EP0204182B1 - Method of producing films of silicon oxide doped with boron and phosphorus for use in semiconductor integrated circuits - Google Patents
Method of producing films of silicon oxide doped with boron and phosphorus for use in semiconductor integrated circuits Download PDFInfo
- Publication number
- EP0204182B1 EP0204182B1 EP86106479A EP86106479A EP0204182B1 EP 0204182 B1 EP0204182 B1 EP 0204182B1 EP 86106479 A EP86106479 A EP 86106479A EP 86106479 A EP86106479 A EP 86106479A EP 0204182 B1 EP0204182 B1 EP 0204182B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- phosphorus
- reactor
- boron
- process according
- compounds
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims abstract description 19
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 title claims abstract description 17
- 229910052796 boron Inorganic materials 0.000 title claims abstract description 16
- 229910052698 phosphorus Inorganic materials 0.000 title claims abstract description 16
- 239000011574 phosphorus Substances 0.000 title claims abstract description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 15
- 239000004065 semiconductor Substances 0.000 title claims description 4
- 229910052814 silicon oxide Inorganic materials 0.000 title claims description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims abstract description 8
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 7
- WRECIMRULFAWHA-UHFFFAOYSA-N trimethyl borate Chemical compound COB(OC)OC WRECIMRULFAWHA-UHFFFAOYSA-N 0.000 claims abstract description 7
- 235000012431 wafers Nutrition 0.000 claims abstract description 7
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 5
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 15
- 239000007789 gas Substances 0.000 claims description 11
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 claims description 9
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 229910000073 phosphorus hydride Inorganic materials 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 5
- -1 compounds tetraethyl orthosilicate Chemical class 0.000 claims description 5
- GRVDJDISBSALJP-UHFFFAOYSA-N methyloxidanyl Chemical compound [O]C GRVDJDISBSALJP-UHFFFAOYSA-N 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 229910052681 coesite Inorganic materials 0.000 claims description 3
- 229910052906 cristobalite Inorganic materials 0.000 claims description 3
- 238000010292 electrical insulation Methods 0.000 claims description 3
- 229910052682 stishovite Inorganic materials 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 229910052905 tridymite Inorganic materials 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 239000012159 carrier gas Substances 0.000 claims 1
- 238000009499 grossing Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 229910052710 silicon Inorganic materials 0.000 abstract description 5
- 239000010703 silicon Substances 0.000 abstract description 5
- 238000000354 decomposition reaction Methods 0.000 abstract 1
- 239000002019 doping agent Substances 0.000 abstract 1
- 239000000376 reactant Substances 0.000 abstract 1
- VRZFDJOWKAFVOO-UHFFFAOYSA-N [O-][Si]([O-])([O-])O.[B+3].P Chemical compound [O-][Si]([O-])([O-])O.[B+3].P VRZFDJOWKAFVOO-UHFFFAOYSA-N 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 239000005368 silicate glass Substances 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000005137 deposition process Methods 0.000 description 3
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 108010085603 SFLLRNPND Proteins 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
- H01L21/02129—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/316—Inorganic layers composed of oxides or glassy oxides or oxide based glass
- H01L21/31604—Deposition from a gas or vapour
- H01L21/31625—Deposition of boron or phosphorus doped silicon oxide, e.g. BSG, PSG, BPSG
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02164—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
Definitions
- the invention relates to a method for producing boron and phosphorus doped SiO2 layers, such as are used in the manufacture of integrated semiconductor circuits as an intermediate layer for electrical insulation and to compensate for topographical unevenness on substrate wafers, by thermal decomposition of the gaseous compounds containing the elements .
- Such layers are called boron-phosphorus-silicate glass (BPSG) layers and are produced by oxidizing silane in the temperature range between 300 and 450 ° C. To generate the oxide doping, phosphine (PH3) and borane (B2H6) or boron trichloride (BCl3) are added simultaneously. The process can be carried out in plasma, at atmospheric pressure or in the low pressure range.
- BPSG boron-phosphorus-silicate glass
- PH3 phosphine
- B2H6 borane
- BCl3 boron trichloride
- the SiO2 must contain additives which reduce the softening point.
- phosphorus or boron and phosphorus are used here, which in the form of their oxides are already incorporated into the intermediate oxide layer during the layer deposition and form what are known as “ternary” glasses. The main function of phosphorus is to improve the electrical stability of the layer, while the boron content determines the flow temperature.
- the object of the invention is therefore to develop a boron-phosphorus-silicate glass deposition process which has the disadvantages avoids parts of the previous procedures.
- phosphine (PH3) mixed with oxygen (O2) can be used, the PH3 / O2 ratio being greater than 0.2.
- the gas mixture is fed to the reactor via a flow rate controller.
- the invention will be explained in more detail below with the aid of an exemplary embodiment and the figure in the drawing.
