[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0446107B1 - Transmission system for electrical energy, in the microwave field, with gyromagnetic effect, such as a circulator, isolator or filter - Google Patents

Transmission system for electrical energy, in the microwave field, with gyromagnetic effect, such as a circulator, isolator or filter Download PDF

Info

Publication number
EP0446107B1
EP0446107B1 EP91400557A EP91400557A EP0446107B1 EP 0446107 B1 EP0446107 B1 EP 0446107B1 EP 91400557 A EP91400557 A EP 91400557A EP 91400557 A EP91400557 A EP 91400557A EP 0446107 B1 EP0446107 B1 EP 0446107B1
Authority
EP
European Patent Office
Prior art keywords
gyromagnetic
inductor
disk
inductors
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP91400557A
Other languages
German (de)
French (fr)
Other versions
EP0446107A1 (en
Inventor
Patrick Desmarest
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tekelec Airtronic
Original Assignee
Tekelec Airtronic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9394588&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0446107(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tekelec Airtronic filed Critical Tekelec Airtronic
Publication of EP0446107A1 publication Critical patent/EP0446107A1/en
Application granted granted Critical
Publication of EP0446107B1 publication Critical patent/EP0446107B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • H01P1/383Junction circulators, e.g. Y-circulators
    • H01P1/387Strip line circulators

Definitions

  • the invention relates to a system for transmitting electrical energy, at microwave frequencies, with a gyromagnetic effect, such as a circulator, insulator or filter, of the type described in the preamble of claim 1.
  • the present invention aims to propose a transmission system of the type stated above, which at least makes it possible to greatly reduce this parasitic capacity so as to increase the natural frequency and that the other parameters of the system such as the geometric dimensions of the gyrator device , the number of conductive strands of the inductors and the coupling coefficient can be advantageously chosen without this being detrimental to the natural resonant frequency.
  • a transmission system comprises the characteristics set out in the characterizing part of claim 1.
  • a circulator comprising in the middle between the two gyromagnetic disks and the set of conductors, on either side thereof, stacked one on the other, a dielectric disk. and a disc of metal sheets.
  • the dielectric discs are produced in the form of discs of thin thickness determined to allow the adaptation of the input impedance to the value of the resistance of the load. To this end, the thickness of the discs should be reduced.
  • Figure 1 is a perspective and exploded view of a dielectric power transmission system according to the present invention.
  • Figure 2 is a sectional view along a vertical plane passing through the line II-II of Figure 1, in the assembled state and on a larger scale.
  • FIG. 3 is a perspective and exploded view of a first embodiment of the gyrator device 1 according to FIG. 1.
  • FIG. 4 is a perspective and exploded view of a second embodiment of the gyrator device 1 of FIG. 1.
  • FIG. 5 is a third embodiment of the gyrator device according to FIG. 1.
  • Figures 6 and 7 show curves defining the relationship respectively between the limit frequency on the one hand and the admissible power and on the other hand, the diameter of the gyromagnetic pellet.
  • an electrical energy transmission system, microwave, gyromagnetic effect essentially comprises a gyrator device 1 capable of being mounted on a printed circuit board 2 disposed between plates upper and lower respectively 3 and 4 made of metal or a non-magnetic alloy, for example aluminum, each provided with a central bore 5 intended to receive a pole piece 7 for example of steel and a magnet 8.
  • An upper magnetic closure plate 10 and a lower magnetic closure plate 11 are disposed respectively on the free outer surfaces of the upper and lower magnets 8.
  • the assembly is surrounded by a belt 12 consisting of several elements 13, 14, 15 and magnetically connecting the plates upper and lower closure 10 and 11 to close the magnetic circuit.
  • the belt has three connectors 16 which are fixed to three sides of the plates 3 and 4 in the assembled state of the system.
  • the printed circuit board 2 has in its center a recess 17 adapted to receive the gyrator device 1.
  • the board 2 carries on its upper surface a pattern of bands and electrically conductive zones, namely three substantially radial bands 19 which extend from the edge of the recess 17 to the edge of the plate and are intended to be electrically connected each to the conductor 18 (FIG. 2) of one of the connectors 16, and three zones 20 which are electrically isolated at 21 from the bands 19 and are intended to be in electrical contact with the upper plate 3 which bears on each zone 20 by a pin 22 and constitutes a ground electrode.
  • each strip 19 is generally connected to the corresponding conductor 18 via an adaptation network, not shown, and comprising LC type cells, in a manner known per se.
  • FIGS. 3 to 5 three embodiments of a gyrator device 1 according to the present invention will be described below.
  • the gyrator device 1 comprises a configuration of three inductors 23, 24, 25 each comprising two conducting strands 27, 28 arranged in the same plane which are parallel and connected at their indicated ends at 29 and 30. These ends are produced in the form of electrical connection lugs, one of which, for example the lug 29 is connected to one of the earth zones 20 of the printed circuit on the wafer 2 and of the gyrator device while the other tab bearing the reference 30 will be electrically connected to one of the conductive strips 19 of the printed circuit.
  • These inductors 23 to 25 can be made of any suitable conductive metal and have a self-supporting structure. The inductors are electrically isolated from each other by interposition an appropriate insulator. The inductors are arranged so as to be angularly offset by 120 °.
  • Two discs 32, 33 of circular shape in the example shown, made of an electrically insulating material and of low permittivity are arranged on either side of the configuration of the three inductors 23 to 25. These discs could be discs Teflon or a dielectric material such as ceramic. On each disc 32, 33 is placed a disc 34, 35 respectively of a gyromagnetic material, such as ferrite material. The external face of each gyromagnetic disc is therefore, in the assembled state of the system, in contact with a metallic plane which may or may not be connected to the ground of the system. As can be seen from FIG. 1, the various connecting lugs 29, 30 radially project from the assembly formed by the stack of disks 32 to 35 on the central configuration of the inductors 24, 25, so that they can be electrically connected to the circuit printed brochure 2.
  • FIG. 4 shows an embodiment of the gyrator device 1 in which the insulating layer, of low permittivity is formed by four discs or plates of thinner thickness 37 to 40 which are stacked between the upper and lower gyromagnetic discs 34, 35.
  • three inductors 23 to 25 are each arranged between two neighboring insulating discs, being angularly offset by 120 °, as shown in Figure 3.
  • each inductor has ten parallel strands.
  • Each inductor can be made so as to present a self-supporting structure or be laid, in the form of a printed circuit on a surface of one of the discs 37 to 40, of course providing a support for the connecting lugs 29, 30.
  • the discs 37 to 40 are advantageously made made of a dielectric material such as ceramic.
  • the insulating layer of low permittivity is formed by seven disks 42 to 48 which are stacked between the gyromagnetic disks 34, 35 while sandwiching the inductances therebetween.
  • each inductor is divided into two halves which, in the whole of the gyrator are juxtaposed and electrically connected in parallel.
  • the inductance 23 of FIGS. 3 and 4 is now formed by the two half-inductors 23a and 23b, interposed respectively between the disks 43, 44 and 46, 47, that is to say between two pairs of different disks .
  • the inductors 24 and 25 are formed respectively by the half-inductors 24a, 24b and 25a, 25b and arranged between two pairs of different discs, as shown in FIG. 5.
  • the general structure of such a transmission system is known per se and therefore does not need to be described in more detail.
  • the discs made of a gyromagnetic material 34, 35 are immersed in the static magnetic field generated by the magnets 8, as is clear from FIGS. 1 and 2.
  • the magnetic circuit is closed by the plates of upper 10 and lower 11 closure and the belt 12.
  • Via the connectors 16 a perpendicular microwave field is applied to the gyromagnetic material, the wavelength of this field being very large compared to the length of the axes of the gyromagnetic discs, so that the field is uniform in the volume of these.
  • the natural frequency that is to say the operation of the gyrator device 1
  • This operating frequency constitutes the limit frequency of the system.
  • the frequency to which the system will be granted is determined by the paralleling on each input or access of the gyrator device 1 of a capacity (not shown) and the relative bandwidth as well as the resistance can be modified by means of LC type cells inserted at the entrance of the gyrator device.
  • each Teflon disc could have a thickness of 0 , 1 mm, which gives a total thickness of the insulation of 0.7 mm.
  • the limit frequency F of a gyrator according to the invention is multiplied by ⁇ K compared to a conventional gyrator if K is the coefficient by which the parasitic capacity has been reduced by providing the insulating layers of low permittivity , as just described.
  • insulator of low permittivity and relatively high thickness of 1 to several tenths of a millimeter also makes it possible to increase the dimensions of the discs of gyromagnetic material and the number of strands constituting the inductors and thus improve the coefficient of coupling.
  • the admissible power can be multiplied by two or three taking into account the lower thermal resistance, the larger heat exchange surfaces and a better distribution of energy inside the gyromagnetic material. Thanks to the measures which have just been indicated, it is possible to reduce the losses and increase the relative frequency band.
  • Figures 6 and 7 which respectively show the limit frequency F (in MHz) and the admissible power Pa (in Watts), as a function of the diameter D of the disc made of gyromagnetic material, such as ferrite material, (in cm) confirm what has just been said.
  • curve A gives the values of a system typical of the conventional technique
  • curve B gives the values which have been measured, under the same conditions as for curve A, of a system according to the invention, that is to say comprising an insulator of low permittivity and a high thickness between the configuration of the inductors and the gyromagnetic ferrite discs.
  • the relative passing frequency bands of a system according to the invention can have a width which is twice that of a known system in the low frequency zone of 30 MHz.
  • the techniques for implementing the invention can be diverse.
  • the layer added to reduce the parasitic capacity can be an insulator of the adhesive type or not, a dielectric such as ceramic of low permittivity, or the like.
  • the printed circuits can be simple or double-sided or of the multilayer type.
  • the shape of the pellets of gyromagnetic material can have any other known suitable shape. It is the same with regard to the insulating layer 8 and the inductors.
  • the number of pads and insulating layers may vary.
  • the invention is also applicable to a system structure using only one gyromagnetic pad on which the configuration of the inductors will be placed, with interposition for curve A, of a system according to the invention, that is to say comprising an insulator of low permittivity and of a high thickness between the configuration of the inductors and the gyromagnetic ferrite discs.
  • the relative passing frequency bands of a system according to the invention can have a width which is twice that of a known system in the low frequency zone of 30 MHz.
  • the techniques for implementing the invention can be diverse.
  • the layer added to reduce the parasitic capacity can be an insulator of the adhesive type or not, a dielectric such as ceramic of low permittivity, or the like.
  • the printed circuits can be simple or double-sided or of the multilayer type.
  • the shape of the pellets of gyromagnetic material can have any other known suitable shape. It is the same with regard to the insulating layer 8 and the inductors.
  • the number of pads and insulating layers may vary.
  • the invention is also applicable to a system structure using only one gyromagnetic pad on which the configuration of the inductors will be placed, with interposition at least one insulating layer of low permittivity. Of course, the number of access fittings can be different and vary between two and a higher number.

