EP0208163B1 - Magnetic-field device for an apparatus for accelerating and/or storing electrically charged particles - Google Patents
Magnetic-field device for an apparatus for accelerating and/or storing electrically charged particles Download PDFInfo
- Publication number
- EP0208163B1 EP0208163B1 EP86108071A EP86108071A EP0208163B1 EP 0208163 B1 EP0208163 B1 EP 0208163B1 EP 86108071 A EP86108071 A EP 86108071A EP 86108071 A EP86108071 A EP 86108071A EP 0208163 B1 EP0208163 B1 EP 0208163B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- dipole
- windings
- magnetic field
- arrangement according
- auxiliary winding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002245 particle Substances 0.000 title claims description 22
- 238000004804 winding Methods 0.000 claims description 55
- 230000005469 synchrotron radiation Effects 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 238000003860 storage Methods 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 3
- 238000005422 blasting Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/04—Magnet systems, e.g. undulators, wigglers; Energisation thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S505/00—Superconductor technology: apparatus, material, process
- Y10S505/825—Apparatus per se, device per se, or process of making or operating same
- Y10S505/879—Magnet or electromagnet
Definitions
- the invention relates to a magnetic field device for a system for accelerating and / or storing electrically charged particles, in particular electrons, whose particle path has curved sections, in each of which a correspondingly curved dipole magnet is arranged, which contains superconducting windings and an additional winding and with which a magnetic guiding field is to be generated for the particle beam, which is weakly focused due to corresponding field gradients.
- a magnetic field device for a system for accelerating and / or storing electrically charged particles, in particular electrons, whose particle path has curved sections, in each of which a correspondingly curved dipole magnet is arranged, which contains superconducting windings and an additional winding and with which a magnetic guiding field is to be generated for the particle beam, which is weakly focused due to corresponding field gradients.
- microtrons can achieve particle energies of up to approximately 100 MeV. These systems can in particular also be implemented as so-called race track microtrons (English: “race track”).
- race track microtrons English: “race track”
- the particle trajectories of this type of accelerator systems are composed of two semicircles, each with a corresponding 180 ° deflection magnet, and of two straight trajectory sections (cf. "Nucl. Instr. And Meth.”, Vol. 177, 1980, pages 411 to 416, or Vol. 204, 1982, pages 1 to 20).
- the magnetic field can be increased with unchanged dimensions.
- Such magnetic fields can be generated in particular with superconducting magnets.
- the electron storage ring system which can be gathered from the publication mentioned at the outset also has dipole magnets with superconducting windings in its curved sections. It is generally assumed that the guide field generated in the area of these magnets has a weakly focusing effect for the particle beam due to corresponding field gradients.
- a measure of such a focus is the so-called field index n, which is generally defined as: where ro is the radius of the particle orbit, B z o is the component of magnetic induction running perpendicular to the particle orbit and aB / ar is the field gradient (see, for example, R. Kollath: "Particle Accelerator", Braunschweig 1955, page 23).
- the field index is between approximately 0.3 and 0.7 and in particular approximately 0.5.
- Such weak focusing in the curved path sections is generally achieved in known storage ring systems by special shaping of the pole shoes of an iron yoke of the dipole magnet enclosing the particle path and, if appropriate, by special additional windings.
- the superconducting dipole magnets also have iron yokes in the storage ring system which can be gathered from the publication mentioned at the beginning. These yokes are broken through to the outside in the equatorial plane of the particle path in order to allow an outlet and thus a use of the synchrotron radiation occurring in the curved sections of the particle path.
- the object of the present invention is therefore to improve the known magnetic field device in such a way that the field gradients required for weak focusing of the particle beam are to be formed in a relatively simple manner in the area of their curved dipole coils and the equipment expenditure required for this is limited without any restriction of the Magnitude of magnetic induction due to the saturation magnetization of iron.
- each at least largely iron-free dipole magnet is assigned a superconducting additional winding, which is curved accordingly, which at least adjoins the area of the concave inner sides of the curved dipole windings with its convex outside and with which the required field gradients are essentially to be produced .
- the additional winding of each dipole magnet thus has a curved shape that corresponds to that of the dipole windings.
- the advantages associated with this can be seen in particular in the fact that the same manufacturing processes can be used for the additional winding as for the superconducting dipole windings.
- Appropriate methods are e.g. proposed with DE patent applications P 3 444 983.3, P 3 504 211.7 or P 3 504 223.0.
- the volume filled by a curved additional winding is relatively small, so that the energy to be stored in it is advantageously correspondingly low.
- FIG. 1 shows a magnetic field device according to the invention as part of an electron accelerator or electrical device storage ring system is indicated.