- the figure shows a device in the sectional view, in which semiconductor substrate wafers 2 consisting of silicon are provided with a boron-phosphorus-silicate glass layer.
- the silicon wafers 2 standing in the wafers 1 designed as a quartz cage and called “boats” are placed in a commercially available (Heraeus Cantilever) low-pressure deposition furnace 3 by means of a Introduced sliding device 4.
- the reaction tube 3 is evacuated (see arrow 28) and then the process gases required to build up the BPSG layer to be applied to the substrate disks 2 by means of a pumping station 5, consisting of backing pump 6, roots pump 7 and control valve 8, via a nitrogen cold trap 9 , initiated.
- TEOS tetraethyl orthosilicate
- an evaporator 10 which is at a temperature in the range from 30 to 60 ° C., and is introduced into the reactor on the side of the reactor 3 (see arrow 26), on which the substrate disks ( 1, 2, 4) are introduced.
- the doping gases are introduced into the reaction space 3 from the opposite side (see arrow 27) by injectors 11, 12 (these are thin quartz tubes provided with passages).
- TMB tritmethyl borate
- PH3 phosphine gas
- TMP tritmethylphosphate
- the deposition pressure in reaction chamber 3 is set in the range of 15-100 Pa (approx. 100 to 800 mTorr); the PH3 / O2 ratio is greater than 0.2. 600 to 700 ° C is selected as the separation temperature range.
- boron / phosphorus - are chemically stable in ambient air and contain the phosphorus only in the form of P2O5.
- the layers according to the invention have very good edge coverage.
- the desired boron / phosphorus concentrations can be set by varying the supply of doping gases and the deposition temperatures. The process is less critical with regard to leaks than silane processes. Another advantage is that the on-board doping takes place via the non-toxic trimethyl borate.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Formation Of Insulating Films (AREA)
- Chemical Vapour Deposition (AREA)
- Glass Melting And Manufacturing (AREA)
- Glass Compositions (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Herstellen von mit Bor und Phosphor dotierten SiO₂-Schichten, wie sie bei der Herstellung von integrierten Halbleiterschaltungen als Zwischenschicht zur elektrischen Isolation und zum Ausgleich von topographischen Unebenheiten auf Substratscheiben verwendet werden, durch thermische Zersetzung von die Elemente enthaltenden gasförmigen Verbindungen.The invention relates to a method for producing boron and phosphorus doped SiO₂ layers, such as are used in the manufacture of integrated semiconductor circuits as an intermediate layer for electrical insulation and to compensate for topographical unevenness on substrate wafers, by thermal decomposition of the gaseous compounds containing the elements .
Solche Schichten werden als Bor-Phosphor-Silikat-Glas (BPSG)-Schichten bezeichnet und werden dadurch hergestellt, daß Silan im Temperaturbereich zwischen 300 und 450°C oxidiert wird. Zur Erzeugung der Oxiddotierung werden dabei gleichzeitig Phosphin (PH₃) und Boran (B₂H₆) oder Bortrichlorid (BCl₃) zugesetzt. Der Prozeß kann sowohl im Plasma, bei Atmosphärendruck oder im Niederdruckbereich durchgeführt werden.Such layers are called boron-phosphorus-silicate glass (BPSG) layers and are produced by oxidizing silane in the temperature range between 300 and 450 ° C. To generate the oxide doping, phosphine (PH₃) and borane (B₂H₆) or boron trichloride (BCl₃) are added simultaneously. The process can be carried out in plasma, at atmospheric pressure or in the low pressure range.
Abscheideverfahren bei Atmosphärendruck und im obengenannten Temperaturbereich mit Phosphin und Boran als Dotiergase sind beispielsweise aus der US-A-3.481.781 und aus einem Aufsatz von Kern und Schnable im RCA Review, Vol. 43, September 1982, Seiten 423 bis 457, zu entnehmen. US-A-4 105 810 beschreibt die Herstellung von mit Bor und Zink dotierten Siliziumoxid- Schichten durch thermische zersetzung von Alkyl- oder Alkoxid- Verbindungen von Zink, Bar und SiliziumDeposition processes at atmospheric pressure and in the above-mentioned temperature range with phosphine and borane as doping gases can be found, for example, in US Pat. No. 3,481,781 and from an essay by Kern and Schnable in RCA Review, Vol. 43, September 1982, pages 423 to 457 . US-A-4 105 810 describes the production of silicon oxide layers doped with boron and zinc by thermal decomposition of alkyl or alkoxide compounds of zinc, bar and silicon
Die Bor-Phosphor-Silikatglasschichten haben in ihrer An-Wendung als Zwischenoxidschicht zwischen den Polysiliziumebenen und der ersten Aluminiumleiterbahnebene bei der Herstellung von hochintegrierten MOS-Speichern folgende Funktionen zu erfüllen:
- 1. Das Zwischenoxid muß eine gute elektrische Isolation zwischen der Polysiliziumebene bzw. den Diffusionsgebieten und der Aluminiumleiterbahn gewährleisten.
