EP0336878B1 - Acidic hard surface cleaner - Google Patents
Acidic hard surface cleaner Download PDFInfo
- Publication number
- EP0336878B1 EP0336878B1 EP89730026A EP89730026A EP0336878B1 EP 0336878 B1 EP0336878 B1 EP 0336878B1 EP 89730026 A EP89730026 A EP 89730026A EP 89730026 A EP89730026 A EP 89730026A EP 0336878 B1 EP0336878 B1 EP 0336878B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- acid
- cleaner
- carbon atoms
- detergent
- fatty alcohol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000002378 acidificating effect Effects 0.000 title claims description 25
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 81
- 239000003599 detergent Substances 0.000 claims description 64
- 239000002253 acid Substances 0.000 claims description 63
- 239000000203 mixture Substances 0.000 claims description 46
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 42
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 41
- 125000004432 carbon atom Chemical group C* 0.000 claims description 39
- 239000004530 micro-emulsion Substances 0.000 claims description 38
- 239000002304 perfume Substances 0.000 claims description 31
- 239000000839 emulsion Substances 0.000 claims description 27
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims description 26
- 235000011941 Tilia x europaea Nutrition 0.000 claims description 26
- 210000003298 dental enamel Anatomy 0.000 claims description 26
- 239000004571 lime Substances 0.000 claims description 26
- 239000000344 soap Substances 0.000 claims description 25
- -1 fatty alcohol sulfate Chemical class 0.000 claims description 23
- 239000012188 paraffin wax Substances 0.000 claims description 23
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 22
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 18
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims description 18
- 150000002191 fatty alcohols Chemical class 0.000 claims description 18
- 229910052708 sodium Inorganic materials 0.000 claims description 18
- 239000011734 sodium Substances 0.000 claims description 18
- 239000002689 soil Substances 0.000 claims description 18
- YDONNITUKPKTIG-UHFFFAOYSA-N [Nitrilotris(methylene)]trisphosphonic acid Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CP(O)(O)=O YDONNITUKPKTIG-UHFFFAOYSA-N 0.000 claims description 17
- 235000011037 adipic acid Nutrition 0.000 claims description 17
- 150000001279 adipic acids Chemical class 0.000 claims description 16
- 150000002311 glutaric acids Chemical class 0.000 claims description 16
- 150000003444 succinic acids Chemical class 0.000 claims description 16
- 239000002671 adjuvant Substances 0.000 claims description 15
- 150000003505 terpenes Chemical class 0.000 claims description 15
- 235000007586 terpenes Nutrition 0.000 claims description 15
- 150000003839 salts Chemical class 0.000 claims description 14
- 239000007788 liquid Substances 0.000 claims description 13
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 12
- ABLZXFCXXLZCGV-UHFFFAOYSA-N phosphonic acid group Chemical group P(O)(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 12
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 claims description 11
- 125000002947 alkylene group Chemical group 0.000 claims description 11
- OVKDFILSBMEKLT-UHFFFAOYSA-N alpha-Terpineol Natural products CC(=C)C1(O)CCC(C)=CC1 OVKDFILSBMEKLT-UHFFFAOYSA-N 0.000 claims description 11
- 229940088601 alpha-terpineol Drugs 0.000 claims description 11
- 239000007859 condensation product Substances 0.000 claims description 11
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 10
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 10
- 230000006378 damage Effects 0.000 claims description 9
- 235000019341 magnesium sulphate Nutrition 0.000 claims description 9
- 125000001931 aliphatic group Chemical group 0.000 claims description 8
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 claims description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 7
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 claims description 7
- 125000000129 anionic group Chemical group 0.000 claims description 7
- 239000012736 aqueous medium Substances 0.000 claims description 7
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 229940116411 terpineol Drugs 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052943 magnesium sulfate Inorganic materials 0.000 claims description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 5
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 claims description 5
- 239000011777 magnesium Substances 0.000 claims description 5
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims description 4
- QKZIVVMOMKTVIK-UHFFFAOYSA-M anilinomethanesulfonate Chemical compound [O-]S(=O)(=O)CNC1=CC=CC=C1 QKZIVVMOMKTVIK-UHFFFAOYSA-M 0.000 claims description 4
- 229910001425 magnesium ion Inorganic materials 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- NFDRPXJGHKJRLJ-UHFFFAOYSA-N edtmp Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CCN(CP(O)(O)=O)CP(O)(O)=O NFDRPXJGHKJRLJ-UHFFFAOYSA-N 0.000 claims description 3
- 230000002633 protecting effect Effects 0.000 claims description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 1
- 235000011007 phosphoric acid Nutrition 0.000 description 36
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 239000000047 product Substances 0.000 description 17
- 238000004140 cleaning Methods 0.000 description 13
- 150000007513 acids Chemical class 0.000 description 12
- 125000000217 alkyl group Chemical group 0.000 description 9
- 239000007921 spray Substances 0.000 description 8
- 239000004064 cosurfactant Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 229910021645 metal ion Inorganic materials 0.000 description 6
- 150000003009 phosphonic acids Chemical class 0.000 description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Substances [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 229920002257 Plurafac® Polymers 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 150000001735 carboxylic acids Chemical class 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 150000003016 phosphoric acids Chemical class 0.000 description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 235000010216 calcium carbonate Nutrition 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 150000001991 dicarboxylic acids Chemical group 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000004519 grease Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 235000011044 succinic acid Nutrition 0.000 description 3
- 150000003871 sulfonates Chemical class 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 235000006484 Paeonia officinalis Nutrition 0.000 description 2
- 244000170916 Paeonia officinalis Species 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 125000003282 alkyl amino group Chemical group 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001045 blue dye Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- WRUGWIBCXHJTDG-UHFFFAOYSA-L magnesium sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Mg+2].[O-]S([O-])(=O)=O WRUGWIBCXHJTDG-UHFFFAOYSA-L 0.000 description 2
- 229940061634 magnesium sulfate heptahydrate Drugs 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000009991 scouring Methods 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 230000003381 solubilizing effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000001384 succinic acid Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 150000003628 tricarboxylic acids Chemical class 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- 125000000204 (C2-C4) acyl group Chemical group 0.000 description 1
- CUVLMZNMSPJDON-UHFFFAOYSA-N 1-(1-butoxypropan-2-yloxy)propan-2-ol Chemical compound CCCCOCC(C)OCC(C)O CUVLMZNMSPJDON-UHFFFAOYSA-N 0.000 description 1
- YJTIFIMHZHDNQZ-UHFFFAOYSA-N 2-[2-(2-methylpropoxy)ethoxy]ethanol Chemical compound CC(C)COCCOCCO YJTIFIMHZHDNQZ-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 239000004135 Bone phosphate Substances 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- AOMUHOFOVNGZAN-UHFFFAOYSA-N N,N-bis(2-hydroxyethyl)dodecanamide Chemical compound CCCCCCCCCCCC(=O)N(CCO)CCO AOMUHOFOVNGZAN-UHFFFAOYSA-N 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229920013820 alkyl cellulose Polymers 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- SMVRDGHCVNAOIN-UHFFFAOYSA-L disodium;1-dodecoxydodecane;sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O.CCCCCCCCCCCCOCCCCCCCCCCCC SMVRDGHCVNAOIN-UHFFFAOYSA-L 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 238000007046 ethoxylation reaction Methods 0.000 description 1
- 230000003090 exacerbative effect Effects 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 235000019256 formaldehyde Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 150000004688 heptahydrates Chemical class 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical class [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 235000011160 magnesium carbonates Nutrition 0.000 description 1
- 150000002691 malonic acids Chemical class 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 150000002913 oxalic acids Chemical class 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 150000003047 pimelic acids Chemical class 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000003330 sebacic acids Chemical class 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 150000003442 suberic acids Chemical class 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0008—Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
- C11D17/0017—Multi-phase liquid compositions
- C11D17/0021—Aqueous microemulsions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2075—Carboxylic acids-salts thereof
- C11D3/2082—Polycarboxylic acids-salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/36—Organic compounds containing phosphorus
- C11D3/364—Organic compounds containing phosphorus containing nitrogen
Definitions
- This invention relates to a cleaner for hard surfaces, such as bathtubs, sinks, tiles, porcelain and enamelware, which removes soap scum, lime scale and grease from such surfaces without harming them. More particularly, the invention relates to an acidic microemulsion that can be sprayed onto the surface to be cleaned, and wiped off without usual rinsing, and still leave the cleaned surface bright and shiny. The invention also relates to a method for using such compositions.
- Hard surface cleaners such as bathroom cleaners and scouring cleansers
- Scouring cleansers normally include a soap or synthetic organic detergent or surface active agent, and an abrasive. Such products can scratch relatively soft surfaces and can eventually cause them to appear dull. Also, they are often ineffective to remove lime scale (usually encrusted calcium and magnesium carbonates) in normal use. Because lime scale can be removed by chemical reactions with acidic media various acidic cleaners have been produced, and have met with various degrees of success. In some instances such cleaners have been failures because the acid employed was too strong and damaged the surfaces being cleaned. At other times, the acidic component of the cleaner reacted objectionably with other components of the product, adversely affecting the detergent or perfume, for example.
- Example 3 of that application discloses an acidic, clear, oil-in-water microemulsion which is therein described as being successfully employed to clean shower wall tiles of lime scale and soap scum that had adhered to them. Such cleaning was effected by applying the cleaner to the walls, followed by wiping or minimal rinsing, after which the walls were allowed to dry to a good shine.
- the described microemulsion cleaner of the patent application is effective in removing lime scale and soap scum from hard surfaces, and is easy to use, but it has been found that its mixture of acidic agents (succinic, glutaric and adipic acids) could damage the surfaces of some hard fixtures, such as those of materials which are not acid resistant.
- acidic agents succinic, glutaric and adipic acids
- One of such materials is an enamel that has been extensively employed in Europe as a coating for bathtubs, herein referred to as European enamel. It has been described as zirconium white enamel or zirconium white powder enamel, and has the advantage of being resistant to detergents, which makes it suitable for use on tubs, sinks, shower tiles and bathroom enamelware.
- the present invention allows the cleaning by the invented emulsion of European enamel surfaces, as well as any other acid resistant surfaces of bathtubs and other bathroom surfaces.
- the product should not be used on various other materials that are especially susceptible to attack by acidic media, such as marble.
- an acidic aqueous cleaner for bathtubs and other hard surfaced items which are acid resistant or are of zirconium white enamel, which cleaner is of a pH in the range of 1 to 4, and which removes lime scale, soap scum and greasy soil from surfaces of such items without damaging such surfaces, comprises: a detersive proportion of synthetic organic detergent, which is capable of removing greasy soil from such surfaces; a lime scale and soap scum removing proportion of dicarboxylic acid(s) having 2 to 10 carbon atoms therein; an aminoalkylenephosphonic acid in such proportion as to prevent damage to zirconium white enamel surfaces of items to be cleaned by the dicarboxylic acid(s) when the cleaner is employed to clean such surfaces; and an aqueous medium for the detergent, dicarboxylic acid(s) and aminoalkylenephosphonic acid.
- the synthetic organic detergent may be any suitable anionic, nonionic, amphoteric, ampholytic, zwitterionic or cationic detergent or mixture thereof, but the anionic and nonionic detergents are preferred, as are mixtures thereof.
- anionics the more preferred are water soluble salts of lipophilic sulfonic and sulfuric acids, the lipophilic moieties of which include long chain aliphatic groups, preferably lomg chain alkyls, of 8 to 20 carbon atoms, more preferably of 12 to 18 carbon atoms.
