[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0346417B1 - Ajutage a tourbillon vaporisateur de liquides - Google Patents

Ajutage a tourbillon vaporisateur de liquides Download PDF

Info

Publication number
EP0346417B1
EP0346417B1 EP89900234A EP89900234A EP0346417B1 EP 0346417 B1 EP0346417 B1 EP 0346417B1 EP 89900234 A EP89900234 A EP 89900234A EP 89900234 A EP89900234 A EP 89900234A EP 0346417 B1 EP0346417 B1 EP 0346417B1
Authority
EP
European Patent Office
Prior art keywords
whirl
nozzle
swirl
central axis
outlet opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89900234A
Other languages
German (de)
English (en)
Other versions
EP0346417A1 (fr
Inventor
Zoltan Farago
Tom Schork
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority to EP93118034A priority Critical patent/EP0604741B1/fr
Publication of EP0346417A1 publication Critical patent/EP0346417A1/fr
Application granted granted Critical
Publication of EP0346417B1 publication Critical patent/EP0346417B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3478Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet the liquid flowing at least two different courses before reaching the swirl chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3421Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
    • B05B1/3431Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves
    • B05B1/3442Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves the interface being a cone having the same axis as the outlet

Definitions

  • the invention relates to a swirl nozzle for atomizing a liquid with a swirl chamber rising above a swirl chamber floor and tapering towards a nozzle outlet opening opposite the swirl chamber floor, with at least one swirl channel offset laterally with respect to a central axis of the swirl chamber and having a swirl parameter of> 1 a displacement body which rises from the swirl chamber base and prevents the formation of an air core in a base-side swirl chamber region, which is arranged concentrically to the central axis and has an outer diameter in the base part which corresponds to at least one diameter of the nozzle outlet opening.
  • the liquid to be atomized flows through the swirl channel, preferably in a tangential direction into the swirl chamber, in which it moves in the direction of the central axis of the swirl chamber, increasing its peripheral speed. Since the liquid cannot flow to the central axis with a swirl parameter of the swirl nozzle of> 1 due to the centrifugal forces, an air core extends around the central axis, which extends over the entire height of the swirl chamber, around which the liquid flows and thus passes through the nozzle outlet opening as a rotating liquid film ring and then forms a liquid film cone, which due to its own instability disintegrates into small liquid droplets.
  • a swirl nozzle of the type mentioned in the opening paragraph is disclosed in FR-A-1 560 603. This also shows a swirl nozzle in which the swirl parameter is very likely to be> 1 and which also has a conical displacement body.
  • the swirl nozzles known from US-A-2,065,161, GB-A-162 172 and DE-A-175 561 are not relevant to the present invention in that the swirl parameter is ⁇ 1 or not at all in accordance with these constructions Air core results.
  • a swirl parameter ⁇ 0.5 was determined in GB-A-162 172 and in DE-A-175 561 it can be assumed that there is no air core at all. In addition, it emerges from this document that the cone body serves to change the opening angle of the spray cone, which speaks against the displacement of an air core. In addition, a swirl parameter of approximately 0.4 was determined.
  • a large air core diameter is desired, which can only be achieved with a correspondingly large input swirl pulse of the liquid jet.
  • this could be increased by increasing the tangential velocity of the liquid jet.
  • this tangential speed is practically determined by a sensibly maximum pressure and a minimal cross section due to the risk of blockage.
  • the input swirl pulse could be increased by increasing the so-called swirl channel eccentricity, that is, the distance of a center line of the swirl channel from the central axis.
  • this measure increases the swirl losses which depend on an air core diameter and an air core length, so that in practice no improvements are possible with regard to the swirl channel eccentricity in the known swirl nozzles.
  • the invention is therefore based on the object of improving a swirl nozzle of the generic type in such a way that it permits an increase in the input swirl pulse with constant or lower swirl losses.
  • the provision of the displacement body according to the invention has the advantage that the swirl chamber in the bottom area has the shape of an annular space surrounding the displacement body, so that no air core can form in this area, which leads to the swirl losses already described.
  • the swirl channel eccentricity can be chosen larger without increasing the swirl losses overall, so that a good atomization quality of the swirl nozzles according to the invention can be achieved. It is even possible to increase the swirl channel eccentricity to such an extent that the tangential velocity of the liquid jet can be reduced and thus a cross section of the swirl channels can be chosen larger, so that the risk of clogging of the nozzle is reduced.
  • the displacement body is provided with a central return bore, the further features of which is described, for example, in DE-A-3 703 075.
  • the solution according to the invention offers the possibility of arranging the return bore eccentrically to the displacement body. It is particularly advantageous here if the return bore is arranged at a distance from the central axis of the displacement body which corresponds to at least one radius of the nozzle outlet opening, so that a residual air core which possibly arises in the region of the outlet opening does not stand above the return bore and thus influences it.
  • the return bores are arranged at a distance from the central axis which is smaller than the distance from the mouth opening of the swirl channels.