- Figure 2 shows schematically the superconducting windings of such a magnetic field device. Corresponding parts in the figures are provided with the same reference numerals.
- FIG. 1 an oblique view of a curved dipole deflection magnet of an electron accelerator or storage ring system is shown schematically in a partially broken illustration.
- the dipole magnet generally designated 2
- the dipole magnet is also curved due to the curved particle path s and can in particular be curved in a semicircular shape (cf. e.g. the publication mentioned at the beginning). Since in particular end energies of the electrons e of several 100 MeV are aimed for, the windings 3 and 4 of the magnet are made with superconducting material because of the high field strengths required for this.
- dipole windings 3 and 4 which are also referred to as main windings, are arranged on both sides of an electron beam tube 5 running along the particle path s and lie in parallel planes and, due to their curvature, each have a concave inner side 3i or 4i and a convex outer side 3a or 4a .
- the additional winding 7, which is therefore also to be referred to as gradient winding, has a curved shape corresponding to the shape of the main windings 3 and 4.
- the concave inner sides 3i and 4i of the dipole windings 3 and 4 and the convex outer side 7a of the additional winding 7 can also advantageously overlap in this region, ie these windings then have one in this region about the same radius of curvature r.
- a correspondingly curved superconducting secondary winding 8 or 9 can be provided in each of the surfaces enclosed by the superconducting main windings 3 and 4. Since the conductors of the windings 3, 4, 7 to 9 consist of superconducting material, a common croystate or helium housing 11 is provided for these windings. The housing 11 and thus the windings located in it can be fastened to a tower-like holder 12 or other supporting device which, due to the curved shape of the additional winding 7, advantageously lies approximately at the center of the radii of curvature of the windings and thus outside of the windings 3, 4, 7 each enclosed area can be arranged.
- a slot-like blasting chamber 13 is hereby formed, which extends between the convex outer sides 3a and 4a of the main windings up to the outer side 7a of the superconducting additional winding 7.
- the synchronous tron radiation emerging tangentially from this blasting chamber is indicated in the figure by dashed lines 14.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Particle Accelerators (AREA)
Description
Die Erfindung bezieht sich auf eine Magnetfeldeinrichtung für eine Anlage zur Beschleunigung und/oder Speicherung elektrisch geladener Teilchen, insbesondere von Elektronen, deren Teilchenbahn gekrümmte Abschnitte aufweist, in denen jeweils ein entsprechend gekrümmter Dipolmagnet angeordnet ist, der supraleitende Wicklungen und eine Zusatzwicklung enthält und mit dem ein magnetisches Führungsfeld für den Teilchenstrahl zu erzeugen ist, das schwach fokussierend aufgrund entsprechender Feldgradienten ist. Eine derartige Einrichtung ist z.B. aus der Veröffentlichung mit dem Titel "Superconducting Racetrack Electron Storage Ring and Coexistent Injector Microtron for Synchrotron Radiation" des "Institute for Solid State Physics" of the University of Tokyo, Japan, Sept. 1984, Ser. B, No. 21, Seiten 1 bis 29 zu entnehmen.The invention relates to a magnetic field device for a system for accelerating and / or storing electrically charged particles, in particular electrons, whose particle path has curved sections, in each of which a correspondingly curved dipole magnet is arranged, which contains superconducting windings and an additional winding and with which a magnetic guiding field is to be generated for the particle beam, which is weakly focused due to corresponding field gradients. Such a device is e.g. from the publication entitled "Superconducting Racetrack Electron Storage Ring and Coexistent Injector Microtron for Synchrotron Radiation" by the "Institute for Solid State Physics" of the University of Tokyo, Japan, Sept. 1984, Ser. B, No. 21, pages 1 to 29.
Mit bekannten kleineren, kreisförmig gestalteten Elektronenbeschleuniger-Anlagen, die auch als "Microtrons" bezeichnet werden, lassen sich Teilchenenergien bis etwa 100 MeV erreichen. Diese Anlagen können insbesondere auch als sogenannte Rennbahn-Microtrons (englisch: "race-track") realisiert werden. Die Teilchenbahnen dieses Typs von Beschleuniger-Anlagen setzen sich dabei aus zwei Halbkreisen mit jeweils einem entsprechenden 180°-Ablenkmagneten und aus zwei geraden Bahnabschnitten zusammen (vgl. "Nucl. Instr. and Meth.", Vol. 177, 1980, Seiten 411 bis 416, oder Vol. 204, 1982, Seiten 1 bis 20).Known smaller, circularly shaped electron accelerator systems, which are also referred to as "microtrons", can achieve particle energies of up to approximately 100 MeV. These systems can in particular also be implemented as so-called race track microtrons (English: "race track"). The particle trajectories of this type of accelerator systems are composed of two semicircles, each with a corresponding 180 ° deflection magnet, and of two straight trajectory sections (cf. "Nucl. Instr. And Meth.", Vol. 177, 1980, pages 411 to 416, or Vol. 204, 1982, pages 1 to 20).
