EP0373450A1 - Process and regenerative heat exchange apparatus for gas heating - Google Patents
Process and regenerative heat exchange apparatus for gas heating Download PDFInfo
- Publication number
- EP0373450A1 EP0373450A1 EP89122226A EP89122226A EP0373450A1 EP 0373450 A1 EP0373450 A1 EP 0373450A1 EP 89122226 A EP89122226 A EP 89122226A EP 89122226 A EP89122226 A EP 89122226A EP 0373450 A1 EP0373450 A1 EP 0373450A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- regenerator
- heat
- gas
- heat transfer
- gases
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H7/00—Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B9/00—Stoves for heating the blast in blast furnaces
- C21B9/14—Preheating the combustion air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D17/00—Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
- F28D17/005—Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using granular particles
Definitions
- the invention relates to a method and a regenerator for heating gases, the heat carrier being alternately first heated and then this energy stored by the heat carriers being used to heat cold gases.
- the principle of regenerative gas heating is known and is used in various fields in industry.
- the hot wind for the blast furnace operation in winder heaters (Cowpern) is heated to a temperature of approx. 1200 ° C using this method.
- the heat energy from the combustion of blast furnace gas is transferred to the grate of its refractory trim in the chimney of the gas heater, and after the heating-up phase has been completed, cold air is blown through the heated grille and heated with the stored heat.
- the lattice chambers for Siemens Martin and glass trough ovens also use the same method.
- regenerators For the continuous heating of cold gases, at least two regenerators are required, in accordance with the method of operation described, one of which is heated and thus stores heat, while the second gives off the stored heat to the blown-in, cold gases and thereby heats them up.
- the heat transfer deteriorates, and accordingly the temperature rise of the combustion gases for heating the heat storage masonry increases compared to the attainable wind temperature.
- a flame temperature of around 150 ° C is required in the heating phase. This flame temperature can no longer be reached with the blast furnace gas emitted by the blast furnace, and therefore an additional combustion of rich gas, e.g. Natural gas, necessary and common.
- a known way to improve the thermal efficiency of the regenerators is to significantly increase the surface of the heat storage body.
- There are a number of proposals for this. With a particular The effective way to get closer to this goal is to replace the grid wall with a suitable bulk material with an approximately uniform grain size.
- pellets made of refractory materials can be used.
- a regenerator with a corresponding bed of heat storage bodies with an egg-shaped or spherical shape in a diameter range of 5 to 15 mm allows the surface area that is effective for heat exchange to be increased compared to a lattice wall to such an extent that the temperature difference between the flame or the Exhaust gas in the heating phase and the heated gas in the gas heating phase is only low and is around 10 ° C.
- the invention is therefore based on the object to provide a method for heating gases, and a corresponding regenerator that allows gas heating without the disadvantages of the known systems, and in particular the advantages of lower heat losses with increased heat transfer through large heat exchange surfaces in a uniform bed of Has heat transfer media with a relatively low pressure drop for the gases flowing through.
- This object is achieved according to the invention in that there is a loose bed of the heat transfer medium between at least two coaxially and equidistantly arranged grates, and that this bed in the heating phase of the regenerator with the hot gas from the inside out and in the gas heating phase vice versa with the cold Gas flows from outside to inside.
- the method according to the invention has a number of advantages over the known processes in regenerative hot gas generation, both in terms of heat technology and in the construction of corresponding systems.
- the heat loss due to the significantly smaller heat flow to the outer wall of the regenerator is reduced, since the high temperature areas are in its center and the outer wall only comes into contact with cold gases.
- this results in improved thermal efficiency and, on the other hand, significant advantages in the construction of the regenerator through savings in steel requirements and the refractory lining due to reduced dimensions and lower temperature bean compared to the known systems with the same heating output, ie gas throughput and gas temperature.
- the method according to the invention surprisingly produces very uniform hot gas temperatures and consequently renders appropriate temperature control superfluous in many applications.
- the flue gas temperature can be expected to vary between 20 ° C and 40 ° C.
- a relatively small temperature difference between the heat carriers and the gases is required. This applies both to the heating of the heat transfer medium itself and to the final temperature of the gases to be heated, for example air.
- the heat transfer media in the regenerator could be heated with blast furnace gas, which has a calorific value of approx. 750 kcal / Nm3, and a resulting flame temperature of approx. 1200 ° C.
- blast furnace gas which has a calorific value of approx. 750 kcal / Nm3, and a resulting flame temperature of approx. 1200 ° C.
- the same heating temperatures can be achieved with the operating values mentioned when heating other gases, for example nitrogen, argon, with oxygen-enriched air, oxygen and fuel gases.
- the regenerator according to the invention in which heat carriers are first alternately heated and then this energy stored by the heat carriers is used to heat cold gases, is distinguished by the fact that it has a hot gas collecting space centrally around the axis of symmetry, which is formed by a first inner grate , and at least one further outer grate arranged equidistant from the inner grate, a gas collecting space being located between this outer grate and the regenerator outer wall, and the gases flowing radially through the bed of the heat transfer medium arranged between the grates.
- the heat transfer media similar to the trim on a hot water heater, consist of loose bodies with an approximately uniform grain size. By pouring these heat transfer media between the equidistant grates, the layer thickness in the flow direction of the gases is uniformly thick. In the regenerator according to the invention, the heat transfer media cannot move even under the influence of the flow, and thus there is no risk of gas breakthrough, for example caused by locally exceeding the swirl point.
- the free volume between the heat carriers and also in the hot gas and gas collecting space is relatively small, and accordingly there are only slight gas losses when switching from the heating phase to the gas heating phase.
- the heat transfer media can be replaced during operation.
- appropriate sockets or flanges on the top and bottom On the other side of the bed, it is possible to refill the heat transfer medium on one side and remove it on the opposite side.
- the regenerator often has only a uniform bed of one type of heat transfer medium, which is arranged between an inner and an outer grate. However, it is also within the scope of the invention to use more than two coaxial grids and thus to produce a plurality of coaxial annular spaces.
- the same heat transfer medium is preferably used between two adjacent grates. However, it is possible to use different fillings of heat transfer media from annulus to annulus. For example, between two grates on the hot inner side of the regenerator, high-temperature-resistant ceramic balls, for example made of corundum, and less expensive heat carriers made of, for example, mullite and / or chamotte can be used on the colder side.