  • a swirl nozzle is advantageous which has an outer body which comprises the nozzle outlet opening and a recess which adjoins it and which extends along the central axis and has a larger cross section with increasing extension, and in this recess an inner body with a form which is perpendicular to the central axis Swirl chamber floor can be used so that the swirl chamber floor and wall surfaces of the recess lying between this and the nozzle outlet opening limit the swirl chamber, and in which the wall surfaces of the recess are formed by lateral surfaces of truncated cones that are coaxial with the central axis, a partial region of the wall surfaces of the recess being a conical seat surface for the Form a truncated cone-shaped inner body and the conical seat surface has a smaller cone angle than a further portion of the swirl chamber wall adjoining the nozzle outlet opening.
  • the swirl nozzle according to the invention can be manufactured particularly easily, since a conical surface can be easily produced using conventional methods.
  • the height of the swirl chamber and thus the length of the air core can be kept as small as possible that the swirl chamber wall forms a conical surface with the largest possible cone angle, but which would result in a poor positive fit of the inner part, so that the wall surfaces of the recess which form the conical seat surface for the frustoconical inner part has a smaller cone angle than a portion of the swirl chamber wall adjoining the nozzle outlet opening.
  • the displacement body is a cone with a cone angle corresponding to the partial area adjoining the nozzle outlet opening.
  • the displacement body extends with a mean diameter corresponding at least to the diameter of the nozzle outlet openings over at least approximately half the height of the swirl chamber in the direction of the nozzle outlet opening.
  • the displacement body extends over at least approximately two thirds of the height of the swirl chamber with a mean diameter corresponding at least to the diameter of the nozzle outlet openings.
  • the surfaces facing the swirl chamber wall run at a constant distance therefrom, so that the swirl chamber in this area is an annular channel with a constant hydraulic diameter, which distributes the load evenly circulating liquid causes.
  • the distance corresponds approximately to a width of the swirl channel.
  • the swirl chamber it has proven to be expedient if it is designed to be rotationally symmetrical to the central axis, so that this has the consequence that the displacement body must also be designed to be rotationally symmetrical.
  • a width of the annular region corresponds to an extension of the mouth opening from an outer edge of this region in the radial direction inwards, that is to say that this ring-shaped area is only so wide that it can accommodate the opening of the swirl channel.
  • the swirl channel in the mouth region runs essentially tangentially to the swirl chamber wall.
  • a particularly large swirl channel eccentricity can, however, be achieved if the swirl channel with a mouth opening designed as a segment of a circle opens into the swirl chamber along an outer edge region of the swirl chamber base, since in this case the radial extent of the mouth opening in the direction of the central axis only corresponds to a width of the swirl channel and the liquid jet thus flows along the swirl chamber wall when entering the swirl chamber and flows into the swirl chamber at the greatest possible distance from the central axis for a given swirl chamber diameter.
  • the swirl duct runs in a straight line from a pressure chamber to the swirl chamber. It is even more advantageous, however, if the swirl duct runs spirally with respect to the central axis from a pressure chamber to the swirl chamber, since in this case the swirl duct can be provided with a smaller slope with respect to the central axis.
  • the liquid jet emerging from it has the largest possible tangential velocity component in a plane perpendicular to the central axis and the smallest possible velocity component parallel to the central axis.
  • the swirl channels will preferably have a substantially constant cross section.
  • a swirl nozzle for atomizing a liquid shows an outer body 10, from the outside 12 of which a nozzle outlet opening 14 designed as a cylindrical bore extends into an interior of the outer body 10 extends into it.
  • This nozzle outlet opening 14 is adjoined by an essentially conical recess 16, the wall surfaces 18 of which form the lateral surfaces of a truncated cone which is arranged coaxially with the nozzle outlet opening 14 and is rotationally symmetrical with respect to a central axis 20.
  • An inner body 22 is inserted into this recess 16, which has a circular-cylindrical region 24, which is adjoined by a frustoconical region 26, the base surface 28 of which is identical to the circular surface.
  • This frustoconical region 26 is formed in such a way that lateral surfaces 30 are the same section of the conical jacket on which the wall surfaces 18 of the recess 16 also lie.
  • the inner body 22 is held in a form-fitting manner in the recess 16 by a conical seat, the region of the wall surfaces 18 of the recess 16, in which the lateral surfaces 30 of the frustoconical region 26 of the inner body 22 abut, are referred to as conical seat surfaces 32 of the recess 16.
  • a surface of the frustoconical region 26 of the inner body 22 opposite the base surface 28 and oriented parallel thereto extends perpendicularly to the central axis 20 and forms a swirl chamber floor 34.
  • a region of the recess 16 lying above this swirl chamber floor 34 is referred to as the swirl chamber 36, the swirl chamber 36 delimiting wall surfaces 18 of the recess 16 are referred to as swirl chamber walls 38.
  • a space enclosed by the recess 16 and arranged on a side of the inner body 22 opposite the swirl chamber 36 is referred to as the pressure space 40, in which the liquid intended for atomization is kept under pressure.
  • a plurality of swirl channels 42 lead from this pressure chamber 40 into the swirl chamber 36, whereby these swirl channels 42, as can be seen in particular from FIG.
