the chamber is therefore not achievable in this case.

Andererseits kann dieser Formkörper aber auch im Verbund mit dem Formkörper gemäß Fig. 17a bis 17g verwendet werden,- insbesondere zur Komplettierung des Verbandes im Endbereich einer Hohlkörperstruktur oder im Bereich des Anschlusses an andere Böschungsstrukturen.On the other hand, this molded body can also be combined with the Shaped bodies according to FIGS. 17a to 17g are used, in particular for completing the association in the end region of a hollow body structure or in the region of the connection to other slope structures.

Die in Fig.19a bis 19f dargestellte Ausführungsform für einen Betonformkörper unterscheidet sich von derjenigen der Fig.17a bis 17g im wesentlichen durch eine andere Ausbildung der an den Auflagerecken vorspringenden Verriegelungselemente 19.1 bzw. 19.2 und den entsprechenden Aussparungen 19.3 bzw. 19.4 in den Kopfflächen.The embodiment shown in FIGS. 19a to 19f for a shaped concrete body differs from that of FIGS. 17a to 17g essentially by a different design of the locking elements 19.1 or 19.2 projecting at the support corners and the corresponding recesses 19.3 or 19.4 in the top surfaces.

Ähnliches gilt bezüglich der Unterschiede zwischen den vorspringenden Verriegelungselementen 20.1 und korrespondierenden Aussparungen 20.2 des Formkörpers gemäß Fig.20a bis 20e im Vergleich zu Fig.18a bis 18e.The same applies to the differences between the projecting locking elements 20.1 and corresponding recesses 20.2 of the molded body according to FIGS. 20a to 20e in comparison to FIGS. 18a to 18e.

Fig.21 (in Verbindung mit Fig.22 und Fig.23a bis 24f) zeigt ein wellenbrecherartiges Bauwerk oder ein Längswerk, das in seiner eigentlichen Tragstruktur aus Formkörpern besteht. Es ist der in Fig.22 mit A-A gekennzeichnete Querschnitt dargestellt.Fig. 21 (in connection with Fig. 22 and Fig. 23a to 24f) shows a breakwater-like structure or a longitudinal structure which consists of shaped bodies in its actual supporting structure. The cross section marked A-A in FIG. 22 is shown.

Zur Unterbindung der wellenerzeugten Durchströmung von der Luv- nach der Leeseite sind die Formkörper im Kernbereich 21.1 und - je nach Zweck des Bauwerks - auch an der Leeseite 21.2 des Bauwerkes mit geeignetem Material verfüllt, während das Bauwerk an der dem Wellenangriff ausgesetzten Luvseite eine der Fig.16 ähnliche Hohlkörperstruktur 21.3 mit der dort beschriebenen Wirkung aufweist.To prevent the wave-generated flow from the windward to the leeward side, the shaped bodies in the core area 21.1 and - depending on the purpose of the structure - are also filled with suitable material on the leeward side 21.2 of the structure, while the structure on the windward side exposed to the wave attack is one of the figures .16 has a similar hollow body structure 21.3 with the effect described there.

In Fig.22 ist eine zu Fig.21 passende Draufsicht dargestellt. Insbesondere ist erkennbar, daß die angestrebte Abführung des Rücklaufwassers konstruktiv unter Verwendung der gleichen Betonformkörper auch am Ende der dargestellten Dammstruktur erreicht wird.In Fig. 22 a plan view matching to Fig. 21 is shown. In particular, it can be seen that the desired drainage of the return water is achieved constructively using the same shaped concrete body at the end of the dam structure shown.

Der als Strukturelement für den in Fig.21 dargestellten Querschnitt verwendete Betonformkörper ist in seinen Einzelheiten der Fig.23a bis 23e bzw. Fig.24a bis 24f zu entnehmen.The details of the shaped concrete body used as a structural element for the cross section shown in FIG. 21 can be seen in FIGS. 23a to 23e and 24a to 24f.