- 2. Das Zwischenoxid muß die bis zur Polysiliziumstrukturierung entstandenen topographischen Unebenheiten auf dem Substrat ausgleichen bzw. verrunden.
- 1. The intermediate oxide must ensure good electrical insulation between the polysilicon level or the diffusion areas and the aluminum conductor track.
- 2. The intermediate oxide must compensate for or round off the topographical unevenness on the substrate up to the polysilicon structuring.
Eine solche Verrundung ist notwendig, da der nachfolgende Aluminium-Sputterprozeß Abschattungseffekte aufweist und zu starke Stufen in der Unterlage Überhänge bzw. Abrisse der Aluminiumleiterbahnen bewirken können. Mit zunehmender Integration der Bauelemente wird dieses Problem immer kritischer, da aufgrund abnehmender lateraler Abmessungen bei gleichbleibenden Schichtdicken das Höhe/Breite-Aspektverhältnis zunimmt.Such rounding is necessary because the subsequent aluminum sputtering process has shading effects and excessive steps in the base can cause overhangs or tears of the aluminum conductor tracks. With increasing integration of the components, this problem becomes more and more critical since the height / width aspect ratio increases due to decreasing lateral dimensions with constant layer thicknesses.
Da durch eine Optimierung des auf dem Prinzip der Chemical Vapour Deposition (CVD) beruhenden Oxid-Abscheideprozesses sich bestenfalls nur eine konforme, das heißt, keine zusätzlichen Überhänge aufweisende Kantenbedeckung erreichen läßt, ist es notwendig, den Zwischenoxidprozeß als eine Kombination von Schichtabscheidung und anschließender "Verfließung" zu konzipieren. Um einen solchen Verfließschritt bei prozeßtechnisch tragbaren Temperaturen durchführen zu können, muß das SiO₂ den Erweichungspunkt herabsetzende Zusätze enthalten. In der Praxis werden hier Phosphor bzw. Bor und Phosphor verwendet, die in Form ihrer Oxide bereits bei der Schichtabscheidung mit in die Zwischenoxidschicht eingebaut werden und sogenannte "ternäre" Gläser bilden. Der Phosphor hat dabei hauptsächlich die Funktion, die elektrische Stabilität der Schicht zu verbessern, während der Borgehalt die Verfließtemperatur bestimmt.Since an optimization of the oxide deposition process based on the principle of chemical vapor deposition (CVD) can at best only achieve a conformal, that is to say no additional overhanging edge covering, it is necessary to consider the intermediate oxide process as a combination of layer deposition and subsequent " Flow "concept. In order to be able to carry out such a flow step at process-technically acceptable temperatures, the SiO₂ must contain additives which reduce the softening point. In practice, phosphorus or boron and phosphorus are used here, which in the form of their oxides are already incorporated into the intermediate oxide layer during the layer deposition and form what are known as “ternary” glasses. The main function of phosphorus is to improve the electrical stability of the layer, while the boron content determines the flow temperature.
Die oben zum Stand der Technik genannten Prozesse zur Herstellung von Bor-Phosphor-Silkatglasschichten haben verschiedene Nachteile:
- 1. Diboran als Borlieferant ist giftig, explosiv und chemisch instabil. Dies führt dazu, daß der Diborangehalt der das Diborangasgemisch enthaltenden Gasflasche mit der Zeit sinkt und daß keine herkömmlichen Niederdruck-Gasphasenabscheidungs (Lowpressure Chemical Vapor Deposition = LPCVD)-Rohranlagen mit Injektoren verwendet werden können, da das Diboran sich in den Injektoren bereits erwärmt und zersetzt. Bortrichlorid andererseits führt zu einem Chloreinbau in die Schicht, wodurch ernste Korrosionsprobleme der nachfolgenden Metallisierung auftreten können.
- 2. Die chemische Stabilität gegenüber Luftfeuchtigkeit ist bei den dotierten Niedertemperaturoxiden generell schlecht; so bilden sich zum Beispiel schon bei Borkonzentrationen im Bereich von 3 bis 4 Gew% Ausscheidungen von Borsäure, wie aus dem eingangs erwähnten Bericht von Kern und Schnable aus dem RCA Review, Vol. 43, 1982, auf den Seiten 423 bis 457 zu entnehmen ist.
- 3. Der Phosphor liegt in den Niedertemperaturschichten zum Teil als P₂O₃, zum Teil als P₂O₅ vor, wobei nur der fünfwertige Phosphor für die Verfließung relevant ist.
- 4. Oxidprozesse auf Silan-Basis sind sehr empfindlich auf Lecks in der Abscheideanlage.
- 5. Die Kantenbedeckung der Niedertemperaturoxide ist generell nicht zufriedenstellend.