  • a center line 44 of each swirl duct 42, at least in the region of an opening 46 thereof, in the swirl chamber base 34 has a distance e from the central axis 20 and thus from the mouth opening 46, a liquid jet 48 emerges which, when leaving the orifice 46, lies in a plane 50 parallel to the central axis 20 and at a distance e from it and has a speed component 52 parallel to the swirl chamber base 34 and a speed component 54 parallel to the central axis 20.
  • the distance e is generally referred to as eccentricity e of the swirl nozzle.
  • a fluid vortex 56 is formed about the central axis 20, in the center of which a cylinder-like air core 58 remains coaxial to the central axis 20, around which the fluid vortex 56 flows, so that a liquid film cone 60 finally emerges from the nozzle outlet opening 14 its own instability breaks down into small liquid droplets.
  • a swirl parameter S o of such a nozzle is defined as follows where ⁇ is the slope of the swirl channels 42 relative to the swirl chamber base 34, the exit radius ⁇ a is the radius of the nozzle outlet opening 14 and f1, f2, f3, f4 are the cross-sectional areas of the swirl channels 42.
  • is the slope of the swirl channels 42 relative to the swirl chamber base 34
  • ⁇ a is the radius of the nozzle outlet opening 14
  • f1, f2, f3, f4 are the cross-sectional areas of the swirl channels 42.
  • a definition of the swirl parameter can also be found in the research report DFVLR-FB 87-25 (ISSN 0171-1342), page 22.
  • an air core always occurs with a swirl nozzle if the swirl parameter So> 1.
  • the occurrence of an air core can also be made dependent on the ratio of the sum of all swirl channel areas f 1, f 2, f 3, f4 to the cross-sectional area of the nozzle outlet opening, which should be less than 5 for this purpose.
  • FIGS. 3 to 5 Based on this known design of a known swirl nozzle, a first exemplary embodiment of a swirl nozzle according to the invention, shown in FIGS. 3 to 5, shows the same parts and features, which are therefore also provided with the same reference numerals in FIGS. 3 to 5.
  • a displacement body 62 is placed on the swirl chamber base 34, which has a cylindrical base 64 to which a cone-shaped tip 66 is connected, with a base 68 of the cone-shaped tip 66 the end face 70 of the cylindrical base 64 facing this is identical.
  • the entire displacement body 62 is designed to be rotationally symmetrical with respect to the central axis 20, the cylindrical base 64 extending in the radial direction with respect to the central axis 20 up to the mouth openings 46 of the swirl channels 42, so that the displacement body 62 covers the swirl chamber base 34 in its central region 72 and a cylindrical outer surface 74 of the cylindrical base 64 delimits a free annular region 76 of the swirl chamber base 34 towards the inside.
  • cylindrical outer surface 74 of the cylindrical base and a section of the swirl chamber wall 38 arranged on the opposite side of the swirl chamber bottom as well as the circular region of the swirl chamber base 34 form an annular space 80, into which the liquid jet 48 is injected tangentially to the outer surface 74 of the cylindrical base 64.
  • a surface 82 of the conical tip 66 designed as a conical surface preferably runs at a distance b from and parallel to an outlet-side section 84 of the swirl chamber wall 38, the width b preferably corresponding approximately to a width b of the swirl channels 42 .
  • the swirl chamber 36 comprises an annular space 80 arranged on the swirl chamber bottom which is followed by a conical jacket-shaped space 86 delimited by the conical surface 82 of the displacement body 62 and the outlet-side section 84 of the swirl chamber wall, which in turn merges into the cylindrical bore of the nozzle outlet opening 14.
  • FIGS. 6 and 7 A second embodiment of a swirl nozzle according to the invention, shown in FIGS. 6 and 7, is provided with the same reference numerals insofar as it is identical to the first embodiment of FIGS. 3 to 5, so that the description of the corresponding parts refers to the above statements is referred.
  • the displacement body 62 no longer shows a conical tip, but rather a truncated cone 88 seated on the cylindrical base 64 with a front surface 90 opposite the base surface 68 and parallel to the swirl chamber base 34, which lies in the swirl chamber 36 and has a diameter, which is bigger than a diameter of the nozzle outlet opening 14.
  • the displacement body 62 does not extend over the entire height of the swirl chamber from the swirl chamber floor 34 to a transition 92 of the swirl chamber walls 38 into the nozzle outlet opening 14, but ends with the front surface 90 at a distance therefrom.
  • FIGS. 8 and 9 the same reference numerals are used insofar as the same parts are present as in the exemplary embodiments described above, so that reference can be made to the above description.
  • the swirl channels 42 are no longer notches with a straight center line 44, but instead run Although along the lateral surfaces 30 of the inner body 22 as a straight line, but they show a mouth opening 46 designed as a circular ring segment 94, which thus offers the possibility of reducing the annular region 76 of the swirl body base 34 to the width b of the swirl channel 42, so that the distance e of the beam 48 emerging from the opening 46 from the central axis 20 is almost identical to an outer radius of the swirl chamber base 34.
  • the displacement body 62 can thus only be designed as a conical tip 66, the base 68 of the conical tip 66 having a radial extension with respect to the central axis 20, which extends as far as an inner edge 96 of the orifices 46 of the swirl channels 42 designed as a circular ring segment.
  • the swirl chamber is thus reduced to the cone-shaped space 86, which lies between the conical surface 82 of the displacement body 62 and the swirl chamber wall 38.
  • FIGS. 10 and 11 A fourth exemplary embodiment of a swirl nozzle according to the invention, shown in FIGS. 10 and 11, shows the same parts as the exemplary embodiments described above insofar as the same reference numerals are used.