- the total fill can be divided into two or more layers not only from a cost point of view, but also for operational, especially thermal, reasons. Both the material and the size and shape of the heat transfer medium can be varied according to the invention.
- the grids of the regenerator according to the invention can be made of the same, but preferably different, materials.
- the inner, hot-side grate can be made of refractory material, such as refractory bricks with corresponding gas channels
- the outer, cold-side grate can be made of metal, such as steel, scale-resistant steel or cast iron.
- the material must be selected according to the temperature load. head Ceramic or metal materials are mainly used.
- An essential feature of the invention is to build up the bulk of the heat transfer medium with a uniform thickness and to allow the gases to flow through it in the radial direction. This characteristic also applies when the heat transfer bed is divided into several layers.
- Ceramic materials of different qualities for example based on corundum, mullite, fireclay, magnesia, chromium oxide, zirconium oxide, silicon carbide and any mixtures thereof, have proven themselves as materials for the heat transfer medium, as have metal materials.
- the heat transfer materials should be selected according to their temperature stress.
- the shape of the heat transfer medium according to the invention is arbitrary, but shapes corresponding to the economical and expedient production, such as are produced, for example, when pelletizing and briquetting, in particular for ceramic materials, can be preferred. Geometrically, these are essentially egg shapes or spheres. However, fillings from any gap and fracture structures can also be used.
- the method according to the invention and the regenerator according to the invention are particularly suitable for use in the smelting reduction of iron ore, the electric melt and the blast furnace.
- Figure 1 shows schematically the cross section through a regenerator according to the invention.
- This regenerator consists of an outer sheet metal jacket 1 of approximately spherical shape. Although the external shape of the regenerator is insignificant and can therefore take any shape, in practice, more for manufacturing reasons, shapes such as standing cylinders, balls or superimposed double-cone frustum with and without a cylindrical intermediate piece have proven their worth.
- the cylindrical outer grate 2 with circular and / or slit-shaped openings. Between this grate 2 and the outer sheet steel casing 1 there is the annular gas collecting space 3 for the cold gas.
- the inner grate 4 is made of refractory stones with corresponding gas passage channels.
- the coaxial arrangement of the two gratings 2 and 4 ensures the same distance between these two grids for the intermediate space 5 over the entire circumference.
- This space 5 with an annular cross section receives the heat transfer medium 6, for example pellets made of ceramic material.
- the hot gas chamber 7 with a circular cross section is located in the center of the regenerator. At the lower end of this hot gas space 7, the hot exhaust gases generated in the burner 8 flow in during the heating phase of the regenerator.
- the burner 8 is accessible via the vessel lid 9.
- the hot combustion gases flow from the hot gas space 7 through the grate 4 and through the bed from the heat carriers 6 into the room 5, further through the grate 2 into the gas collecting space 3.
- the gases On their way through the bed of the heat carriers 6, the gases have cooled and reach the gas collecting space 3 approximately at normal temperature. they leave the gas collecting space and thus the regenerator through the connector 10.
- compressed gas flows through the nozzle 11 into the gas collecting space 3, further through the grate 2 and the bed of heat carriers 6 in the space 5, over the inner grate 4 into the hot gas space 7.
- the gases on the heated ones Heat carriers 6 are heated and leave the regenerator via the connector 12.
- the openings 13 and 14, which can be closed with flanges, can be seen on the regenerator vessel.
- the heat transfer medium 6 can be drained from the space 5 and simultaneously refilled through the openings 13 via the connecting piece 14 during operation or maintenance and repair times. It is accordingly possible to replace the entire filling of the heat transfer medium 6 in space 5 discontinuously or continuously.
- the grate and heat transfer materials can be tailored to the temperature requirements.
- the shape of the regenerator can also be modified according to its use, but the principle of radial flow through the heat transfer medium should be retained.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Furnace Details (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren und einen Regenerator zum Aufheizen von Gasen, wobei im Wechsel Wärmeträger zunächst aufgeheizt und anschließend diese von den Wärmeträgern gespeicherte Energie zur Erwärmung kalter Gase genutzt wird.The invention relates to a method and a regenerator for heating gases, the heat carrier being alternately first heated and then this energy stored by the heat carriers being used to heat cold gases.
Das Prinzip der regenerativen Gaserwärmung ist bekannt und wird in der Industrie auf verschiedenen Gebieten angewendet. Beispielsweise wird der Heißwind für den Hochofenbetrieb in Winderhitzern (Cowpern) nach diesem Verfahren auf eine Temperatur von ca. 1200°C aufgeheizt. Dabei wird die Wärmeenergie aus der Verbrennung von Gichtgas im Brennschacht des Winderhitzers auf das Gitterwerk seines feuerfesten Besatzes übertragen, und nach beendeter Aufheizphase bläst man durch die erhitzte Gitterung Kaltluft und heizt sie mit der gespeicherten Wärme auf. Nach der gleichen Methode arbeiten auch die Gitterkammern für Siemens-Martin- und Glaswanneöfen.The principle of regenerative gas heating is known and is used in various fields in industry. For example, the hot wind for the blast furnace operation in winder heaters (Cowpern) is heated to a temperature of approx. 1200 ° C using this method. The heat energy from the combustion of blast furnace gas is transferred to the grate of its refractory trim in the chimney of the gas heater, and after the heating-up phase has been completed, cold air is blown through the heated grille and heated with the stored heat. The lattice chambers for Siemens Martin and glass trough ovens also use the same method.
Für die kontinuierliche Erwärmung kalter Gase sind, entsprechend der beschriebenen Arbeitsweise, mindestens zwei Regeneratoren erforderlich, wobei der eine jeweils beheizt wird und somit Wärme speichert, während der zweite die gespeicherte Wärme an die eingeblasenen, kalten Gase abgibt und diese dadurch erwärmt.For the continuous heating of cold gases, at least two regenerators are required, in accordance with the method of operation described, one of which is heated and thus stores heat, while the second gives off the stored heat to the blown-in, cold gases and thereby heats them up.