- solubilizing cations may be present in the detergents it will usually be preferred that they be alkali metal, e.g., sodium or potassium or a mixture thereof, ammonium, or lower alkanolamine, of 2 or 3 carbon atoms per alkanol moiety. It is a desirable feature of the present invention that sodium may be the alkali metal employed, and the emulsions resulting will be stable and effective.
- alkali metal e.g., sodium or potassium or a mixture thereof, ammonium, or lower alkanolamine, of 2 or 3 carbon atoms per alkanol moiety.
- sodium may be the alkali metal employed, and the emulsions resulting will be stable and effective.
- Much preferred salts of lipophilic sulfonic acids are paraffin sulfonates, wherein the paraffin group is of 12 to 18 carbon atoms, preferably 14 to 17 carbon atoms.
- Other useful sulfonates are olefin sulfonates wherein the olefin starting material is of 12 to 18 carbon atoms, e.g., 12 to 15, and linear alkylbenzene sulfonates wherein the alkyl is of 12 to 18 carbon atoms, preferably of 12 to 16 carbon atoms, e.g., 12 or 13. All such sulfonates will preferably be employed as their sodium salts, but other salts are also operative.
- Much preferred salts of lipophilic sulfuric acids are of higher alkyl ethoxylate sulfuric acids, which may also be designated as higher alkyl ethyl ether sulfuric acids.
- the higher alkyls of such compounds are of the chain lengths given above for this class of anionic detergents, 10 to 18 carbon atoms, and preferably are of 10 to 14 carbon atoms, e.g., 12 or about 12 carbon atoms.
- Such compounds should include from 1 to 10 ethylene oxide groups per mole, preferably 3 to 7 ethylene oxide groups per mole, e.g.,5.
- a preferred cation is sodium but the cations mentioned above for solubilizing functions may be employed in suitable circumstances.
- the nonionic detergents that are useful in this invention may be any of the nonionic detergents known to the art (as may be the anionic detergents that satisfy the conditions set in this specification). Many such detergents are described in the text Surface Active Agents (Their Chemistry and Technology) by Schwartz and Perry, and in the various annual editions of John W. McCutcheon's Detergents and Emulsifiers . However, they will usually be condensation products of a lipophilic moiety, such as a higher alcohol or phenol, or a propylene glycol or propylene oxide polymer, with ethylene oxide or ethylene glycol.
- some propylene oxide may be blended with the ethylene oxide so that the lower alkylene oxide moiety in the nonionic detergent is mixed, whereby the hydrophilic-lipophilic balance (HLB) may be controlled.
- HLB hydrophilic-lipophilic balance
- Nonionic detergents present in the invented emulsions will be condensation products of a fatty alcohol of 8 to 20 carbon atoms with from 3 to 20 moles of ethylene oxide, preferably of a linear alcohol of 9 to 15 carbon atoms, such as 9- 11 or 11- 13 carbon atoms or averaging about 10 or 12 carbons, with 3 to 15 moles of ethylene oxide, such as 3-7 or 5-9 moles of ethylene oxide, e.g., about 5 or 7 moles thereof.
- an alkylphenol such as one of 8 to 10 carbon atoms in a linear alkyl, e.g., nonylphenol
- the phenol may be condensed with from 3 to 20 ethylene oxide groups, preferably 8 to 15.
- nonionic detergents that are polymers of mixed ethylene oxide and propylene oxide may be substituted, at least in part, for the other nonionics.
- Plurafac such as Plurafac® RA-30 and Plurafac LF-400 available from BASF.
- Preferred such nonionics contain 3 to 10 ethoxies, more preferably about 7, and 2 to 7 propoxy groups, more preferably about 4, and such are condensed with a higher fatty alcohol of 12-16, more preferably 13-15 carbon atoms to make a mole of nonionic detergent.
- the various nonionic detergents, and the anionic detergents are often mixtures, which are within singular designations herein.
- the active acidic component of the emulsions is a carboxylic diacid which is strong enough to lower the pH of the emulsion to one in the range of one to four.
- carboxylic diacids have been found effectively to remove soap scum and lime scale from bathroom surfaces best, while still not destabilizing the emulsion.
- dicarboxylic acids group which includes those of 2 to 10 carbon atoms, from oxalic acid through sebacic acid, suberic, azelaic and sebacic acids are of lower solubilities and therefore are not as useful in the present emulsions as the other dibasic aliphatic fatty acids, all of which are preferably saturated and straight chained.
- Oxalic and malonic acids although useful as reducing agents too, may be too strong for delicate hard surface cleanings.
- Preferred such dibasic acids are those of the middle portion of the 2 to 10 carbon atom acid range, in particular 3 to 8 carbon atom range, succinic, glutaric, adipic and pimelic acids, especially the first three thereof, which notably are available commercially, in mixture.
- the diacids after being incorporated in the invented emulsion, may be partially neutralized to produce the desired pH in the emulsion, for greatest functional effectiveness, with safety.
- Phosphoric acid is one of the additional acids that helps to protect acid-sensitive surfaces being cleaned with the present emulsion cleaner. Being a tribasic acid, it too may be partially neutralized to obtain an emulsion pH in the desired range. For example, it may be partially neutralized to the biphosphate, e.g., NaH2PO4, or NH4H2PO4.
- Aminoalkylenephosphonic acid the other of the two additional acids for protecting acid-sensitive surfaces from the dissolving action of the dicarboxylic acids of the present emulsions, apparently exists only theoretically, but its derivatives are stable and are useful in the practice of the present invention.
- the aminoalkylenephosphonic acids are of the structure wherein Y is alkylamino or N-substituted alkylamino.
- a preferred aminoalkylenephosphonic acid component of the present emulsions is aminotris-)methylenephosphonic) acid, which is of the formula N(CH2PH2O3)3.
- aminoalkylenephosphonic acids ethylenediamine tetra-(methylenephosphonic) acid, hexamethylenediamine tetra-(methylenephosphonic) acid, and diethylenetriamine penta-(methylenephosphonic) acid.
- Such aminoalkylenephosphonic acids contain in the ranges of 1 to 3 amino nitrogens, 3 to 5 lower alkylenephosphonic acid groups in which the lower alkylene is of 1 or 2 carbon atoms, and 0 to 2 alkylene groups of 2 to 6 carbon atoms each, which alkylene(s) is/are present and join amino nitrogens when a plurality of such amino nitrogens is present in the aminoalkylenephosphonic acid.
- aminoalkylenephosphonic acids which also may be partially neutralized at the desired pH of the microemulsion cleaner, are of desired stabilizing and protecting effect in the invented cleaner, especially when present with phosphoric acid, preventing harmful attacks on European enamel surfaces by the diacid(s) components of the cleaner.
- the phosphorus acid salts if present, will be mono-salts of each of the phosphoric and/or aminoalkylenephosphonic acid groups present.
- the water that is used in making the present microemulsions may be tap water but is preferably of low hardness, normally being less than 150 parts per million (p.p.m.) of hardness, as calcium carbonate. Still, useful cleaners can be made from tap waters that are higher in hardness, up to 300 p.p.m., as CaCO3. Most preferably the water employed will be distilled or deionized water, in which the content of hardness ions is less than 25 p.p.m., usually being nil. Employment of such deionized water allows for the manufacture of a product of consistently good qualities, independent of hardness variations in the aqueous medium.
- Various other components may desirably be present in the invented cleaners, including preservatives, antioxidants or corrosion inhibitors, cosolvents, cosurfactants, multivalent metal ions, perfumes, colorants and terpenes (and terpineols), but various other adjuvants conventionally employed in liquid detergents and hard surface cleaners may also be present, provided that they do not interfere with the cleaning and scum- and scale-removal functions of the cleaner.
- the perfumes which, with terpenes, terpineols and hydrocarbons (which may be substituted for the perfumes or added to them) function as especially effective solvents for greasy soils on hard surfaces being cleaned, and form the dispersed phases of oil-in-water (o/w) microemulsions.
- co-surfactant and polyvalent metal ions are also of functional importance, with the former helping to stabilize the microemulsion and the latter aiding in improving detergency, especially for more dilute cleaners, and when the polyvalent salts of the anionic detergent employed are more effective detergents against the greasy soil encountered in use.
- the various perfumes that have been found to be useful in forming the dispersed phase of the o/w microemulsion cleaners may be those normally employed in cleaning products, and preferably are normally in liquid state. They include esters, ethers, aldehydes, alcohols and alkanes employed in perfumery but of most importance are the essential oils that are high in terpene content. It appears that the terpenes (and terpineols) coact with the detersive components of microemulsions to improve detergency of the invented compositions, in addition to forming the stable dispersed phase of the microemulsions.
- the polyvalent metal ion present in the invented cleaners may be any suitable such ion, including magnesium (usually preferred) aluminum, copper, nickel, iron or calcium, and the ion or mixture thereof may be added in any suitable form, sometimes as an oxide or hydroxide, but usually as a water soluble salt. It appears that the polyvalent metal ion reacts with the anion of the anionic detergent (or replaces the detergent cation, or makes an equivalent solution in the emulsion), which improves detergency and generally improves other properties of the product, too. If the polyvalent metal ion reacts with the detergent anion to form an insoluble product such polyvalent ion should be avoided.
- the polyvalent metal ion will preferably be magnesium, and such will be added to the other emulsion components as a water soluble salt.
- a preferred such salt is magnesium sulfate, usually employed as its heptahydrate (Epsom salts), but other hydrates thereof or the anhydride may be used too.
- the sulfates of the polyvalent metals will be used because the sulfate anion thereof is also the anion of some of the anionic detergents and is found in some such detergents as a byproduct of neutralization.
- the cosurfactant component(s) of the microemulsion cleaners reduce the interfacial tension or surface tension between the lipophilic droplets and the continuous aqueous medium to a value that is often close to 10 ⁇ 6 N/m (10 ⁇ 3 dynes/cm)., which results in spontaneous disintegrations of the dispersed phase globules until they become so small as to be invisible to the human eye, forming a clear microemulsion.
- the surface area of the dispersed phase increases greatly and its solvent power and grease removing capability are also increased, so that the microemulsion is significantly more effective as a cleaner for removing greasy soils than when the dispersed phase globules are of ordinary emulsion size.
- cosurfactants that are useful in the invented cleaners are: water soluble lower alkanols of 2 to 4 carbon atoms per molecule (sometimes preferably 3 or 4); polypropylene glycols of 2 to 18 propoxy units; monoalkyl lower glycol ethers of the formula RO(X) n H , wherein R is C1 ⁇ 4 alkyl, X is CH2CH2O, CH2CH2CH2O or CH(CH3)CH2O, and n is from 1 to 4; monoalkyl esters of the formula R1O(X) n H wherein R1 is C2 ⁇ 4 acyl and X and n are as immediately previously described; aryl substituted alkanols of 1 to 4 carbon atoms; propylene carbonate; aliphatic mono-, di- and tricarboxylic acids of 3 to 6 carbon atoms; mono-, di- and tri hydroxy substituted aliphatic mono-, di- and tricarboxylic acids of 3 to 6 carbon carbon atom
- cosurfactants are succinic, glutaric and adipic acids, diethylene glycol monobutyl ether, dipropylene glycol monobutyl ether and diethylene glycol mono-isobutyl ether, which are considered to be the most effective.
- the present cleaning compositions be in the form of aqueous microemulsions it is within the invention to utilize less preferred emulsions (wherein the dispersed phase globules are larger in sizes), but in such cases the cleaning power of the product will be less because there will not be as good contact of the cleaner with the surface being treated.