  • the fourth exemplary embodiment differs in that the wall surfaces of the recess 16 have two different sections 98 and 100, the section 98 directly adjoining the nozzle outlet opening 14 corresponding to a truncated cone surface whose taper angle is greater than that of a truncated cone surface of the section 100 adjoining the section 98, the truncated cone surface of the section 98 along a line of contact 102 merges into the truncated cone surface of the partial area 100.
  • the conical seat surface 32 against which the inner body 22 with its lateral surfaces 30 rests, is formed by the partial region 100.
  • This inner body 22 is identical to the inner body 22 of the third exemplary embodiment with regard to the design of the swirl channels 42 and their mouth openings 46.
  • the displacement body 62 seated on the swirl chamber base 34 is designed as a conical tip 66, just as in the third exemplary embodiment.
  • the conical surface 82 now runs parallel to the partial area 98 at a distance b, which corresponds approximately to the width of the swirl channels 42.
  • the partial area 100 advantageously extends over the conical seat surface 32 in the direction of the nozzle outlet opening 14 up to the contact line 102, so that the swirl chamber 36
  • an annular space 104 formed by the partial region 100 which extends beyond the conical seat surface 32 as far as the line of contact 102, the annular region 76 and part of the surface 82 of the displacer 62 and the conical jacket-shaped space 86, delimited by the partial region 98 and the remaining part of the surface 82 of the displacer 62.
  • a fifth embodiment of the swirl nozzle according to the invention is largely identical to the fourth embodiment, so that the same parts are also provided with the same reference numerals.
  • the swirl channels 42 run from the pressure chamber 40 to the swirl chamber 36 in the region of the lateral surface 30 of the inner body 22 in a spiral with respect to the central axis 20, so that these swirl channels 42 have a smaller gradient than the central axis 20 the swirl channels 42 in the fourth embodiment.
  • the jet 48 emerging from the orifice 46 has a smaller component 54 perpendicular to the swirl chamber floor 34 and a larger tangential flow component parallel to the swirl chamber floor 34, and thus a larger overall speed component, with the same overall flow velocity as in the swirl duct 42 of the previous exemplary embodiment the central axis 20 in the swirl channel 36 can be reached.
  • a return bore 104 is additionally provided, which is arranged concentrically to the central axis 20 and opens into the swirl chamber 36 opposite the nozzle outlet opening 14 in the region of the displacement body 62.
  • the displacement body 62 is no longer a cone, but merely a truncated cone, the front surface of which is now formed by an opening 106 in the return bore 104.
  • This return bore 104 thus extends through the entire displacement body 62 and also through the inner body 22 and is connected to a conventional return flow path, which is described, for example, in German patent application P 37 03 075.2.
  • a sixth exemplary embodiment, shown in FIGS. 14 to 16, represents a variant of the first exemplary embodiment, shown in FIGS. 3 to 5.
  • the same parts are also provided with the same reference numerals, so that with regard to their description can be referred to the explanations of the first embodiment.
  • this sixth exemplary embodiment shows return bores 110 machined into the conical surface 82 of the conical tip 66, which with longitudinal axes 112 perpendicular to the conical surface 82 penetrate into the displacement body 62 towards its central axis 20, whereby they coaxially into one Central axis arranged return channel 114 open out, which is of the conical Tip 66 of the displacer leads in the opposite direction into an interior of the nozzle.
  • the return bores 110 are not arranged in the region of the nozzle outlet opening 14, but in a region overlapped by the outlet-side section 84 of the swirl chamber wall 38, so that the return bore 110 does not lie in the region of an air core which arises in the nozzle outlet opening 14.
  • the so-called return mass flow ratio can be advantageously controlled without having to change a diameter of the return bore, as in the known arrangements of a return bore, which makes sense for the possible dimensions and viscosity ratios are always associated with difficulties.
  • a fifth embodiment of the swirl nozzle according to the invention, shown in FIGS. 17 and 18, has similarities to the second embodiment, so that the same parts are also provided with the same reference numerals.
  • the swirl channels 42 run from the pressure chamber 40 to the swirl chamber 36 in the region of the lateral surface 30 of the inner body 22 in a spiral with respect to the central axis 20, so that these swirl channels 42 have a smaller gradient than the central axis 20 Swirl channels 42 in the second embodiment.
  • the jet emerging from the orifice 46 has a smaller component 54 perpendicular to the swirl chamber floor 34 and a larger speed component parallel to the swirl chamber floor 34 and thus a larger tangential component with respect to the central axis at the same overall flow velocity as in the swirl duct 42 of the previous embodiment 20 is reachable in the swirl channel 36.
  • the orifices 46 are expanded to form a ring segment cutout 120, the width of which corresponds to the width of the annular swirl chamber base 34 between the frustoconical displacement body 62 and the swirl chamber walls 38.
  • the displacement body 62 rises directly from the swirl chamber base 34 without the cylindrical shoulder as a truncated cone 88 and extends to the front surface 90, which has a diameter approximately corresponding to the diameter of the nozzle outlet bore 14.
  • Particularly advantageous in the seventh embodiment is the fact that it is easy to manufacture and that the cross-sectional area of the orifices 46 is large, which leads to relatively low pressure losses due to viscosity.