Bei der Auslegung und dem Bau von Regeneratoren ist stets ein Kompromiß zwischen wärmetechnischen Anforderungen und bautechnischen Möglichkeiten zu schließen. So haben sich für die Winderwärmung beim Hochofenbetrieb die bekannten Winderhitzer in zylindrischer Form mit einem Durchmesser-Höhen-Verhältnis von ungefähr 1:5 eingeführt. Bei der Auslegung des Gittermauerwerkes, das in der Heizphase von oben nach unten und in der Gaswärmphase umgekehrt von unten nach oben durchströmt wird, sind, neben den Forderungen des Wärmeübergangs zwischen Gas und Gittermauerwerk, auch die Voraussetzungen für einen erträglichen Druckverlust der Gase beim Durchströmen des feuerfesten Besatzes zu berücksichtigen. Während für den Wärmeübergang eine große Oberfläche und enge Kanäle günstig sind, läßt sich aber der freie Strömungsquerschnitt nur bis zu gewissen Grenzen einengen, um einen noch akzeptablen Druckverlust für den Gasstrom zu halten. Wegen des größeren freien Querschnitts der Strömungskanäle verschlechtert sich der Wärmeübergang, und demgemäß vergrößert sich die Temperaturüberhöhung der Verbrennungsgase für das Aufheizen des Wärmespeichermauerwerks gegenüber der erreichbaren Windtemperatur. Um die genannte Hochofenwindtemperatur von 1200°C zu erreichen, ist eine Flammentemperatur in der Heizphase von ca. 150°C erforderlich. Diese Flammentemperatur kann mit dem vom Hochofen abgegebenen Gichtgas nicht mehr erreicht werden, und daher ist eine zusätzliche Verfeuerung von Reichgas, z.B. Erdgas, notwendig und üblich.When designing and building regenerators, there is always a compromise between thermal requirements and structural possibilities. For example, the well-known wind heaters in cylindrical form with a diameter-to-height ratio of approximately 1: 5 have been introduced for wind heating in blast furnace operation. When designing the lattice masonry, which is flowed through from top to bottom in the heating phase and vice versa from bottom to top in the gas heating phase, in addition to the requirements for heat transfer between gas and lattice masonry, the prerequisites for a tolerable pressure loss of the gases when flowing through the refractory trimmings. While a large surface area and narrow channels are favorable for heat transfer, the free flow cross section can only be restricted to a certain extent in order to maintain an acceptable pressure loss for the gas flow. Because of the larger free cross-section of the flow channels, the heat transfer deteriorates, and accordingly the temperature rise of the combustion gases for heating the heat storage masonry increases compared to the attainable wind temperature. To reach the blast furnace wind temperature of 1200 ° C, a flame temperature of around 150 ° C is required in the heating phase. This flame temperature can no longer be reached with the blast furnace gas emitted by the blast furnace, and therefore an additional combustion of rich gas, e.g. Natural gas, necessary and common.
Ein bekannter Weg, um den wärmetechnischen Wirkungsgrad der Regeneratoren zu verbessern, besteht darin, die Oberfläche der Wärmespeicherkörper deutlich heraufzusetzen. Dazu gibt es eine Reihe von Vorschlägen. Bei einem beson ders effektiven Weg, diesem Ziel näherzukommen, ersetzt man die Gittermauerung durch ein geeignetes Schüttgut mit ungefähr einheitlicher Korngröße. Es lassen sich beispielsweise Pellets aus feuerfesten Stoffen einsetzen. Ein Regenerator mit einer entsprechenden Schüttung aus Wärmespeicherkörpern mit ei- oder kugelförmiger Gestalt in einem Durchmesserbereich von 5 bis 15 mm, erlaubt es, die für den Wärmeaustausch wirksame Oberfläche im Vergleich zu einer Gittermauerung soweit zu erhöhen, daß die Temperaturdifferenz zwischen der Flamme bzw. dem Abgas in der Heizphase und dem aufgeheizten Gas in der Gaswärmphase nur noch gering ist und etwa im Bereich von 10°C liegt.A known way to improve the thermal efficiency of the regenerators is to significantly increase the surface of the heat storage body. There are a number of proposals for this. With a particular The effective way to get closer to this goal is to replace the grid wall with a suitable bulk material with an approximately uniform grain size. For example, pellets made of refractory materials can be used. A regenerator with a corresponding bed of heat storage bodies with an egg-shaped or spherical shape in a diameter range of 5 to 15 mm allows the surface area that is effective for heat exchange to be increased compared to a lattice wall to such an extent that the temperature difference between the flame or the Exhaust gas in the heating phase and the heated gas in the gas heating phase is only low and is around 10 ° C.
Allerdings läßt sich beispielsweise die übliche Gitterung eines Winderhitzers für den Hochofenbetrieb nicht durch eine Schüttung der genannten Art ersetzen, da sich ein untragbar hoher Druckverlust beim Durchströmen mit Gas aufgrund der großen Schütthöhe einstellen würde.However, for example, the usual grating of a hot air heater for blast furnace operation cannot be replaced by a bed of the type mentioned, since an unacceptably high pressure drop would occur when gas was passed through due to the large bed height.
Bekannte Vorschläge, die den Druckverlust vermeiden, indem man den Durchmesser des Winderhitzers erheblich vergrößert und etwa zu einem umgekehrten Durchmesser-Höhen-Verhältnis kommt, gegenüber der bisherigen Bauweise, zeigen bei etwa gleichem Druckverlust zwar einen erheblich besseren Wärmeübergang, weisen jedoch andere Nachteile auf. Die Kuppel oberhalb der Wärmeträgerschüttung wirft beim Bau Probleme auf und erweist sich beim Betrieb eines derartigen Winderhitzers als nachteilig. Hauptsächlich führt das beträchtliche Kuppelvolumen beim Umschalten von der Aufheizphase zur Gaswärmphase zu einem relativ hohen Gasverlust, und zum anderen steigert die Kuppel mit ihrer großen Oberfläche die Wärmeverluste in diesem heißen Bereich des Winderhitzers deutlich. Weiterhin ist es nur schwer möglich, eine im Querschnitt große und dazu relativ dünne Schüttung in gleichmäßiger Stärke herzustellen und insbesondere während des Betriebes aufrechtzuerhalten.Known proposals which avoid the pressure loss by considerably increasing the diameter of the hot-water heater and achieving an inverse diameter-height ratio compared to the previous design, show a considerably better heat transfer with approximately the same pressure loss, but have other disadvantages. The dome above the heat transfer bed poses problems during construction and proves to be disadvantageous when operating such a hot water heater. Mainly the considerable dome volume when switching from the heating phase to the gas heating phase leads to a relatively high gas loss, and secondly the dome with its large surface area significantly increases the heat losses in this hot area of the hot water heater. Furthermore, it is difficult to to produce a bed of uniform thickness in cross-section, which is large and relatively thin, and in particular to maintain it during operation.