- microemulsions are highly preferred embodiments of the invention, other emulsions and other forms of the composition may be used, such as gels, pastes, solutions, foams, and "aerosols", which include aqueous media.
- the proportions of the components are in certain ranges so that the product may be most effective in removing greasy soils, lime scale and soap scum, and other deposits from the hard surfaces subjected to treatment, and so as to protect such surfaces during such treatment.
- the detergent should be present in detersive proportion, sufficient to remove greasy and oily soils; the proportion(s) of carboxylic diacid(s) should be sufficient to remove soap scum and lime scale; the aminoalkylenephosphonic acid or phosphoric and aminoalkylenephosphonic acids mixture should be enough to prevent damage of acid sensitive surfaces by the carboxylic diacid(s); and the aqueous medium should be a solvent and suspending medium for the required components and for any adjuvants that may be present, too.
- such percentages of components will be 2 to 8% of synthetic anionic organic detergent(s), 1 to 6% of synthetic organic nonionic detergent(s), 2 to 10% of aliphatic carboxylic diacids, 0.05 to 5%, preferably 0.05 to 1% of phosphoric acid or mono-salt thereof, and 0.005 to 2%, preferably 0.01 to 0.2% of aminoalkylenephosphonic acid(s), or mono-aminoalkylenephosphonic salt(s) thereof; and the balance water and adjuvant(s), if any are present.
- carboxylic diacids it is preferred that a mixture of succinic, glutaric and adipic acids be employed, and the ratio thereof will most preferably be in the range of 1-3:1-6:1-2, with 1:1:1 and about 2:5:1 ratios being most preferred.
- the ratios of aminoalkylenephosphonic acid to phosphoric acid to aliphatic carboxylic diacids are usually about 1 : 1-20 : 20-500, preferably being 1 : 2-10 : 10-200, and more preferably being about 1 : 4 : 25, 1 : 7 : 170 and 1 : 3 : 25, in three representative formulas.
- the cleaner especially when paraffin sulfonate is the detergent, 0.05 to 5%, and preferably 0.1 to 0.3% of polyvalent ion, preferably magnesium or aluminum, and more preferably magnesium.
- the percentage of perfume will normally be in the 0.2 to 2% range, preferably being in the 0.5 to 1.5% range, of which perfume at least 0.1% is terpene or terpineol.
- the terpineol is alpha-terpineol and is preferably added to allow a reduction in the amount of perfume, with the total perfume (including the alpha-terpineol) being 50 to 90% of terpineol, preferably about 80% thereof.
- the latter will be of a pH in the range of 2.5 to 3.5 and contain 3 to 5% of sodium paraffin sulfonate wherein the paraffin is C14 ⁇ 17, 2 to 4% of nonionic detergent which is a condensation product of a fatty alcohol of 9 to 15 carbon atoms with 3 to 15 moles of ethylene oxide per mole of higher fatty alcohol, 3 to 7% of a 1:1:1 or 2:5:1 mixture of succinic, glutaric and adipic acids, 0.1 to 0.3% of phosphoric acid, 0.03 to 0.1% of aminotris-(methylenephosphonic acid), 0.1 to 0.2% of magnesium ion, 0.5 to 2% of perfume, of which 50 to 90% thereof is alpha-terpineol, 0 to 5% of adjuvants and 75 to 90% of water.
- nonionic detergent which is a condensation product of a fatty alcohol of 9 to 15 carbon atoms with 3 to 15 moles of ethylene oxide per mole of higher fatty alcohol, 3 to 7% of
- such cleaner will comprise or consist essentially of 4% of sodium paraffin (C14 ⁇ 17) sulfonate, 3% of the nonionic detergent, 5% of 2:5:1 mix of the dicarboxylic acids, 0.2% of phosphoric acid, 0.05% of aminotris-(methylenephosphonic acid), 1% of perfume, which preferably includes 0.8% of alpha-terpineol, 0.7% of magnesium sulfate (anhydrous), 3% of adjuvants and 83% of water, alternatively 1% of adjuvants and 81% of water.
- the other preferred formula comprises 0.5 to 2% of sodium paraffin sulfonate wherein the paraffin is C14 ⁇ 17, 2 to 4% of sodium ethoxylated higher fatty alcohol sulfate wherein the higher fatty alcohol is of 10 to 14 carbon atoms and which contains 1 to 3 ethylene oxide groups per mole, 2 to 4% of nonionic detergent which is a condensation product of fatty alcohol of 9 to 15 carbon atoms with 3 to 15 moles of ethylene oxide per mole of fatty alcohol, 3 to 7% of a 1:1:1 mixture of succinic, glutaric and adipic acids, 0.1 to 0.3% of phosphoric acid, 0.01 to 0.05% of aminotris-(methylenephosphonic acid), 0.09 to 0.17% of magnesium ion, 0.5 to 2% of perfume, of which at least 10% is terpene(s) and/or terpineol, 0 to 5% of adjuvant(s) and 75 to 90% of water.
- such cleaner with two anionic detergents, will comprise or consist essentially of 1% of sodium paraffin (C14 ⁇ 17) sulfonate, 3% of sodium ethoxylated higher fatty alcohol sulfate wherein the higher fatty alcohol is lauryl alcohol and the degree of ethoxylation is 2 moles of ethylene oxide per mole, 3% of nonionic detergent which is a condensation product of a C9 ⁇ 11 linear alcohol and 5 moles of ethylene oxide, 5% of a 1:1:1 mixture of succinic, glutaric and adipic acids, 0.2% of phosphoric acid, 0.03% of aminotris-(methylenephosphonic acid), 0.7% of magnesium sulfate (anhydrous), 2% of adjuvants and 84% of water, alternatively 1% of adjuvants and 85% of water.
- sodium paraffin (C14 ⁇ 17) sulfonate 3%
- sodium ethoxylated higher fatty alcohol sulfate wherein the higher fatty alcohol is lau
- the pH of the various preferred microemulsion cleaners is usually 1-4, preferably 1.5-3.5, e.g. 3.
- the water content of the microemulsions will usually be in the range of 75 to 90%, preferably 80 to 85%, and the adjuvant content will be from 0 to 5%, usually 1 to 3%. If the pH is not in the desired range it will usually be adjusted with either sodium hydroxide or suitable acid, e.g., sulfuric acid, solutions, but normally the pH will be raised, not lowered, and if it is to be lowered more of the dicarboxylic acid mixture can be used, instead.
- suitable acid e.g., sulfuric acid
- the cleaners of the invention are clear o/w emulsions and exhibit stability at room temperature and at elevated and reduced temperatures, from 10° to 50°C. They are readily pourable and exhibit a viscosity in the range of 0.002 to 0.15 or 0.2 Ns/m2 (2 to 150 or 200 centipoises) e.g., 0.005 to 0.04 Ns/m2 (5 to 40 cp.), as may be desired, with the viscosity being controllable, in part, by addition to the formula of a thickener, such as lower alkyl celluloses, e.g., methyl cellulose, hydroxypropyl methyl cellulose, or water soluble resin, e.g., polyacrylamide, polyvinyl alcohol. Any tendency of the product to foam objectionably can be counteracted by incorporating in the formula free fatty acid or soap, in minor proportion, as is known in the detergent art (at low pH the soap turns to acid).
- a thickener such as lower alkyl celluloses,
- the liquid cleaners can be manufactured by mere mixing of the various components thereof, with orders of additions not being critical. However, it is desirable for the various water soluble components to be mixed together, the oil soluble components to be mixed together in a separate operation, and the two mixes to be admixed, with the oil soluble portion being added to the water soluble portion (in the water) with stirring or other agitation. In some instances such procedure may be varied to prevent any undesirable reactions between components. For example, one would not add concentrated phosphoric acid directly to magnesium sulfate or to a dye, but such additions would be of aqueous solutions, preferably dilute, of the components.
- the cleaner may desirably be packed in manually operated spray dispensing containers, which are usually and preferably made of synthetic organic polymeric plastic material, such as polyethylene, polypropylene or polyvinyl chloride (PVC).
- Such containers also preferably include nylon or other non-reactive plastic closure, spray nozzle, dip tube and associated dispenser parts, and the resulting packaged cleaner is ideally suited for use in "spray and wipe"applications.
- the cleaner may be left on until it has dissolved or loosened the deposits, and may then be wiped off, or may be rinsed off, or multiple applications may be made, followed by multiple removals, until the deposits are gone.
- the viscosity of the microemulsion (or ordinary emulsion, if that is used instead) will desirably be increased so that the liquid adheres to the surface to be cleaned, which is especially important when such surface is vertical, to prevent immediate run-off of the cleaner and consequent loss of effectiveness.
- the product may be formulated as an "aerosol spray type", so that its foam discharged from the aerosol container will adhere to the surface to be cleaned.
- the aqueous medium may be such as to result in a gel or paste, which is deposited on the surface by hand application, preferably with a sponge or cloth, and is removed by a combination of rinsing and wiping, preferably with a sponge, after which it may be left to dry to a shine, or may be dried with a cloth.
- the cleaned surface may be rinsed to remove all traces of acid from it.
- the microemulsion cleaner is made by dissolving the detergents in the water, after which the rest of the water soluble materials are added to the detergent solution, with stirring, except for the perfume and the pH adjusting agent (sodium hydroxide solution).
- the pH is adjusted to 3.0 and then the perfume is stirred into the aqueous solution, instantaneously generating the desired microemulsion, which is clear blue, and of a viscosity in the range of 0.002-0.02 Ns/m2 (2-20 cp).
- viscosity is lower or if it is considered desirable for it to be increased there may be incorporated in the formula about 0.1 to 1% of a suitable gum or resin, such as sodium carboxymethyl cellulose or hydroxypropylmethyl cellulose, or polyacrylamide or polyvinyl aclohol, or a suitable mixture thereof.
- a suitable gum or resin such as sodium carboxymethyl cellulose or hydroxypropylmethyl cellulose, or polyacrylamide or polyvinyl aclohol, or a suitable mixture thereof.
- the acid cleaner is packed in polyethylene squeeze bottles equipped with polypropylene spray nozzles, which are adjustable to closed, spray and stream positions.
- the microemulsion is sprayed onto "bathtub ring" on a bathtub, which also includes lime scale, in addition to soap scum and greasy soil.
- the rate of application is about 5 ml. per 5 meters of ring (which is about 3 cm. wide). After application and a wait of about two minutes the ring is wiped off with a sponge and is sponged off with water. It is found that the greasy soil, soap scum, and even the lime scale, have been removed effectively. In those cases where the lime scale is particularly thick or adherent a second application may be desirable, but that is not considered to be the norm.
- the tub surface may be rinsed because it is so easy to rinse a bathtub (or a shower) but such rinsing is not necessary. Sometimes dry wiping will be sufficient but if it is desired to remove any acidic residue the surface may be sponged with water or wiped with a wet cloth but in such case it is not necessary to use more than ten times the weight of cleaner applied. In other words, the surface does not need to be thoroughly doused or rinsed with water, and it still will be clean and shiny (providing that it was originally shiny). In other uses of the cleaner, it may be employed to clean shower tiles, bathroom floor tiles, kitchen tiles, sinks and enamelware, generally, without harming the surfaces thereof.