- 1. Diborane as a boron supplier is toxic, explosive and chemically unstable. As a result, the diborane content of the gas bottle containing the diborane gas mixture decreases over time and no conventional low-pressure vapor deposition ( L ow p ressure C hemical V apor D eposition = LPCVD) pipe systems with injectors can be used, since the diborane is in itself the injectors are already warmed up and decomposed. Boron trichloride, on the other hand, leads to the incorporation of chlorine into the layer, which can lead to serious corrosion problems in the subsequent metallization.
- 2. The chemical stability to air humidity is generally poor with the doped low-temperature oxides; For example, excretion of boric acid already forms at boron concentrations in the range of 3 to 4% by weight, as can be seen from the aforementioned Kern and Schnable report from RCA Review, Vol. 43, 1982, on pages 423 to 457 .
- 3. The phosphorus is in the low-temperature layers partly as P₂O₃, partly as P₂O₅, only the pentavalent phosphorus being relevant for the flow.
- 4. Silane-based oxide processes are very sensitive to leaks in the separation system.
- 5. The edge coverage of the low temperature oxides is generally unsatisfactory.
Aufgabe der Erfindung ist es daher, einen Bor-Phosphor-Silikatglas-Abscheideprozeß zu entwickeln, der die Nachteile teile der bisherigen Verfahrensweisen vermeidet.The object of the invention is therefore to develop a boron-phosphorus-silicate glass deposition process which has the disadvantages avoids parts of the previous procedures.
Die erfindungsgemäße Aufgabe wird durch ein Verfahren der eingangs genannten Art dadurch gelöst, daß
- a) als Ausgangsstoffe für die thermische Zersetzung die Verbindungen Tetraethylorthosilikat ((C₂H₅O)₄Si), Trimethylborat ((CH₃O)₃B) und Trimethylphosphat ((CH₃O)₃PO) verwendet werden,
- b) die thermische Zersetzung der Verbindungen gleichzeitig oberhalb von 600°C in einem Niederdruck-Reaktor durchgeführt wird und
- c) die Ausgangsstoffe über getrennte Verdampfer dem Reaktor zugeführt werden wobei die Bor und Phosphor enthaltenden Dotiergase und die SiO₂- Schicht bildende gasförmige Tetraäthylorthosilikat-Verbindung im Gegenstromprinzip in den Reaktor geleitet werden
- a) the compounds tetraethyl orthosilicate ((C₂H₅O) ₄Si), trimethyl borate ((CH₃O) ₃B) and trimethyl phosphate ((CH₃O) ₃PO) are used as starting materials for the thermal decomposition,
- b) the thermal decomposition of the compounds is carried out simultaneously above 600 ° C. in a low-pressure reactor and
- c) the starting materials are fed to the reactor via separate evaporators, the doping gases containing boron and phosphorus and the gaseous tetraethyl orthosilicate compound forming the
SiO 2 layer being passed into the reactor in a countercurrent principle
Anstelle von Trimethylphosphat kann Phosphin (PH₃) mit Sauerstoff (O₂) gemischt verwendet werden, wobei das PH₃/O₂-Verhältnis größer 0,2 beträgt. Das Gasgemisch wird über einen Strömungsgeschwindigkeitsregler dem Reaktor zugeführt.Instead of trimethyl phosphate, phosphine (PH₃) mixed with oxygen (O₂) can be used, the PH₃ / O₂ ratio being greater than 0.2. The gas mixture is fed to the reactor via a flow rate controller.
Weitere Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.Further refinements of the invention result from the subclaims.
Anhand eines Ausführungsbeispiels und der in der Zeichnung befindlichen Figur soll im folgenden die Erfindung noch näher erläutert werden. Die Figur stellt im Schnittbild eine Vorrichtung dar, in der aus Silizium bestehende Halbleitersubstratscheiben 2 mit einer Bor-Phosphor-Silikatglasschicht versehen werden.The invention will be explained in more detail below with the aid of an exemplary embodiment and the figure in the drawing. The figure shows a device in the sectional view, in which semiconductor substrate wafers 2 consisting of silicon are provided with a boron-phosphorus-silicate glass layer.