Landscapes

  • Coils Or Transformers For Communication (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

L'invention concerne un système de transmission d'énergie électrique, aux hyperfréquences, à effet gyromagnétique, tel que circulateur, isolateur ou filtre, du type décrit dans le préambule de la revendication 1.The invention relates to a system for transmitting electrical energy, at microwave frequencies, with a gyromagnetic effect, such as a circulator, insulator or filter, of the type described in the preamble of claim 1.

Un système de ce type est connu par le document DE-A-2 607 844.A system of this type is known from document DE-A-2 607 844.

On sait que les limites d'utilisation des systèmes de transmission de ce type sont imposées par la fréquence de résonance naturelle du gyrateur, c'est-à-dire par la fréquence déterminée par des capacités parasites inhérentes à la configuration des éléments constitutifs et de la structure de l'ensemble. Une deuxième limite apparaît lorsqu'on désire faire transiter de la puissance au travers du système. D'une manière générale, la puissance transmise est proportionnelle au diamètre de la pastille gyromagnétique utilisée et inversement proportionnelle aux pertes de transmission. Or, l'augmentation des dimensions du dispositif gyrateur augmente la capacité parasite et s'accompagne ainsi d'une réduction de la fréquence de résonance naturelle. On sait en outre que les pertes de transmission peuvent être minimisées par un choix approprié des paramètres magnétiques appropriés ainsi d'un coefficient de couplage optimum, c'est-à-dire voisin de 1. Un tel coefficient de couplage s'obtient en augmentant le nombre de brins conducteurs qui constitue l'inductance. Or l'augmentation du nombre des brins entraîne à nouveau une augmentation de la capacité parasite et par conséquent une réduction de la fréquence de résonance naturelle.We know that the limits of use of transmission systems of this type are imposed by the natural resonant frequency of the gyrator, that is to say by the frequency determined by parasitic capacities inherent in the configuration of the constituent elements and of the structure of the whole. A second limit appears when it is desired to transmit power through the system. Generally, the power transmitted is proportional to the diameter of the gyromagnetic pad used and inversely proportional to the transmission losses. Now, the increase in the dimensions of the gyrator device increases the parasitic capacity and is therefore accompanied by a reduction in the natural resonance frequency. It is also known that the transmission losses can be minimized by an appropriate choice of the appropriate magnetic parameters and thus of an optimum coupling coefficient, that is to say close to 1. Such a coupling coefficient is obtained by increasing the number of conductive strands which constitutes the inductance. However, the increase in the number of strands again leads to an increase in the parasitic capacity and consequently a reduction in the natural resonant frequency.