Soll die angestrebte Endenergie der Elektronen von etwa 100 MeV bis 1 GeV gesteigert werden, so bietet sich bei unveränderten Abmessungen die Erhöhung des Magnetfeldes an. Derartige Magnetfelder können insbesondere mit supraleitenden Magneten erzeugt werden.If the target final energy of the electrons is to be increased from approximately 100 MeV to 1 GeV, the magnetic field can be increased with unchanged dimensions. Such magnetic fields can be generated in particular with superconducting magnets.
Auch die aus der eingangs genannten Veröffentlichung zu entnehmende Elektronenspeicherring-Anlage weist in ihren gekrümmten Abschnitten Dipolmagnete mit supraleitenden Wicklungen auf. Dabei wird im allgemeinen vorausgesetzt, daß das im Bereich dieser Magnete erzeugte Führungsfeld für den Teilchenstrahl schwach fokussierend aufgrund entsprechender Feldgradienten wirkt. Ein Maß für eine derartige Fokussierung ist der sogenannte Feldindex n, der allgemein definiert ist als:
Eine solche schwache Fokussierung in den gekrümmten Bahnabschnitten wird im allgemeinen bei bekannten Speicherring-Anlagen durch besondere Formgebungen der Polschuhe eines die Teilchenbahn umschließenden Eisenjoches des Dipolmagneten sowie gegebenenfalls durch besondere Zusatzwicklungen erreicht. Auch bei der aus der eingangs genannten Veröffentlichung zu entnehmenden Speicherring-Anlage weisen die supraleitenden Dipolmagnete Eisenjoche auf. Diese Joche sind in der Aquatorialebene der Teilchenbahn nach außen hin durchbrochen, um einen Auslaß und damit eine Nutzung der in den gekrümmten Abschnitten der Teilchenbahn auftretenden Synchrotronstrahlung zu ermöglichen.Such weak focusing in the curved path sections is generally achieved in known storage ring systems by special shaping of the pole shoes of an iron yoke of the dipole magnet enclosing the particle path and, if appropriate, by special additional windings. The superconducting dipole magnets also have iron yokes in the storage ring system which can be gathered from the publication mentioned at the beginning. These yokes are broken through to the outside in the equatorial plane of the particle path in order to allow an outlet and thus a use of the synchrotron radiation occurring in the curved sections of the particle path.
Abgesehen davon, daß bei der bekannten Speicherring-Anlage die Ausbildung eines entsprechenden Eisenjoches verhältnismäßig aufwendig ist, ist auch der Beitrag des Eisenjochs zur magnetischen Flußdichte aufgrund der magnetischen Sättigung des Materials nach oben hin begrenzt.Apart from the fact that the formation of a corresponding iron yoke is relatively complex in the known storage ring system, the contribution of the iron yoke to the magnetic flux density is also limited due to the magnetic saturation of the material.
Aufgabe der vorliegenden Erfindung ist es deshalb, die bekannte Magnetfeldeinrichtung dahingehend zu verbessern, daß auf verhältnismäßig einfache Weise im Bereich ihrer gekrümmten Dipolspulen die für eine schwache Fokussierung des Teilchenstrahles erforderlichen Feldgradienten auszubilden sind und der hierfür erforderliche apparative Aufwand begrenzt ist, ohne daß eine Beschränkung der Größe der magnetischen Induktion aufgrund der Sättigungsmagnetisierung von Eisen besteht.The object of the present invention is therefore to improve the known magnetic field device in such a way that the field gradients required for weak focusing of the particle beam are to be formed in a relatively simple manner in the area of their curved dipole coils and the equipment expenditure required for this is limited without any restriction of the Magnitude of magnetic induction due to the saturation magnetization of iron.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß jedem zumindest weitgehend eisenfreien Dipolmagneten eine supraleitende Zusatzwicklung zugeordnet ist, welche entsprechend gekrümmt ist, welche mit ihrer konvexen Außenseite an den Bereich der konkaven Innenseiten der gekrümmten Dipolwicklungen zumindest angrenzt und mit welcher die erforderlichen Feldgradienten im wesentlichen hervorzurufen sind.This object is achieved in that each at least largely iron-free dipole magnet is assigned a superconducting additional winding, which is curved accordingly, which at least adjoins the area of the concave inner sides of the curved dipole windings with its convex outside and with which the required field gradients are essentially to be produced .