Die in den als Quarzkäfig ausgebildeten, als "Boote" bezeichneten Scheibenhalterungen 1 stehenden Siliziumscheiben 2 werden in einem im Handel erhältlichen (Heraeus Cantilever) Niederdruck-Abscheideofen 3 mittels einer Schiebevorrichtung 4 eingebracht. Durch einen Pumpstand 5, bestehend aus Vorpumpe 6, Wälzkolbenpumpe 7 und Regelventil 8 wird über eine Stickstoff-Kühlfalle 9 das Reaktionsrohr 3 evakuiert (siehe Pfeil 28) und dann die Prozeßgase, die zum Aufbau der auf den Substratscheiben 2 aufzubringenden BPSG-Schicht erforderlich sind, eingeleitet.The silicon wafers 2 standing in the wafers 1 designed as a quartz cage and called "boats" are placed in a commercially available (Heraeus Cantilever) low-pressure deposition furnace 3 by means of a Introduced sliding device 4. The reaction tube 3 is evacuated (see arrow 28) and then the process gases required to build up the BPSG layer to be applied to the
Das Tetraäthylorthosilikat (TEOS) wird in einem Verdampfer 10, der sich auf einer Temperatur im Bereich von 30 bis 60°C befindet, verdampft und an der Seite des Reaktors 3 in den Reaktor eingelassen (siehe Pfeil 26), an der auch die Substratscheiben (1, 2, 4) eingeführt werden. Die Dotiergase werden dagegen durch Injektoren 11, 12, (das sind mit Durchlässen versehene dünne Quarzrohre), von der entgegengesetzten Seite (siehe Pfeil 27) in den Reaktionsraum 3 eingeleitet.The tetraethyl orthosilicate (TEOS) is evaporated in an evaporator 10, which is at a temperature in the range from 30 to 60 ° C., and is introduced into the reactor on the side of the reactor 3 (see arrow 26), on which the substrate disks ( 1, 2, 4) are introduced. The doping gases, on the other hand, are introduced into the reaction space 3 from the opposite side (see arrow 27) by
Die Zufuhr des Bor-Dotiergases Tritmethylborat (TMB) erfolgt über den Verdampfer 13, der auf einer Temperatur im Bereich von 30 bis 60°C gehalten wird, während zur Phosphordotierung wahlweise Phosphingas (PH₃) über einen Strömungsgeschwindigkeitsmesser 14 oder Tritmethylphosphat (TMP) aus einem Verdampfer 15, der sich auf einer Temperatur größer 60°C, vorzugsweise bei 70°C befindet, verwendet werden kann.The supply of the boron doping gas tritmethyl borate (TMB) takes place via the evaporator 13, which is kept at a temperature in the range from 30 to 60 ° C, while for phosphorous doping either phosphine gas (PH₃) via a flow rate meter 14 or tritmethylphosphate (TMP) from one
Der Abscheidedruck im Reaktionsraum 3 wird im Bereich von 15-100 Pa (ca 100 bis 800 mTorr) eingestellt; das PH₃/O₂-Verhältnis beträgt größer 0,2. Als Abscheidetemperaturbereich wird 600 bis 700°C gewählt.The deposition pressure in reaction chamber 3 is set in the range of 15-100 Pa (approx. 100 to 800 mTorr); the PH₃ / O₂ ratio is greater than 0.2. 600 to 700 ° C is selected as the separation temperature range.
Durch zusätzliche Anschlußleitungen und Strömungsgeber mit Ventilen 16, 17, 18, 19, 20, 21, 22, 23 ist es möglich, Stickstoff (N₂) oder Sauerstoff (O₂) durch die Verdampfer 10, 13, 15 hindurchperlen zu lassen. Über eine Evakuierleitung 24 und die Ventile 29, 30, 28 sind die Verdampfer 10, 13, 15 mit dem Pumpstand 5 verbunden. Über die mit dem Bezugszeichen 25 bezeichneten Meßgeräte (Baratron) wird der Druck kontrolliert. Weitere, nicht mit Bezugszeichen versehene Symbole in der Zeichnung stellen Ventile für die einzelnen Zuleitungen dar.Through additional connecting lines and flow sensors with
Mit dem Verfahren nach der Lehre der Erfindung ist es möglich, BPSG-Schichten herzustellen, die - auch bei Konzentrationen im Bereich von 5:5 Gew% Bor/Phosphor - in Umgebungsluft chemisch stabil sind und den Phosphor nur in Form von P₂O₅ enthalten. Bei einer den bisherigen BPSG-Verfahren entsprechenden Schichtdickenhomogenität weisen die erfindungsgemäßen Schichten eine sehr gute Kantenbedeckung auf. Die gewünschten Bor/Phosphor-Konzentrationen lassen sich durch Variation der Zufuhr an Dotiergasen, sowie der Abscheidetemperaturen einstellen. Der Prozeß ist bezüglich Lecks unkritischer als Silan-Prozesse. Ein weiterer Vorteil ist dadurch gegeben, daß die Bordotierung über das ungiftige Trimethylborat erfolgt.With the method according to the teaching of the invention, it is possible to produce BPSG layers which - even at concentrations in the range of 5: 5% by weight boron / phosphorus - are chemically stable in ambient air and contain the phosphorus only in the form of P₂O₅. With a layer thickness homogeneity corresponding to the previous BPSG method, the layers according to the invention have very good edge coverage. The desired boron / phosphorus concentrations can be set by varying the supply of doping gases and the deposition temperatures. The process is less critical with regard to leaks than silane processes. Another advantage is that the on-board doping takes place via the non-toxic trimethyl borate.