Landscapes

  • Nozzles (AREA)

Abstract

Un ajutage à tourbillon vaporisateur de liquides comprend une chambre à tourbillon (86) agencée au-dessus d'un fond de chambre à tourbillon et qui rétrécit dans le sens d'un orifice de sortie (14) opposée au fond (34) de la chambre à tourbillon, au moins un canal à tourbillon (42) latéralement décalé par rapport à l'axe médian (20) de la chambre à turbillon (86) et qui s'ouvre dans celle-ci, et un paramètre de rotation égale à 1. Afin d'améliorer un tel ajutage de sorte que l'on puisse accroître l'impulsion initiale de tourbillonnement sans accroître ou même en diminuant les pertes de tourbillonnement, un corps de déplacement (62) agencé sur le fond (34) de la chambre à tourbillon empêche la formation d'un noyau d'air au fond de la chambre à tourbillon. Le corps de déplacement (62) est concentrique par rapport à l'axe médian (20) et présente dans sa section inférieure, près du fond de la chambre, un diamètre extérieur égal à au moins un diamètre de l'orifice de sortie (14) de l'ajutage.

Claims (14)

  1. Ajutage ou tuyère à tourbillon, destiné à la vaporisation ou pulvérisation d'un liquide, comportant une chambre de tourbillon (36) s'élevant au-dessus d'un fond de chambre de tourbillon (34) et allant en s'amenuisant vers une ouverture de sortie de tuyère (14) en opposition au fond de chambre de tourbillon (34), avec au moins un canal de tourbillon décalé latéralement par rapport à l'axe médian de la chambre de tourbillon (36) et aboutissant dans celle-ci, avec un paramètre de tourbillon de >1 avec un corps de refoulement (62) s'élevant par rapport au fond de la chambre de tourbillon (34) et destiné à empêcher la formation d'un noyau d'air (58) dans une partie de la chambre de tourbillon au niveau du fond, lequel corps de refoulement est agencé concentriquement par rapport à l'axe médian (20) et présente dans la partie du fond un diamètre extérieur qui correspond au moins au diamètre de l'ouverture de sortie de tuyère (14), caractérisé en ce que le corps de refoulement (62) est doté d'un alésage de retour (104, 110).
  2. Tuyère ou ajutage à tourbillon selon la revendication 1, caractérisée en ce que le corps de refoulement (62) est doté d'un alésage de retour central (104).
  3. Tuyère ou ajutage à tourbillon selon la revendication 1, caractérisée en ce que le corps de refoulement (62) est doté d'au moins un alésage de retour (110) disposé de façon excentrée.
  4. Tuyère ou ajutage à tourbillon selon la revendication 3, caractérisée en ce que l'alésage de retour (110) est disposé selon un espacement par rapport à l'axe médian (20) qui correspond au moins au rayon de l'ouverture de sortie de la tuyère (14).
  5. Tuyère ou ajutage à tourbillon selon la revendication 4, caractérisée en ce que l'alésage de retour (110) est disposé à un certain espacement par rapport à l'axe médian (20), espacement qui est inférieur à l'espacement de l'ouverture d'entrée (46) du canal à tourbillon (42).
  6. Ajutage ou tuyère à tourbillon selon l'une des revendications précédentes, caractérisé en ce que l'ajutage ou tuyère à tourbillon comporte un corps extérieur (10) qui comprend l'orifice de sortie de la tuyère (14) et un évidement (16) raccordé à celle-ci et s'étendant le long de l'axe médian (20) d'une section transversale s'agrandissant à mesure qu'augmente la distance, en ce que dans cet évidement (16) peut être incorporé par concordance de forme un corps interne (22) avec un fond de chambre à tourbillon (34) situé perpendiculairement à l'axe médian (20), de sorte que le fond de chambre à tourbillon (34) et les parois (18) situées entre celui-ci et l'ouverture de sortie de tuyère (14) de l'évidement (16) définissent la chambre à tourbillon (36), en ce que les surfaces de parois (18) de l'évidement (16) sont formées par des surfaces d'enveloppe d'éléments tronconiques coaxiaux par rapport à l'axe médian (20), en ce qu'une zone partielle (100) des surfaces de parois (18) de l'évidement (16) forme une surface de siège conique (32) pour le corps interne (22) conçu sous la forme tronconique et en ce que la surface de siège conique (32) présente un plus petit angle conique qu'une autre zone partielle (98) contiguë à l'orifice de sortie de tuyère (14) de la paroi de la chambre à tourbillon (38).
  7. Ajutage ou tuyère à tourbillon selon l'une des revendications précédentes, caractérisé en ce que le corps de refoulement (62) s'étend avec un diamètre moyen correspondant au moins au diamètre de l'ouverture de sortie de tuyère (14) sur au moins la mi-hauteur de la chambre à tourbillon (36) dans la direction de l'ouverture de sortie de tuyère (14).
  8. Tuyère ou ajutage à tourbillon selon la revendication 7, caractérisée en ce que le corps de refoulement (62) s'étend en direction de l'ouverture de sortie de tuyère (14) avec au moins un diamètre moyen correspondant au diamètre de l'ouverture de sortie de tuyère (14) sur au moins deux tiers de la hauteur de la chambre à tourbillon (36).
  9. Tuyère ou ajutage à tourbillon selon l'une des revendications précédentes, caractérisée en ce qu'une surface (74, 82) du corps de refoulement (62), surface dirigée vers une paroi de chambre à tourbillon (38), présente dans chaque plan de section transversale par rapport à l'axe médian (20) de façon circulaire chaque fois une distance constante par rapport à la paroi de la chambre à tourbillon (38).
  10. Ajutage ou tuyère à tourbillon selon la revendication 9, caractérisé en ce que dans une partie dirigée vers l'orifice de sortie de tuyère (14) du corps de refoulement (62) s'étend la surface (82) dirigée vers la paroi de la chambre à tourbillon (38) en espacement constant par rapport à cette surface.
  11. Tuyère ou ajutage à tourbillon selon la revendication 10, caractérisée en ce que la distance correspond à environ une largeur (b) du canal à tourbillon (42).
  12. Ajutage ou tuyère à tourbillon selon l'une des revendications précédentes, caractérisé en ce qu'une ouverture d'entrée (46) du canal à tourbillon (42) se situe dans une partie (76) annulaire s'étendant autour du corps de refoulement (62), partie annulaire (76) du fond de la chambre à tourbillon (34).
  13. Ajutage ou tuyère à tourbillon selon la revendication 12, caractérisé en ce que la largeur de la zone annulaire (76) est sélectionnée de façon à correspondre à l'étendue de l'ouverture d'entrée (46) à partir d'un bord extérieur de cette zone (76) dans la direction radiale vers l'intérieur.
  14. Ajutage ou tuyère à tourbillon selon la revendication 13, caractérisé en ce que le canal à tourbillon (42) aboutit avec une ouverture d'entrée conçue sous la forme d'un segment de cercle (94) le long d'une zone de bord extérieur du fond de la chambre à tourbillon (34) dans la chambre à tourbillon (36).
EP89900234A 1987-12-11 1988-12-09 Ajutage a tourbillon vaporisateur de liquides Expired - Lifetime EP0346417B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP93118034A EP0604741B1 (fr) 1987-12-11 1988-12-09 Buse à tourbillonnement pour pulvériser un liquide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE3742015 1987-12-11
DE3742015 1987-12-11
PCT/EP1988/001133 WO1989005195A1 (fr) 1987-12-11 1988-12-09 Ajutage a tourbillon vaporisateur de liquides

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP93118034A Division EP0604741B1 (fr) 1987-12-11 1988-12-09 Buse à tourbillonnement pour pulvériser un liquide
EP93118034.3 Division-Into 1993-11-06

Publications (2)

Publication Number Publication Date
EP0346417A1 EP0346417A1 (fr) 1989-12-20
EP0346417B1 true EP0346417B1 (fr) 1994-10-05

Family

ID=6342366

Family Applications (2)

Application Number Title Priority Date Filing Date
EP93118034A Expired - Lifetime EP0604741B1 (fr) 1987-12-11 1988-12-09 Buse à tourbillonnement pour pulvériser un liquide
EP89900234A Expired - Lifetime EP0346417B1 (fr) 1987-12-11 1988-12-09 Ajutage a tourbillon vaporisateur de liquides

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP93118034A Expired - Lifetime EP0604741B1 (fr) 1987-12-11 1988-12-09 Buse à tourbillonnement pour pulvériser un liquide

Country Status (4)

