[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0233191B1 - Circuit de reglage de l'alimentation haute tension d'un filtre electrostatique - Google Patents

Circuit de reglage de l'alimentation haute tension d'un filtre electrostatique Download PDF

Info

Publication number
EP0233191B1
EP0233191B1 EP86902787A EP86902787A EP0233191B1 EP 0233191 B1 EP0233191 B1 EP 0233191B1 EP 86902787 A EP86902787 A EP 86902787A EP 86902787 A EP86902787 A EP 86902787A EP 0233191 B1 EP0233191 B1 EP 0233191B1
Authority
EP
European Patent Office
Prior art keywords
voltage
current
output
arrangement according
circuit arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86902787A
Other languages
German (de)
English (en)
Other versions
EP0233191A1 (fr
Inventor
Helmut Domann
Karl-Heinz HÄGELE
Hartmann Rupp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0233191A1 publication Critical patent/EP0233191A1/fr
Application granted granted Critical
Publication of EP0233191B1 publication Critical patent/EP0233191B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/68Control systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/903Precipitators

Definitions

  • the invention relates to a circuit arrangement for regulating the high voltage supply of an electrostatic filter operating in a soot switch according to the preamble of claim 1.
  • Such a circuit arrangement is known from WO 80/02583.
  • a soot separator for an internal combustion engine is described there.
  • a high voltage is generated by means of an inverter, a transformer and a rectifier.
  • the level of the DC voltage depends on the particle flow of the desired filter effect and the type of internal combustion engine.
  • the possible voltage range is 100 V - 10,000 and more (page 11, lines 13 to 17).
  • electrostatic filters which are used in industrial plants for the separation of dust particles from exhaust gases. These electrostatic filters are connected to high-voltage supplies, the voltage of which is regulated. The output voltage is fed to a regulator that controls the high voltage. A suitable high voltage can easily be generated for the electrostatic filters used in industrial plants due to the existing mains voltage.
  • These known circuit arrangements are not suitable for use in motor vehicles, where only a direct voltage of, for example, 12 volts is present as on-board voltage, for the high-voltage supply of soot switches used in industrial plants.
  • the electrostatic filter is operated in very different areas in the motor vehicle. Throughput, composition, soot loading, moisture and temperature of the exhaust gas change strongly in the entire speed and load range of the engine and in the transient operation of the engine with rapid change. The impedance of the discharge and the breakdown limit of the discharge strongly depend on these parameters and fluctuate accordingly.
  • the current fed into the filter and / or the operating voltage must be regulated accordingly to predetermined values or limited to the maximum permitted values in order to be able to guarantee proper functioning of the filter in the entire engine operating range in the long term. It should be noted that the electrostatic filters in motor vehicles, in particular, have to be operated unsteadily and with throughput fluctuations by a factor of 10, while the known filters in large-scale plants are operated essentially stationary with a fixed operating point.
  • the invention has for its object to achieve an optimal effect of the electrostatic filter in the entire operating range in a circuit arrangement of the type mentioned. This object is achieved in that the high-voltage output stage is a current source and the control circuit is designed to regulate the current fed into the filter.
  • the circuit arrangement according to the invention with the features of the main claim has the advantage that an optimal effect of the electrostatic filter in the entire engine operating range can be achieved with this control.
  • This quality criterion is met sufficiently well if it is ensured in the entire engine operating map that a certain basic current I G is always fed into the electrostatic filter.
  • the control circuit can then be designed very simply as a fixed value controller for the control variable filter operating current.
  • the regulation of the high-voltage supply is designed so that first of all attempts are made to regulate the basic current to a constant value which is largely independent of the engine operating point or other interfering influences. Only when the filter function has been fine-tuned can the output current, which forms the filter operating current, be additionally controlled as a function of the engine operating map.
  • a diode flyback converter can be used to generate a high voltage from a relatively low DC battery voltage, which enables the use of electrostatic filters in motor vehicles.
  • the high-voltage output stage is supplied on the primary side with a pulsating voltage, the pulse duty factor of which is set depending on the operating state of the soot switch. Monitoring the output voltage, the output current and the output power enables such a change in the pulse duty factor that predetermined maximum values are not exceeded, the power elements used are protected from destruction by a power limitation and the overall power consumption is kept as low as possible.
  • the diode flyback converter can be cascaded in several stages to increase the output voltage, the charging capacitor being able to be formed by the capacitance of the high-voltage cable on the output side. This eliminates the need for a special charging capacitor.
  • the primary winding of the flyback converter is preferably connected in series with a field effect transistor operated as an electrical switch, the control input (gate) of which is controlled by a pulse width modulator for setting the duty cycle.