Die Zusatzwicklung jedes Dipolmagneten weist somit eine gekrümmte Form auf, die der der Dipolwicklungen entspricht. Die damit verbundenen Vorteile sind insbesondere darin zu sehen, daß für die Zusatzwicklung dieselben Verfahren zur Herstellung angewandt werden können wie für die supraleitenden Dipolwicklungen. Entsprechende Verfahren sind z.B. mit den DE-Patentanmeidungen P 3 444 983.3, P 3 504 211.7 oder P 3 504 223.0 vorgeschlagen. Außerdem ist das von einer gekrümmten Zusatzwicklung eingenommene magnetfelderfüllte Volumen verhältnismäßig klein, so daß die in ihr zu speichernde Energie vorteilhaft entsprechend gering ist. Darüber hinaus bleibt im Inneren der gekrümmten Zusatzspule im Bereich ihres Radiusmittelpunktes hinreichend Platz, um mechanische Stützstrukturen für die Dipolwicklungen und die Zusatzwicklung anordnen zu können.The additional winding of each dipole magnet thus has a curved shape that corresponds to that of the dipole windings. The advantages associated with this can be seen in particular in the fact that the same manufacturing processes can be used for the additional winding as for the superconducting dipole windings. Appropriate methods are e.g. proposed with DE
Vorteilhafte Ausgestaltungen der erfindungsgemäßen Magnetfeldeinrichtung gehen aus den abhängigen Ansprüchen hervor.Advantageous refinements of the magnetic field device according to the invention emerge from the dependent claims.
Zur weiteren Erläuterung der Erfindung wird auf die Zeichnung Bezug genommen, in deren Figur 1 eine erfindungsgemäße Magnetfeldeinrichtung als Teil einer Elektronenbeschleuniger- bzw. Elektronenspeicherring-Anlage angedeutet ist. Figur 2 zeigt schematisch die supraleitenden Wicklungen einer derartigen Magnetfeldeinrichtung. Dabei sind in den Figuren übereinstimmende Teile mit den gleichen Bezugszeichen versehen.To further explain the invention, reference is made to the drawing, in which FIG. 1 shows a magnetic field device according to the invention as part of an electron accelerator or electrical device storage ring system is indicated. Figure 2 shows schematically the superconducting windings of such a magnetic field device. Corresponding parts in the figures are provided with the same reference numerals.
In Figur 1 ist in Schrägansicht ein gekrümmter Dipolablenkmagnet einer Elektronenbeschleuniger- bzw. -speicherringanlage in teilweise aufgerissener Darstellung schematisch wiedergegeben. Der allgemein mit 2 bezeichnete Dipolmagnet ist aufgrund der gekrümmten Teilchenbahn s ebenfalls gekrümmt und kann insbesondere halbkreisförmig gebogen sein (vgl. z.B. die eingangs genannte Veröffentlichung). Da insbesondere Endenergien der Elektronen e-von mehreren 100 MeV angestrebt werden, sind wegen der hierfür erforderlichen hohen Feldstärken die Wicklungen 3 und 4 des Magneten mit supraleitendem Material erstellt. Diese Dipolwicklungen 3 und 4, die auch als Hauptwicklungen bezeichnet werden, sind beiderseits eines längs der Teilchenbahn s verlaufenden Elektronenstrahlrohres 5 in parallelen Ebenen liegend angeordnet und weisen aufgrund ihrer Krümmung jeweils eine konkave Innenseite 3i bzw. 4i und eine konvexe Außenseite 3a bzw. 4a auf. In der durch das Strahlrohr 5 bzw. die Teilchenbahn s aufgespannten Äquatorialebene liegt außerdem gemäß der Erfindung eine supraleitende Zusatzwicklung 7, mit der die für eine schwache Fokussierung mit Feldindex n zwischen etwa 0,3 und 0,7, insbesondere von etwa 0,5 erforderlichen Feldgradienten des von den Hauptwicklungen 3 und 4 erzeugten Dipolfeldes zumindest im wesentlichen hervorzurufen sind. Die deshalb auch als Gradientenwicklung zu bezeichnende Zusatzwicklung 7 weist dabei eine der Form der Hauptwicklungen 3 und 4 entsprechende gekrümmte Form auf. Dabei grenzt diese Zusatzwicklung 7 mit ihrer Außenseite 7a an den durch die Innenseiten 3i und 4i der Hauptwicklungen 3 und 4 festgelegten Bereich zumindest an. Wie insbesondere aus der schematischen Aufsicht der Figur 2 