Country Link
US (1) US5067655A (fr)
EP (2) EP0604741B1 (fr)
DE (2) DE3856185D1 (fr)
WO (1) WO1989005195A1 (fr)

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69210603T2 (de) * 1991-05-20 1996-09-12 Goeran Tuusula Sundholm Ausrüstung zur brandbekämpfung
US5655608A (en) * 1991-05-20 1997-08-12 Sundholm; Goeran Fire fighting equipment
US5392993A (en) * 1994-01-21 1995-02-28 Grinnell Corporation, Fire protection nozzle
US5522549A (en) * 1994-10-24 1996-06-04 Sheu; Kun N. Jet nozzle assembly for removing pests from crops
US5697553A (en) * 1995-03-03 1997-12-16 Parker-Hannifin Corporation Streaked spray nozzle for enhanced air/fuel mixing
SE504838C2 (sv) * 1995-08-31 1997-05-12 Astra Ab Anordning vid ett sprayrörsmunstycke
US5765752A (en) * 1996-01-26 1998-06-16 Dgh Systems, L.L.C. Airless atomizing nozzle and system for humidity control
US5921470A (en) * 1997-03-20 1999-07-13 Kamath; Bola R. Air-atomizing oil burner utilizing a low pressure fan and nozzle
US6470980B1 (en) 1997-07-22 2002-10-29 Rex A. Dodd Self-excited drill bit sub
US6029746A (en) * 1997-07-22 2000-02-29 Vortech, Inc. Self-excited jet stimulation tool for cleaning and stimulating wells
US5954047A (en) * 1997-10-17 1999-09-21 Systemic Pulmonary Development, Ltd. Methods and apparatus for delivering aerosolized medication
US6745763B2 (en) * 1998-10-27 2004-06-08 Garth T. Webb Vaporizing device for administering sterile medication
US6418925B1 (en) * 1999-05-20 2002-07-16 Iep Pharmaceutical Devices Inc. Low spray force, low retention atomization system
US6367471B1 (en) * 1999-11-01 2002-04-09 Sheffield Pharmaceuticals, Inc. Internal vortex mechanism for inhaler device
JP2001137349A (ja) * 1999-11-16 2001-05-22 Asahi Optical Co Ltd 内視鏡用噴霧具
JP3798928B2 (ja) * 1999-11-16 2006-07-19 ペンタックス株式会社 内視鏡用処置具のチューブと口金の接続構造
FR2802446B1 (fr) * 1999-12-16 2002-04-12 Oreal Buse pour recipient aerosol
DE10010881B4 (de) * 2000-02-29 2006-09-07 Torsten Dipl.-Ing. Clauß Verfahren und Vorrichtung zum Ausbringen von flüssigen Medien
US6962152B1 (en) * 2000-05-02 2005-11-08 Salter Labs Respiratory equipment spacer assembly
DE10024888B4 (de) * 2000-05-16 2008-10-16 Gea Wtt Gmbh Plattenwärmeübertrager mit Kältemittelverteiler
IT1318646B1 (it) * 2000-07-26 2003-08-27 Medical Internat Licensing N V Ugello pr somministrazioni e lavaggi nasali.
US8235919B2 (en) 2001-01-12 2012-08-07 Celleration, Inc. Ultrasonic method and device for wound treatment
DE10129367A1 (de) * 2001-06-20 2003-01-09 Klingenburg Gmbh Luftbefeuchtungsvorrichtung
AU2002340083A1 (en) 2001-09-28 2003-04-07 Kurve Technology, Inc Nasal nebulizer
DE10154237A1 (de) * 2001-11-07 2003-05-15 Steag Microparts Gmbh Zerstäuber für manuelle Betätigung
US20030102392A1 (en) * 2001-12-03 2003-06-05 Illinois Tool Works Inc. Internal impingement nozzle
US6814307B2 (en) * 2002-01-24 2004-11-09 Combustion Components Associates, Inc. Low NOx liquid fuel oil atomizer spray plate and fabrication method thereof
AU2003249623A1 (en) 2002-05-09 2003-12-12 Kurve Technology, Inc. Particle dispersion chamber for nasal nebulizer
US6659369B1 (en) * 2002-06-12 2003-12-09 Continental Afa Dispensing Company High viscosity liquid sprayer nozzle assembly
US6808122B2 (en) * 2002-08-19 2004-10-26 Illinois Tool Works, Inc. Spray gun with improved pre-atomization fluid mixing and breakup
WO2004034923A1 (fr) * 2002-10-17 2004-04-29 Braun Gmbh Douche buccale et buse de pulverisation pour la production d'un jet de liquide et systeme de nettoyage de dents
GB0300939D0 (en) * 2003-01-16 2003-02-12 Unilever Plc Method of creating a cosmetic spray
US7174717B2 (en) * 2003-12-24 2007-02-13 Pratt & Whitney Canada Corp. Helical channel fuel distributor and method
DE102005037972A1 (de) * 2005-08-11 2007-02-22 Krauss-Maffei Kunststofftechnik Gmbh Düse für Sprühkopf
WO2007101557A2 (fr) * 2006-03-07 2007-09-13 Boehringer Ingelheim International Gmbh Buse à turbulence
KR101386498B1 (ko) * 2006-05-17 2014-04-17 메드믹스 시스템즈 아게 분사 조립체를 구비한 분배 장치
US8491521B2 (en) * 2007-01-04 2013-07-23 Celleration, Inc. Removable multi-channel applicator nozzle
PL2152432T3 (pl) * 2007-06-04 2013-09-30 Recticel Automobilsysteme Gmbh Ciśnieniowa wirowa dysza rozpylająca do natryskiwania utwardzalnej kompozycji oraz związane z tym sposób i zastosowanie
US7712313B2 (en) * 2007-08-22 2010-05-11 Pratt & Whitney Canada Corp. Fuel nozzle for a gas turbine engine
EP2077132A1 (fr) 2008-01-02 2009-07-08 Boehringer Ingelheim Pharma GmbH & Co. KG Dispositif distributeur, dispositif de stockage et procédé pour la distribution d'une formulation
US8517009B2 (en) * 2008-07-13 2013-08-27 Map Pharmaceuticals, Inc. Methods and apparatus for delivering aerosolized medication
RU2485245C2 (ru) * 2008-11-11 2013-06-20 Геннадий Петрович Кузнецов Способ создания условий для предотвращения попадания иловых отложений с дна воронежского водохранилища в пруд-охладитель нововоронежской атомной электростанции