Der Erfindung liegt demzufolge die Aufgabe zugrunde, ein Verfahren zum Aufheizen von Gasen, und einen entsprechenden Regenerator zu schaffen, der die Gaserwärmung ohne die Nachteile der bekannten Anlagen erlaubt, und insbesondere die Vorteile geringerer Wärmeverluste bei gesteigerter Wärmeübertragung durch große Wärmeaustauschflächen in einer gleichmäßigen Schüttung von Wärmeträgern mit relativ geringem Druckverlust für die durchströmenden Gase aufweist.The invention is therefore based on the object to provide a method for heating gases, and a corresponding regenerator that allows gas heating without the disadvantages of the known systems, and in particular the advantages of lower heat losses with increased heat transfer through large heat exchange surfaces in a uniform bed of Has heat transfer media with a relatively low pressure drop for the gases flowing through.
Diese Aufgabe wird gemäß der Erfindung dadurch gelöst, daß sich zwischen mindestens zwei koaxial und äquidistant angeordneten Rosten eine lose Schüttung der Wärmeträger befindet, und daß diese Schüttung in der Aufheizphase des Regenerators mit dem Heißgas von innen nach außen und in der Gaswärmphase umgekehrt mit dem kalten Gas von außen nach innen, durchströmt wird.This object is achieved according to the invention in that there is a loose bed of the heat transfer medium between at least two coaxially and equidistantly arranged grates, and that this bed in the heating phase of the regenerator with the hot gas from the inside out and in the gas heating phase vice versa with the cold Gas flows from outside to inside.
Das erfindungsgemäße Verfahren hat gegenüber den bekannten Prozessen bei der regenerativen Heißgaserzeugung eine Reihe von Vorteilen, sowohl in wärmetechnischer Hinsicht als auch beim Bau entsprechender Anlagen. Insbesondere verringern sich die Wärmeverluste durch den deutlich kleineren Wärmestrom zur Außenwand des Regenerators, da sich die Hochtemperaturbereiche in seinem Zentrum befinden und die Außenwand nur mit kalten Gasen in Berührung kommt. Daraus ergeben sich einmal der verbesserte wärmetechnische Wirkungsgrad und zum anderen deutliche Vorteile beim Bau des Regenerators durch Einsparungen beim Stahlbedarf und der feuerfesten Auskleidung aufgrund verkleinerter Abmessungen und geringerer Temperaturbean spruchung im Vergleich zu den bekannten Anlagen mit gleicher Aufheizleistung, d. h. Gasdurchsatz und Gastemperatur.The method according to the invention has a number of advantages over the known processes in regenerative hot gas generation, both in terms of heat technology and in the construction of corresponding systems. In particular, the heat loss due to the significantly smaller heat flow to the outer wall of the regenerator is reduced, since the high temperature areas are in its center and the outer wall only comes into contact with cold gases. On the one hand, this results in improved thermal efficiency and, on the other hand, significant advantages in the construction of the regenerator through savings in steel requirements and the refractory lining due to reduced dimensions and lower temperature bean compared to the known systems with the same heating output, ie gas throughput and gas temperature.
Das Verfahren gemäß der Erfindung ergibt überraschenderweise sehr gleichmäßige Heißgastemperaturen und macht demzufolge bei vielen Anwendungsfällen eine entsprechende Temperaturregelung überflüssig. So kann beispielsweise bei der Heißwinderzeugung für den Hochofenbetrieb mit einer Windtemperatur von 1200°C und einer Umschaltzeit der Gaswärmphase nach 30 min mit einer Streuung der Abgastemperatur zwischen 20°C bis 40°C gerechnet werden.The method according to the invention surprisingly produces very uniform hot gas temperatures and consequently renders appropriate temperature control superfluous in many applications. For example, when generating hot wind for blast furnace operation with a wind temperature of 1200 ° C and a changeover time in the gas heating phase after 30 minutes, the flue gas temperature can be expected to vary between 20 ° C and 40 ° C.
Gemäß der Erfindung ist eine relativ geringe Temperaturdifferenz zwischen den Wärmeträgern und den Gasen erforderlich. Dies gilt sowohl beim Aufheizen der Wärmeträger selbst und für die Endtemperatur der aufzuheizenden Gase, beispielsweise Luft. Beim Aufheizen der Wärmeträger benötigt man demgemäß nur Brenngase mit einer Flammentemperatur, die geringfügig über der Aufheiztemperatur der kalten Gase liegt. Es kann zum Beispiel bei der Windbeheizung für den Hochofenbetrieb mit Gichtgas aus dem Hochofen oder mit nur wenig angereichertem Gichtgas gearbeitet werden.According to the invention, a relatively small temperature difference between the heat carriers and the gases is required. This applies both to the heating of the heat transfer medium itself and to the final temperature of the gases to be heated, for example air. When heating the heat transfer medium, you only need fuel gases with a flame temperature that is slightly above the heating temperature of the cold gases. For example, in the case of wind heating for blast furnace operation, it is possible to work with blast furnace gas from the blast furnace or with only slightly enriched blast furnace gas.
Bei der Anwendung des erfindungsgemäßen Verfahrens zur Windvorwärmung auf 1150°C, konnten die Wärmeträger im Regenerator mit Gichtgas, das einen Heizwert von von ca. 750 kcal/Nm³ hat, und einer daraus resultierenden Flammtemperatur von ca. 1200°C aufgeheizt werden. Praktisch gleiche Aufheiztemperaturen kann man mit den genannten Betriebswerten bei der Erwärmung anderer Gase, beispielsweise Stickstoff, Argon, mit sauerstoffangereicherter Luft, Sauerstoff und Brenngasen erzielen.When using the method according to the invention for preheating the wind to 1150 ° C., the heat transfer media in the regenerator could be heated with blast furnace gas, which has a calorific value of approx. 750 kcal / Nm³, and a resulting flame temperature of approx. 1200 ° C. Practically the same heating temperatures can be achieved with the operating values mentioned when heating other gases, for example nitrogen, argon, with oxygen-enriched air, oxygen and fuel gases.