näher hervorgeht, können sich in diesem Bereich vorteilhaft die konkaven Innenseiten 3i und 4i der Dipolwicklungen 3 und 4 und die konvexe Außenseite 7a der Zusatzwicklung 7 auch überlappen, d.h., diese Wicklungen haben dann in diesem Bereich einen etwa gleichen Krümmungsradius r.In FIG. 1, an oblique view of a curved dipole deflection magnet of an electron accelerator or storage ring system is shown schematically in a partially broken illustration. The dipole magnet, generally designated 2, is also curved due to the curved particle path s and can in particular be curved in a semicircular shape (cf. e.g. the publication mentioned at the beginning). Since in particular end energies of the electrons e of several 100 MeV are aimed for, the
Ferner ist in Figur 1 angedeutet, daß in den von den supraleitenden Hauptwicklungen 3 und 4 jeweils umschlossenen Flächen noch je eine entsprechend gekrümmte supraleitende Nebenwicklung 8 bzw. 9 vorgesehen werden kann. Da die Leiter der Wicklungen 3, 4, 7 bis 9 aus supraleitendem Material bestehen, ist für diese Wicklungen ein gemeinsames Kroystaten- oder Heliumgehäuse 11 vorgesehen. Das Gehäuse 11 und damit die in ihm befindlichen Wicklungen können an einer turmartigen Halterung 12 oder sonstigen Stützvorrichtung befestigt sein, die vorteilhaft aufgrund der gekrümmten Form der Zusatzwicklung 7 etwa im Mittelpunkt der Krümmungsradien der Wicklungen und somit außerhalb der von den Wicklungen 3, 4, 7 jeweils eingeschlossenen Flächen angeordnet werden kann. Hiermit können gegebenenfalls auch Probleme mit Wirbelströmen in der Halterung 12 wesentlich vermindert werden. Außerdem ist das Gehäuse 11 im Bereich der Äquatorialebene von der Außenseite des Dipolmagneten 2 her aus Gründen einer ungestörten Herausführung der in dem gekrümmten Bereich der Teilchenbahn s auftretenden Synchrotronstrahlung nicht durchgehend, sondern quasi zweigeteilt ausgeführt. Hiermit ist eine schlitzartige Strahlkammer 13 ausgebildet, die zwischen den konvexen Außenseiten 3a und 4a der Hauptwicklungen hindurch bis an die Außenseite 7a der supraleitenden Zusatzwicklung 7 heranreicht. Die aus dieser Strahlkammer tangential austretende Synchrontronstrahlung ist in der Figur durch gestrichelte Linien 14 angedeutet.Furthermore, it is indicated in FIG. 1 that a correspondingly curved superconducting secondary winding 8 or 9 can be provided in each of the surfaces enclosed by the superconducting
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3522528 | 1985-06-24 | ||
DE3522528 | 1985-06-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0208163A1 EP0208163A1 (en) | 1987-01-14 |
EP0208163B1 true EP0208163B1 (en) | 1989-01-04 |
Family
ID=6274023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86108071A Expired EP0208163B1 (en) | 1985-06-24 | 1986-06-12 | Magnetic-field device for an apparatus for accelerating and/or storing electrically charged particles |
Country Status (4)
Country | Link |
---|---|
US (1) | US4680565A (en) |
EP (1) | EP0208163B1 (en) |
JP (1) | JPS61294800A (en) |
DE (1) | DE3661672D1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4000666A1 (en) * | 1989-01-12 | 1990-07-19 | Mitsubishi Electric Corp | ELECTROMAGNET FOR PARTICLE ACCELERATOR |
US7728311B2 (en) | 2005-11-18 | 2010-06-01 | Still River Systems Incorporated | Charged particle radiation therapy |
US8003964B2 (en) | 2007-10-11 | 2011-08-23 | Still River Systems Incorporated | Applying a particle beam to a patient |
US8581523B2 (en) | 2007-11-30 | 2013-11-12 | Mevion Medical Systems, Inc. | Interrupted particle source |
US8791656B1 (en) | 2013-05-31 | 2014-07-29 | Mevion Medical Systems, Inc. | Active return system |
US8927950B2 (en) | 2012-09-28 | 2015-01-06 | Mevion Medical Systems, Inc. | Focusing a particle beam |
US8933650B2 (en) | 2007-11-30 | 2015-01-13 | Mevion Medical Systems, Inc. | Matching a resonant frequency of a resonant cavity to a frequency of an input voltage |