In Fig.23a bis 23e ist erkennbar, daß hier die angestrebte zweiachsig horizontale Verbundwirkung innerhalb des aus Formkörpern gebildeten räumlichen Verbandes dadurch erreicht wird, daß der einzelne Formkörper jeweils mit seiner unteren pyramidenstupfartig vorspringenden Öffnung 23.1 in eine korrespondierende Öffnung eingreift, deren abgeschrägte Kanten 23.2 durch die Formation der Kopfflächen von 4 darunterliegenden jeweils über einer rechteckigen Grundfläche angeordneten gleichen Formkörper gebildet werden.In FIGS. 23a to 23e it can be seen that the desired biaxial horizontal composite effect within the spatial association formed from shaped bodies is achieved in that the individual shaped body engages with its lower pyramid-like opening 23.1 in a corresponding opening, the beveled edges 23.2 are formed by the formation of the top surfaces of 4 underlying shaped bodies which are each arranged above a rectangular base surface.

Die Kopffläche des einzelnen Formkörpers weist dementsprechend im Grundriß eine kreuzförmige Struktur 23.3 auf, die auf den Oberteil des Formkörpers beschränkt ist. Das Unterteil des Formkörpers besteht aus einem im Grundriß rechteckigen Rahmen 23.4, der in seinem Innenraum keine Zwischenwände aufweist. Dementsprechend kann sich hier eine von der Vertikalen abweichende, vorzugsweise böschungsparallele Strömung ausbilden, wenn der Formkörper im räumlichen Verband verlegt - ein Element der durchströmbaren Hohlkörperstruktur darstellt.Accordingly, the top surface of the individual shaped body has a cruciform structure 23.3 in the plan, which is limited to the upper part of the shaped body. The lower part of the molded body consists of a frame 23.4 which is rectangular in plan and has no intermediate walls in its interior. Accordingly, a flow that deviates from the vertical, preferably parallel to the slope, can form here if the molded body is laid in a spatial association - an element of the flowable hollow body structure.

In Fig.24a bis 24f ist dargestellt, wie die Gesamtstruktur 24.1 des Formkörpers gemäß Fig.23a bis 23e aus 2 separaten Teilelementen aufgebaut werden kann. Demnach besteht das Unterteil als separates Teilelement aus einem im Grundriß rechteckigen Rahmen 24.2, auf den das separate kreuzförmige Oberteil 24.3 aufgelegt werden kann. Im Sinne eines Verbundes sind im Bereich der Stoßflächen am Unterteil keilförmige Ausnehmungen 24.4 vorgesehen, in die die im Querschnitt sechseckig ausgebildeten Sprossen des Oberteils mit ihren geneigten Unterkanten 24.5 formschlüssig eingreifen.24a to 24f show how the overall structure 24.1 of the molded body according to FIGS. 23a to 23e can be constructed from two separate sub-elements. Accordingly, the lower part as a separate partial element consists of a frame 24.2 which is rectangular in plan, on which the separate cruciform upper part 24.3 can be placed. In the sense of a composite, wedge-shaped recesses 24.4 are provided in the area of the abutting surfaces on the lower part, into which the rungs of the upper part, which are hexagonal in cross section, engage with their inclined lower edges 24.5 in a form-fitting manner.

In Fig.25 ist beispielhaft die Anordnung von strömungsleitenden Fertigteil-Paßkörpern im Vertikalschnitt eines wellenbrecherartigen Bauwerks oder eines Längswerkes dargestellt. Aus dem Vertikalschnitt 25.1 durch den einzelnen Paßkörper ist erkennbar, daß dieser in vertikaler Richtung über beide Teilelemente des Formkörpers gemäß Fig. 24a bis 24f übergreift. Andererseits zeigt die Draufsicht 25.2 auf den einzelnen Paßkörper, daß dieser vorteilhaft auch ein horizontales Verbundelement zwischen zwei nebeneinander angeordneten Formkörpern darstellen kann.25 shows an example of the arrangement of flow-guiding prefabricated fitting bodies in the vertical section of a breakwater-like structure or a longitudinal structure. It can be seen from the vertical section 25.1 through the individual fitting body that this engages in the vertical direction over both partial elements of the molded body according to FIGS. 24a to 24f. On the other hand, the top view 25.2 of the individual fitting body shows that it can advantageously also represent a horizontal composite element between two molded bodies arranged next to one another.