Der erfindungsgemäße Regenerator, bei dem im Wechsel zunächst Wärmeträger aufgeheizt und anschließend diese von den Wärmeträgern gespeicherte Energie zur Erwärmung kalter Gase genutzt wird, zeichnet sich dadurch aus, daß er zentral um die Symmetrieachse herum einen Heißgassammelraum aufweist, der durch einen ersten inneren Rost gebildet wird, und mindestens einem weiteren äquidistant zum inneren Rost angeordneten äußeren Rost aufweist, wobei sich zwischen diesem äußeren Rost und der Regeneratoraußenwand ein Gassammelraum befindet, und die Gase die zwischen den Rosten angeordnete Schüttung der Wärmeträger radial durchströmen.The regenerator according to the invention, in which heat carriers are first alternately heated and then this energy stored by the heat carriers is used to heat cold gases, is distinguished by the fact that it has a hot gas collecting space centrally around the axis of symmetry, which is formed by a first inner grate , and at least one further outer grate arranged equidistant from the inner grate, a gas collecting space being located between this outer grate and the regenerator outer wall, and the gases flowing radially through the bed of the heat transfer medium arranged between the grates.
Dieser erfindungsgemäße Regenerator hat gegenüber den bekannten vergleichbaren Vorrichtungen einige deutliche Vorteile. So bestehen die Wärmeträger, vergleichbar mit dem Besatz eines Winderhitzers, aus losen Körpern mit etwa gleichmäßiger Körnung. Durch die Schüttung dieser Wärmeträger zwischen den äquidistanten Rosten ist die Schichtstärke in Strömungsrichtung der Gase gleichmäßig stark. Die Wärmeträger können sich bei dem erfindungsgemäßen Regenerator auch unter dem Einfluß der Strömung nicht bewegen, und somit ist die Gefahr eines Gasdurchbruchs, beispielsweise hervorgerufen durch örtliches Überschreiten des Wirbelpunktes, nicht gegeben.This regenerator according to the invention has some clear advantages over the known comparable devices. For example, the heat transfer media, similar to the trim on a hot water heater, consist of loose bodies with an approximately uniform grain size. By pouring these heat transfer media between the equidistant grates, the layer thickness in the flow direction of the gases is uniformly thick. In the regenerator according to the invention, the heat transfer media cannot move even under the influence of the flow, and thus there is no risk of gas breakthrough, for example caused by locally exceeding the swirl point.
Bei dem Regenerator nach der Erfindung ist das freie Volumen zwischen den Wärmeträgern und auch im Heißgas- und Gassammelraum relativ gering, und es ergeben sich demgemäß nur geringe Gasverluste beim Umschalten von der Aufheiz- in die Gaswärmphase.In the regenerator according to the invention, the free volume between the heat carriers and also in the hot gas and gas collecting space is relatively small, and accordingly there are only slight gas losses when switching from the heating phase to the gas heating phase.
Die Wärmeträger können bei dem erfindungsgemäßen Regenerator während des Betriebes erneuert werden. Durch entsprechende Stutzen bzw. Flansche an der Ober- und Un terseite der Schüttung ist es möglich, die Wärmeträger auf der einen Seite nachzufüllen und an der gegenüberliegenden Seite abzuziehen.In the regenerator according to the invention, the heat transfer media can be replaced during operation. Through appropriate sockets or flanges on the top and bottom On the other side of the bed, it is possible to refill the heat transfer medium on one side and remove it on the opposite side.
Der Regenerator hat häufig nur eine gleichmäßige Schüttung aus einer Sorte von Wärmeträgern, die zwischen einem inneren und einem äußeren Rost angeordnet ist. Es liegt aber auch im Sinne der Erfindung, mehr als zwei koaxiale Roste einzusetzen und somit mehrere koaxiale Ringräume herzustellen. Zwischen zwei benachbarten Rosten werden vorzugsweise gleiche Wärmeträger eingesetzt. Jedoch ist es möglich, von Ringraum zu Ringraum unterschiedliche Schüttungen von Wärmeträgern zu verwenden. So können beispielsweise zwischen zwei Rosten an der heißen inneren Seite des Regenerators hochtemperaturbeständige, keramische Kugeln, beispielsweise aus Korund, und zur kälteren Seite nach außen hin kostengünstigere Wärmeträger aus beispielsweise Mullit und/oder Schamotte eingesetzt werden. Die Aufteilung der Gesamtschüttung in zwei und mehr Schichten kann nicht nur nach Kostengesichtspunkten, sondern auch aus betrieblichen, insbesondere wärmetechnischen, Gründen erfolgen. Dabei können erfindungsgemäß sowohl das Material als auch die Größe und die Form der Wärmeträger variiert werden.The regenerator often has only a uniform bed of one type of heat transfer medium, which is arranged between an inner and an outer grate. However, it is also within the scope of the invention to use more than two coaxial grids and thus to produce a plurality of coaxial annular spaces. The same heat transfer medium is preferably used between two adjacent grates. However, it is possible to use different fillings of heat transfer media from annulus to annulus. For example, between two grates on the hot inner side of the regenerator, high-temperature-resistant ceramic balls, for example made of corundum, and less expensive heat carriers made of, for example, mullite and / or chamotte can be used on the colder side. The total fill can be divided into two or more layers not only from a cost point of view, but also for operational, especially thermal, reasons. Both the material and the size and shape of the heat transfer medium can be varied according to the invention.
Die Roste des erfindungsgemäßen Regenerators können aus den gleichen, bevorzugt jedoch aus unterschiedlichen, Materialien gefertigt sein. Es kann zum Beispiel der innere, heißseitige Rost aus feuerfestem Material, wie feuerfesten Steinen mit entsprechenden Gaskanälen, bestehen und der äußere, kaltseitige Rost aus Metall, wie beispielsweise Stahl, zunderbeständigem Stahl oder Guß, gefertigt sein. Auch beim Einsatz weiterer Roste zwischen dem inneren und dem äußeren Rost ist das Material der Temperaturbeanspruchung entsprechend zu wählen. Haupt sächlich werden Keramik-oder Metallwerkstoffe eingesetzt.The grids of the regenerator according to the invention can be made of the same, but preferably different, materials. For example, the inner, hot-side grate can be made of refractory material, such as refractory bricks with corresponding gas channels, and the outer, cold-side grate can be made of metal, such as steel, scale-resistant steel or cast iron. When using additional grids between the inner and the outer grate, the material must be selected according to the temperature load. head Ceramic or metal materials are mainly used.