- the major component of the formulation that protects the European enamels is the phosphonic acid, and in the formula the amount of such acid has been reduced below the minimum normally required at a pH of 3. Yet, although 0.5% is the minimum normally, when the phosphoric acid is present, which is ineffective in itself at such pH, it increases the effect of the phosphonic acid, allowing a reduction in the proportion of the more expensive phosphonic acid
- the cleaning powers of formulas 1d and 1e are about equivalent, showing that the presence of the phosphoric acid, essentially inactive as a protector of surfaces against the effects of the carboxylic acids present in the formula, decreases the proportion of phosphonic acid to protect the surfaces to 1/4 of that previously necessary. Similar effects are obtainable when phosphoric acid is used in the 1b and 1c formulas in about the same proportions as in Example 1 and Example 1e.
- an anti-foaming agent such as a silicone or a coco fatty acid.
- coco-diethanolamide may be added to increase foaming.
- compositions of this example are made in the same manner as those of Example 1 and are tested in the same way, too, with similar good results.
- the microemulsions are a clear lighter blue and the pH thereof is adjusted to 3.0.
- the cleaners easily remove soap scum and greasy soils from hard surfaces and loosen and facilitate removal of lime scale, too, with minimal rinsing or spongeing, as reported in Example 1.
- the presence of the aminotris-(methylenephosphonic acid) prevents harm to the acid sensitive surfaces by the carboxylic acids, and the presence of the phosphoric acid allows reduction in the proportion of aminotris-(methylenephosphonic acid) used.
- Example 2a without any phosphoric acid present, it takes 0.10% of the aminotris-(methylenephosphonic acid) to prevent harm to European enamel by the cleaning composition.
- Example 1b wherein the formula is the same except that the phosphonic and phosphoric acids are replaced by 0.20% of phosphonic acid (diethylene triamine penta-(methylenephosphonic acid) and 0.6% of phosphoric acid, European enamel is unharmed, whereas to obtain the same desirable effect without the phosphoric acid present requires 0.50% of the phosphonic acid.
- Component % (by weight) Deionized water 82.339 C14 ⁇ 17 paraffin sodium sulfonate (60% active, Hostapur SAS) 6.670 * Mixture of Glutaric, succinic and adipic acids (mf'd. by GAF Corp.) 5.000 Nonionic detergent (Plurafac RA-30, ethoxypropoxy higher fatty alcohol, mf'd.
- Epsom salts 1.500 Aminotris-(methylenephosphonic acid) 0.050 Phosphoric acid (85%) 0.230 Perfume (pine scent type, containing terpenes) 0.200 Alpha-terpineol (perfume substitute) 0.800 Formalin (preservative) 0.200 2,6-Di-tert-butyl-para-cresol (antioxidant) 0.010 CI Acid Blue 104 dye 0.001 100.000 * 57.5% glutaric acid, 27% succinic acid and 12% of adipic acid
- the above formula is made in the manner previously described and is similarly tested and found satisfactorily to clean acid sensitive hard surfaced items, such as tubs and sinks of cast iron or sheet steel coated with European enamel, of greasy soils on them, and to facilitate removals of soap scums and lime scales from such surfaces.
- acid sensitive hard surfaced items such as tubs and sinks of cast iron or sheet steel coated with European enamel, of greasy soils on them, and to facilitate removals of soap scums and lime scales from such surfaces.
- the phosphonic and phosphoric acids are omitted from the formula, or when only the phosphonic acid is omitted, the cleaner attacks such surfaces and dissolves them.
- the presence of the phosphoric acid allows a reduction in the proportion of the phosphonic acid that is required to inhibit the cleaner so that it will not attack the European enamels, and that reduction is significant, especially for economic reasons, but also functionally.
- the alpha-terpineol replaces some of the perfume and helps in the formation of the microemulsion, while not destroying the pleasant scent that the perfume imparts to the product, and such results are obtainable with other pine-type perfumes.
- the alpha-terpineol like the terpene components of a pine-type perfume, facilitates microemulsion formation, but the terpineol is even more active because it is essentially 100% of terpene type compound, whereas the perfumes are usually less than 50% of terpenes.
- the cleaners are preferably in microemulsion form but even if the microemulsion should "break" to an ordinary emulsion the product will be useful as an effective cleaner, so such emulsions are also within the invention. It may be preferred to dispense the cleaner from a spray bottle but it can be packaged in conventional bottles, also. It may be made in paste or gel form so as to make it more adherent to surfaces to which it is applied, so that it will remain on them, working to attack the lime scale, rather than running down off the surface. Furthermore, while mixtures have been mentioned in this specification, even where they were not specifically referred to, it should be considered that mention of a single component includes reference to mixtures of such components in the invented cleaners.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Detergent Compositions (AREA)
Description
- This invention relates to a cleaner for hard surfaces, such as bathtubs, sinks, tiles, porcelain and enamelware, which removes soap scum, lime scale and grease from such surfaces without harming them. More particularly, the invention relates to an acidic microemulsion that can be sprayed onto the surface to be cleaned, and wiped off without usual rinsing, and still leave the cleaned surface bright and shiny. The invention also relates to a method for using such compositions.
- Hard surface cleaners, such as bathroom cleaners and scouring cleansers, have been known for many years. Scouring cleansers normally include a soap or synthetic organic detergent or surface active agent, and an abrasive. Such products can scratch relatively soft surfaces and can eventually cause them to appear dull. Also, they are often ineffective to remove lime scale (usually encrusted calcium and magnesium carbonates) in normal use. Because lime scale can be removed by chemical reactions with acidic media various acidic cleaners have been produced, and have met with various degrees of success. In some instances such cleaners have been failures because the acid employed was too strong and damaged the surfaces being cleaned. At other times, the acidic component of the cleaner reacted objectionably with other components of the product, adversely affecting the detergent or perfume, for example. Some cleaners required rinsing afterward to avoid leaving objectionable deposits on the cleaned surfaces. As a result of research performed in efforts to overcome the mentioned disadvantages there has recently been made an improved liquid cleaning composition in stable microemulsion form which is an effective cleaner to remove soap scum, lime scale and greasy soils from hard surfaces, such as bathroom surfaces, and which does not require rinsing after use. Such a product is described in US-A-5,076,954, for STABLE MICROEMULSION CLEANING COMPOSITION, filed November 12, 1987, by Loth, Blanvalet and Valange, which application is hereby incorporated by reference. In particular, Example 3 of that application discloses an acidic, clear, oil-in-water microemulsion which is therein described as being successfully employed to clean shower wall tiles of lime scale and soap scum that had adhered to them. Such cleaning was effected by applying the cleaner to the walls, followed by wiping or minimal rinsing, after which the walls were allowed to dry to a good shine.
- The described microemulsion cleaner of the patent application is effective in removing lime scale and soap scum from hard surfaces, and is easy to use, but it has been found that its mixture of acidic agents (succinic, glutaric and adipic acids) could damage the surfaces of some hard fixtures, such as those of materials which are not acid resistant. One of such materials is an enamel that has been extensively employed in Europe as a coating for bathtubs, herein referred to as European enamel. It has been described as zirconium white enamel or zirconium white powder enamel, and has the advantage of being resistant to detergents, which makes it suitable for use on tubs, sinks, shower tiles and bathroom enamelware. However, such enamel is sensitive to acids and is severely damaged by use of the microemulsion acidic cleaner based on the three organic carboxylic acids previously mentioned. That problem has been solved by the present invention, in which additional acidic materials are incorporated in the cleaner with the organic acids, and rather than exacerbating the problem, they prevent harm to such European enamel surfaces by such organic acids. Also, a mixture of such additional acids, phosphonic and phosphoric acids, surprisingly further improves the safety of the aqueous cleaner for use on such European enamel surfaces and decreases the cost of the cleaner. Thus, the present invention allows the cleaning by the invented emulsion of European enamel surfaces, as well as any other acid resistant surfaces of bathtubs and other bathroom surfaces. However, the product should not be used on various other materials that are especially susceptible to attack by acidic media, such as marble.
- In accordance with the present invention an acidic aqueous cleaner for bathtubs and other hard surfaced items, which are acid resistant or are of zirconium white enamel, which cleaner is of a pH in the range of 1 to 4, and which removes lime scale, soap scum and greasy soil from surfaces of such items without damaging such surfaces, comprises: a detersive proportion of synthetic organic detergent, which is capable of removing greasy soil from such surfaces; a lime scale and soap scum removing proportion of dicarboxylic acid(s) having 2 to 10 carbon atoms therein; an aminoalkylenephosphonic acid in such proportion as to prevent damage to zirconium white enamel surfaces of items to be cleaned by the dicarboxylic acid(s) when the cleaner is employed to clean such surfaces; and an aqueous medium for the detergent, dicarboxylic acid(s) and aminoalkylenephosphonic acid.
- In the present compositions the synthetic organic detergent may be any suitable anionic, nonionic, amphoteric, ampholytic, zwitterionic or cationic detergent or mixture thereof, but the anionic and nonionic detergents are preferred, as are mixtures thereof. Of the anionics the more preferred are water soluble salts of lipophilic sulfonic and sulfuric acids, the lipophilic moieties of which include long chain aliphatic groups, preferably lomg chain alkyls, of 8 to 20 carbon atoms, more preferably of 12 to 18 carbon atoms. Although several different types of solubilizing cations may be present in the detergents it will usually be preferred that they be alkali metal, e.g., sodium or potassium or a mixture thereof, ammonium, or lower alkanolamine, of 2 or 3 carbon atoms per alkanol moiety. It is a desirable feature of the present invention that sodium may be the alkali metal employed, and the emulsions resulting will be stable and effective.
- Much preferred salts of lipophilic sulfonic acids are paraffin sulfonates, wherein the paraffin group is of 12 to 18 carbon atoms, preferably 14 to 17 carbon atoms. Other useful sulfonates are olefin sulfonates wherein the olefin starting material is of 12 to 18 carbon atoms, e.g., 12 to 15, and linear alkylbenzene sulfonates wherein the alkyl is of 12 to 18 carbon atoms, preferably of 12 to 16 carbon atoms, e.g., 12 or 13. All such sulfonates will preferably be employed as their sodium salts, but other salts are also operative.
- Much preferred salts of lipophilic sulfuric acids are of higher alkyl ethoxylate sulfuric acids, which may also be designated as higher alkyl ethyl ether sulfuric acids. The higher alkyls of such compounds are of the chain lengths given above for this class of anionic detergents, 10 to 18 carbon atoms, and preferably are of 10 to 14 carbon atoms, e.g., 12 or about 12 carbon atoms. Such compounds should include from 1 to 10 ethylene oxide groups per mole, preferably 3 to 7 ethylene oxide groups per mole, e.g.,5. A preferred cation is sodium but the cations mentioned above for solubilizing functions may be employed in suitable circumstances.
- The nonionic detergents that are useful in this invention may be any of the nonionic detergents known to the art (as may be the anionic detergents that satisfy the conditions set in this specification). Many such detergents are described in the text Surface Active Agents (Their Chemistry and Technology) by Schwartz and Perry, and in the various annual editions of John W. McCutcheon's Detergents and Emulsifiers. However, they will usually be condensation products of a lipophilic moiety, such as a higher alcohol or phenol, or a propylene glycol or propylene oxide polymer, with ethylene oxide or ethylene glycol. In some of the condensation products of ethylene oxide and higher fatty alcohol or alkyl substituted phenol (in which the alkyl on the phenol nucleus is usually of 7 to 12 carbon atoms, preferably 9), some propylene oxide may be blended with the ethylene oxide so that the lower alkylene oxide moiety in the nonionic detergent is mixed, whereby the hydrophilic-lipophilic balance (HLB) may be controlled.