Claims (40)

  1. A bank protection structure which is mounted on sloping structures, inclined dams or similar which are exposed to the action of waves, consisting of at least partly closed hollow bodies through which water can flow and which together form a topping which is parallel to the slope, characterised by the following features:
    a) the topping only extends over the dynamically loaded region of the bank protection structure;
    b) the topping has an upper water inlet cross section (2a) which forms the upper boundary (4; 4b) of a shell part (1a; 12) which is water-tight at its surface, which cross section lies in a plane which is at least approximately perpendicular to the slope and receives at least some of the water volume of the inflowing swell conveyed upwards over the topping or of the return water;
    c) the water inlet cross section (2a) lies at least at the height of the lowest wave-generated water level deflection below the reference water level (3) determined for the structure;
    d) the topping also has a lower water outlet cross section (2d) which lies approximately parallel to the upper water inlet cross section (2a) and below the reference water level (3) and feeds the return water below this reference water level (3) back to the water volume lying before the structure;
    e) the water inlet cross section (2a) and the water outlet cross section (2d), which are at least approximately in alignment with one another, communicate with one another via at least one continuous flow channel (2b) extending approximately parallel to the slope.
  2. Structure according to claim 1, characterised in that the above-mentioned construction elements are integrated into the dynamically loaded region of the structure (Figure 1a).
  3. Structure according to claim 1, characterised in that the above-mentioned construction elements lie on the dynamically loaded region of a conventional structure (9c) (Figure 1b).
  4. Structure according to claim 1, 2 or 3, characterised in that the double-shell building construction consists of bonded moulded bricks (Figure 2).
  5. Structure according to claim 1, 2 or 3, characterised in that the double-shell building construction consists of bonded concrete slabs formed as a precast unit (Figures 10 to 12e).
  6. Structure according to claim 4 or 5, characterised in that the moulded bricks or concrete slabs are provided in the region of their abutting faces with positive, horizontal and vertical locking elements which ensure that a bond is created and with which locking elements formed in a corresponding manner at the opposite abutting faces in the region of their ends are associated so as to ensure that a gap for the passage of seepage water remains between the moulded bricks or concrete slabs (Figures 2 to 9d and 12a to 12e).
  7. Structure according to one of claims 1 to 4, characterised in that the front faces (9.1) of the moulded bricks have a steeper inclination than the bearing faces along the slope dip line, as a result of which the water lying above the bonded moulded bricks after the waves have broken can locally enter the hollow space (2c) lying below the front faces (Figures 1c and 8a to 9d).
  8. Structure according to one of the preceding claims, characterised in that the hollow body boundaries consist of hollow sections (2.6), (6.1), (6.2), (7.1), (7.2), (10.1), (13.1) which are laid parallel to the dip line (Figures 2a to 2d, 6a to 11, 13a to 13c).
  9. Structure according to claim 8, characterised in that seepage water flows around the hollow sections (Figures 6a - 8d and Figures 13a - 13c).
  10. Structure according to claims 8 and 9, characterised in that the hollow sections are joined by sleeves.
  11. Structure according to claim 8, 9 or 10, characterised in that the hollow sections are connected at their ends by moulded bricks (13.2) which ensure that a horizontal and a vertical bond is created in that on one side they have the function of sleeve joints (13.3) along the dip line and on the other are provided - parallel to the contour lines in the region of their abutting faces - with positive, horizontal and vertical locking elements which ensure that a bond is created and with which locking elements formed in a corresponding manner at the opposite abutting faces in the region of their ends are associated (Figures 13a to 13c).
  12. Structure according to claim 11, characterised in that the locking elements at the short upper and/or lower edges are formed as nose-shaped projections (13.4) or recesses (13.5) (Figures 13a to 13c).
  13. Structure according to one of claims 8 to 12, characterised in that filler which is permeable to seepage water is disposed between and/or above the hollow sections.