Le système selon le document DE-A-2 607 844 ne donne ni ne suggère une solution à ce problème.The system according to DE-A-2 607 844 does not give or suggest a solution to this problem.

La présente invention a pour objectif de proposer un système de transmission du type énoncé plus haut, qui permet au moins de diminuer fortement cette capacité parasite de façon à augmenter la fréquence naturelle et que les autres paramètres du système tels que les dimensions géométriques du dispositif gyrateur, le nombre de brins conducteurs des inductances et le coefficient de couplage puissent être choisis de façon avantageuse sans que cela soit préjudiciable à la fréquence de résonance naturelle.The present invention aims to propose a transmission system of the type stated above, which at least makes it possible to greatly reduce this parasitic capacity so as to increase the natural frequency and that the other parameters of the system such as the geometric dimensions of the gyrator device , the number of conductive strands of the inductors and the coupling coefficient can be advantageously chosen without this being detrimental to the natural resonant frequency.

Pour atteindre ce but, un système de transmission selon l'invention comprend les caractéristiques énoncées dans la partie caractérisante de la revendication 1.To achieve this object, a transmission system according to the invention comprises the characteristics set out in the characterizing part of claim 1.

Par le document US N° 349953 est déjà connu un circulateur comportant au milieu entre les deux disques gyromagnétiques et l'ensemble de conducteurs, de part et d'autre de celui-ci, empilés l'un sur l'autre, un disque diélectrique et un disque de feuilles métalliques. Les disques diélectriques sont réalisés sous forme de disques d'une faible épaisseur déterminés pour permettre l'adaptation de l'impédance d'entrée à la valeur de la résistance de la charge. A cette fin, il convient de réduire l'épaisseur des disques.By document US Pat. No. 349953, a circulator is already known, comprising in the middle between the two gyromagnetic disks and the set of conductors, on either side thereof, stacked one on the other, a dielectric disk. and a disc of metal sheets. The dielectric discs are produced in the form of discs of thin thickness determined to allow the adaptation of the input impedance to the value of the resistance of the load. To this end, the thickness of the discs should be reduced.

En raison de ce but fondamentalement différent de celui visé par l'invention et du fait que les disques diélectriques doivent avoir une faible épaisseur, ce qui est contraire à l'invention, l'objet du document US-A-349953 se distingue fondamentalement de l'invention.Due to this fundamentally different object from that aimed by the invention and to the fact that the dielectric discs must have a small thickness, which is contrary to the invention, the object of document US-A-349953 is fundamentally distinguished from the invention.

D'autres caractéristiques avantageuses de l'invention sont décrites dans les revendications dépendantes.Other advantageous features of the invention are described in the dependent claims.

L'invention sera mieux comprise et d'autres buts, caractéristiques, détails et avantages de celle-ci apparaîtront plus clairement au cours de la description explicative qui va suivre faite en référence aux dessins schématiques annexés donnés uniquement à titre d'exemple illustrant plusieurs modes de réalisation de l'invention et dans lesquels.The invention will be better understood and other objects, characteristics, details and advantages thereof will appear more clearly during the explanatory description which follows, made with reference to the appended schematic drawings given solely by way of example illustrating several modes. of the invention and in which.

La figure 1 est une vue en perspective et éclatée d'un système de transmission d'énergie diélectrique selon la présente invention.Figure 1 is a perspective and exploded view of a dielectric power transmission system according to the present invention.

La figure 2 est une vue en coupe selon un plan vertical passant par la ligne II-II de la figure 1, à l'état assemblé et à plus grande échelle.Figure 2 is a sectional view along a vertical plane passing through the line II-II of Figure 1, in the assembled state and on a larger scale.

La figure 3 est une vue en perspective et éclatée d'un premier mode de réalisation du dispositif gyrateur 1 selon la figure 1.FIG. 3 is a perspective and exploded view of a first embodiment of the gyrator device 1 according to FIG. 1.

La figure 4 est une vue en perspective et éclatée d'un deuxième mode de réalisation du dispositif gyrateur 1 de la figure 1.FIG. 4 is a perspective and exploded view of a second embodiment of the gyrator device 1 of FIG. 1.

La figure 5 est un troisième mode de réalisation du dispositif gyrateur selon la figure 1.FIG. 5 is a third embodiment of the gyrator device according to FIG. 1.

Les figures 6 et 7 représentent des courbes définissant la relation respectivement entre la fréquence limite d'une part et la puissance admissible et d'autre part, le diamètre de la pastille gyromagnétique.Figures 6 and 7 show curves defining the relationship respectively between the limit frequency on the one hand and the admissible power and on the other hand, the diameter of the gyromagnetic pellet.

En se reportant aux figures 1 et 2, on constate qu'un système de transmission d'énergie électrique, aux hyperfréquences, à effet gyromagnétique comporte essentiellement un dispositif gyrateur 1 susceptible d'être monté sur une plaquette à circuit imprimé 2 disposé entre des platines supérieure et inférieure respectivement 3 et 4 en métal ou un alliage non magnétique, par exemple en aluminium, chacune pourvue d'un perçage central 5 destiné à recevoir une pièce polaire 7 par exemple en acier et un aimant 8. Une plaque de fermeture magnétique supérieure 10 et une plaque de fermeture magnétique inférieure 11 sont disposées respectivement sur les surfaces extérieures libres des aimants supérieur et inférieur 8. L'ensemble est entouré d'une ceinture 12 se composant de plusieurs éléments 13, 14, 15 et reliant magnétiquement les plaques de fermeture supérieure et inférieure 10 et 11 pour fermer le circuit magnétique. La ceinture comporte trois connecteurs 16 qui sont fixés à trois côtés des platines 3 et 4 à l'état assemblé du système.Referring to Figures 1 and 2, we see that an electrical energy transmission system, microwave, gyromagnetic effect essentially comprises a gyrator device 1 capable of being mounted on a printed circuit board 2 disposed between plates upper and lower respectively 3 and 4 made of metal or a non-magnetic alloy, for example aluminum, each provided with a central bore 5 intended to receive a pole piece 7 for example of steel and a magnet 8. An upper magnetic closure plate 10 and a lower magnetic closure plate 11 are disposed respectively on the free outer surfaces of the upper and lower magnets 8. The assembly is surrounded by a belt 12 consisting of several elements 13, 14, 15 and magnetically connecting the plates upper and lower closure 10 and 11 to close the magnetic circuit. The belt has three connectors 16 which are fixed to three sides of the plates 3 and 4 in the assembled state of the system.