- Much preferred nonionic detergents present in the invented emulsions will be condensation products of a fatty alcohol of 8 to 20 carbon atoms with from 3 to 20 moles of ethylene oxide, preferably of a linear alcohol of 9 to 15 carbon atoms, such as 9- 11 or 11- 13 carbon atoms or averaging about 10 or 12 carbons, with 3 to 15 moles of ethylene oxide, such as 3-7 or 5-9 moles of ethylene oxide, e.g., about 5 or 7 moles thereof. In place of the higher fatty alcohol one may use an alkylphenol, such as one of 8 to 10 carbon atoms in a linear alkyl, e.g., nonylphenol, and the phenol may be condensed with from 3 to 20 ethylene oxide groups, preferably 8 to 15. Similarly functioning nonionic detergents that are polymers of mixed ethylene oxide and propylene oxide may be substituted, at least in part, for the other nonionics. Among such are those sold under the trademark Plurafac such as Plurafac® RA-30 and Plurafac LF-400 available from BASF. Preferred such nonionics contain 3 to 10 ethoxies, more preferably about 7, and 2 to 7 propoxy groups, more preferably about 4, and such are condensed with a higher fatty alcohol of 12-16, more preferably 13-15 carbon atoms to make a mole of nonionic detergent.
- The various nonionic detergents, and the anionic detergents are often mixtures, which are within singular designations herein.
- The active acidic component of the emulsions is a carboxylic diacid which is strong enough to lower the pH of the emulsion to one in the range of one to four. Various such carboxylic diacids have been found effectively to remove soap scum and lime scale from bathroom surfaces best, while still not destabilizing the emulsion.
- Of the dicarboxylic acids group, which includes those of 2 to 10 carbon atoms, from oxalic acid through sebacic acid, suberic, azelaic and sebacic acids are of lower solubilities and therefore are not as useful in the present emulsions as the other dibasic aliphatic fatty acids, all of which are preferably saturated and straight chained. Oxalic and malonic acids, although useful as reducing agents too, may be too strong for delicate hard surface cleanings. Preferred such dibasic acids are those of the middle portion of the 2 to 10 carbon atom acid range, in particular 3 to 8 carbon atom range, succinic, glutaric, adipic and pimelic acids, especially the first three thereof, which fortunately are available commercially, in mixture. The diacids, after being incorporated in the invented emulsion, may be partially neutralized to produce the desired pH in the emulsion, for greatest functional effectiveness, with safety.
- Phosphoric acid is one of the additional acids that helps to protect acid-sensitive surfaces being cleaned with the present emulsion cleaner. Being a tribasic acid, it too may be partially neutralized to obtain an emulsion pH in the desired range. For example, it may be partially neutralized to the biphosphate, e.g., NaH₂PO₄, or NH₄H₂PO₄.
- Aminoalkylenephosphonic acid, the other of the two additional acids for protecting acid-sensitive surfaces from the dissolving action of the dicarboxylic acids of the present emulsions, apparently exists only theoretically, but its derivatives are stable and are useful in the practice of the present invention. Such are considered to be aminoalkylenephosphonic acids, as that term is used in this specification. The aminoalkylenephosphonic acids are of the structure
wherein Y is alkylamino or N-substituted alkylamino. For example, a preferred aminoalkylenephosphonic acid component of the present emulsions is aminotris-)methylenephosphonic) acid, which is of the formula N(CH₂PH₂O₃)₃. Among other useful aminoalkylenephosphonic acids are ethylenediamine tetra-(methylenephosphonic) acid, hexamethylenediamine tetra-(methylenephosphonic) acid, and diethylenetriamine penta-(methylenephosphonic) acid. Such aminoalkylenephosphonic acids contain in the ranges of 1 to 3 amino nitrogens, 3 to 5 lower alkylenephosphonic acid groups in which the lower alkylene is of 1 or 2 carbon atoms, and 0 to 2 alkylene groups of 2 to 6 carbon atoms each, which alkylene(s) is/are present and join amino nitrogens when a plurality of such amino nitrogens is present in the aminoalkylenephosphonic acid. It has been found that such aminoalkylenephosphonic acids, which also may be partially neutralized at the desired pH of the microemulsion cleaner, are of desired stabilizing and protecting effect in the invented cleaner, especially when present with phosphoric acid, preventing harmful attacks on European enamel surfaces by the diacid(s) components of the cleaner. Usually the phosphorus acid salts, if present, will be mono-salts of each of the phosphoric and/or aminoalkylenephosphonic acid groups present. - The water that is used in making the present microemulsions may be tap water but is preferably of low hardness, normally being less than 150 parts per million (p.p.m.) of hardness, as calcium carbonate. Still, useful cleaners can be made from tap waters that are higher in hardness, up to 300 p.p.m., as CaCO₃. Most preferably the water employed will be distilled or deionized water, in which the content of hardness ions is less than 25 p.p.m., usually being nil. Employment of such deionized water allows for the manufacture of a product of consistently good qualities, independent of hardness variations in the aqueous medium.
- Various other components may desirably be present in the invented cleaners, including preservatives, antioxidants or corrosion inhibitors, cosolvents, cosurfactants, multivalent metal ions, perfumes, colorants and terpenes (and terpineols), but various other adjuvants conventionally employed in liquid detergents and hard surface cleaners may also be present, provided that they do not interfere with the cleaning and scum- and scale-removal functions of the cleaner. Of the various adjuvants (which are so identified because they are not necessary for the production of an operative cleaner, although they may be very desirable components of the cleaner) the most important are considered to be the perfumes, which, with terpenes, terpineols and hydrocarbons (which may be substituted for the perfumes or added to them) function as especially effective solvents for greasy soils on hard surfaces being cleaned, and form the dispersed phases of oil-in-water (o/w) microemulsions. Also of functional importance are the co-surfactant and polyvalent metal ions, with the former helping to stabilize the microemulsion and the latter aiding in improving detergency, especially for more dilute cleaners, and when the polyvalent salts of the anionic detergent employed are more effective detergents against the greasy soil encountered in use.
- The various perfumes that have been found to be useful in forming the dispersed phase of the o/w microemulsion cleaners may be those normally employed in cleaning products, and preferably are normally in liquid state. They include esters, ethers, aldehydes, alcohols and alkanes employed in perfumery but of most importance are the essential oils that are high in terpene content. It appears that the terpenes (and terpineols) coact with the detersive components of microemulsions to improve detergency of the invented compositions, in addition to forming the stable dispersed phase of the microemulsions. In the present invention it has been found that especially when a piney perfume is being employed, one can decrease the proportion of comparatively expensive such perfume and can compensate for it with alpha-terpineol, and in some instances with other terpenes. For example, for every 1% of perfume one can substitute from 60 to 90% of it, e.g., about 80%, with alpha-terpineol, and obtain essentially the same piney scent, with good cleaning and microemulsion stability. Similarly, terpenes and other terpene-like compounds and derivatives may be employed, but alpha-terpineol is considered to be the best.
- The polyvalent metal ion present in the invented cleaners may be any suitable such ion, including magnesium (usually preferred) aluminum, copper, nickel, iron or calcium, and the ion or mixture thereof may be added in any suitable form, sometimes as an oxide or hydroxide, but usually as a water soluble salt. It appears that the polyvalent metal ion reacts with the anion of the anionic detergent (or replaces the detergent cation, or makes an equivalent solution in the emulsion), which improves detergency and generally improves other properties of the product, too. If the polyvalent metal ion reacts with the detergent anion to form an insoluble product such polyvalent ion should be avoided. For example, calcium reacts with paraffin sulfonate anion to form an insoluble salt, so calcium ions, such as might be obtained from calcium chloride, will be omitted from any emulsion cleaners of this invention that contain paraffin sulfonate detergent. Similarly, those polyvalent ions or other components of the invented compositions that will react adversely with other components will also be omitted. As was mentioned previously, the polyvalent metal ion will preferably be magnesium, and such will be added to the other emulsion components as a water soluble salt. A preferred such salt is magnesium sulfate, usually employed as its heptahydrate (Epsom salts), but other hydrates thereof or the anhydride may be used too. Generally, the sulfates of the polyvalent metals will be used because the sulfate anion thereof is also the anion of some of the anionic detergents and is found in some such detergents as a byproduct of neutralization.
- The cosurfactant component(s) of the microemulsion cleaners reduce the interfacial tension or surface tension between the lipophilic droplets and the continuous aqueous medium to a value that is often close to 10⁻⁶ N/m (10⁻³ dynes/cm)., which results in spontaneous disintegrations of the dispersed phase globules until they become so small as to be invisible to the human eye, forming a clear microemulsion. In such a microemulsion the surface area of the dispersed phase increases greatly and its solvent power and grease removing capability are also increased, so that the microemulsion is significantly more effective as a cleaner for removing greasy soils than when the dispersed phase globules are of ordinary emulsion size. Among the cosurfactants that are useful in the invented cleaners are: water soluble lower alkanols of 2 to 4 carbon atoms per molecule (sometimes preferably 3 or 4); polypropylene glycols of 2 to 18 propoxy units; monoalkyl lower glycol ethers of the formula RO(X)nH , wherein R is C₁₋₄ alkyl, X is CH₂CH₂O, CH₂CH₂CH₂O or CH(CH₃)CH₂O, and n is from 1 to 4; monoalkyl esters of the formula R¹O(X)nH wherein R¹ is C₂₋₄ acyl and X and n are as immediately previously described; aryl substituted alkanols of 1 to 4 carbon atoms; propylene carbonate; aliphatic mono-, di- and tricarboxylic acids of 3 to 6 carbon atoms; mono-, di- and tri hydroxy substituted aliphatic mono-, di- and tricarboxylic acids of 3 to 6 carbon atoms; higher alkyl ether poly-lower alkoxy carboxylic acids; lower alkyl mono-, di- and triesters of phosphoric acid wherein the lower alkyl is of 1 to 4 carbon atoms; and mixtures thereof.
- Representative of such cosurfactants are succinic, glutaric and adipic acids, diethylene glycol monobutyl ether, dipropylene glycol monobutyl ether and diethylene glycol mono-isobutyl ether, which are considered to be the most effective.
- From the foregoing discussion of useful cosurfactants in the present cleaners it is apparent that succinic, glutaric and adipic acids, and a mixture of such components,are useful for lowering the pH of the product so that it removes soap scum and lime scale easily from surfaces to be cleaned, and at the same time they function as cosurfactants, improving the appearance of the product and making it more effective for removing grease from such surfaces. Similar dual effects may be obtained by use of others of the named acidic materials that have cosurfactant activities in the described cleaners.
- Although it is highly preferred that the present cleaning compositions be in the form of aqueous microemulsions it is within the invention to utilize less preferred emulsions (wherein the dispersed phase globules are larger in sizes), but in such cases the cleaning power of the product will be less because there will not be as good contact of the cleaner with the surface being treated. Also, although microemulsions are highly preferred embodiments of the invention, other emulsions and other forms of the composition may be used, such as gels, pastes, solutions, foams, and "aerosols", which include aqueous media.