  • the pulse width modulator changes the duty cycle so that the Output current and / or the output voltage and / or the output power of the high-voltage output stage are limited and kept within a predetermined working range.
  • the voltage drop of the switched-on, primary-side field-effect transistor can be used, since this transistor has a largely linear internal resistance when overdriven and thus the voltage drop across it between drain and source is proportional to the primary current.
  • the primary current should be limited to as high a value as possible, especially in the start-up phase. However, this must be smaller than the current that leads to the destruction of the field effect transistor. The higher the primary current during the start-up phase, the faster the output current and output voltage reach their operating values.
  • the filter is not switched off completely when a voltage breakdown occurs, but rather the operating current is reset or limited to a minimum current as quickly and briefly as possible. In this way, arcs that occur during breakdowns are quickly extinguished. However, a minimal function of the filter is still retained during the cut-off because the particles are still loaded by the minimal current.
  • limits are provided regarding the maximum current that can be fed into the filter and the maximum power and voltage that can be fed into the filter. Each of the three limits protects both the components of the high-voltage supply and the high-voltage components of the filter against overload.
  • the on-board electrical system is also protected by the power limitation from excessive power consumption by the electrostatic filter.
  • the additive feeding of the leakage current to the base current has the advantage that for each engine operating point and depending on the particular functionality of the isolator, the instantaneously, at least required operating current is fed into the filter.
  • This has the advantage that the vehicle electrical system is only loaded with the minimum required electrical power consumption by the filter.
  • the electronic power components can thus be designed for lower loads. The components are thus smaller, cheaper or can be partially saved entirely because the maximum leakage current that occurs is approximately 10 times greater than the leakage current averaged over time.
  • the additive feeding of the leakage current can be supplemented in the control circuit according to the invention in a particularly simple and therefore vehicle-compatible manner, because not the operating voltage but the filter current was selected as the control variable.
  • FIG. 1 shows the basic structure of a high-voltage supply for an electrostatic soot switch in the form of a greatly simplified block diagram.
  • An electrostatic soot switch 1 the construction of which is not the subject of the present invention, is supplied with the required high voltage by the output voltage U A of a high-voltage output stage 2.
  • the duty cycle T "of the output voltage U A, which is obtained by the ratio of pulse period T is defined with the period duration Tp, can be varied in function of the power P, the output voltage U A and the output current 1 8
  • the setting of the duty ratio T Takes place by means of a pulse width modulator 3, the output of which is connected to the control input of the high-voltage output stage 2.
  • the pulse width modulator 3 is in turn connected to a processing circuit 4 which monitors the power P, the output voltage U A and the output current I A.
  • the mode of operation of this circuit arrangement is described in more detail with reference to the more detailed block diagram shown in FIG.
  • a diode flyback converter 5 is essentially shown in FIG. transforms the voltage pulses generated on the primary side to the required high voltage on the output side.
  • the battery voltage U B is present at the primary winding P, while the other end of the primary winding P is connected to ground via a field effect transistor 6.
  • the field effect transistor 6 is operated as an electrical switch and for this purpose is switched on and off periodically by the pulse width modulator 3 at its control input G. The on and off times of the field effect transistor 6 determine the duty cycle of the primary voltage and thus also the level of the output current I A.
  • the secondary side of flyback converter 5 consists of three secondary windings S1 to S3 and three diodes D1 to D3.
  • One of the output voltage U A proportional voltage U A ' may be at the tap a voltage divider can be tapped, which consists of the resistors R1 and R2.
  • the resistor R3 is connected in series to the secondary side of the flyback converter 5.
  • a signal 1 A "proportional to the output power P A can, however, also be tapped at the drain terminal D of the field effect transistor 6.
  • the voltage occurring there during the switch-on phase T; is namely largely proportional to the current flowing on the primary side and thus also largely proportional to the secondary-side output power P A , since the volume resistance of the field effect transistor 6 between drain and source S is approximately constant in the forward mode.
  • the block diagram shown in FIG. 3 contains a high-voltage output stage 2, which consists of a power output stage 7 and a diode flyback converter 5.
  • the power output stage 7 is fed by a driver circuit 8, which in turn is controlled by a pulse width modulator 3.
  • the pulse width modulator 3 sets the pulse duty factor of the primary voltage at the diode flyback converter 5 and thus also the output power P A via the driver circuit 8, the power output stage 7.
  • the power limiter 9 operates as a function of the operating voltage U B and has a limiting effect on the pulse duty factor in the pulse width modulator 3.