La plaquette à circuit imprimé 2 présente dans son centre un évidement 17 adapté pour recevoir le dispositif gyrateur 1. La plaquette 2 porte sur sa surface supérieure un motif de bandes et de zones électriquement conductrices, à savoir trois bandes sensiblement radiales 19 qui s'étendent du bord de l'évidement 17 jusqu'au bord de la plaquette et sont destinées à être électriquement reliées chacune au conducteur 18 (figure 2) d'un des connecteurs 16, et trois zones 20 qui sont électriquement isolées en 21 des bandes 19 et sont destinées à être en contact électrique avec la platine supérieure 3 qui prend appui sur chaque zone 20 par un picot 22 et constitue une électrode de masse.The printed circuit board 2 has in its center a recess 17 adapted to receive the gyrator device 1. The board 2 carries on its upper surface a pattern of bands and electrically conductive zones, namely three substantially radial bands 19 which extend from the edge of the recess 17 to the edge of the plate and are intended to be electrically connected each to the conductor 18 (FIG. 2) of one of the connectors 16, and three zones 20 which are electrically isolated at 21 from the bands 19 and are intended to be in electrical contact with the upper plate 3 which bears on each zone 20 by a pin 22 and constitutes a ground electrode.

Il est à noter que chaque bande 19 est en général relié au conducteur 18 correspondant par l'intermédiaire d'un réseau d'adaptation non représenté et comportant des cellules de type LC, de façon connue en soi.It should be noted that each strip 19 is generally connected to the corresponding conductor 18 via an adaptation network, not shown, and comprising LC type cells, in a manner known per se.

En se reportant aux figures 3 à 5, on décrira ci-après trois modes de réalisation d'un dispositif gyrateur 1 selon la présente invention.Referring to FIGS. 3 to 5, three embodiments of a gyrator device 1 according to the present invention will be described below.

Selon un premier mode de réalisation, représenté à la figure 3, le dispositif gyrateur 1 comporte une configuration de trois inductances 23, 24, 25 chacune comportant deux brins conducteurs 27, 28 disposés dans un même plan qui sont parallèles et reliés à leurs extrémités indiquées en 29 et 30. Ces extrémités sont réalisées sous forme de pattes de raccordement électrique dont l'une, par exemple la patte 29 est reliée à l'une des zones de masse 20 du circuit imprimé sur la plaquette 2 et du dispositif gyrateur tandis que l'autre patte portant la référence 30 sera reliée électriquement à l'une des bandes conductrices 19 du circuit imprimé. Ces inductances 23 à 25 peuvent être réalisées en tout métal conducteur approprié et présentent une structure auto-porteuse. Les inductances sont isolées électriquement les unes des autres par interposition d'un isolant approprié. Les inductances sont arrangées de façon à être angulairement décalées de 120°.According to a first embodiment, represented in FIG. 3, the gyrator device 1 comprises a configuration of three inductors 23, 24, 25 each comprising two conducting strands 27, 28 arranged in the same plane which are parallel and connected at their indicated ends at 29 and 30. These ends are produced in the form of electrical connection lugs, one of which, for example the lug 29 is connected to one of the earth zones 20 of the printed circuit on the wafer 2 and of the gyrator device while the other tab bearing the reference 30 will be electrically connected to one of the conductive strips 19 of the printed circuit. These inductors 23 to 25 can be made of any suitable conductive metal and have a self-supporting structure. The inductors are electrically isolated from each other by interposition an appropriate insulator. The inductors are arranged so as to be angularly offset by 120 °.

Deux disques 32, 33, de forme circulaire dans l'exemple représenté, en un matériau électriquement isolant et d'une faible permittivité sont disposés de part et d'autre de la configuration des trois inductances 23 à 25. Ces disques pourraient être des disques en Téflon ou en une matière diélectrique telle que de la céramique. Sur chaque disque 32, 33 est posé un disque respectivement 34, 35 en un matériau gyromagnétique, tel que du matériau ferrite. La face externe de chaque disque gyromagnétique est donc, à l'état assemblé du système, au contact d'un plan métallique pouvant être relié ou non à la masse du système. Comme il ressort de la figure 1, les différentes pattes de raccordement 29, 30 font radialement saillie de l'ensemble formé par l'empilement des disques 32 à 35 sur la configuration centrale des inductances 24, 25, pour pouvoir être électriquement reliées au circuit imprimé de la plaquette 2.Two discs 32, 33, of circular shape in the example shown, made of an electrically insulating material and of low permittivity are arranged on either side of the configuration of the three inductors 23 to 25. These discs could be discs Teflon or a dielectric material such as ceramic. On each disc 32, 33 is placed a disc 34, 35 respectively of a gyromagnetic material, such as ferrite material. The external face of each gyromagnetic disc is therefore, in the assembled state of the system, in contact with a metallic plane which may or may not be connected to the ground of the system. As can be seen from FIG. 1, the various connecting lugs 29, 30 radially project from the assembly formed by the stack of disks 32 to 35 on the central configuration of the inductors 24, 25, so that they can be electrically connected to the circuit printed brochure 2.

La figure 4 montre un mode de réalisation du dispositif gyrateur 1 dans lequel la couche isolante, de faible permittivité est formée par quatre disques ou plaquettes de plus faible épaisseur 37 à 40 qui sont empilés entre les disques gyromagnétiques supérieur et inférieur 34, 35. Les trois inductances 23 à 25 sont disposées chacune entre deux disques isolants voisins, en étant angulairement décalés de 120°, comme le montre la figure 3. Dans ce mode de réalisation chaque inductance comporte dix brins parallèles. Chaque inductance peut être réalisée de façon à présenter une structure auto-porteuse ou être posée, sous forme d'un circuit imprimé sur une surface d'un des disques 37 à 40, en prévoyant bien entendu un support pour les pattes de raccordement 29, 30. Dans ce mode de réalisation, les disques 37 à 40 sont avantageusement réalisés en un matériau diélectrique tel que de la céramique.FIG. 4 shows an embodiment of the gyrator device 1 in which the insulating layer, of low permittivity is formed by four discs or plates of thinner thickness 37 to 40 which are stacked between the upper and lower gyromagnetic discs 34, 35. three inductors 23 to 25 are each arranged between two neighboring insulating discs, being angularly offset by 120 °, as shown in Figure 3. In this embodiment each inductor has ten parallel strands. Each inductor can be made so as to present a self-supporting structure or be laid, in the form of a printed circuit on a surface of one of the discs 37 to 40, of course providing a support for the connecting lugs 29, 30. In this embodiment, the discs 37 to 40 are advantageously made made of a dielectric material such as ceramic.