Ein wesentliches Merkmal der Erfindung besteht darin, die Schuttung der Wärmeträger in gleichmäßiger Stärke aufzubauen und sie in radialer Richtung von den Gasen zu durchströmen. Auch bei einer Unterteilung der Wärmeträgerschüttung in mehrere Schichten gilt dieses Merkmal.An essential feature of the invention is to build up the bulk of the heat transfer medium with a uniform thickness and to allow the gases to flow through it in the radial direction. This characteristic also applies when the heat transfer bed is divided into several layers.
Als Materialien für die Wärmeträger haben sich keramische Stoffe unterschiedlicher Qualitäten, beispielsweise auf der Basis von Korund, Mullit, Schamotte, Magnesia, Chromoxid, Zirkonoxid, Siliziumkarbid und beliebige Mischungen davon, ebenso bewährt wie Metallwerkstoffe. Selbstverständlich sind die Wärmeträgermaterialien entsprechend ihrer Temperaturbeanspruchung auszuwählen. Die Form der Wärmeträger nach der Erfindung ist grundsätzlich beliebig, jedoch können Formen entsprechend der wirtschaftlichen und zweckmäßigen Herstellung, wie sie beispielsweise beim Pelletisieren und Brikettieren entstehen, insbesondere für keramische Materialien, bevorzugt werden. Geometrisch sind dies im wesentlichen Eiformen oder Kugeln. Es lassen sich aber auch Schüttungen aus beliebigen Spalt- und Bruchstrukturen einsetzen.Ceramic materials of different qualities, for example based on corundum, mullite, fireclay, magnesia, chromium oxide, zirconium oxide, silicon carbide and any mixtures thereof, have proven themselves as materials for the heat transfer medium, as have metal materials. Of course, the heat transfer materials should be selected according to their temperature stress. In principle, the shape of the heat transfer medium according to the invention is arbitrary, but shapes corresponding to the economical and expedient production, such as are produced, for example, when pelletizing and briquetting, in particular for ceramic materials, can be preferred. Geometrically, these are essentially egg shapes or spheres. However, fillings from any gap and fracture structures can also be used.
Das erfindungsgemäße Verfahren und der erfindungsgemäße Regenerator eignen sich besonders zum Einsatz bei der Schmelzreduktion von Eisenerz, der Elektroschmelze und dem Hochofen.The method according to the invention and the regenerator according to the invention are particularly suitable for use in the smelting reduction of iron ore, the electric melt and the blast furnace.
Die Erfindung wird nun anhand eines Ausführungsbeispiels und anhand einer Abbildung näher erläutert.The invention will now be explained in more detail using an exemplary embodiment and an illustration.
Figur 1 zeigt schematisch den Querschnitt durch einen erfindungsgemäßen Regenerator.Figure 1 shows schematically the cross section through a regenerator according to the invention.
Dieser Regenerator besteht aus einem äußeren Blechmantel 1 von ungefähr kugelförmiger Gestalt. Obwohl die äußere Form des Regenerators von unwesentlicher Bedeutung ist und demzufolge beliebige Gestalt annehmen kann, haben sich in der Praxis, mehr aus fertigungstechnischen Gründen, Formen wie stehende Zylinder, Kugeln oder aufeinandergesetzte Doppelkegelstümpfe mit und ohne zylindrisches Zwischenstück bewährt.This regenerator consists of an outer sheet metal jacket 1 of approximately spherical shape. Although the external shape of the regenerator is insignificant and can therefore take any shape, in practice, more for manufacturing reasons, shapes such as standing cylinders, balls or superimposed double-cone frustum with and without a cylindrical intermediate piece have proven their worth.
In dem Stahlblechmantel 1 befindet sich der zylinderförmige äußere Rost 2 mit kreis- und/oder schlitzförmigen Öffnungen. Zwischen diesem Rost 2 und der äußeren Stahlblechhülle 1 befindet sich der ringförmige Gassammelraum 3 für das kalte Gas.In the steel sheet jacket 1 there is the cylindrical
Der innere Rost 4 ist aus feuerfesten Steinen mit entsprechenden Gasdurchlaßkanälen aufgebaut. Die koaxiale Anordnung der beiden Roste 2 und 4 gewährleistet für den Zwischenraum 5 auf dem gesamten Umfang den gleichen Abstand zwischen diesen beiden Rosten. Dieser Raum 5 mit kreisringförmigen Querschnitt nimmt die Wärmeträger 6, beispielsweise Pellets aus keramischem Material, auf.The inner grate 4 is made of refractory stones with corresponding gas passage channels. The coaxial arrangement of the two
Im Zentrum des Regenerators befindet sich der Heißgasraum 7 mit kreisförmigem Querschnitt. Am unteren Ende dieses Heißgasraumes 7 strömen in der Aufheizphase des Regenerators die im Brenner 8 erzeugten heißen Abgase ein. Der Brenner 8 ist über den Gefäßdeckel 9 zugänglich.The
Die heißen Verbrennungsgase strömen vom Heißgasraum 7 durch den Rost 4 und durch die Schüttung aus den Wärmeträgern 6 in den Raum 5, weiter durch den Rost 2 in den Gassammelraum 3. Auf ihrem Weg durch die Schüttung der Wärmeträger 6 haben sich die Gase abgekühlt und erreichen den Gassammelraum 3 ungefähr mit Normaltemperatur. Sie verlassen den Gassammelraum und damit den Regenerator durch den Stutzen 10.
Während der Gaswärmphase strömt komprimiertes Gas durch den Stutzen 11 in den Gassammelraum 3, weiter durch den Rost 2 und die Schüttung aus Wärmeträgern 6 im Raum 5, über den inneren Rost 4 in den Heißgasraum 7. Auf diesem Weg haben sich die Gase an den aufgeheizten Wärmeträgern 6 erwärmt und verlassen den Regenerator über den Stutzen 12.