EP2662472B1 (fr) 2009-03-31 2019-02-27 Boehringer Ingelheim International Gmbh Procédé de revêtement d'une surface d'un composant
WO2010133294A2 (fr) 2009-05-18 2010-11-25 Boehringer Ingelheim International Gmbh Adapteur, dispositif d'inhalation et nébuliseur
CA2671171C (fr) 2009-07-06 2017-12-12 Northbasin Energy Services Inc. Trepan avec interrupteur de debit
WO2011064164A1 (fr) 2009-11-25 2011-06-03 Boehringer Ingelheim International Gmbh Nébuliseur
US10016568B2 (en) 2009-11-25 2018-07-10 Boehringer Ingelheim International Gmbh Nebulizer
EP2504051B1 (fr) 2009-11-25 2019-09-04 Boehringer Ingelheim International GmbH Nébuliseur
US8517124B2 (en) * 2009-12-01 2013-08-27 Northbasin Energy Services Inc. PDC drill bit with flute design for better bit cleaning
US20110303767A1 (en) * 2010-06-11 2011-12-15 Scott Edward Smith Dispenser having convergent flow path
US9174229B2 (en) 2010-06-11 2015-11-03 The Procter & Gamble Company Dispenser having non-frustro-conical funnel wall
EP2585151B1 (fr) 2010-06-24 2018-04-04 Boehringer Ingelheim International GmbH Nébuliseur
US9332776B1 (en) * 2010-09-27 2016-05-10 ZoomEssence, Inc. Methods and apparatus for low heat spray drying
RU2594244C2 (ru) * 2011-01-31 2016-08-10 Син Ниппон Байомедикал Лэборэтэриз, Лтд. Устройства для интраназальной доставки
EP2694220B1 (fr) 2011-04-01 2020-05-06 Boehringer Ingelheim International GmbH Appareil médical pourvu d'un récipient
US9827384B2 (en) 2011-05-23 2017-11-28 Boehringer Ingelheim International Gmbh Nebulizer
EP2570110B1 (fr) * 2011-09-15 2017-05-03 Noxell Corporation Produit de laque aérosol pour styliser et/ou mettre en place les cheveux
EP2570190A1 (fr) * 2011-09-15 2013-03-20 Braun GmbH Buse de pulvérisation pour distribuer un fluide et pulvérisateur comportant une telle buse de pulvérisation
US20140339339A1 (en) * 2011-11-03 2014-11-20 Delavan Inc Airblast injectors for multipoint injection and methods of assembly
US9188063B2 (en) 2011-11-03 2015-11-17 Delavan Inc. Injectors for multipoint injection
WO2013152894A1 (fr) 2012-04-13 2013-10-17 Boehringer Ingelheim International Gmbh Pulvérisateur comprenant des moyens de détrompage
WO2015018904A1 (fr) 2013-08-09 2015-02-12 Boehringer Ingelheim International Gmbh Nébuliseur
ES2836977T3 (es) 2013-08-09 2021-06-28 Boehringer Ingelheim Int Nebulizador
AU2014355072A1 (en) 2013-11-26 2016-06-02 Alliqua Biomedical, Inc. Systems and methods for producing and delivering ultrasonic therapies for wound treatment and healing
CN103691587B (zh) * 2013-12-12 2017-03-29 中国神华能源股份有限公司 布液喷头和海水淡化喷淋装置
US9689571B2 (en) * 2014-01-15 2017-06-27 Delavan Inc. Offset stem fuel distributor
DK3139984T3 (da) 2014-05-07 2021-07-19 Boehringer Ingelheim Int Forstøver
PL3139981T3 (pl) 2014-05-07 2021-06-14 Boehringer Ingelheim International Gmbh Nebulizator
WO2015169732A1 (fr) 2014-05-07 2015-11-12 Boehringer Ingelheim International Gmbh Contenant, nébuliseur et utilisation
US9897321B2 (en) 2015-03-31 2018-02-20 Delavan Inc. Fuel nozzles
US10385809B2 (en) 2015-03-31 2019-08-20 Delavan Inc. Fuel nozzles
CA3028004C (fr) 2016-06-21 2020-04-28 I3-Edge Ltd. Procede et systeme d'extraction d'elements tubulaires et similaires
DE202016103825U1 (de) * 2016-07-14 2017-10-20 SWEDEX GmbH Industrieprodukte Drallkörper sowie Kegeldüse mit einem solchen Drallkörper
FR3055560B1 (fr) * 2016-09-02 2021-05-07 Albea Le Treport Tete de distribution d'un fluide sous pression et bombe aerosol ou pompe a actionnement manuel comprenant une telle tete de distribution
CN106621785A (zh) * 2017-02-23 2017-05-10 东方电气集团东方锅炉股份有限公司 一种锅炉烟气三氧化硫脱除装置及方法
DE102017113207A1 (de) * 2017-06-15 2018-12-20 Alfons Kenter Zerstäuberdüse zum Zerstäuben eines Fluids
US9993787B1 (en) 2017-08-04 2018-06-12 ZoomEssence, Inc. Ultrahigh efficiency spray drying apparatus and process
US10486173B2 (en) 2017-08-04 2019-11-26 ZoomEssence, Inc. Ultrahigh efficiency spray drying apparatus and process
US10155234B1 (en) 2017-08-04 2018-12-18 ZoomEssence, Inc. Ultrahigh efficiency spray drying apparatus and process
JP7177136B2 (ja) 2017-08-04 2022-11-22 ズーメッセンス,インコーポレイテッド 超高効率噴霧乾燥装置及びプロセス
US9861945B1 (en) 2017-08-04 2018-01-09 ZoomEssence, Inc. Ultrahigh efficiency spray drying apparatus and process
US10569244B2 (en) 2018-04-28 2020-02-25 ZoomEssence, Inc. Low temperature spray drying of carrier-free compositions
DE102020204849A1 (de) 2020-04-16 2021-10-21 Siemens Aktiengesellschaft Dralldüse mit äußerer Führungsrille
FR3112292A1 (fr) * 2020-07-07 2022-01-14 Aptar France Sas Tête de pulvérisation et dispositif de distribution de produit fluide comportant une telle tête
US12128118B2 (en) 2021-07-29 2024-10-29 The Procter & Gamble Company Aerosol dispenser containing a hairspray composition and a nitrogen propellant
US20230090908A1 (en) * 2021-09-23 2023-03-23 GM Global Technology Operations LLC Paint spray nozzle for a paint spray system
CN116116590B (zh) * 2023-04-18 2023-06-13 箭牌家居集团股份有限公司 出水装置及花洒