  14. Structure according to one of claims 8 to 13, characterised in that the hollow sections have water passage openings (3.1), (11.2) to allow seepage water to enter (Figures 3a to 5d and 11).
  15. Structure according to one of the preceding claims, in particular for varying reference water levels between two limit water levels (3a, 3b), characterised in that a partially water-permeable hollow body structure adjoins the upper boundary (4; 4b) of the water-tight shell part (1a; 12) (Figures 1c, 12c, 15b).
  16. Structure according to claim 15, characterised in that the partially water-permeable hollow body structure is a shell part (11) which consists of steps (12.1) and comprises water inlet openings (10; 12.2; 15.3) at its upper side between the steps, which openings lead into an underlying hollow space (2c; 12.3; 15.4) which is in alignment with the flow channel (2b) extending parallel to the slope (Figures 1c, 12c and 15b).
  17. Structure according to claim 1, characterised in that the moulded bodies are provided in the region of their abutting faces with positive locking elements which ensure that a bond is created and with which locking elements formed in a corresponding manner at the opposite abutting faces in the region of their ends are associated (Figures 17a to 20e; Figures 23a to 24f).
  18. A bank protection structure which is mounted on sloping structures, inclined dams or similar which are exposed to the action of waves, consisting of at least partly closed hollow bodies through which water can flow and which together form a topping which is parallel to the slope, characterised by the following features:
    a) The bank protection structure is formed as a hollow body structure which is approximately parallel to the slope, as a breakwater-type structure or a longitudinal dyke which itself, together with the topping, consists of stack-bonded or bonded hollow bodies;
    b) the topping only extends over the dynamically loaded region of the bank protection structure;
    c) the hollow bodies (16.7) which are disposed above the reference water level (16.5) determined for the structure and form the outer layer have water inlet cross sections (16.6) for receiving initially primarily in the vertical direction at least some of the water volume of the inflowing swell conveyed above the reference water level (16.5) when the waves break at the structure or of the return water, and the hollow bodies (16.7) which are disposed below the reference water level (16.5) and also form the outer layer have water outlet cross sections (16.8) which feed the above-mentioned water volume back to the water volume lying before the structure;
    d) the water inlet cross section (16.6) lies at least at the height of the lowest wave-generated water level deflection below the reference water level (16.5) determined for the structure;
    e) the lower water outlet cross section (16.8) lies approximately parallel to the upper water inlet cross section (16.6).
    f) the inlet and outlet cross sections (16.6, 16.8) are at least approximately in alignment with one another and in each case lead into an underlying hollow space (16.7) which forms a continuous flow channel extending approximately parallel to the slope (Figures 16, 21 and 25).
  19. Structure according to one of the preceding claims, characterised by a hollow body through which water can flow, can be bonded to form a protective surface, has a front face which is directed outwards in the bond and a bearing face which is disposed opposite the latter and is directed inwards, between which faces a free water flow cross section is provided which connects an inlet opening at the top in the bond to a lower outlet opening.
  20. Structure according to claim 19, characterised in that the abutting faces of the hollow body are provided with locking elements.
  21. Structure according to claim 20, characterised in that the locking elements are formed as funnel-shaped recesses (2.2) or conical projections (2.3) in the region of the hollow body openings (Figures 2a to 3g, 6a to 6d, 8a to 9d, 12a to 12e).
  22. Structure according to claim 20, characterised in that the locking elements are constructed as nose-shaped projections (4.1) or recesses (4.2) at the long edges, which form the bearing faces and/or front faces with the front or back sides of the hollow body (Figures 4a to 4d, 7a to 7d).
  23. Structure according to claim 20, characterised in that the locking elements are constructed as nose-shaped projections (5.1) or recesses (5.2) at the short edges and along approximately half the length of the long edges, which form the bearing faces with side walls or with the front and back sides of the hollow body (Figures 5a to 5d).