Weiterhin sind am Regeneratorgefäß die mit Flanschen verschließbaren Öffnungen 13 und 14 zu erkennen. Über die Stutzen 14 können während des Betriebes oder Wartungs- und Reparaturzeiten, die Wärmeträger 6 aus dem Raum 5 abgelassen und gleichzeitig über die Öffnungen 13 nachgefüllt werden. Es ist demgemäß möglich, die gesamte Füllung der Wärmeträger 6 in Raum 5 diskontinuierlich oder kontinuierlich auszutauschen.The hot combustion gases flow from the
During the gas heating phase, compressed gas flows through the
Furthermore, the
Im Sinne der Erfindung liegt es, das Verfahren und den Regenerator den verschiedenen Bedingungen beim industriellen Einsatz anzupassen. Wie zuvor erläutert, lassen sich die Materialien für Roste und Wärmeträger auf die Temperaturerfordernisse abstimmen. Auch die Form des Regenerators kann seinem Einsatz entsprechend abgeändert werden, jedoch sollte das Prinzip der radialen Durchströmung der Wärmeträgerschüttung erhalten bleiben.It is within the meaning of the invention to adapt the method and the regenerator to the various conditions in industrial use. As previously explained, the grate and heat transfer materials can be tailored to the temperature requirements. The shape of the regenerator can also be modified according to its use, but the principle of radial flow through the heat transfer medium should be retained.
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3841708A DE3841708C1 (en) | 1988-12-10 | 1988-12-10 | |
DE3841708 | 1988-12-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0373450A1 true EP0373450A1 (en) | 1990-06-20 |
Family
ID=6368926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89122226A Withdrawn EP0373450A1 (en) | 1988-12-10 | 1989-12-01 | Process and regenerative heat exchange apparatus for gas heating |
Country Status (11)
Country | Link |
---|---|
US (1) | US5052918A (en) |
EP (1) | EP0373450A1 (en) |
JP (1) | JP2509350B2 (en) |
KR (1) | KR0131200B1 (en) |
CN (1) | CN1016993B (en) |
AU (1) | AU624450B2 (en) |
DE (1) | DE3841708C1 (en) |
HU (1) | HU206745B (en) |
MX (1) | MX171490B (en) |
SU (1) | SU1739857A3 (en) |
ZA (1) | ZA899382B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4108744C1 (en) * | 1991-03-18 | 1992-08-27 | Atz Energie Umwelt Stroemungstechnik | Gas heating jacketed regenerator with heat storage medium - has central chamber surrounded by layer of pebbles or granular material |
DE4236619A1 (en) * | 1992-10-29 | 1994-05-05 | Air Liquide | Process and regenerator for heating gases |
EP0611270A1 (en) * | 1993-02-10 | 1994-08-17 | DISTRIGAZ Société anonyme dite: | Preheating device for a gaseous fluid |
WO2014082716A1 (en) * | 2012-11-30 | 2014-06-05 | Saarstahl Ag | Method for operating a regenerator (pebble heater) and regenerator |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5419388A (en) * | 1994-05-31 | 1995-05-30 | Fluidyne Engineering Corporation | Regenerative heat exchanger system and an operating method for the same |
ATE224463T1 (en) * | 1997-07-18 | 2002-10-15 | Didier M & P Energietechnik Gm | GRID FOR A WINDOW HEATER |
DE19744387C1 (en) * | 1997-10-08 | 1999-04-29 | Atz Evus Applikations & Tech | Device for reducing stress in bulk flow regenerators with radial flow |
US6631754B1 (en) * | 2000-03-14 | 2003-10-14 | L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Regenerative heat exchanger and method for heating a gas therewith |
KR100463550B1 (en) * | 2003-01-14 | 2004-12-29 | 엘지전자 주식회사 | cooling and heating system |
DE102010047025A1 (en) * | 2010-09-30 | 2012-04-05 | Uhde Gmbh | Apparatus and method for establishing a control element for controlling the gas pressure of a coke oven chamber without strain-related deviation of the control arrangement |
GB2485836A (en) | 2010-11-27 | 2012-05-30 | Alstom Technology Ltd | Turbine bypass system |
DE102012016142B3 (en) | 2012-08-08 | 2013-10-17 | Saarstahl Ag | Hot blast lance with a nozzle block arranged at the hot blast outlet |
CN103032961B (en) * | 2012-12-20 | 2015-07-15 | 北京航空航天大学 | Anti-slag high-temperature and high-pressure pure air heat storage type heating system |
CN103901134A (en) * | 2014-04-15 | 2014-07-02 | 安徽中烟工业有限责任公司 | Measurement device for HCN releasing amount in oxygen-poor combustion of tobaccos |
CN105318758A (en) * | 2014-07-04 | 2016-02-10 | 陕西科弘厨房工程设备有限公司 | Heat-conducting-oil/corundum-ball double-medium heat storage device |
CN107990760A (en) * | 2017-12-30 | 2018-05-04 | 肖英佳 | The anhydrous domestic radiator of safety |
CN110553527A (en) * | 2019-07-23 | 2019-12-10 | 周昊 | Multilayer packed bed heat-retaining device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL298230A (en) * | 1900-01-01 | |||
US2272108A (en) * | 1940-01-19 | 1942-02-03 | Research Corp | Regenerative stove |
US3378244A (en) * | 1966-01-12 | 1968-04-16 | Dresser Ind | Pebble heat exchanger |
DE2419778A1 (en) * | 1974-02-25 | 1975-09-04 | Boehler & Co Ag Geb | Regenerative heat exchanger for high temperature gases - contains spherical heat carriers in ceramic or steel formed elements |
FR2473695A1 (en) * | 1980-01-09 | 1981-07-17 | Pechiney Aluminium | CYCLE INVERSION HEAT RECOVERY EXCHANGER AND APPLICATION TO HEAT RECOVERY IN FUME FLAME FURNACE |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2751621C2 (en) * | 1977-11-18 | 1986-08-21 | Linde Ag, 6200 Wiesbaden | Hot blast stove |
JPS56130528A (en) * | 1980-03-18 | 1981-10-13 | Kikuko Kobayashi | Heat accumulating device |
US4604051A (en) * | 1984-08-16 | 1986-08-05 | Gas Research Institute | Regenerative burner |
GB2170584B (en) * | 1985-02-04 | 1988-02-17 | British Gas Plc | Regenerative heating systems |