- In the invented cleaners it is important that the proportions of the components are in certain ranges so that the product may be most effective in removing greasy soils, lime scale and soap scum, and other deposits from the hard surfaces subjected to treatment, and so as to protect such surfaces during such treatment. As was previously referred to, the detergent should be present in detersive proportion, sufficient to remove greasy and oily soils; the proportion(s) of carboxylic diacid(s) should be sufficient to remove soap scum and lime scale; the aminoalkylenephosphonic acid or phosphoric and aminoalkylenephosphonic acids mixture should be enough to prevent damage of acid sensitive surfaces by the carboxylic diacid(s); and the aqueous medium should be a solvent and suspending medium for the required components and for any adjuvants that may be present, too. Normally, such percentages of components will be 2 to 8% of synthetic anionic organic detergent(s), 1 to 6% of synthetic organic nonionic detergent(s), 2 to 10% of aliphatic carboxylic diacids, 0.05 to 5%, preferably 0.05 to 1% of phosphoric acid or mono-salt thereof, and 0.005 to 2%, preferably 0.01 to 0.2% of aminoalkylenephosphonic acid(s), or mono-aminoalkylenephosphonic salt(s) thereof; and the balance water and adjuvant(s), if any are present. Of the carboxylic diacids it is preferred that a mixture of succinic, glutaric and adipic acids be employed, and the ratio thereof will most preferably be in the range of 1-3:1-6:1-2, with 1:1:1 and about 2:5:1 ratios being most preferred. The ratios of aminoalkylenephosphonic acid to phosphoric acid to aliphatic carboxylic diacids are usually about 1 : 1-20 : 20-500, preferably being 1 : 2-10 : 10-200, and more preferably being about 1 : 4 : 25, 1 : 7 : 170 and 1 : 3 : 25, in three representative formulas. However, one may have ranges as wide as 1: 1-2,000 : 10-4,000 and sometimes the preferred range of carboxylic diacid to aminoalkylenephosphonic acid is 5:1 to 250:1. Similarly, a mixture of succinic, glutaric and adipic acids may be of ratio of 0.8 -4 : 0.8 - 10 : 1, and the ratio of dicarboxylic acid to phosphoric acid may be 5:2 to 25:1.
- Usually there will be present in the cleaner, especially when paraffin sulfonate is the detergent, 0.05 to 5%, and preferably 0.1 to 0.3% of polyvalent ion, preferably magnesium or aluminum, and more preferably magnesium. Also, the percentage of perfume will normally be in the 0.2 to 2% range, preferably being in the 0.5 to 1.5% range, of which perfume at least 0.1% is terpene or terpineol. The terpineol is alpha-terpineol and is preferably added to allow a reduction in the amount of perfume, with the total perfume (including the alpha-terpineol) being 50 to 90% of terpineol, preferably about 80% thereof.
- For preferred formulas of the present cleaners, which are different in that one contains two anionic detergents and the other only one, the latter will be of a pH in the range of 2.5 to 3.5 and contain 3 to 5% of sodium paraffin sulfonate wherein the paraffin is C₁₄₋₁₇, 2 to 4% of nonionic detergent which is a condensation product of a fatty alcohol of 9 to 15 carbon atoms with 3 to 15 moles of ethylene oxide per mole of higher fatty alcohol, 3 to 7% of a 1:1:1 or 2:5:1 mixture of succinic, glutaric and adipic acids, 0.1 to 0.3% of phosphoric acid, 0.03 to 0.1% of aminotris-(methylenephosphonic acid), 0.1 to 0.2% of magnesium ion, 0.5 to 2% of perfume, of which 50 to 90% thereof is alpha-terpineol, 0 to 5% of adjuvants and 75 to 90% of water. More preferably, such cleaner will comprise or consist essentially of 4% of sodium paraffin (C₁₄₋₁₇) sulfonate, 3% of the nonionic detergent, 5% of 2:5:1 mix of the dicarboxylic acids, 0.2% of phosphoric acid, 0.05% of aminotris-(methylenephosphonic acid), 1% of perfume, which preferably includes 0.8% of alpha-terpineol, 0.7% of magnesium sulfate (anhydrous), 3% of adjuvants and 83% of water, alternatively 1% of adjuvants and 81% of water.
- The other preferred formula comprises 0.5 to 2% of sodium paraffin sulfonate wherein the paraffin is C₁₄₋₁₇, 2 to 4% of sodium ethoxylated higher fatty alcohol sulfate wherein the higher fatty alcohol is of 10 to 14 carbon atoms and which contains 1 to 3 ethylene oxide groups per mole, 2 to 4% of nonionic detergent which is a condensation product of fatty alcohol of 9 to 15 carbon atoms with 3 to 15 moles of ethylene oxide per mole of fatty alcohol, 3 to 7% of a 1:1:1 mixture of succinic, glutaric and adipic acids, 0.1 to 0.3% of phosphoric acid, 0.01 to 0.05% of aminotris-(methylenephosphonic acid), 0.09 to 0.17% of magnesium ion, 0.5 to 2% of perfume, of which at least 10% is terpene(s) and/or terpineol, 0 to 5% of adjuvant(s) and 75 to 90% of water. More preferably, such cleaner, with two anionic detergents, will comprise or consist essentially of 1% of sodium paraffin (C₁₄₋₁₇) sulfonate, 3% of sodium ethoxylated higher fatty alcohol sulfate wherein the higher fatty alcohol is lauryl alcohol and the degree of ethoxylation is 2 moles of ethylene oxide per mole, 3% of nonionic detergent which is a condensation product of a C₉₋₁₁ linear alcohol and 5 moles of ethylene oxide, 5% of a 1:1:1 mixture of succinic, glutaric and adipic acids, 0.2% of phosphoric acid, 0.03% of aminotris-(methylenephosphonic acid), 0.7% of magnesium sulfate (anhydrous), 2% of adjuvants and 84% of water, alternatively 1% of adjuvants and 85% of water.
- The pH of the various preferred microemulsion cleaners is usually 1-4, preferably 1.5-3.5, e.g. 3. The water content of the microemulsions will usually be in the range of 75 to 90%, preferably 80 to 85%, and the adjuvant content will be from 0 to 5%, usually 1 to 3%. If the pH is not in the desired range it will usually be adjusted with either sodium hydroxide or suitable acid, e.g., sulfuric acid, solutions, but normally the pH will be raised, not lowered, and if it is to be lowered more of the dicarboxylic acid mixture can be used, instead.
- The cleaners of the invention, in microemulsion form, are clear o/w emulsions and exhibit stability at room temperature and at elevated and reduced temperatures, from 10° to 50°C. They are readily pourable and exhibit a viscosity in the range of 0.002 to 0.15 or 0.2 Ns/m² (2 to 150 or 200 centipoises) e.g., 0.005 to 0.04 Ns/m² (5 to 40 cp.), as may be desired, with the viscosity being controllable, in part, by addition to the formula of a thickener, such as lower alkyl celluloses, e.g., methyl cellulose, hydroxypropyl methyl cellulose, or water soluble resin, e.g., polyacrylamide, polyvinyl alcohol. Any tendency of the product to foam objectionably can be counteracted by incorporating in the formula free fatty acid or soap, in minor proportion, as is known in the detergent art (at low pH the soap turns to acid).
- The liquid cleaners can be manufactured by mere mixing of the various components thereof, with orders of additions not being critical. However, it is desirable for the various water soluble components to be mixed together, the oil soluble components to be mixed together in a separate operation, and the two mixes to be admixed, with the oil soluble portion being added to the water soluble portion (in the water) with stirring or other agitation. In some instances such procedure may be varied to prevent any undesirable reactions between components. For example, one would not add concentrated phosphoric acid directly to magnesium sulfate or to a dye, but such additions would be of aqueous solutions, preferably dilute, of the components.
- The cleaner may desirably be packed in manually operated spray dispensing containers, which are usually and preferably made of synthetic organic polymeric plastic material, such as polyethylene, polypropylene or polyvinyl chloride (PVC). Such containers also preferably include nylon or other non-reactive plastic closure, spray nozzle, dip tube and associated dispenser parts, and the resulting packaged cleaner is ideally suited for use in "spray and wipe"applications. However, in some instances, as when lime scale and soap scum deposits are heavy, the cleaner may be left on until it has dissolved or loosened the deposits, and may then be wiped off, or may be rinsed off, or multiple applications may be made, followed by multiple removals, until the deposits are gone. For spray applications the viscosity of the microemulsion (or ordinary emulsion, if that is used instead) will desirably be increased so that the liquid adheres to the surface to be cleaned, which is especially important when such surface is vertical, to prevent immediate run-off of the cleaner and consequent loss of effectiveness. Sometimes, the product may be formulated as an "aerosol spray type", so that its foam discharged from the aerosol container will adhere to the surface to be cleaned. At other times the aqueous medium may be such as to result in a gel or paste, which is deposited on the surface by hand application, preferably with a sponge or cloth, and is removed by a combination of rinsing and wiping, preferably with a sponge, after which it may be left to dry to a shine, or may be dried with a cloth. Of course, when feasible, the cleaned surface may be rinsed to remove all traces of acid from it.
- The following examples illustrate but do not limit the invention. All parts, proportions and percentages in the examples, the specification and claims are by weight and all temperatures are in °C. unless otherwise indicated.
-
Component % (by weight) Sodium paraffin sulfonate (paraffin of C₁₄₋₁₇) 1.00 Sodium lauryl ether sulfate (2 moles of ethylene oxide [EtO] per mole) 3.00 C₉₋₁₁ linear alcohol ethoxylate nonionic detergent (5 moles of EtO per mole) 3.00 Magnesium sulfate heptahydrate (Epsom salts) 1.35 Succinic Acid 1.67 Glutaric Acid 1.67 Adipic Acid 1.67 Aminotris (methylenephosphonic acid) 0.03 Phosphoric Acid 0.20 Perfume (contains about 40% terpenes) 1.00 Dye (1% aqueous solution of blue dye) 0.10 Sodium hydroxide (50% aqueous solution; decrease water amount by amount of NaOH solution used) q.s. Water (deionized) 85.31 100.00 - The microemulsion cleaner is made by dissolving the detergents in the water, after which the rest of the water soluble materials are added to the detergent solution, with stirring, except for the perfume and the pH adjusting agent (sodium hydroxide solution). The pH is adjusted to 3.0 and then the perfume is stirred into the aqueous solution, instantaneously generating the desired microemulsion, which is clear blue, and of a viscosity in the range of 0.002-0.02 Ns/m² (2-20 cp). If the viscosity is lower or if it is considered desirable for it to be increased there may be incorporated in the formula about 0.1 to 1% of a suitable gum or resin, such as sodium carboxymethyl cellulose or hydroxypropylmethyl cellulose, or polyacrylamide or polyvinyl aclohol, or a suitable mixture thereof.
- The acid cleaner is packed in polyethylene squeeze bottles equipped with polypropylene spray nozzles, which are adjustable to closed, spray and stream positions. In use, the microemulsion is sprayed onto "bathtub ring" on a bathtub, which also includes lime scale, in addition to soap scum and greasy soil. The rate of application is about 5 ml. per 5 meters of ring (which is about 3 cm. wide). After application and a wait of about two minutes the ring is wiped off with a sponge and is sponged off with water. It is found that the greasy soil, soap scum, and even the lime scale, have been removed effectively. In those cases where the lime scale is particularly thick or adherent a second application may be desirable, but that is not considered to be the norm.
- The tub surface may be rinsed because it is so easy to rinse a bathtub (or a shower) but such rinsing is not necessary. Sometimes dry wiping will be sufficient but if it is desired to remove any acidic residue the surface may be sponged with water or wiped with a wet cloth but in such case it is not necessary to use more than ten times the weight of cleaner applied. In other words, the surface does not need to be thoroughly doused or rinsed with water, and it still will be clean and shiny (providing that it was originally shiny). In other uses of the cleaner, it may be employed to clean shower tiles, bathroom floor tiles, kitchen tiles, sinks and enamelware, generally, without harming the surfaces thereof. It is recognized that many of such surfaces are acid-resistant but a commercial product must be capable of being used without harm on even less resistant surfaces, such as European white enamel (often on a cast iron or sheet steel base) which is sometimes referred to as zirconium white powder enamel. It is a feature of the cleaner described above (and other cleaners of this invention) that they clean hard surfaces effectively, but they do contain ionizable acids and therefore should not be applied to acid-sensitive surfaces. Nevertheless, it has been found that they do not harm European white enamel bathtubs, in this example, which are seriously affected by cleaning with preparations exactly like that of this example except for the omission from them of the phosphonic acid or the phosphonic-phosphoric acid mixture.