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE314080C (fr) *
US1008119A (en) * 1911-06-12 1911-11-07 Union Iron Works Co Liquid-atomizer.
DE280632C (fr) * 1912-08-19 1914-11-21
US1650128A (en) * 1920-04-05 1927-11-22 Babcock & Wilcox Co Method of and apparatus for spraying liquids
GB162172A (en) * 1920-04-09 1921-04-28 John Graves Mckean Improvements in atomisers for liquid fuel and other liquids
US1757023A (en) * 1926-10-20 1930-05-06 Ira E Smith Oil burner
DE556863C (de) * 1928-04-23 1932-08-15 Gustav Schlick Zerstaeuberduese
US2017467A (en) * 1934-11-23 1935-10-15 Leavitt R Loomis Spray nozzle
US2065161A (en) * 1935-01-28 1936-12-22 Thompson Mfg Company Full circle sprinkler
US2176356A (en) * 1936-05-23 1939-10-17 Jens A Paasche Fluid spraying apparatus
US2374041A (en) * 1942-01-31 1945-04-17 Gen Furnaces Corp Variable capacity atomizing device
US2984421A (en) * 1958-08-11 1961-05-16 Sarah A Hession Adjustable aerosol device
FR1560603A (fr) * 1968-01-30 1969-03-21
DE1750561B2 (de) * 1968-05-14 1976-08-05 Hoechst Ag, 6000 Frankfurt Trommelfoermig gestaltete spiralduese zum zerstaeuben verunreinigter fluessigkeiten
US3684194A (en) * 1970-10-29 1972-08-15 Delavan Manufacturing Co Spray nozzle
DE2814246A1 (de) * 1978-04-03 1979-10-11 Metallgesellschaft Ag Ruecklaufduese
DE3703075A1 (de) * 1987-02-03 1988-08-11 Deutsche Forsch Luft Raumfahrt Drallduese zum zerstaeuben einer fluessigkeit

Also Published As

Publication number Publication date
US5067655A (en) 1991-11-26
EP0604741A2 (fr) 1994-07-06
WO1989005195A1 (fr) 1989-06-15
DE3856185D1 (de) 1998-06-18
EP0346417A1 (fr) 1989-12-20
DE3851750D1 (de) 1994-11-10
EP0604741A3 (fr) 1994-11-30
EP0604741B1 (fr) 1998-05-13

Similar Documents

Publication Publication Date Title
EP0346417B1 (fr) Ajutage a tourbillon vaporisateur de liquides
DE1601958B2 (fr)
DE2542240A1 (de) Hohlkegelduese zum zerstaeuben von fluessigkeit
DE9314990U1 (de) Strahlregler zum Anschluß an Sanitärarmaturen
DE68926396T2 (de) Plasmabrenner für übertragenen lichtbogen
DE2455738B2 (de) Spruehduese
EP1543882B1 (fr) Buse à jet conique
EP0801990B1 (fr) Buse de pulvérisation, en particulier pour la pulvérisation d'eau dans les installations de protection contre l'incendie
DE2141291C3 (de) Sprühdüse zur Erzielung eines kegelstumpfförmigen Sprühnebels
DE3309742C2 (fr)
DE69913442T2 (de) Flüssigkeits-Zerstäuber
DE2919074C2 (fr)
DE3711695A1 (de) Verteilerkappe fuer eine einrichtung zur extrakorporalen behandlung von blut oder blutbestandteilen
DE3621241C1 (de) Verfahren zur Herstellung eines Dichtringes mit einer Dichtlippe
DE1942022A1 (de) Einteiliger Spruehkopf fuer Aerosolbehaelter
DE4404881B4 (de) Schreibgerät
EP0646679B1 (fr) Filtre pour robinets d'eau
DE19750068C1 (de) Axial-Hohlkegeldüse zum Versprühen flüssiger Medien
DE102022104631A1 (de) Staukörper, Staukörperanordnung und Gleichstromzyklonabscheider
DE4040733A1 (de) Einrichtung zur herstellung eines materialstranges mit zentraler oeffnung
DE3026014A1 (de) Duese zur erzeugung eines spraystrahles
DE3724234C2 (fr)
DE2437644B2 (de) Sauerstofflanze für Konverter
DE3703075A1 (de) Drallduese zum zerstaeuben einer fluessigkeit
DE2201182C3 (de) Sprühdüse zur Zerstäubung von Flüssigkeiten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890727

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): CH DE LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHE FORSCHUNGSANSTALT FUER LUFT- UND RAUMFAHR

17Q First examination report despatched

Effective date: 19920814

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE LI

REF Corresponds to:

Ref document number: 3851750

Country of ref document: DE

Date of ref document: 19941110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991117

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19991220

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011002