EP0266463A1 (en) * | 1986-11-04 | 1988-05-11 | British Gas plc | A regenerator for a regenerative heating system |
-
1988
- 1988-12-10 DE DE3841708A patent/DE3841708C1/de not_active Expired
-
1989
- 1989-11-29 AU AU45672/89A patent/AU624450B2/en not_active Expired
- 1989-12-01 EP EP89122226A patent/EP0373450A1/en not_active Withdrawn
- 1989-12-01 US US07/444,231 patent/US5052918A/en not_active Expired - Lifetime
- 1989-12-06 HU HU896446A patent/HU206745B/en not_active IP Right Cessation
- 1989-12-07 ZA ZA899382A patent/ZA899382B/en unknown
- 1989-12-08 JP JP1317898A patent/JP2509350B2/en not_active Expired - Lifetime
- 1989-12-08 CN CN89109229A patent/CN1016993B/en not_active Expired
- 1989-12-08 MX MX018647A patent/MX171490B/en unknown
- 1989-12-08 SU SU894742577A patent/SU1739857A3/en active
- 1989-12-09 KR KR1019890018244A patent/KR0131200B1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL298230A (en) * | 1900-01-01 | |||
US2272108A (en) * | 1940-01-19 | 1942-02-03 | Research Corp | Regenerative stove |
US3378244A (en) * | 1966-01-12 | 1968-04-16 | Dresser Ind | Pebble heat exchanger |
DE2419778A1 (en) * | 1974-02-25 | 1975-09-04 | Boehler & Co Ag Geb | Regenerative heat exchanger for high temperature gases - contains spherical heat carriers in ceramic or steel formed elements |
FR2473695A1 (en) * | 1980-01-09 | 1981-07-17 | Pechiney Aluminium | CYCLE INVERSION HEAT RECOVERY EXCHANGER AND APPLICATION TO HEAT RECOVERY IN FUME FLAME FURNACE |
Non-Patent Citations (1)
Title |
---|
SOVIET INVENTIONS ILLUSTRATED, Woche K15, 25. Mai 1983, Sektion Mechanical, Zusammenfassung Nr. E9756, Derwent Publications Ltd, London, GB; & SU-A-932 189 (METAL HEAT TECHN. RE.) 30-05-1982 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4108744C1 (en) * | 1991-03-18 | 1992-08-27 | Atz Energie Umwelt Stroemungstechnik | Gas heating jacketed regenerator with heat storage medium - has central chamber surrounded by layer of pebbles or granular material |
DE4236619A1 (en) * | 1992-10-29 | 1994-05-05 | Air Liquide | Process and regenerator for heating gases |
WO1994010519A1 (en) * | 1992-10-29 | 1994-05-11 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method and regenerator for reheating gases |
US5547016A (en) * | 1992-10-29 | 1996-08-20 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for heating a gas in a regenerator |
US5690164A (en) * | 1992-10-29 | 1997-11-25 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method and regenerator for heating a gas |
EP0611270A1 (en) * | 1993-02-10 | 1994-08-17 | DISTRIGAZ Société anonyme dite: | Preheating device for a gaseous fluid |
WO2014082716A1 (en) * | 2012-11-30 | 2014-06-05 | Saarstahl Ag | Method for operating a regenerator (pebble heater) and regenerator |
Also Published As
Publication number | Publication date |
---|---|
CN1043198A (en) | 1990-06-20 |
JP2509350B2 (en) | 1996-06-19 |
US5052918A (en) | 1991-10-01 |
AU4567289A (en) | 1990-07-19 |
JPH02272256A (en) | 1990-11-07 |
KR900010008A (en) | 1990-07-06 |
HU206745B (en) | 1992-12-28 |
SU1739857A3 (en) | 1992-06-07 |
CN1016993B (en) | 1992-06-10 |
ZA899382B (en) | 1990-08-29 |
MX171490B (en) | 1993-10-29 |
HU896446D0 (en) | 1990-02-28 |
KR0131200B1 (en) | 1998-04-15 |
DE3841708C1 (en) | 1989-12-28 |
AU624450B2 (en) | 1992-06-11 |
HUT56142A (en) | 1991-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0373450A1 (en) | Process and regenerative heat exchange apparatus for gas heating | |
DE2952216A1 (en) | METHOD AND DEVICE FOR RECOVERY AND RECYCLING OF HEAT FROM HOT GASES, ESPECIALLY FROM THE EXHAUST GASES OF METALLURGICAL PROCESSES | |
DE8100050U1 (en) | RECUPERATIVE HEAT EXCHANGER WITH CYCLE SWITCHING | |
EP0206262A1 (en) | Checkerwork for vertical regenerator chambers of glass furnaces | |
DE2229656A1 (en) | HEAT-STORING INSTALLATIONS OF THERMAL RECUPERATORS AND COMPONENTS FOR THIS | |
DE3855102T2 (en) | EXTERNALLY HEATED TURNTUBES | |
DE4108744C1 (en) | Gas heating jacketed regenerator with heat storage medium - has central chamber surrounded by layer of pebbles or granular material | |
DE1297635B (en) | Hot blast stove | |
DE1205499B (en) | Device for carrying out endothermic gas reactions | |
EP0065944A1 (en) | Tiled stove | |
DE8815394U1 (en) | Regenerator for heating gases | |
DE2748576C3 (en) | Regenerative heater | |
DE2019078C3 (en) | Refractory brick containing SiC for the lining of discontinuously operated coking ovens | |
DE934228C (en) | Fireproof regenerative furnace, in particular for generating heating gas | |
AT35050B (en) | Refractory sizing stone for furnace and furnace systems. | |
DE7806480U1 (en) | ROTATING HEAT EXCHANGER | |
DE102018116917A1 (en) | Method and device for processing lumpy, mineral material | |
DE2164994B2 (en) | Recuperative coke oven | |
DE2527509C3 (en) | Hot blast stove | |
DE330727C (en) | Movable lying muffle furnace | |
AT62063B (en) | Chamber furnace for firing chamotte, pottery and the like. | |
DE3725069A1 (en) | Honeycomb fibre lining | |
DE892807C (en) | Electric resistance furnace with internal heating | |
DE3205284C2 (en) | ||
AT111834B (en) | Circulating muffle furnace. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19891201 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE DE FR GB IT LU NL SE |
|
TCNL | Nl: translation of patent claims filed | ||
ITCL | It: translation for ep claims filed |
Representative=s name: JACOBACCI CASETTA & PERANI S.P.A. |
|
EL | Fr: translation of claims filed | ||
17Q | First examination report despatched |
Effective date: 19910314 |
|
GBC | Gb: translation of claims filed (gb section 78(7)/1977) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19920917 |