- The major component of the formulation that protects the European enamels is the phosphonic acid, and in the formula the amount of such acid has been reduced below the minimum normally required at a pH of 3. Yet, although 0.5% is the minimum normally, when the phosphoric acid is present, which is ineffective in itself at such pH, it increases the effect of the phosphonic acid, allowing a reduction in the proportion of the more expensive phosphonic acid
- In variations of the described formula, all components are kept the same and in the same proportions except for water, and phosphonic and phosphoric acids. In Experiment 1a, 0.05% of aminotris-(methylenephosphonic acid) is employed and the phosphoric acid is omitted; in Experiment 1b, 0.5% of ethylene diamine tetra-(methylenephosphonic acid) is employed, with no phosphoric acid; in Experiment 1c, 0 .5% of hexamethylene diamine tetra- (methylenephosphonic acid) is used, with no phosphoric acid; in Experiment 1d, 0.4% of diethylene triamine penta-(methylenephosphonic acid) is present, without phosphoric acid; and in Experiment 1e, 0.10% of diethylene triamine penta-(methylenephosphonic acid) is employed, with 0.60% of phosphoric acid. The cleaning powers of formulas 1d and 1e are about equivalent, showing that the presence of the phosphoric acid, essentially inactive as a protector of surfaces against the effects of the carboxylic acids present in the formula, decreases the proportion of phosphonic acid to protect the surfaces to 1/4 of that previously necessary. Similar effects are obtainable when phosphoric acid is used in the 1b and 1c formulas in about the same proportions as in Example 1 and Example 1e.
- If excessive foaming is encountered in use of the cleaner one may add an anti-foaming agent such as a silicone or a coco fatty acid. Alternatively, coco-diethanolamide may be added to increase foaming.
-
Component % (by weight) Sodium paraffin sulfonate (C₁₄-₁₇ paraffin) 4.00 Nonionic detergent (condensation product of one mole of fatty C₉₋₁₁ alcohol and 5 moles EtO) 3.00 Magnesium sulfate heptahydrate 1.50 Mixed succinic, glutaric and adipic acids (1:1:1) 5.00 Aminotris-(methylenephosphonic acid) 0.03 Phosphoric acid 0.20 Perfume 1.00 Dye (1% aqueous solution of blue dye) 0.05 Sodium hydroxide (50% aqueous solution; decrease water amount by amount of NaOH solution used) q.s. Water, deionized 85.22 100.00 - The compositions of this example are made in the same manner as those of Example 1 and are tested in the same way, too, with similar good results. The microemulsions are a clear lighter blue and the pH thereof is adjusted to 3.0. The cleaners easily remove soap scum and greasy soils from hard surfaces and loosen and facilitate removal of lime scale, too, with minimal rinsing or spongeing, as reported in Example 1. The presence of the aminotris-(methylenephosphonic acid) prevents harm to the acid sensitive surfaces by the carboxylic acids, and the presence of the phosphoric acid allows reduction in the proportion of aminotris-(methylenephosphonic acid) used. For example, in Example 2a, without any phosphoric acid present, it takes 0.10% of the aminotris-(methylenephosphonic acid) to prevent harm to European enamel by the cleaning composition. Similarly, in Example 1b, wherein the formula is the same except that the phosphonic and phosphoric acids are replaced by 0.20% of phosphonic acid (diethylene triamine penta-(methylenephosphonic acid) and 0.6% of phosphoric acid, European enamel is unharmed, whereas to obtain the same desirable effect without the phosphoric acid present requires 0.50% of the phosphonic acid. Similar results are obtained when the 0.5% of the phosphonic acid is replaced by the same proportion of ethylene diamine tetra-(methylenephosphonic acid) or hexamethylene diamine tetra-(methylenephosphonic acid), with and without supplemental phosphoric acid.
- Thus, from this example (and Example 1) it is seen that phosphoric acid, which is essentially ineffective to protect acid-sensitive surfaces against actions of carboxylic acids in the present cleaners, improves the protective effects of phosphonic acids, and does so significantly for European bathtub enamel.
-
Component % (by weight) Deionized water 82.339 C₁₄₋₁₇ paraffin sodium sulfonate (60% active, Hostapur SAS) 6.670 * Mixture of Glutaric, succinic and adipic acids (mf'd. by GAF Corp.) 5.000 Nonionic detergent (Plurafac RA-30, ethoxypropoxy higher fatty alcohol, mf'd. by BASF-Wyandotte) 3.000 Epsom salts 1.500 Aminotris-(methylenephosphonic acid) 0.050 Phosphoric acid (85%) 0.230 Perfume (pine scent type, containing terpenes) 0.200 Alpha-terpineol (perfume substitute) 0.800 Formalin (preservative) 0.200 2,6-Di-tert-butyl-para-cresol (antioxidant) 0.010 CI Acid Blue 104 dye 0.001 100.000 * 57.5% glutaric acid, 27% succinic acid and 12% of adipic acid - The above formula is made in the manner previously described and is similarly tested and found satisfactorily to clean acid sensitive hard surfaced items, such as tubs and sinks of cast iron or sheet steel coated with European enamel, of greasy soils on them, and to facilitate removals of soap scums and lime scales from such surfaces. When the phosphonic and phosphoric acids are omitted from the formula, or when only the phosphonic acid is omitted, the cleaner attacks such surfaces and dissolves them. The presence of the phosphoric acid allows a reduction in the proportion of the phosphonic acid that is required to inhibit the cleaner so that it will not attack the European enamels, and that reduction is significant, especially for economic reasons, but also functionally. The alpha-terpineol replaces some of the perfume and helps in the formation of the microemulsion, while not destroying the pleasant scent that the perfume imparts to the product, and such results are obtainable with other pine-type perfumes. The alpha-terpineol, like the terpene components of a pine-type perfume, facilitates microemulsion formation, but the terpineol is even more active because it is essentially 100% of terpene type compound, whereas the perfumes are usually less than 50% of terpenes.
- When variations are made in the formulas given above, by substituting different anionic and nonionic detergents, of types described herein, by utilizing other polyvalent salts (or omitting them), by employing other phosphonic acids, with or without phosphoric acid, and by varying the proportions of components ± 10%, 20% and 30%, within the ranges given in the specification, useful microemulsion cleaners are obtainable that will satisfactorily clean hard surfaces and remove soap scum and lime scale from them, without damaging them, even when they are of European enamel. The products preferably contain phosphoric acid, which improves the protective action of the phosphonic acid component, but it is within the invention to omit the phosphoric acid, if that is considered to be desirable and feasible. The cleaners are preferably in microemulsion form but even if the microemulsion should "break" to an ordinary emulsion the product will be useful as an effective cleaner, so such emulsions are also within the invention. It may be preferred to dispense the cleaner from a spray bottle but it can be packaged in conventional bottles, also. It may be made in paste or gel form so as to make it more adherent to surfaces to which it is applied, so that it will remain on them, working to attack the lime scale, rather than running down off the surface. Furthermore, while mixtures have been mentioned in this specification, even where they were not specifically referred to, it should be considered that mention of a single component includes reference to mixtures of such components in the invented cleaners.
Claims (13)
- An acidic aqueous cleaner for bathtubs and other hard surfaced items, which are acid resistant or are of zirconium white enamel, which cleaner is of a pH in the range of 1 to 4, and which removes lime scale, soap scum and greasy soil from surfaces of such items without damaging such surfaces, which comprises: a detersive proportion of synthetic organic detergent, which is capable of removing greasy soil from such surfaces; a lime scale and soap scum removing proportion of dicarboxylic acid(s) having 2 to 10 carbon atoms therein; an aminoalkylenephosphonic acid in such proportion as to prevent damage to zirconium white enamel surfaces of items to be cleaned by the dicarboxylic acid(s) when the cleaner is employed to clean such surfaces; and an aqueous medium for the detergent, dicarboxylic acid(s) and aminoalkylenephosphonic acid.
- An acidic aqueous cleaner according to claim 1 wherein the dicarboxylic acid(s) is/are aliphatic and of carbon atoms content in the range of 3 to 8, the aminoalkylenephosphonic acid contains 1 to 3 amino nitrogen(s), 3 to 5 lower alkylene phosphonic acid groups in which the lower alkylene is of 1 or 2 carbon atoms and 0 to 2 lower alkylene groups of 2 to 6 carbon atoms each, which alkylene(s) is/are present and connect(s) amino nitrogens when a plurality of such nitrogens is present in the aminoalkylenephosphonic acid.
- An acidic aqueous cleaner according to claim 2, which is in liquid emulsion form and in which the ratio of dicarboxylic acid to aminoalkylenephosphonic acid is in the range of 5:1 to 250:1.
- An acidic aqueous emulsion cleaner according to claim 3 wherein the synthetic organic detergent is a mixture of anionic and nonionic detergents, wherein the anionic detergent(s) is/are water soluble salt(s) of lipophilic organic sulfonic acid(s) and/or water soluble salt(s) of lipophilic organic sulfuric acid(s), wherein the nonionic detergent is a condensation product of a lipophilic alcohol or phenol with lower alkylene oxide, and wherein the aminoalkylenephosphonic acid is selected from the group consisting of aminotris-(methylenephosphonic acid), ethylenediamine tetra-(methylenephosphonic acid), hexamethylene diamine tetra-(methylenephosphonic acid), and diethylenetriamine penta-(methylenephosphonic acid), and mixtures thereof.
- An acidic aqueous emulsion liquid cleaner according to claims 3 and 4 in which there is also present phosphoric acid, which improves the action of the aminoalkylenephosphonic acid in protecting zirconium white enamel surfaces of items being cleaned against the action of the dicarboxylic acid(s), and in which the proportion of phosphoric acid is in the range of 2:1 to 10:1 with respect to the aminoalkylenephosphonic acid and the ratio of dicarboxylic acid to phosphoric acid is in the range of 5:2 to 25:1.
- An acidic liquid emulsion cleaner according to claim 5 which comprises 2 to 8% of synthetic organic anionic detergent(s), 1 to 6% of synthetic organic nonionic detergent(s), 2 to 10% of aliphatic carboxylic diacid(s), 0.05 to 1% of phosphoric acid and 0.01 to 0.2% of aminoalkylenephosphonic acid(s).
- An acidic liquid emulsion cleaner according to claim 6 wherein the synthetic organic anionic detergent is selected from the group consisting of water soluble higher paraffin sulfonate and water soluble ethoxylated higher fatty alcohol sulfate having 1 to 10 ethylene oxide groups per mole, and mixtures thereof, the nonionic detergent is a condensation product of a fatty alcohol of 9 to 15 carbon atoms with from 3 to 15 moles of lower alkylene oxide per mole of higher fatty alcohol, the aliphatic carboxylic diacid is a mixture of succinic, glutaric and adipic acids of proportions of 0.8 - 4 : 0.8 - 10 : 1, the aminoalkylenephosphonic acid is aminotris-(methylenephosphonic acid) and there are present in the cleaner 0.05 to 0.5% of magnesium and/or aluminum ion and 0.2 to 2% of perfume material, containing at least 0.1% of terpene and/or terpineol, which cleaner is in microemulsion form.