US8952634B2 (en) | 2004-07-21 | 2015-02-10 | Mevion Medical Systems, Inc. | Programmable radio frequency waveform generator for a synchrocyclotron |
US9155186B2 (en) | 2012-09-28 | 2015-10-06 | Mevion Medical Systems, Inc. | Focusing a particle beam using magnetic field flutter |
US9185789B2 (en) | 2012-09-28 | 2015-11-10 | Mevion Medical Systems, Inc. | Magnetic shims to alter magnetic fields |
US9301384B2 (en) | 2012-09-28 | 2016-03-29 | Mevion Medical Systems, Inc. | Adjusting energy of a particle beam |
US9545528B2 (en) | 2012-09-28 | 2017-01-17 | Mevion Medical Systems, Inc. | Controlling particle therapy |
US9962560B2 (en) | 2013-12-20 | 2018-05-08 | Mevion Medical Systems, Inc. | Collimator and energy degrader |
US10258810B2 (en) | 2013-09-27 | 2019-04-16 | Mevion Medical Systems, Inc. | Particle beam scanning |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4737727A (en) * | 1986-02-12 | 1988-04-12 | Mitsubishi Denki Kabushiki Kaisha | Charged beam apparatus |
JPH0821478B2 (en) * | 1986-09-02 | 1996-03-04 | 三菱電機株式会社 | Charged particle device |
DE3865977D1 (en) * | 1987-01-28 | 1991-12-12 | Siemens Ag | SYNCHROTRON RADIATION SOURCE WITH A FIXING OF YOUR CURVED COIL REELS. |
DE3705294A1 (en) * | 1987-02-19 | 1988-09-01 | Kernforschungsz Karlsruhe | MAGNETIC DEFLECTION SYSTEM FOR CHARGED PARTICLES |
GB2223350B (en) * | 1988-08-26 | 1992-12-23 | Mitsubishi Electric Corp | Device for accelerating and storing charged particles |
US4939493A (en) * | 1988-09-27 | 1990-07-03 | Boston University | Magnetic field generator |
DE4029477C2 (en) * | 1989-09-29 | 1994-06-01 | Siemens Ag | Tesserale gradient coil for nuclear spin tomography devices |
JPH03220500A (en) * | 1990-01-24 | 1991-09-27 | Mitsubishi Electric Corp | Coil for electromagnet for deflection of charged particle |
JP2896188B2 (en) * | 1990-03-27 | 1999-05-31 | 三菱電機株式会社 | Bending magnets for charged particle devices |
GB2272994B (en) * | 1990-03-27 | 1994-08-31 | Mitsubishi Electric Corp | Deflection electromagnet for a charged particle device |
EP0542737A1 (en) * | 1990-08-06 | 1993-05-26 | Siemens Aktiengesellschaft | Synchrotron radiation source |
JPH06510885A (en) * | 1991-09-25 | 1994-12-01 | シーメンス アクチエンゲゼルシヤフト | Coil device consisting of a conductor with superconducting strands |
US5221554A (en) * | 1991-12-24 | 1993-06-22 | Aly Gamay | Process for producing low-fat meat products |
JP2944317B2 (en) * | 1992-07-28 | 1999-09-06 | 三菱電機株式会社 | Synchrotron radiation source device |
EP1764132A1 (en) * | 2005-09-16 | 2007-03-21 | Siemens Aktiengesellschaft | Method and device for configuring a beam path in a particle beam therapy system |
DE102006018635B4 (en) * | 2006-04-21 | 2008-01-24 | Siemens Ag | Irradiation system with a gantry system with a curved beam guiding magnet |
DE102006035101A1 (en) * | 2006-07-28 | 2008-02-07 | Siemens Ag | Beam guiding magnet for deflecting charged particles along a curved path with associated cooling device and irradiation system with such a magnet |
DE102007021033B3 (en) * | 2007-05-04 | 2009-03-05 | Siemens Ag | Beam guiding magnet for deflecting a beam of electrically charged particles along a curved particle path and irradiation system with such a magnet |
TW201422278A (en) | 2012-09-28 | 2014-06-16 | Mevion Medical Systems Inc | Control system for a particle accelerator |
US10254739B2 (en) | 2012-09-28 | 2019-04-09 | Mevion Medical Systems, Inc. | Coil positioning system |
CN105103662B (en) | 2012-09-28 | 2018-04-13 | 梅维昂医疗系统股份有限公司 | magnetic field regenerator |
WO2014052709A2 (en) | 2012-09-28 | 2014-04-03 | Mevion Medical Systems, Inc. | Controlling intensity of a particle beam |
US9730308B2 (en) | 2013-06-12 | 2017-08-08 | Mevion Medical Systems, Inc. | Particle accelerator that produces charged particles having variable energies |
JP6255549B2 (en) * | 2013-10-16 | 2018-01-10 | 学校法人早稲田大学 | Air-core type cyclotron |
US10675487B2 (en) | 2013-12-20 | 2020-06-09 | Mevion Medical Systems, Inc. | Energy degrader enabling high-speed energy switching |