Dans le mode de réalisation selon la figure 5 la couche isolante de faible permittivité est formée par sept disques 42 à 48 qui sont empilés entre les disques gyromagnétiques 34, 35 en prenant en sandwich entre eux les inductances. Dans ce mode de réalisation chaque inductance est divisée en deux moitiés qui, dans l'ensemble du gyrateur sont juxtaposées et électriquement reliées en parallèle. Par exemple l'inductance 23 des figures 3 et 4 est maintenant formée par les deux demi-inductances 23a et 23b, interposées respectivement entre les disques 43, 44 et 46, 47, c'est-à-dire entre deux paires de disques différentes. De la même manière les inductances 24 et 25 sont formées respectivement par les demi-inductances 24a, 24b et 25a, 25b et disposées entre deux paires de disques différentes, comme cela ressort de la figure 5.In the embodiment according to FIG. 5, the insulating layer of low permittivity is formed by seven disks 42 to 48 which are stacked between the gyromagnetic disks 34, 35 while sandwiching the inductances therebetween. In this embodiment, each inductor is divided into two halves which, in the whole of the gyrator are juxtaposed and electrically connected in parallel. For example the inductance 23 of FIGS. 3 and 4 is now formed by the two half-inductors 23a and 23b, interposed respectively between the disks 43, 44 and 46, 47, that is to say between two pairs of different disks . In the same way the inductors 24 and 25 are formed respectively by the half-inductors 24a, 24b and 25a, 25b and arranged between two pairs of different discs, as shown in FIG. 5.

On décrira ci-après le fonctionnement d'un système selon la présente invention, qui vient d'être décrit à titre d'exemple en se reportant aux figures.The operation of a system according to the present invention, which has just been described by way of example with reference to the figures, will be described below.

La structure générale d'un tel système de transmission est connue en soi et n'a donc pas besoin d'être décrite plus en détail. Les disques en un matériau gyromagnétique 34, 35 sont plongés dans le champ magnétique statique engendré par les aimants 8, comme il ressort clairement des figures 1 et 2. Le circuit magnétique se ferme par les plaquettes de fermeture supérieure 10 et inférieure 11 et la ceinture 12. Par l'intermédiaire des connecteurs 16, on applique au matériau gyromagnétique un champ hyperfréquence perpendiculaire, la longueur d'onde de ce champ étant très grande devant la longueur des axes des disques gyromagnétiques, de sorte que le champ soit uniforme dans le volume de ceux-ci.The general structure of such a transmission system is known per se and therefore does not need to be described in more detail. The discs made of a gyromagnetic material 34, 35 are immersed in the static magnetic field generated by the magnets 8, as is clear from FIGS. 1 and 2. The magnetic circuit is closed by the plates of upper 10 and lower 11 closure and the belt 12. Via the connectors 16, a perpendicular microwave field is applied to the gyromagnetic material, the wavelength of this field being very large compared to the length of the axes of the gyromagnetic discs, so that the field is uniform in the volume of these.

L'interposition d'une couche isolante, de faible permittivité entre la configuration des inductances et chaque disque en matériau gyromagnétique permet de réduire considérablement, la capacité parasite due aux dimensions des bandes conductrices, des inductances et de leur nombre de brins et de l'épaisseur du matériau gyromagnétique. La forte réduction de cette capacité parasite permet d'augmenter la fréquence de résonance naturelle du système gyrateur qui est donnée par l'équation : F = [2π( 3 ̲ L o .C' µ eff )] -1/2

Figure imgb0001
où Lo est la valeur pour la valeur d'une inductance pour une perméabilité µeff = 1 et C' la somme des capacités parasites.The interposition of an insulating layer, of low permittivity between the configuration of the inductors and each disc made of gyromagnetic material makes it possible to reduce considerably, the parasitic capacity due to the dimensions of the conductive strips, of the inductors and of their number of strands and of the thickness of the gyromagnetic material. The strong reduction of this parasitic capacity makes it possible to increase the natural resonant frequency of the gyratory system which is given by the equation: F = [2π ( 3 ̲ L o .C 'µ eff )] -1/2
Figure imgb0001
where L o is the value for the value of an inductance for a permeability µ eff = 1 and C 'the sum of the stray capacitances.

Il devient ainsi évident qu'on peut augmenter la fréquence naturelle, c'est-à-dire du fonctionnement du dispositif gyrateur 1 en diminuant la capacité parasite C'. Cette fréquence de fonctionnement constitue la fréquence limite du système. En effet, la fréquence à laquelle sera accordée le système est déterminée par la mise en parallèle sur chaque entrée ou accès du dispositif gyrateur 1 d'une capacité (non représentée) et la bande passante relative ainsi que la résistance peuvent être modifiées au moyen de cellules du type LC insérées à l'entrée du dispositif gyrateur.It thus becomes obvious that the natural frequency, that is to say the operation of the gyrator device 1, can be increased by reducing the parasitic capacity C ′. This operating frequency constitutes the limit frequency of the system. Indeed, the frequency to which the system will be granted is determined by the paralleling on each input or access of the gyrator device 1 of a capacity (not shown) and the relative bandwidth as well as the resistance can be modified by means of LC type cells inserted at the entrance of the gyrator device.

En disposant la couche isolante de faible permettivité, sous forme d'un ou de plusieurs disques, entre les deux disques tyromagnétiques 34, 35 du dispositif 1, on introduit une capacité C" qui peut s'écrire sous la forme : C" = εo . εr . S e

Figure imgb0002
où εo, εr, e et S désignent respectivement la permittivité du vide, la permittivité relative de l'isolant, l'épaisseur et la surface de la couche isolante.By placing the insulating layer of low permissibility, in the form of one or more discs, between the two tyromagnetic discs 34, 35 of the device 1, a capacitor C "is introduced which can be written in the form: C "= εo. Εr. S e
Figure imgb0002
where εo, εr, e and S denote respectively the permittivity of the vacuum, the relative permittivity of the insulator, the thickness and the surface of the insulating layer.