- An acidic liquid microemulsion cleaner according to claim 7 which is of a pH in the range of 2.5 to 3.5 and which comprises 3 to 5% of sodium paraffin sulfonate wherein the paraffin is C₁₄₋₁₇, 2 to 4% of nonionic detergent which is a condensation product of a fatty alcohol of 9 to 15 carbon atoms with 3 to 15 moles of lower alkylene oxide per mole of higher fatty alcohol, 3 to 7% of the mixture of succinic, glutaric and adipic acids, 0.1 to 0.3% of phosphoric acid, 0.03 to 0.1% of aminotris-(methylenephosphonic acid), 0.1 to 0.2% of magnesium ion, 0.5 to 2% of perfume, of which 50 to 90% thereof is alpha-terpineol, 0 to 5% of adjuvants and 75 to 90% of water.
- An acidic liquid microemulsion cleaner according to claim 8 which comprises 4% of sodium paraffin sulfonate, 3% of nonionic detergent, 5% of a 2:5:1 mixture of succinic, glutaric and adipic acids, 0.2% of phosphoric acid, 0.05% of aminotris-(methylenephosphonic acid), 1% of perfume, 0.7% of magnesium sulfate, anhyd., 1% of adjuvants and 81% of water.
- An acidic liquid microemulsion cleaner according to claim 7 which comprises 0.5 to 2% of sodium paraffin sulfonate wherein the paraffin is C₁₄₋₁₇, 2 to 4% of sodium ethoxylated higher fatty alcohol sulfate wherein the higher fatty alcohol is of 10 to 14 carbon atoms and which contains from 1 to 3 ethylene oxide groups per mole, 2 to 4% of nonionic detergent which is a condensation product of fatty alcohol of 9 to 15 carbon atoms with 3 to 15 moles of ethylene oxide per mole of higher fatty alcohol, 3 to 7% of an 1:1:1 mixture of succinic, glutaric and adipic acids, 0.1 to 0.3% of phosphoric acid, 0.01 to 0.05% of aminotris-(methylenephosphonic acid), 0.09 to 0.17% of magnesium ion, 0.5 to 2% of perfume, of which at least 10% is terpene(s) and/or terpineol, 0 to 5% of adjuvant(s) and 75 to 90% of water.
- An acidic liquid microemulsion cleaner according to claim 10 which comprises 1% of sodium paraffin sulfonate, 3% of sodium ethoxylated higher fatty alcohol sulfate, 3% of nonionic detergent, 5% of 1:1:1 mixture of succinic, glutaric and adipic acids, 0.2% of phosphoric acid, 0.03% of aminotris-(methylene phosphonic acid), 0.7% of magnesium sulfate, 1% of perfume, 1% of adjuvants and 85% of water.
- A process for removing any one or more of lime scale, soap scum, and greasy soil from bathtubs or other hard surfaced items, which are acid resistant or are of zirconium white enamel, which comprises applying to such a surface a composition in accordance with claim 1, and removing such composition and the lime scale and/or soap scum and/or greasy soil from such surface.
- A process for removing any one or more of lime scale, soap scum, and greasy soil from bathtubs or other hard surfaced items, which are acid resistant or are of zirconium white enamel, which comprises applying to such a surface a composition in accordance with claim 7, and removing such composition and the lime scale and/or soap scum and/or greasy soil from such surface.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15483788A | 1988-02-10 | 1988-02-10 | |
US154837 | 1993-11-19 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0336878A2 EP0336878A2 (en) | 1989-10-11 |
EP0336878A3 EP0336878A3 (en) | 1990-09-19 |
EP0336878B1 true EP0336878B1 (en) | 1995-05-10 |
Family
ID=22553011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89730026A Expired - Lifetime EP0336878B1 (en) | 1988-02-10 | 1989-02-07 | Acidic hard surface cleaner |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP0336878B1 (en) |
AR (1) | AR242256A1 (en) |
AT (1) | ATE122383T1 (en) |
AU (1) | AU625056B2 (en) |
BR (1) | BR8900594A (en) |
CA (1) | CA1332338C (en) |
DE (1) | DE68922522T2 (en) |
DK (1) | DK175385B1 (en) |
MX (1) | MX170213B (en) |
NO (1) | NO174430C (en) |
PT (1) | PT89679B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024031507A1 (en) * | 2022-08-11 | 2024-02-15 | Ecolab Usa Inc. | Detergent compositions with enhanced anti-scaling efficacy |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5192460A (en) * | 1988-02-10 | 1993-03-09 | Colgate-Palmolive Company | Safe acidic hard surface cleaner |
US5294364A (en) * | 1988-02-10 | 1994-03-15 | Colgate Palmolive | Safe acidic hard surface cleaner |
US5279758A (en) * | 1991-10-22 | 1994-01-18 | The Clorox Company | Thickened aqueous cleaning compositions |
NZ248582A (en) * | 1992-09-24 | 1995-02-24 | Colgate Palmolive Co | Acidic, thickened cleaner containing dicarboxylic acids and aminoalkylene phosphonic acid for cleaning lime scale from acid-resistant or zirconium white enamel hard surfaces |
CZ284893B6 (en) † | 1992-10-16 | 1999-03-17 | Unilever N. V. | Aqueous cleansing agent |
TR27813A (en) * | 1993-09-23 | 1995-08-29 | Colgate Palmolive Co | Stained acid microemulsion composition. |
PL314621A1 (en) * | 1993-11-22 | 1996-09-16 | Colgate Palmolive Co | Liquid cleaning compositions |
US5415813A (en) * | 1993-11-22 | 1995-05-16 | Colgate-Palmolive Company | Liquid hard surface cleaning composition with grease release agent |
EP0741778A1 (en) * | 1994-02-02 | 1996-11-13 | Colgate-Palmolive Company | Liquid cleaning compositions |
US5409630A (en) * | 1994-02-03 | 1995-04-25 | Colgate Palmolive Co. | Thickened stable acidic microemulsion cleaning composition |
EP0666304B1 (en) * | 1994-02-03 | 2000-11-08 | The Procter & Gamble Company | Acidic cleaning compositions |
AU3132295A (en) * | 1994-07-21 | 1996-02-22 | Colgate-Palmolive Company, The | Liquid cleaning compositions |
EP0885290B1 (en) * | 1996-03-06 | 2002-02-06 | Colgate-Palmolive Company | Liquid crystal detergent compositions |
US5707952A (en) * | 1996-04-24 | 1998-01-13 | Colgate-Palmolive Company | Thickened acid composition |
US7605114B2 (en) | 2005-05-03 | 2009-10-20 | Claudia Rushlow | Multi-purpose cleaner comprising blue iron powder |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1529466A (en) * | 1966-07-01 | 1968-06-14 | Monsanto Co | Washing compositions comprising a synthetic detergent and cycloalkanepolycarboxylic acids |
IT951279B (en) * | 1971-07-01 | 1973-06-30 | Benckiser Gmbh Joh A | PROCESS TO PREVENT THE FORMATION OF DEPOSITS THAT PRODUCE CROSSING IN AQUEOUS SYSTEMS |
GR75249B (en) * | 1980-05-10 | 1984-07-13 | Procter & Gamble | |
ZA826902B (en) * | 1981-10-01 | 1984-04-25 | Colgate Palmolive Co | Safe liquid toilet bowl cleaner |
US4501680A (en) * | 1983-11-09 | 1985-02-26 | Colgate-Palmolive Company | Acidic liquid detergent composition for cleaning ceramic tiles without eroding grout |
US5192460A (en) * | 1988-02-10 | 1993-03-09 | Colgate-Palmolive Company | Safe acidic hard surface cleaner |
-
1989
- 1989-02-07 DE DE68922522T patent/DE68922522T2/en not_active Expired - Lifetime
- 1989-02-07 EP EP89730026A patent/EP0336878B1/en not_active Expired - Lifetime
- 1989-02-07 AT AT89730026T patent/ATE122383T1/en not_active IP Right Cessation
- 1989-02-09 NO NO890559A patent/NO174430C/en unknown
- 1989-02-09 CA CA000590542A patent/CA1332338C/en not_active Expired - Fee Related
- 1989-02-09 MX MX014866A patent/MX170213B/en unknown
- 1989-02-10 BR BR898900594A patent/BR8900594A/en not_active Application Discontinuation
- 1989-02-10 AU AU29874/89A patent/AU625056B2/en not_active Ceased
- 1989-02-10 PT PT89679A patent/PT89679B/en active IP Right Grant
- 1989-02-10 AR AR89313196A patent/AR242256A1/en active
- 1989-02-10 DK DK198900652A patent/DK175385B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024031507A1 (en) * | 2022-08-11 | 2024-02-15 | Ecolab Usa Inc. | Detergent compositions with enhanced anti-scaling efficacy |
Also Published As
Publication number | Publication date |
---|---|
CA1332338C (en) | 1994-10-11 |
DE68922522T2 (en) | 1995-09-14 |
EP0336878A2 (en) | 1989-10-11 |
NO890559L (en) | 1989-08-11 |
ATE122383T1 (en) | 1995-05-15 |
AU2987489A (en) | 1989-08-10 |
PT89679B (en) | 1994-04-29 |
AU625056B2 (en) | 1992-07-02 |
DE68922522D1 (en) | 1995-06-14 |
NO174430C (en) | 1994-05-04 |
NO174430B (en) | 1994-01-24 |
PT89679A (en) | 1989-10-04 |
DK65289A (en) | 1989-08-11 |
NO890559D0 (en) | 1989-02-09 |
EP0336878A3 (en) | 1990-09-19 |
DK65289D0 (en) | 1989-02-10 |
BR8900594A (en) | 1989-10-10 |
MX170213B (en) | 1993-08-11 |
DK175385B1 (en) | 2004-09-20 |
AR242256A1 (en) | 1993-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5039441A (en) | Safe acidic hard surface cleaner | |
US5192460A (en) | Safe acidic hard surface cleaner | |
US5294364A (en) | Safe acidic hard surface cleaner | |
US5472629A (en) | Thickened acid microemulsion composition | |
AU721022B2 (en) | Thickened acid composition | |
EP0336878B1 (en) | Acidic hard surface cleaner | |
US5554320A (en) | Liquid cleaning compositions | |
US5462697A (en) | Hard surface cleaners/microemulsions comprising an anticorrosion system to protect acid-sensitive surfaces | |
NL8403429A (en) | ACID LIQUID DETERGENT COMPOSITION FOR CLEANING CERAMIC TILES WITHOUT PROCESSING THE FILLING MATERIAL. | |
WO1995021238A1 (en) | Liquid cleaning compositions | |
EP0630963A2 (en) | Acid microemulsion composition | |
MXPA94004665A (en) | Composition in microemulsion ac |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19910213 |
|
17Q | First examination report despatched |
Effective date: 19930730 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19950510 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19950510 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19950510 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19950510 Ref country code: AT Effective date: 19950510 |
|
REF | Corresponds to: |
Ref document number: 122383 Country of ref document: AT Date of ref document: 19950515 Kind code of ref document: T |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 68922522 Country of ref document: DE Date of ref document: 19950614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19950810 |
|
ET | Fr: translation filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19960228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19960228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19960229 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20000207 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010207 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20010207 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080229 Year of fee payment: 20 Ref country code: IT Payment date: 20080220 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080212 Year of fee payment: 20 |