US9661736B2 (en) | 2014-02-20 | 2017-05-23 | Mevion Medical Systems, Inc. | Scanning system for a particle therapy system |
US9950194B2 (en) | 2014-09-09 | 2018-04-24 | Mevion Medical Systems, Inc. | Patient positioning system |
US10786689B2 (en) | 2015-11-10 | 2020-09-29 | Mevion Medical Systems, Inc. | Adaptive aperture |
EP3481503B1 (en) | 2016-07-08 | 2021-04-21 | Mevion Medical Systems, Inc. | Treatment planning |
US11103730B2 (en) | 2017-02-23 | 2021-08-31 | Mevion Medical Systems, Inc. | Automated treatment in particle therapy |
US10984935B2 (en) * | 2017-05-02 | 2021-04-20 | Hefei Institutes Of Physical Science, Chinese Academy Of Sciences | Superconducting dipole magnet structure for particle deflection |
US10653892B2 (en) | 2017-06-30 | 2020-05-19 | Mevion Medical Systems, Inc. | Configurable collimator controlled using linear motors |
CN113811356A (en) | 2019-03-08 | 2021-12-17 | 美国迈胜医疗系统有限公司 | Collimator and range adjuster for particle therapy system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3283276A (en) * | 1963-07-25 | 1966-11-01 | Avco Corp | Twisted superconductive winding assembly |
DE3148100A1 (en) * | 1981-12-04 | 1983-06-09 | Uwe Hanno Dr. 8050 Freising Trinks | Synchrotron X-ray radiation source |
SE436962B (en) * | 1983-06-17 | 1985-01-28 | Scanditronix Instr | RACE-TRACK MICROTRON FOR STORING AN ENERGY-rich ELECTRON RADIATION |
DE3504211A1 (en) * | 1985-02-07 | 1986-08-07 | Siemens AG, 1000 Berlin und 8000 München | METHOD FOR PRODUCING A CURVED MAGNETIC COIL AND DEVICE FOR CARRYING OUT THIS METHOD |
DE3504223A1 (en) * | 1985-02-07 | 1986-08-07 | Siemens AG, 1000 Berlin und 8000 München | Method for producing a disc-shaped, curved magnet coil, and a device for carrying out the method |
-
1986
- 1986-06-12 EP EP86108071A patent/EP0208163B1/en not_active Expired
- 1986-06-12 DE DE8686108071T patent/DE3661672D1/en not_active Expired
- 1986-06-16 US US06/874,495 patent/US4680565A/en not_active Expired - Fee Related
- 1986-06-20 JP JP61144672A patent/JPS61294800A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4000666A1 (en) * | 1989-01-12 | 1990-07-19 | Mitsubishi Electric Corp | ELECTROMAGNET FOR PARTICLE ACCELERATOR |
US8952634B2 (en) | 2004-07-21 | 2015-02-10 | Mevion Medical Systems, Inc. | Programmable radio frequency waveform generator for a synchrocyclotron |
US8907311B2 (en) | 2005-11-18 | 2014-12-09 | Mevion Medical Systems, Inc. | Charged particle radiation therapy |
US8344340B2 (en) | 2005-11-18 | 2013-01-01 | Mevion Medical Systems, Inc. | Inner gantry |
US8916843B2 (en) | 2005-11-18 | 2014-12-23 | Mevion Medical Systems, Inc. | Inner gantry |
US9452301B2 (en) | 2005-11-18 | 2016-09-27 | Mevion Medical Systems, Inc. | Inner gantry |
US7728311B2 (en) | 2005-11-18 | 2010-06-01 | Still River Systems Incorporated | Charged particle radiation therapy |
US8003964B2 (en) | 2007-10-11 | 2011-08-23 | Still River Systems Incorporated | Applying a particle beam to a patient |
US8941083B2 (en) | 2007-10-11 | 2015-01-27 | Mevion Medical Systems, Inc. | Applying a particle beam to a patient |
US8581523B2 (en) | 2007-11-30 | 2013-11-12 | Mevion Medical Systems, Inc. | Interrupted particle source |
USRE48317E1 (en) | 2007-11-30 | 2020-11-17 | Mevion Medical Systems, Inc. | Interrupted particle source |
US8933650B2 (en) | 2007-11-30 | 2015-01-13 | Mevion Medical Systems, Inc. | Matching a resonant frequency of a resonant cavity to a frequency of an input voltage |
US8970137B2 (en) | 2007-11-30 | 2015-03-03 | Mevion Medical Systems, Inc. | Interrupted particle source |
US9301384B2 (en) | 2012-09-28 | 2016-03-29 | Mevion Medical Systems, Inc. | Adjusting energy of a particle beam |
US9185789B2 (en) | 2012-09-28 | 2015-11-10 | Mevion Medical Systems, Inc. | Magnetic shims to alter magnetic fields |
US9155186B2 (en) | 2012-09-28 | 2015-10-06 | Mevion Medical Systems, Inc. | Focusing a particle beam using magnetic field flutter |