Cette capacité C" peut être supposée être en série avec la capacité parasite C' et en choisissant un εr le plus faible possible et une épaisseur la plus grande possible, la capacité introduite C' prend une valeur tellement faible que la capacité totale se trouve fortement diminuée. A titre d'exemple, le produit protégé par la marque Téflon présente un εr = 2. Concernant l'épaisseur de la couche isolante, dans le mode de réalisationo selon la figure 5, chaque disque de Téflon pourrait avoir une épaisseur de 0,1 mm, ce qui donne une épaisseur totale de l'isolant de 0,7 mm. De façon générale, l'épaisseur maximale est fonction de l'épaisseur des disques gyromagnétiques et est déterminée, grossièrement, par le terme E max = 2 H 3

Figure imgb0003
O% H est l'épaisseur du disque gyromagnétique.This capacity C "can be assumed to be in series with the parasitic capacity C 'and by choosing the smallest possible εr and the greatest possible thickness, the introduced capacity C' takes on a value so small that the total capacity is strongly For example, the product protected by the Teflon mark has an εr = 2. Concerning the thickness of the insulating layer, in the embodiment according to FIG. 5, each Teflon disc could have a thickness of 0 , 1 mm, which gives a total thickness of the insulation of 0.7 mm. Generally, the maximum thickness is a function of the thickness of the gyromagnetic discs and is roughly determined by the term E max = 2 H 3
Figure imgb0003
O% H is the thickness of the gyromagnetic disc.

Il s'est avéré que la fréquence limite F d'un gyrateur selon l'invention est multipliée par √K par rapport à un gyrateur classique si K est le coefficient par lequel la capacité parasite a été diminuée en prévoyant les couches isolantes de faible permittivité, comme cela vient d'être décrit.It has been found that the limit frequency F of a gyrator according to the invention is multiplied by √K compared to a conventional gyrator if K is the coefficient by which the parasitic capacity has been reduced by providing the insulating layers of low permittivity , as just described.

L'adjonction de l'isolant de faible permittivité et d'épaisseur relativement élevée de 1 à plusieurs dizièmes de millimètres permet également d'augmenter les dimensions des disques de matériau gyromagnétique et le nombre de brins constituant les inductances et d'améliorer ainsi le coefficient de couplage. La puissance admissible peut être multipliée par deux ou trois compte tenu de la résistance thermique plus faible, des surfaces d'échange thermique plus grande et d'une meilleure répartition de l'énergie à l'intérieur du matériau gyromagnétique. Grâce aux mesures qui viennent d'être indiquées, on peut diminuer les pertes et augmenter la bande de fréquence relative.The addition of insulator of low permittivity and relatively high thickness of 1 to several tenths of a millimeter also makes it possible to increase the dimensions of the discs of gyromagnetic material and the number of strands constituting the inductors and thus improve the coefficient of coupling. The admissible power can be multiplied by two or three taking into account the lower thermal resistance, the larger heat exchange surfaces and a better distribution of energy inside the gyromagnetic material. Thanks to the measures which have just been indicated, it is possible to reduce the losses and increase the relative frequency band.

Les figures 6 et 7 qui montrent respectivement la fréquence limite F (en MHz) et la puissance admissible Pa (en Watts), en fonction du diamètre D du disque en matériau gyromagnétique,tel que du matériau ferrite, (en cm) confirment ce qui vient d'être dit. Dans chaque figure, la courbe A donne les valeurs d'un système typique de la technique classique, tandis que la courbe B donne les valeurs qui ont été mesurées, dans les mêmes conditions que pour la courbe A, d'un système selon l'invention, c'est-à-dire comportant un isolant de faible permittivité et d'une épaisseur élevée entre la configuration des inductances et les disques de ferrite gyromagnétique.Figures 6 and 7 which respectively show the limit frequency F (in MHz) and the admissible power Pa (in Watts), as a function of the diameter D of the disc made of gyromagnetic material, such as ferrite material, (in cm) confirm what has just been said. In each figure, curve A gives the values of a system typical of the conventional technique, while curve B gives the values which have been measured, under the same conditions as for curve A, of a system according to the invention, that is to say comprising an insulator of low permittivity and a high thickness between the configuration of the inductors and the gyromagnetic ferrite discs.

Il s'est en outre avéré que les bandes de fréquence passantes relatives d'un système selon l'invention peuvent avoir une largeur qui est deux fois celle d'un système connu dans la zone de basse fréquence de 30 MHz.It has further been found that the relative passing frequency bands of a system according to the invention can have a width which is twice that of a known system in the low frequency zone of 30 MHz.

Les améliorations qui viennent d'être énoncées peuvent s'appliquer sur divers types de systèmes, en particulier tous ceux qui nécessitent un couplage réciproque ou non, tel que des circulateurs, isolateurs et filtres.The improvements which have just been stated can be applied to various types of systems, in particular all those which require reciprocal coupling or not, such as circulators, isolators and filters.

Les techniques de mise en oeuvre de l'invention peuvent être diverses. La couche ajoutée pour réduire la capacité parasite peut être un isolant du type adhésif ou non, un diélectrique tel que de la céramique de faible permittivité, ou analogue. Les circuits imprimés peuvent être simples ou double face ou du type multicouche. La forme des pastilles en matériau gyromagnétique peut avoir toute autre forme appropriée connue. Il est de même en ce qui concerne la couche isolante 8 et les inductances. Le nombre des pastilles et des couches isolantes peut varier. L'invention est également applicable à une structure de système utilisant qu'une seule pastille gyromagnétique sur laquelle sera posée la configuration des inductances, avec interposition pour la courbe A, d'un système selon l'invention, c'est-à-dire comportant un isolant de faible permittivité et d'une épaisseur élevée entre la configuration des inductances et les disques de ferrite gyromagnétique.The techniques for implementing the invention can be diverse. The layer added to reduce the parasitic capacity can be an insulator of the adhesive type or not, a dielectric such as ceramic of low permittivity, or the like. The printed circuits can be simple or double-sided or of the multilayer type. The shape of the pellets of gyromagnetic material can have any other known suitable shape. It is the same with regard to the insulating layer 8 and the inductors. The number of pads and insulating layers may vary. The invention is also applicable to a system structure using only one gyromagnetic pad on which the configuration of the inductors will be placed, with interposition for curve A, of a system according to the invention, that is to say comprising an insulator of low permittivity and of a high thickness between the configuration of the inductors and the gyromagnetic ferrite discs.

Il s'est en outre avéré que les bandes de fréquence passantes relatives d'un système selon l'invention peuvent avoir une largeur qui est deux fois celle d'un système connu dans la zone de basse fréquence de 30 MHz.It has further been found that the relative passing frequency bands of a system according to the invention can have a width which is twice that of a known system in the low frequency zone of 30 MHz.