  • the pulse width modulator 3 is also fed by a minimum selection circuit 11 with a control signal which is dependent on the output current and / or on the output voltage.
  • this or a signal proportional to it is fed to an impedance converter 14, which is connected on the output side to the breakdown detection circuit 12, a power limiter 15, which can be provided as an alternative to the power limiter 9, and to a differential circuit 16.
  • the power limiters 9 and 15 can each limit the power individually. It is therefore only necessary to use one of the two power limiters in a circuit.
  • the power limiter 15 receives a signal proportional to the output voltage U A as an input variable. It converts this into a current setpoint such that the output power does not exceed a certain value.
  • the difference circuit 16 forms the difference between a maximum value U Amax provided for the output voltage and the output signal of the impedance converter 14.
  • the difference signal is fed to a voltage regulator 17 which is connected on the output side to the minimum value selection circuit 11.
  • the breakdown detection circuit 12 consists of a differentiator 18 on the input side, which is followed by a comparator 19 with hysteresis.
  • the output of the breakdown detection circuit 12 is connected to an input of a start buckling control 20 and the input of an automatic best point 21.
  • the start-up break control 20 has the effect that after the voltage breakdown has occurred, the output current I A remains briefly at a value which has been reduced to such an extent that an arc which may have arisen extinguishes. At the end of the pause, the current is quickly ramped up again with a defined gradient.
  • the best-point automatic 21 causes the output current I A to be set to a somewhat lower value after the voltage breakdown than before the breakdown.
  • This best-point automatic 21 has the effect that the number of voltage breakdowns during operation is kept small and thus also the times with a reduced filter function.
  • the outputs of the best-point automatic 21 and the start-up buckling control 20 as well as the sum signal from the basic current I G and the creeping current I K occurring are fed to a second minimum value selection circuit 22 on the output side.
  • This minimum value selection circuit 22 also has two further inputs, at which the maximum value of the output current I Amax and the output of the circuit 15 serving to limit the power are present.
  • the output of the minimum value selection circuit 22 is connected to the positive input of a summer 23, at whose negative input the output current I A or a value proportional to it is present.
  • the output of the summer 23 is connected via a current regulator 24 to an input of the minimum value selection circuit.
  • the pulse width modulator 3 converts an analog voltage coming from the minimum value selection circuit 11 proportionally into a pulse of the duration T i , which is repeated at a constant repetition frequency.
  • the minimum value selection circuit 11 selects the smallest of the values present at its inputs in a manner known per se for the formation of the output signal fed to the pulse width modulator 3. In a corresponding manner, a minimum value selection takes place in the minimum value selection circuit 22. Its output signal also corresponds to the smallest input signal or is proportional to it.
  • the leakage current I K is the current flowing away at the insulator of the soot switch, while the base current I G is the portion of the current which flows off in the soot switch via the gas discharge.
  • the base current I G is responsible for the function of the soot switch, which can also be referred to as a soot filter.
  • the soot particles are charged by the base current I G and thereby agglomerated.
  • the basic current I G can be determined for a filter type and set permanently, or it can also be controlled as a function of the speed and load of the internal combustion engine.
  • the Filters the leakage current I K flowing out through the insulator can be fed in at any moment.
  • the output current I A is limited to a maximum permissible operating value by the fixed value I Amax . Depending on the dimensioning of the component, this value can be 10mA, for example.
  • the start-up kink control 20 has the task of immediately resetting the current setpoint to a minimum value Imin after a voltage breakdown. After briefly remaining at this minimum value Imin, the current setpoint I Asoll is rapidly brought up to the smallest of the current setpoints.
  • the best-point automatic 21 regulates the current setpoint as close as possible to the breakdown limit if the filter is operated close to the breakdown limit in special speed and load ranges. After each breakdown, the output of the start-up buckling control 20 is quickly lowered by a certain amount and then starts up again slowly until a new breakdown occurs. If there are no breakthroughs over a long period of time, this value becomes equal to the sum of I K and I G. In the event of a voltage breakdown, the output voltage U A collapses with a steep edge, this is detected by the differential circuit 18, which causes the comparator 19 to tilt when a threshold value is exceeded.
  • the voltage regulator 17 limits the output voltage U A to a maximum permissible value, for example to 17 to 18 kV.
  • the current-voltage diagram shown in FIG. 4 shows the maximum voltage, the maximum current and a power hyperbola P max .
  • the creeping current I K rises with increasing exhaust gas temperature, as a result of which the characteristics for the output current I A change accordingly. With increasing exhaust gas temperature or with increasing leakage current I K , the current-voltage characteristics become steeper.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Electrostatic Separation (AREA)