  24. Structure according to one of claims 19 to 23, characterised by end plates (6.3, 7.3) which project beyond the outer contour of the hollow body for achieving a greater bonding action with a covering layer or similar (Figures 6a to 7d).
  25. Structure according to one of claims 19 to 24, characterised in that the hollow body boundary is formed as a shell of steel plates (14.2) and/or steel sections (14.3) (Figures 14 to 15d).
  26. Structure according to one of claims 19 to 25, characterised in that flow-promoting inlet funnels are provided at the upper boundary of the hollow body serving as an edge brick in the region of its inlets.
  27. Structure according to one of claims 19 to 26, characterised in that the surfaces of the inner hollow body faces (2.6) consist of plastic.
  28. Structure according to claim 27, characterised in that the surfaces of the inner hollow body faces, together with the surfaces of the recesses in the bearing faces, consist of prefabricated plastic elements in the sense of permanent shuttering.
  29. Structure according to one of claims 19 to 28, characterised in that the hollow spaces, through which water can flow, of the hollow bodies consist of hollow sections.
  30. Structure according to one of claims 19 to 29, characterised in that the hollow body is a concrete slab which is formed as a precast unit (Figures 12a to 12e).
  31. Structure according to claims 29 and 30, characterised in that the hollow sections are grouted with concrete or similar.
  32. Structure according to claim 30 or 31, characterised in that recesses are provided in the front face of the hollow body, which recesses are formed as inclined steps with openings (12.2) lying between the steps (12.1), through which openings the water lying above after the waves have broken can locally enter the hollow space (12.3) disposed below the steps (Figures 12a to 12e).
  33. Structure according to one of claims 19 to 21, characterised by a moulded body through which water can flow preferably regularly, which is polygonal, preferably rectangular, in a horizontal section, can be stack-bonded to form a three-dimensional protective structure and has upper and lower openings through which water flows in a varying manner according to their position relative to the water level in the overall structure.
  34. Structure according to claim 33, characterised in that the moulded body comprises elements which are circular or arcuate in a horizontal section, at least in part.
  35. Structure according to one of the preceding claims, characterised by a moulded body (Figures 17a to 20e and Figures 23a to 24f) through which water can flow preferably regularly, which is of a single- or multichamber construction, can be stack-bonded to form a three-dimensional protective structure and has upper and lower chamber openings through which water flows in a varying manner according to their position relative to the water level in the overall structure and inner and outer chamber walls which are vertically staggered such that a flow direction which is approximately regular, diverges from the vertical and is preferably parallel to the slope is also produced locally.
  36. Structure according to claim 35, characterised in that moulded bodies through which water can flow are provided with flow-deflecting, prefabricated adaptors with the effect of an improved flow guidance.
  37. Structure according to claim 36, characterised in that the flow-deflecting adaptors are formed as substructures (25.1, 25.2) which engage over the moulded bodies.
  38. Structure according to claim 35, characterised in that inner chamber walls represent approximately grid-like substructures (24.3) and outer chamber walls approximately frame-like separate substructures (24.4) which, each being superimposed in the bond, form an element of a three- dimensional bond (Figures 24a to 24f).
  39. Structure according to one of claims 33 to 38, characterised in that the abutting faces between the moulded bodies or between the substructures or between the moulded bodies and substructures are provided with locking elements.
  40. Structure according to claim 39, characterised in that the locking elements are formed as truncated pyramidal recesses (23.2) or projections (23.1, 24.5) corresponding to the latter in the region of the moulded body openings or at the abutting faces of the substructures.
EP91103801A 1990-04-10 1991-03-13 Embankment protection structure Expired - Lifetime EP0451521B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19904011504 DE4011504A1 (en) 1989-09-16 1990-04-10 Bank protecting structure from waves
DE4011504 1990-04-10