Les améliorations qui viennent d'être énoncées peuvent s'appliquer sur divers types de systèmes, en particulier tous ceux qui nécessitent un couplage réciproque ou non, tel que des circulateurs, isolateurs et filtres.The improvements which have just been stated can be applied to various types of systems, in particular all those which require reciprocal coupling or not, such as circulators, isolators and filters.

Les techniques de mise en oeuvre de l'invention peuvent être diverses. La couche ajoutée pour réduire la capacité parasite peut être un isolant du type adhésif ou non, un diélectrique tel que de la céramique de faible permittivité, ou analogue. Les circuits imprimés peuvent être simples ou double face ou du type multicouche. La forme des pastilles en matériau gyromagnétique peut avoir toute autre forme appropriée connue. Il est de même en ce qui concerne la couche isolante 8 et les inductances. Le nombre des pastilles et des couches isolantes peut varier. L'invention est également applicable à une structure de système utilisant qu'une seule pastille gyromagnétique sur laquelle sera posée la configuration des inductances, avec interposition d'au moins une couche isolante de faible permittivité. Bien entendu, le nombre des raccords d'accès peut être différent et varier entre deux et un nombre plus élevé.The techniques for implementing the invention can be diverse. The layer added to reduce the parasitic capacity can be an insulator of the adhesive type or not, a dielectric such as ceramic of low permittivity, or the like. The printed circuits can be simple or double-sided or of the multilayer type. The shape of the pellets of gyromagnetic material can have any other known suitable shape. It is the same with regard to the insulating layer 8 and the inductors. The number of pads and insulating layers may vary. The invention is also applicable to a system structure using only one gyromagnetic pad on which the configuration of the inductors will be placed, with interposition at least one insulating layer of low permittivity. Of course, the number of access fittings can be different and vary between two and a higher number.

Claims (9)

  1. Electric power transmission system for hyperfrequencies with a gyromagnetic effect such as a circulator, isolator or filter, comprising a gyrator device (1) including at least one advantageously disk-shaped chip made from gyromagnetic material such as ferrite material, one side of which being coupled to a reference potential, and a device of at least two tuning inductors (23 to 25) electrically insulated from one another and arranged on the other face of said chip and at least one end thereof is coupled to the ground of the gyrator device (1) whereas the other end is coupled to the depend input terminal of the transmission system, the gyrator device (1) being subjected to a homogeneous magnetostatic field for activating the gyrator, characterized in that a disk from an electrically insulating material of a small permittivity is mounted at least between the inductor device and the corresponding gyromagnetic material disk, said disk having a predetermined thickness forming as capacitor means mounted in series with the interference capacities of the gyrator device a means for increasing the natural resonance frequency of the gyrator device (1) by increase of its thickness and reduction of its relative permittivity.
  2. System according to claim 1, characterized in that the overall thickness of the said insulating disk material depends from the thickness of the gyromagnetic device and is approximately determined by the terms E max = 2H 3
    Figure imgb0006
    where H is the thickness of the gyromagnetic disk and Emax is the overall maximum thickness of the insulating layer means.
  3. System according to any of claims 1 or 2, comprising two chips (34, 35) made from a gyromagnetic material on both sides of the device of the inductor set (23 to 25), characterized in that a chip (32, 33) from an electrically insulating material of small permittivity is provided between the inductor device (23 to 25) and each gyromagnetic chip (34, 35).
  4. System according to claim 3, comprising three inductors (23 to 25) angularly espaced by 120° from each other, characterized in that an electrically insulating disk of small permittivity (38, 39) is mounted between the central inductor (25) and each of the other inductors (23, 24).
  5. System according to claim 4, characterized in that the inductors (23 to 25) are stacked and realised as flat circuit elements formed by two portions mounted electrically in parallel relationship with one another and each inductor portion is located in a different plane in the stack and that a said disk of small permittivity electrically insulating material (43 to 47) is placed between two juxtaposed inductor portions.
  6. System according to any of claims 3 to 5, characterized in that one inductor (23 to 25) or inductor portion (23a, 23b to 25a, 25b) is realised as printed circuit on one face of an insulating plate (37 to 40 ; 42 to 48).
  7. System according to any of claims 1 to 6, characterized in that an inductor (23 to 25) comprises a certain number of conducting elements, advantageously between 2 and 10.
  8. System according to any of the foregoing claims, characterized in that it comprises three inductors angularly shifted by 120°.
  9. System according to any of the foregoing claims, characterized in that the total thickness of the insulating disks is about 0,7 mm for an isolator having a relative permittivity of about 2, such as Téflon.
EP91400557A 1990-03-09 1991-02-28 Transmission system for electrical energy, in the microwave field, with gyromagnetic effect, such as a circulator, isolator or filter Revoked EP0446107B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9003056 1990-03-09
FR9003056A FR2659499B1 (en) 1990-03-09 1990-03-09 SYSTEM FOR TRANSMITTING ELECTRICAL ENERGY, MICROWAVE, WITH GYROMAGNETIC EFFECT, SUCH AS A CIRCULATOR, ISOLATOR OR FILTER.

Publications (2)

Publication Number Publication Date
EP0446107A1 EP0446107A1 (en) 1991-09-11
EP0446107B1 true EP0446107B1 (en) 1996-05-01

Family

ID=9394588

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91400557A Revoked EP0446107B1 (en) 1990-03-09 1991-02-28 Transmission system for electrical energy, in the microwave field, with gyromagnetic effect, such as a circulator, isolator or filter

Country Status (5)