Abstract

Circuit de réglage de l'alimentation haute tension d'un filtre électrostatique pour les moteurs à combustion interne dont l'étage final haute tension (2) est commandé par un modulateur de largeur d'impulsions (3). L'étage final haute tension (2) comporte un convertisseur à oscillateur bloqué à diode qui du côté sortie délivre une tension de sortie (UA) de plusieurs kV. On fait varier le taux de répétition de la largeur des impulsions de la tension de sortie (UA) en fonction du courant de sortie ou de la tension de sortie, et en tenant compte de la puissance maximale admissible. De cette manière le filtre à suie (1) peut fonctionner à tout moment dans un domaine d'utilisation optimal.

Claims (19)

1. Circuit de régulation de l'alimentation en haute tension d'un filtre électrostatique (1) comportant une dérivation à suies pour des moteurs à combustion interne, comprenant un étage final de haute tension (2) et un circuit de régulation (3, 4) qui règle l'étage final de haute tension (2) relié au filtre, circuit caractérisé en ce que l'étage final de haute tension (2) est une source de courant et le circuit de régulation (3, 4) est conçu pour réguler le courant injecté dans le filtre (1).
2. Circuit selon la revendication 1, caractérisé en ce que l'étage final de haute tension (2) comporte un convertisseur de blocage à diode (5) qui reçoit une tension primaire, pulsée, dont le rapport de travail (Tv) varie en relation avec l'état de fonctionnement respectif du filtre (1).
3. Circuit selon la revendication 2, caractérisé en ce que le convertisseur de blocage à diode (5) fonctionne comme condensateur de charge utilisant la capacité du câble de haute tension de sortie.
4. Circuit selon l'une des revendications 2 ou 3, caractérisé en ce que le convertisseur de blocage à diode (5) est formé de plusieurs étages montés en cascade.
5. Circuit selon l'une des revendications 2 à 4, caractérisé en ce que le primaire (P) du convertisseur de blocage (5) est en série sur un transistor à effet de champ (6) fonctionnant comme commutateur électrique et dont l'entrée de commande (G) est commandée par un modulateur de largeur d'impulsion (3) définissant le rapport de travail (Tv).
6. Circuit selon l'une des revendications 2 à 5, caractérisé en ce que le rapport de travail (Tv) est modifié de façon que le courant de sortie (IA) de l'étage final de haute tension (2) soit constant.
7. Circuit selon l'une des revendications 2 à 6, caractérisé en ce que pour l'étage final de haute tension (2), la limitation de puissance est assurée par un changement du rapport de travail (Tv) en fonction du courant de sortie (IA) et/ou de la tension de sortie (UA).
8. Circuit selon l'une des revendications 2 à 7, caractérisé en ce que la chute de tension pendant la durée d'une impulsion (T;) du côté du primaire du transistor à effet de champ (6) est appliquée au circuit de régulation comme grandeur de mesure proportionnelle à la puissance de sortie.
9. Circuit selon l'une des revendications 2 à 8, caractérisé en ce qu'il comporte un circuit de détection de claquage (12) qui, en présence d'un claquage de tension dans la dérivation à suies (1), coupe l'étage final de haute tension (2).