Claims (6)
- Process for producing silicon oxide layers, doped with boron and phosphorus, such as those used in producing integrated semiconductor circuits as intermediate layers for the electrical insulation and for smoothing out topographical irregularities on substrate wafers (2), by thermal decomposition of gaseous compounds containing the elements, characterised in thata) the compounds tetraethyl orthosilicate ((C₂H₅O)₄Si), trimethyl borate ((CH₃O)₃B) and trimethyl phosphate ((CH₃O)₃PO) are used as starting substances (10, 13, 15) for the thermal decomposition,b) the thermal decomposition of the compounds is carried out simultaneously above 600°C in a lowpressure reactor (3),c) the starting substances (10, 13, 15) are supplied via separate evaporators to the reactor (3), the doping gases (11, 12) containing boron and phosphorus and the gaseous tetraethyl orthosilicate compound (10) forming the SiO₂ layer being fed into the reactor (3) on the countercurrent principle (26, 27).
- Process according to Claim 1, characterised in that, instead of trimethyl phosphate (15), phosphine (PH₃) is mixed with oxygen (O₂), the PH₃/O₂ ratio being greater than 0.2, and in that the compound is supplied to the reactor (3) via a flow rate regulator (14).
- Process according to Claim 1 or 2, characterised in that the pressure in the reactor (3) is adjusted to a range of between 15 and 100 Pa.
- Process according to at least one of Claims 1 to 3, characterised in that the temperature in the reactor (3) is adjusted to 600 to 700°C.
- Process according to at least one of Claims 1 to 4, characterised in that the tetraethyl orthosilicate (10) and trimethyl borate (13) evaporator temperatures are adjusted to a range of 30 to 60°C and the trimethyl phosphate (15) evaporator temperature up to greater than 60°C.
- Process according to at least one of Claims 1 to 5, characterised in that carrier gases, such as nitrogen or oxygen, which are fed through the evaporator vessels (10, 13, 15) are used for the compounds to be evaporated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT86106479T ATE64237T1 (en) | 1985-05-22 | 1986-05-13 | PROCESS FOR MANUFACTURING BORON AND PHOSPHORUS-DOped SILICON COATINGS FOR SEMICONDUCTOR INTEGRATED CIRCUITS. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3518452 | 1985-05-22 | ||
DE3518452 | 1985-05-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0204182A1 EP0204182A1 (en) | 1986-12-10 |
EP0204182B1 true EP0204182B1 (en) | 1991-06-05 |
Family
ID=6271386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86106479A Expired - Lifetime EP0204182B1 (en) | 1985-05-22 | 1986-05-13 | Method of producing films of silicon oxide doped with boron and phosphorus for use in semiconductor integrated circuits |
Country Status (5)
Country | Link |
---|---|
US (1) | US4791005A (en) |
EP (1) | EP0204182B1 (en) |
JP (1) | JPS61275136A (en) |
AT (1) | ATE64237T1 (en) |
DE (1) | DE3679596D1 (en) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3683039D1 (en) * | 1986-04-04 | 1992-01-30 | Ibm Deutschland | METHOD FOR PRODUCING SILICON AND OXYGEN LAYERS. |
US4755486A (en) * | 1986-12-11 | 1988-07-05 | Siemens Aktiengesellschaft | Method of producing a defined arsenic doping in silicon semiconductor substrates |
US5000113A (en) * | 1986-12-19 | 1991-03-19 | Applied Materials, Inc. | Thermal CVD/PECVD reactor and use for thermal chemical vapor deposition of silicon dioxide and in-situ multi-step planarized process |
US5871811A (en) * | 1986-12-19 | 1999-02-16 | Applied Materials, Inc. | Method for protecting against deposition on a selected region of a substrate |
JPS6425545A (en) * | 1987-07-22 | 1989-01-27 | Fujitsu Ltd | Growing method for boron phosphorus silicate glass film |
IT1224656B (en) * | 1987-12-23 | 1990-10-18 | Sgs Thomson Microelectronics | PROCEDURE FOR THE MANUFACTURE OF CAPACITORS INTEGRATED IN MOS TECHNOLOGY. |
US4894352A (en) * | 1988-10-26 | 1990-01-16 | Texas Instruments Inc. | Deposition of silicon-containing films using organosilicon compounds and nitrogen trifluoride |
US5104482A (en) * | 1989-02-21 | 1992-04-14 | Lam Research Corporation | Simultaneous glass deposition and viscoelastic flow process |
WO1990010307A1 (en) * | 1989-02-21 | 1990-09-07 | Lam Research Corporation | Novel glass deposition viscoelastic flow process |
US5166101A (en) * | 1989-09-28 | 1992-11-24 | Applied Materials, Inc. | Method for forming a boron phosphorus silicate glass composite layer on a semiconductor wafer |
US5314845A (en) * | 1989-09-28 | 1994-05-24 | Applied Materials, Inc. | Two step process for forming void-free oxide layer over stepped surface of semiconductor wafer |