Publications (2)

Publication Number Publication Date
EP0451521A1 EP0451521A1 (en) 1991-10-16
EP0451521B1 true EP0451521B1 (en) 1996-07-24

Family

ID=6404097

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91103801A Expired - Lifetime EP0451521B1 (en) 1990-04-10 1991-03-13 Embankment protection structure

Country Status (2)

Country Link
EP (1) EP0451521B1 (en)
DE (1) DE59108012D1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19533027A1 (en) * 1995-09-07 1997-03-13 Guenter J Dipl Ing Peters Open reinforced concrete ring for stabilisation of sides of canal
DE29715260U1 (en) * 1997-08-26 1997-10-23 Lage, Karl, 24768 Rendsburg Set of elements for creating a dam
DE29812221U1 (en) * 1998-07-09 1999-12-30 Scholle, Jörg, 27442 Gnarrenburg Rock garden - sheet pile construction that can be populated for aquatic organisms
DE102006028976B4 (en) * 2006-06-23 2012-02-23 Factum Gmbh dam

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL93233C (en) * 1900-01-01
BE667841A (en) * 1964-08-04 1965-12-01
US3503216A (en) * 1968-01-29 1970-03-31 Ramiro M Oquita Underwater paving element
DE2038674C3 (en) * 1970-08-04 1978-06-29 E.A.H. Naue Kg, 4992 Espelkamp Water-permeable revetment for embankments or the like
CA1102146A (en) * 1978-12-15 1981-06-02 Gerard E. Jarlan Flow-guiding monolithic blocks for marine structures
EP0051680B1 (en) * 1980-01-22 1985-08-21 IWASA, Nobuhiko Wave extinguishing caisson
FR2561684B1 (en) * 1984-03-23 1986-12-26 Rossi Jean Louis CONSTRUCTION ELEMENT FOR RETAINING WALLS TO BE FILLED WITH VEGETATION
JPS63226404A (en) * 1987-03-17 1988-09-21 Nippon Tetorapotsuto Kk Skew block and revetment structure thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EMPFEHLUNGEN FÜR DIE AUSFÜHRUNG VON KÄSTENSCHUTZWERKEN. EAK 1981, Heft 36, S. 70-103 und s. 179-281. *

Also Published As

Publication number Publication date
DE59108012D1 (en) 1996-08-29
EP0451521A1 (en) 1991-10-16

Similar Documents

Publication Publication Date Title
DE3152098C2 (en)
DE69032103T2 (en) CELLULAR STRUCTURES TO SUPPORT WALLS
EP0039372B1 (en) Shaped brick for a talus
EP2286035A2 (en) Device and method for flood protection, coastal protection and scour protection
DE2521777A1 (en) STRUCTURE FOR FASTENING HOUSING
DE69333376T2 (en) Device for scattering wave energy
EP0451521B1 (en) Embankment protection structure
DE102006051707A1 (en) Gabion wall for use as sound insulation wall, has monolithic concrete core extending over entire length of gabion wall in interior of gabion wall, and enclosed by natural stone layering and filler material layering
DE2040609A1 (en) Concrete block
AT352639B (en) SHORE SHORING
DE1811682C3 (en) Lost formwork for a retaining wall
EP1707685A2 (en) Foundation for a high water barrier
DE2107030A1 (en) Revetments for dams, dikes and other hydraulic structures
DE4011504A1 (en) Bank protecting structure from waves
DE7614681U1 (en) BOESCHUNGSSSTEIN
DE4344703A1 (en) Earthworks for dam
DE29600535U1 (en) Device for the production of embankments and all other earth and hydraulic structures
DE2242358A1 (en) EQUIPMENT FOR FASTENING GROUND AND EMBEDDING AND ARTIFICIAL MOLDED STONE FOR THEIR PRODUCTION
DE19607989A1 (en) Cuboid-formed paving stone for flat water seepage
DE3930997A1 (en) Erosion protection for dykes or river bank - has two-shell structure in dynamically loaded section with hollow, water passage component(s)
DE2649132A1 (en) Noise screening wall slab - has reinforced concrete perforated panel inset in load bearing rear frame with edge ribs
EP1911883B1 (en) Bridge for small animals for crossing flowing water traffic ways
DE3445099A1 (en) Precast concrete member
AT406494B (en) Bank sheeting
WO2007042144A1 (en) Wall element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE DK FR GB NL

17P Request for examination filed

Effective date: 19910827

17Q First examination report despatched

Effective date: 19920424

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE DK FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Effective date: 19960724

REF Corresponds to:

Ref document number: 59108012

Country of ref document: DE

Date of ref document: 19960829

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960927

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970306

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970325

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

BERE Be: lapsed

Owner name: BUSCHING FRITZ

Effective date: 19980331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020318

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20020307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030310

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20031001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040331

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051001