10. Circuit selon l'une des revendications précédentes, caractérisé en ce qu'après un claquage de haute tension, une commande à double pente de démarrage (20) met le courant du filtre (1) aussi rapidement que possible à une valeur minimale (Imin) qui, après une courte temporisation, remonte au courant de fonctionnement suivant une pente déterminée.
11.) Circuit selon l'une des revendications précédentes, caractérisé en ce qu'un circuit automatique de recherche de meilleur point de fonctionnement (21) limite le courant du filtre à une valeur située sensiblement en-dessous du niveau auquel s'est produit le claquage, puis le courant du filtre augmente de nouveau lentement.
12. Circuit selon l'une des revendications précédentes, caractérisé en ce que le courant de sortie (IA) se compose de la somme d'un courant de base (IG) nécessaire pour le fonctionnement du filtre (1) et du courant de fuite (IK) passant par les isolateurs.
13. Circuit selon l'une des revendications précédentes, caractérisé en ce qu'à l'aide d'un limiteur de puissance (15) qui reçoit un signal proportionnel à la tension de sortie (UA), on forme une valeur de consigne de courant et on limite ainsi à un niveau constant et/ou limité la puissance de sortie.
14. Circuit selon l'une des revendications 1 à 11, caractérisé en ce qu'à l'aide d'un limiteur de puissance (9), on limite la puissance de sortie en relation avec la tension de fonctionnement (UB).
15. Circuit selon l'une des revendications 5 à 14, caractérisé en ce que l'on mesure la chute de tension sur le transistor à effet de champ (6) situé du côté du primaire, chute qui est provoquée par le courant de primaire (1"A) pendant la durée d'une impulsion (Tj), et cette chute est appliquée par l'intermédiaire d'un circuit de retard (13) au modulateur de largeur d'impulsion (3) pour limiter le courant lors de la montée de la tension de sortie (UA).
16. Circuit selon la revendication 15, caractérisé en ce que le courant de primaire retourné au modulateur de largeur d'impulsion (3) par le circuit de temporisation (13), est limitée à une valeur élevée permettant d'atteindre l'intensité maximale autorisée, spécifique du transistor à effet de champ (6), sans toutefois la dépasser.
17. Circuit selon l'une des revendications précédentes, caractérisé en ce que, pour limiter la tension de sortie (UA), il est prévu un régulateur de tension (17) qui forme un signal à partir d'un signal proportionnel à la tension de sortie (UA), ce signal commandant un modulateur de largeur d'impulsion (3) par un circuit de sélection de minimum (11) pour éviter toute poursuite de la montée de la tension de sortie (UA).
18. Circuit selon l'une des revendications précédentes, caractérisé en ce que le courant de base (IG) du filtre électrostatique (1) est commandé par les paramètres de fonctionnement du moteur, vitesse de rotation et charge, et par le champ de caractéristiques.
EP86902787A 1985-08-30 1986-04-30 Circuit de reglage de l'alimentation haute tension d'un filtre electrostatique Expired EP0233191B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3531025 1985-08-30
DE19853531025 DE3531025A1 (de) 1985-08-30 1985-08-30 Schaltungsanordnung zur regelung der hochspannungsversorgung eines elektrostatischen filters