US8927950B2 (en) | 2012-09-28 | 2015-01-06 | Mevion Medical Systems, Inc. | Focusing a particle beam |
US9545528B2 (en) | 2012-09-28 | 2017-01-17 | Mevion Medical Systems, Inc. | Controlling particle therapy |
US8791656B1 (en) | 2013-05-31 | 2014-07-29 | Mevion Medical Systems, Inc. | Active return system |
US10258810B2 (en) | 2013-09-27 | 2019-04-16 | Mevion Medical Systems, Inc. | Particle beam scanning |
US9962560B2 (en) | 2013-12-20 | 2018-05-08 | Mevion Medical Systems, Inc. | Collimator and energy degrader |
Also Published As
Publication number | Publication date |
---|---|
JPS61294800A (en) | 1986-12-25 |
EP0208163A1 (en) | 1987-01-14 |
DE3661672D1 (en) | 1989-02-09 |
US4680565A (en) | 1987-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0208163B1 (en) | Magnetic-field device for an apparatus for accelerating and/or storing electrically charged particles | |
EP0193038B1 (en) | Magnetic-field generating device for a particle accelerating system | |
DE69603497T2 (en) | METHOD FOR REMOVING THE CHARGED PARTICLES FROM AN ISOCHRONIC CYCLOTRON AND DEVICE USING THIS METHOD | |
EP0193837B1 (en) | Magnetic field-generating device for a particle-accelerating system | |
EP0191392B1 (en) | Magnetic field-generating device | |
DE3850416T2 (en) | Arrangement for generating a magnetic field. | |
DE69209312T2 (en) | COMPACT ISOCHRONIC CYCLOTRON | |
EP0276360B1 (en) | Magnet device with curved coil windings | |
DE3511282C1 (en) | Superconducting magnet system for particle accelerators of a synchrotron radiation source | |
DE3853507T2 (en) | Deflection magnet. | |
EP0277521B1 (en) | Synchrotron radiation source with fixation of its curved coils | |
DE3530446C2 (en) | ||
DE102007021033B3 (en) | Beam guiding magnet for deflecting a beam of electrically charged particles along a curved particle path and irradiation system with such a magnet | |
DE2410994C2 (en) | Isochronous cyclotron for heavy or light ions | |
EP0348403B1 (en) | Magnetic deflector system for charged particles | |
EP0542737A1 (en) | Synchrotron radiation source | |
DE102006018635B4 (en) | Irradiation system with a gantry system with a curved beam guiding magnet | |
DE60113171T2 (en) | Electromagnetic device for generating cold atoms | |
DE102006035101A1 (en) | Beam guiding magnet for deflecting charged particles along a curved path with associated cooling device and irradiation system with such a magnet | |
DE102007046508B4 (en) | Irradiation plant with a beam guiding magnet | |
DE2136237B2 (en) | NUCLEAR RESONANCE MAGNETOMETER | |
EP0238909B1 (en) | Main-field magnet for imaging devices of the nuclear magnetic resonance technique | |
DE102007025584B4 (en) | A radiation guide magnet for deflecting a beam of electrically charged particles along a curved particle track and irradiation system with such a magnet | |
DE3842792C2 (en) | ||
DE19513683C2 (en) | High current pulsed lens multiplet for the beam guidance and beam optics of electrically charged particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI |
|
17P | Request for examination filed |
Effective date: 19870205 |
|
17Q | First examination report despatched |
Effective date: 19880330 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI |
|
REF | Corresponds to: |
Ref document number: 3661672 Country of ref document: DE Date of ref document: 19890209 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19910625 Year of fee payment: 6 |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19910827 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19910916 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19920521 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19920630 Ref country code: CH Effective date: 19920630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19930226 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19930302 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19930612 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19930612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050612 |