DE3937723A1 (en) * | 1989-11-13 | 1991-05-16 | Fraunhofer Ges Forschung | METHOD AND DEVICE FOR PRODUCING A SILICATE LAYER IN AN INTEGRATED CIRCUIT |
JPH03163820A (en) * | 1989-11-22 | 1991-07-15 | Tokai Univ | Manufacture of diamond n-type semiconductor and diamond pn junction diode |
US5328872A (en) * | 1989-12-29 | 1994-07-12 | At&T Bell Laboratories | Method of integrated circuit manufacturing using deposited oxide |
JP2626925B2 (en) * | 1990-05-23 | 1997-07-02 | 三菱電機株式会社 | Substrate processing apparatus and substrate processing method |
JPH0782999B2 (en) * | 1991-04-15 | 1995-09-06 | 株式会社半導体プロセス研究所 | Vapor growth film forming method, semiconductor manufacturing apparatus, and semiconductor device |
JP2699695B2 (en) * | 1991-06-07 | 1998-01-19 | 日本電気株式会社 | Chemical vapor deposition |
JP2797233B2 (en) * | 1992-07-01 | 1998-09-17 | 富士通株式会社 | Thin film growth equipment |
FR2703797B1 (en) * | 1993-04-06 | 1995-06-23 | Matra Mhs | METHOD AND DEVICE FOR MONITORING THE BORON CONTENT OF BOROPHOSPHOSILICATE. |
US5409743A (en) * | 1993-05-14 | 1995-04-25 | International Business Machines Corporation | PECVD process for forming BPSG with low flow temperature |
US5906861A (en) * | 1993-07-20 | 1999-05-25 | Raytheon Company | Apparatus and method for depositing borophosphosilicate glass on a substrate |
US5382550A (en) * | 1993-08-05 | 1995-01-17 | Micron Semiconductor, Inc. | Method of depositing SiO2 on a semiconductor substrate |
US5702532A (en) * | 1995-05-31 | 1997-12-30 | Hughes Aircraft Company | MOCVD reactor system for indium antimonide epitaxial material |
US7763327B2 (en) * | 1996-04-22 | 2010-07-27 | Micron Technology, Inc. | Methods using ozone for CVD deposited films |
US5994209A (en) * | 1996-11-13 | 1999-11-30 | Applied Materials, Inc. | Methods and apparatus for forming ultra-shallow doped regions using doped silicon oxide films |
DE19735399C2 (en) * | 1997-08-14 | 2002-01-17 | Infineon Technologies Ag | Gas pipe system for a process reactor, in particular a vertical furnace, for the treatment of wafers and method for the treatment of wafers in a process reactor |
US6057250A (en) * | 1998-01-27 | 2000-05-02 | International Business Machines Corporation | Low temperature reflow dielectric-fluorinated BPSG |
US6261975B1 (en) | 1999-03-04 | 2001-07-17 | Applied Materials, Inc. | Method for depositing and planarizing fluorinated BPSG films |
US6432564B1 (en) * | 1999-08-12 | 2002-08-13 | Mini Systems, Inc. | Surface preparation of a substrate for thin film metallization |
US6730619B2 (en) * | 2000-06-15 | 2004-05-04 | Samsung Electronics Co., Ltd. | Method of manufacturing insulating layer and semiconductor device including insulating layer |
GR1004178B (en) * | 2001-11-29 | 2003-03-05 | "����������" | Integrated optoelectronic silicon biosensor for the detection of biomolecules labeled with chromophore groups or nanoparticles |
JP3675770B2 (en) * | 2002-03-22 | 2005-07-27 | 株式会社東芝 | Thermal infrared image sensor |
US7238597B2 (en) * | 2002-09-27 | 2007-07-03 | Brontek Delta Corporation | Boron ion delivery system |
DE102008050941A1 (en) * | 2008-10-10 | 2010-04-22 | Behr Gmbh & Co. Kg | CVD coating method, coating device and component of a fluid guide |
FR2944138B1 (en) * | 2009-04-06 | 2012-12-07 | Semco Engineering Sa | BORON DOPING METHOD OF SILICON PLATELETS |
US8603900B2 (en) * | 2009-10-27 | 2013-12-10 | Varian Semiconductor Equipment Associates, Inc. | Reducing surface recombination and enhancing light trapping in solar cells |
CN109927356B (en) * | 2019-03-21 | 2020-12-15 | 佛山市顺德区一骏实业有限公司 | Heat-insulating anti-radiation laminated glass film and production process thereof |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1165575A (en) * | 1966-01-03 | 1969-10-01 | Texas Instruments Inc | Semiconductor Device Stabilization. |
US3481781A (en) * | 1967-03-17 | 1969-12-02 | Rca Corp | Silicate glass coating of semiconductor devices |
JPS51144183A (en) * | 1975-06-06 | 1976-12-10 | Hitachi Ltd | Semiconductor element containing surface protection film |
US4217375A (en) * | 1977-08-30 | 1980-08-12 | Bell Telephone Laboratories, Incorporated | Deposition of doped silicon oxide films |
JPS5514138A (en) * | 1978-07-13 | 1980-01-31 | Aioi Seiki Kk | Control unit for actuation and supervising of brake of mechanical press |
DE3067197D1 (en) * | 1979-11-21 | 1984-04-26 | Hitachi Ltd | Method for producing optical glass |
EP0047112B1 (en) * | 1980-08-29 | 1985-11-27 | Fujitsu Limited | Method of forming phosphosilicate glass films |
US4349584A (en) * | 1981-04-28 | 1982-09-14 | Rca Corporation | Process for tapering openings in ternary glass coatings |