Publications (2)

Publication Number Publication Date
EP0233191A1 EP0233191A1 (fr) 1987-08-26
EP0233191B1 true EP0233191B1 (fr) 1989-08-23

Family

ID=6279762

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86902787A Expired EP0233191B1 (fr) 1985-08-30 1986-04-30 Circuit de reglage de l'alimentation haute tension d'un filtre electrostatique

Country Status (5)

Country Link
US (1) US4816979A (fr)
EP (1) EP0233191B1 (fr)
JP (1) JPS63500706A (fr)
DE (2) DE3531025A1 (fr)
WO (1) WO1987001306A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3817506A1 (de) * 1988-05-24 1989-12-07 Bosch Gmbh Robert Schaltungsanordnung zur hochspannungsversorgung eines elektrostatischen filters
IT1245165B (it) * 1991-02-15 1994-09-13 Ente Naz Energia Elettrica Sistema per controllare e regolare alimentatori ad impulsi di tensione per precipitatori elettrostatici
IT1247337B (it) * 1991-04-12 1994-12-12 Ente Naz Energia Elettrica Alimentatore protetto del tipo a commutazione ad alta frequenza, in particolare per precipitatori elettrostatici
IT1247356B (it) * 1991-06-17 1994-12-12 Plessey Spa Apparecchiatura per la generazione di alta tensione continua stabilizzata in particolare per l'impiego in combinazione con una marmitta anti-inquinamento
DE4127577A1 (de) * 1991-08-21 1993-03-04 Bosch Gmbh Robert System zur erzeugung einer hochspannung aus einem kraftfahrzeugbordnetz
SE500810E (sv) * 1993-01-29 2003-04-29 Flaekt Ab Sätt att vid ¦verslag reglera str¦mtillf¦rseln till en elektrostatisk stoftavskiljare
DE19529769A1 (de) * 1995-08-12 1997-02-13 Hengst Walter Gmbh & Co Kg Verfahren zum Betreiben eines Elektrofilters bzw. einer Kurbelgehäuseentlüftung
DE10110609B4 (de) * 2001-03-06 2013-01-03 Fludicon Gmbh Hochspannungsnetzteil
DE10328586A1 (de) * 2003-06-25 2005-01-20 Siemens Ag Elektrostatisches Filter mit Durchschlagerkennung
US7625424B2 (en) * 2006-08-08 2009-12-01 Oreck Holdings, Llc Air cleaner and shut-down method
PL2078563T3 (pl) * 2008-01-09 2013-03-29 General Electric Technology Gmbh Sposób i urządzenie do sterowania elektrofiltrem
PL2172271T3 (pl) * 2008-10-01 2018-11-30 General Electric Technology Gmbh Sposób i urządzenie do sterowania mocą dostarczaną do odpylacza elektrostatycznego
US20110030560A1 (en) * 2009-08-04 2011-02-10 Bohlen John R Air cleaner with multiple orientations
US20110033346A1 (en) * 2009-08-04 2011-02-10 Bohlen Johns R Air cleaner with photo-catalytic oxidizer
DE102022103550B4 (de) * 2022-02-15 2024-01-04 Woco Gmbh & Co. Kg Ansteuerschaltung für einen Elektroabscheider