Country Link
US (1) US5153537A (en)
EP (1) EP0446107B1 (en)
CA (1) CA2037722A1 (en)
DE (1) DE69119122T2 (en)
FR (1) FR2659499B1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06164222A (en) * 1992-11-25 1994-06-10 Murata Mfg Co Ltd Microwave magnetic body and production thereof
JP3178239B2 (en) * 1994-04-28 2001-06-18 株式会社村田製作所 Non-reciprocal circuit device
US5774024A (en) * 1993-04-02 1998-06-30 Murata Manufacturing Co, Ltd. Microwave non-reciprocal circuit element
TW306106B (en) * 1996-04-03 1997-05-21 Deltec New Zealand Circulator and its components
SE506598C2 (en) * 1996-05-20 1998-01-19 Ericsson Telefon Ab L M circulator
JP3077057B2 (en) * 1997-01-14 2000-08-14 株式会社村田製作所 Non-reciprocal circuit device
US6097271A (en) * 1997-04-02 2000-08-01 Nextronix Corporation Low insertion phase variation dielectric material
JP3348669B2 (en) 1998-03-30 2002-11-20 株式会社村田製作所 Non-reciprocal circuit device
SE0101042D0 (en) * 2001-03-23 2001-03-23 Ericsson Telefon Ab L M Circulator and network
US7095291B1 (en) * 2005-02-28 2006-08-22 Renaissance Electronics Corporation Resonant structure and method for lumped element in nonreciprocal device
DE102012214013A1 (en) * 2012-08-07 2014-02-13 Siemens Aktiengesellschaft Circulator component for use in transmitting and/or receiving device, has temperature-sensitive region that is located within circulator core, for measuring temperature of ferrite elements
RU2570228C1 (en) * 2014-10-28 2015-12-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Method of making y-coupling in form of system of intertwined conductors
RU2570665C1 (en) * 2014-10-28 2015-12-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Multifunctional ferrite decoupler
CN212366158U (en) * 2020-06-22 2021-01-15 深圳市华扬通信技术有限公司 Low field assembled isolator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3289112A (en) * 1964-08-31 1966-11-29 Charles E Brown Strip transmission line ferrite filterlimiter having a ferrite sphere positioned beneath overlapping conductors
US3490053A (en) * 1967-09-13 1970-01-13 Tokyo Shibaura Electric Co Junction type circulator
US3510804A (en) * 1968-05-29 1970-05-05 Tdk Electronics Co Ltd Lumped parameter circulator and its construction
JPS4917160Y1 (en) * 1968-10-02 1974-05-02
DE2253175A1 (en) * 1972-10-30 1974-05-09 Siemens Ag CIRCULATOR WITH CONNECTING ARMS TRAINED IN MIC TECHNOLOGY
DE2607844A1 (en) * 1976-02-26 1977-09-01 Siemens Ag Decimeter wave circulator with lumped elements - uses metallized dielectric plate with connectors and gyromagnetic disc
GB1512605A (en) * 1976-08-05 1978-06-01 Standard Telephones Cables Ltd Microwave integrated printed circuits
JPS6139703A (en) * 1984-07-31 1986-02-25 Nippon Ferrite Ltd Side dielectric type ceramic isolator
US4920323A (en) * 1988-12-27 1990-04-24 Raytheon Company Miniature circulators for monolithic microwave integrated circuits
US4904965A (en) * 1988-12-27 1990-02-27 Raytheon Company Miniature circulator for monolithic microwave integrated circuits

Also Published As

Publication number Publication date
DE69119122T2 (en) 1996-12-12
FR2659499A1 (en) 1991-09-13
DE69119122D1 (en) 1996-06-05
CA2037722A1 (en) 1991-09-10
US5153537A (en) 1992-10-06
EP0446107A1 (en) 1991-09-11
FR2659499B1 (en) 1992-11-27

Similar Documents

Publication Publication Date Title
EP0446107B1 (en) Transmission system for electrical energy, in the microwave field, with gyromagnetic effect, such as a circulator, isolator or filter
FR2790328A1 (en) INDUCTIVE COMPONENT, INTEGRATED TRANSFORMER, IN PARTICULAR INTENDED TO BE INCORPORATED IN A RADIOFREQUENCY CIRCUIT, AND INTEGRATED CIRCUIT ASSOCIATED WITH SUCH AN INDUCTIVE COMPONENT OR INTEGRATED TRANSFORMER
CA1290449C (en) Device for exciting a circularly polarized wage guide by means of a planar antenna
WO2006125916A2 (en) Electronic entity with magnetic antenna
EP2274753B1 (en) Power transformer for radiofrequency signals
FR2811479A1 (en) CONDUCTIVE LAYER ANTENNA AND DUAL BAND TRANSMISSION DEVICE INCLUDING THIS ANTENNA
EP1883996A2 (en) Electronic entity with magnetic antenna
FR2778272A1 (en) RADIOCOMMUNICATION DEVICE AND BIFREQUENCY ANTENNA MADE ACCORDING TO MICRO-TAPE TECHNIQUE
FR2989842A1 (en) SLOW-WAVE RADIOFREQUENCY PROPAGATION LINE
FR2755303A1 (en) SHIELDED MAGNETIC FIELD ANTENNA IN A PRINTED CIRCUIT
EP0108003B1 (en) Double strip line resonators and filter using such resonators
EP1250729B1 (en) Anisotropic composite antenna
EP0363381B1 (en) Electromagnetic antenna and excitation antenna provided with such electromagnetic antenna for a nuclear magnetic resonance apparatus
EP0127526B1 (en) Magnetostatic wave filter device
EP1231615A1 (en) Integrated inductor structure
FR2702920A1 (en) Miniaturized electronic device, in particular device with a gyromagnetic effect.
EP0223673B1 (en) Coupling device between an electromagnetic surface wave transmission line and an external microstrip transmission line
FR2780546A1 (en) MONOLITHIC INTEGRATED CIRCUIT COMPRISING A PLANE INDUCTANCE OR A PLANE TRANSFORMER, AND METHOD FOR MANUFACTURING SUCH A CIRCUIT
FR2606936A1 (en) APPARATUS FOR COMBINING CERAMIC TRANSMITTERS PROVIDED WITH A VARIABLE ELECTRICAL LENGTH SECTION AND INTERFACE WITH COUPLING LOOPS
FR2828337A1 (en) Hyperfrequency resonant circuit with a resonant micro-strip line element and an earth and a composite element of alternating ferromagnetic and insulating layers between the element and the earth
EP0296929B1 (en) Balanced microwave transmission line with two coplanar conductors
FR2521786A2 (en) Pass band filter with dielectric resonators - uses ferrimagnetic elements subjected to external magnetic field to modify resonant frequency
EP4056969B1 (en) Thermal electromagnetic radiation detector comprising an antenna and an inductively-coupled resistive charge
FR2665578A1 (en) UHF electromagnetic wave transmission line structure of the suspended three-plate type, and multicoupling device, particularly with several filters
EP0188966B1 (en) Surface-wave non-reciprocal microwave device, and isolator with a high isolation using such a device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19920309

17Q First examination report despatched

Effective date: 19940414

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19960501

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960501

REF Corresponds to:

Ref document number: 69119122

Country of ref document: DE

Date of ref document: 19960605

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960808

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19970228

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: PHILIPS PATENTVERWALTUNG GMBH

Effective date: 19970130

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

BERE Be: lapsed

Owner name: TEKELEC AIRTRONIC

Effective date: 19970228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980219

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980224

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980306

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

Effective date: 19970130

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20010330