US4363830A (en) * | 1981-06-22 | 1982-12-14 | Rca Corporation | Method of forming tapered contact holes for integrated circuit devices |
EP0141496A1 (en) * | 1983-08-31 | 1985-05-15 | Morton Thiokol, Inc. | Process for deposition silicon dioxide containing dopant onto a substrate |
US4557950A (en) * | 1984-05-18 | 1985-12-10 | Thermco Systems, Inc. | Process for deposition of borophosphosilicate glass |
US4546016A (en) * | 1984-08-06 | 1985-10-08 | Rca Corporation | Deposition of borophosphosilicate glass |
-
1986
- 1986-05-13 EP EP86106479A patent/EP0204182B1/en not_active Expired - Lifetime
- 1986-05-13 DE DE8686106479T patent/DE3679596D1/en not_active Expired - Fee Related
- 1986-05-13 AT AT86106479T patent/ATE64237T1/en not_active IP Right Cessation
- 1986-05-16 JP JP61112416A patent/JPS61275136A/en active Pending
-
1987
- 1987-10-27 US US07/113,412 patent/US4791005A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US4791005A (en) | 1988-12-13 |
ATE64237T1 (en) | 1991-06-15 |
DE3679596D1 (en) | 1991-07-11 |
EP0204182A1 (en) | 1986-12-10 |
JPS61275136A (en) | 1986-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0204182B1 (en) | Method of producing films of silicon oxide doped with boron and phosphorus for use in semiconductor integrated circuits | |
DE69026059T2 (en) | Process for the production of a SiO2 film with a polysiloxane / ozone reaction | |
CA2021993C (en) | Impurity doping method with diffusion source | |
US5166101A (en) | Method for forming a boron phosphorus silicate glass composite layer on a semiconductor wafer | |
US4751149A (en) | Chemical vapor deposition of zinc oxide films and products | |
DE19612450A1 (en) | Semiconductor module with two metal connections on substrate | |
US5262356A (en) | Method of treating a substrate wherein the flow rates of the treatment gases are equal | |
US4557950A (en) | Process for deposition of borophosphosilicate glass | |
DE1913039A1 (en) | Process for introducing doping impurities into semiconductor bodies | |
DE69517629T2 (en) | Process for the selective production of semiconductor areas | |
DE69024578T2 (en) | Integrated circuit structure with a composite borophosphosilicate glass layer on a semiconductor wafer and improved production method therefor | |
DE69229618T2 (en) | METHOD FOR PRODUCING A FILM GROWN IN THE STEAM PHASE | |
US5026574A (en) | Chemical vapor deposition process for depositing large-grain polysilicon films | |
EP0339385B1 (en) | Method of producing boron-containing and/or phosphorous-containing silicate glass layers for highly integrated circuits | |
DE102016100938A1 (en) | Controlling the reflow behavior of BPSG films and devices made therewith | |
US5702529A (en) | Method of making doped semiconductor film having uniform impurity concentration on semiconductor substrate and apparatus for making the same | |
DE60218924T2 (en) | Vapor deposition of silicon oxide films | |
JPS60150624A (en) | Low voltage chemical deposition diffusing dopant source for semiconductor | |
EP0366343B1 (en) | Integrated circuit fabrication, including low temperature method for making silicide structures | |
Fujino et al. | TEOS and ozone atmospheric pressure CVD of borophosphosilicate glass films using triethylborate and trimethylphosphate | |
DE2356926C2 (en) | Process for forming an impurity-doped dielectric layer on a semiconductor substrate | |
DE2148120B2 (en) | Process for depositing glass films | |
JP3180122B2 (en) | Method of impurity doping | |
JPH03170676A (en) | Thin film forming device | |
US4588454A (en) | Diffusion of dopant into a semiconductor wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19870223 |
|
17Q | First examination report despatched |
Effective date: 19890811 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT DE FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 64237 Country of ref document: AT Date of ref document: 19910615 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3679596 Country of ref document: DE Date of ref document: 19910711 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19930419 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19930421 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19930519 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19930531 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19930720 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19940513 Ref country code: AT Effective date: 19940513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19941201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19940513 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19950131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19950201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050513 |