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3984215A (en) * 1975-01-08 1976-10-05 Hudson Pulp & Paper Corporation Electrostatic precipitator and method
US4316360A (en) * 1979-05-11 1982-02-23 The Regents Of The University Of Minn. Apparatus for recycling collected exhaust particles
US4335414A (en) * 1980-10-30 1982-06-15 United Air Specialists, Inc. Automatic reset current cut-off for an electrostatic precipitator power supply
DE3118542A1 (de) * 1981-05-09 1983-01-27 Belco Pollution Control Corp., Parsippany, N.J. Elektrostatische gasreinigungsvorrichtung und verfahren zum aendern der betriebshochspannung dieser vorrichtung
US4410934A (en) * 1981-07-22 1983-10-18 Masco Corporation DC Power supply for an air filter
US4479164A (en) * 1982-08-09 1984-10-23 Combustion Engineering, Inc. Control for an electrostatic treater
US4466051A (en) * 1982-10-25 1984-08-14 Rca Corporation Regulated power supply incorporating a power transformer having a tightly coupled supplemental power transfer winding
US4586120A (en) * 1983-12-30 1986-04-29 At&T Bell Laboratories Current limit shutdown circuit with time delay

Also Published As

Publication number Publication date
EP0233191A1 (fr) 1987-08-26
DE3665136D1 (en) 1989-09-28
WO1987001306A1 (fr) 1987-03-12
JPS63500706A (ja) 1988-03-17
US4816979A (en) 1989-03-28
DE3531025A1 (de) 1987-03-05

Similar Documents

Publication Publication Date Title
DE102005055160B4 (de) Regelschaltung zur Strom- und Spannungregelung in einem Schaltnetzteil
DE60212818T2 (de) Regelungsvorrichtung und verfahren für einen gleichstrom/gleichstrom-wandler
EP0233191B1 (fr) Circuit de reglage de l'alimentation haute tension d'un filtre electrostatique
DE2124579A1 (de) Schaltung zum automatischen Aufladen einer Batterie
WO2007025702A2 (fr) Dispositif de commande conçu pour un convertisseur de tension, et procede
WO2006125697A1 (fr) Procede pour commander un moteur electrique alimente a partir d'un reseau de tension continue
EP1211794A2 (fr) Procédé de regulation de courant de sortie et/ou tension de sortie d'alimentation à découpage
DE2208365B2 (de) Schnelladeverfahren und Schaltung zum Laden einer Akkumulatorenbatterie
DE3639116A1 (de) Gleichspannungsversorgungsschaltung fuer leuchtstofflampen
DE3123804A1 (de) Ueberlastungsschutzschaltung fuer stromversorgungsgeraete
DE2702142C3 (de) Anordnung zur Steuerung der Drehzahl eines Universalmotors
DE4015614A1 (de) Zuendeinrichtung fuer einen verbrennungsmotor
EP0402367B1 (fr) Filtre actif
DE68918234T2 (de) Zündanlage mit induktive Ausladung bei Brennkraftmaschinen.
EP0551909A1 (fr) Circuit de freinage ayant une résistance de freinage avec charge réduite
DE10110609B4 (de) Hochspannungsnetzteil
DE1108304B (de) Lichtanlage mit Transistorregler fuer Fahrzeuge, insbesondere Kraftfahrzeuge
DE2856379A1 (de) Drehzahl-regelschaltung fuer einen wechselstrom-kommutatormotor
DE2439459C3 (de) Stromversorgungseinrichtung
DE3300285C2 (de) Elektronisches Schaltnetzteil
DE10143016A1 (de) Verfahren zur Regulierung des Ausgangsstroms und/oder der Ausgangsspannung eines Schaltnetzteils
EP0072583B1 (fr) Convertisseur de courant continu
DE3204904C2 (de) Ladespannungsreglerschaltung für eine Lichtanlaßmaschine
EP1472776A1 (fr) Dispositif de commutation pour corriger le facteur de puissance
EP1577545A1 (fr) Dispositf et procédé d'opération de bobine d'allumage pour un vehicule à combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870330

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19880519

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3665136

Country of ref document: DE

Date of ref document: 19890928

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920629

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920717

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920824

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST