EP0298172A1 - Thickened bleach compositions and method for preparing the same - Google Patents
Thickened bleach compositions and method for preparing the same Download PDFInfo
- Publication number
- EP0298172A1 EP0298172A1 EP87306130A EP87306130A EP0298172A1 EP 0298172 A1 EP0298172 A1 EP 0298172A1 EP 87306130 A EP87306130 A EP 87306130A EP 87306130 A EP87306130 A EP 87306130A EP 0298172 A1 EP0298172 A1 EP 0298172A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- surfactant
- bleach
- groups
- composition
- viscoelastic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 110
- 239000007844 bleaching agent Substances 0.000 title claims abstract description 101
- 238000000034 method Methods 0.000 title claims description 20
- 239000004094 surface-active agent Substances 0.000 claims abstract description 96
- 150000002500 ions Chemical class 0.000 claims abstract description 41
- 239000007788 liquid Substances 0.000 claims description 29
- 125000000129 anionic group Chemical group 0.000 claims description 12
- 125000002091 cationic group Chemical group 0.000 claims description 12
- 230000003381 solubilizing effect Effects 0.000 claims description 8
- 230000002209 hydrophobic effect Effects 0.000 claims description 7
- 150000007942 carboxylates Chemical group 0.000 claims description 6
- 239000003792 electrolyte Substances 0.000 claims description 6
- 125000001453 quaternary ammonium group Chemical group 0.000 claims description 5
- 230000008719 thickening Effects 0.000 claims description 5
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 4
- 239000003945 anionic surfactant Substances 0.000 claims description 3
- 239000003093 cationic surfactant Substances 0.000 claims description 3
- RLGQACBPNDBWTB-UHFFFAOYSA-N cetyltrimethylammonium ion Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)C RLGQACBPNDBWTB-UHFFFAOYSA-N 0.000 claims description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical group OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims description 2
- 125000005496 phosphonium group Chemical group 0.000 claims description 2
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 claims description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium Chemical compound [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 claims description 2
- PDSVZUAJOIQXRK-UHFFFAOYSA-N trimethyl(octadecyl)azanium Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)C PDSVZUAJOIQXRK-UHFFFAOYSA-N 0.000 claims description 2
- GLFDLEXFOHUASB-UHFFFAOYSA-N trimethyl(tetradecyl)azanium Chemical compound CCCCCCCCCCCCCC[N+](C)(C)C GLFDLEXFOHUASB-UHFFFAOYSA-N 0.000 claims description 2
- 125000006162 fluoroaliphatic group Chemical group 0.000 claims 1
- 239000007921 spray Substances 0.000 abstract description 14
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 abstract description 8
- 238000009472 formulation Methods 0.000 abstract description 5
- 239000005708 Sodium hypochlorite Substances 0.000 abstract description 2
- 239000000758 substrate Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 239000000693 micelle Substances 0.000 description 12
- 239000003595 mist Substances 0.000 description 12
- -1 alkaline earth metal hypochlorites Chemical class 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 9
- 229910019093 NaOCl Inorganic materials 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000006260 foam Substances 0.000 description 4
- 150000004010 onium ions Chemical class 0.000 description 4
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000012670 alkaline solution Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 125000001183 hydrocarbyl group Chemical group 0.000 description 3
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- KVCGISUBCHHTDD-UHFFFAOYSA-M sodium;4-methylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1 KVCGISUBCHHTDD-UHFFFAOYSA-M 0.000 description 3
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000003929 acidic solution Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Natural products C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000002563 ionic surfactant Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- IKCLCGXPQILATA-UHFFFAOYSA-N 2-chlorobenzoic acid Chemical compound OC(=O)C1=CC=CC=C1Cl IKCLCGXPQILATA-UHFFFAOYSA-N 0.000 description 1
- VPHHJAOJUJHJKD-UHFFFAOYSA-M 3,4-dichlorobenzoate Chemical compound [O-]C(=O)C1=CC=C(Cl)C(Cl)=C1 VPHHJAOJUJHJKD-UHFFFAOYSA-M 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- ZKQDCIXGCQPQNV-UHFFFAOYSA-N Calcium hypochlorite Chemical compound [Ca+2].Cl[O-].Cl[O-] ZKQDCIXGCQPQNV-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 230000005483 Hooke's law Effects 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- GUBGYTABKSRVRQ-ASMJPISFSA-N alpha-maltose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-ASMJPISFSA-N 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 235000012216 bentonite Nutrition 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- YOUGRGFIHBUKRS-UHFFFAOYSA-N benzyl(trimethyl)azanium Chemical compound C[N+](C)(C)CC1=CC=CC=C1 YOUGRGFIHBUKRS-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- AXZAYXJCENRGIM-UHFFFAOYSA-J dipotassium;tetrabromoplatinum(2-) Chemical compound [K+].[K+].[Br-].[Br-].[Br-].[Br-].[Pt+2] AXZAYXJCENRGIM-UHFFFAOYSA-J 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-M naphthalene-1-sulfonate Chemical compound C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-M 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 229910001487 potassium perchlorate Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- UKLNMMHNWFDKNT-UHFFFAOYSA-M sodium chlorite Chemical compound [Na+].[O-]Cl=O UKLNMMHNWFDKNT-UHFFFAOYSA-M 0.000 description 1
- 229960002218 sodium chlorite Drugs 0.000 description 1
- PFUVRDFDKPNGAV-UHFFFAOYSA-N sodium peroxide Chemical compound [Na+].[Na+].[O-][O-] PFUVRDFDKPNGAV-UHFFFAOYSA-N 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 229940080313 sodium starch Drugs 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- WUJATLHOPBZDJE-UHFFFAOYSA-M sodium;3,4-dichlorobenzoate Chemical compound [Na+].[O-]C(=O)C1=CC=C(Cl)C(Cl)=C1 WUJATLHOPBZDJE-UHFFFAOYSA-M 0.000 description 1
- CRWJEUDFKNYSBX-UHFFFAOYSA-N sodium;hypobromite Chemical compound [Na+].Br[O-] CRWJEUDFKNYSBX-UHFFFAOYSA-N 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000009718 spray deposition Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 239000008154 viscoelastic solution Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3947—Liquid compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/395—Bleaching agents
- C11D3/3956—Liquid compositions
Definitions
- the present invention relates to bleach compositions.
- it relates to thickened bleach compositions and the method of thickening them.
- Bleach compositions are typically aqueous solutions of alkali metal and alkaline earth metal hypochlorites. They are useful as cleaning agents, disinfectants, bactericides and fungicides. For example, bleach compositions are useful for cleaning textiles, dishes and glassware; and sinks, bathtubs and numerous other porcelain items.
- Bleach compositions contain mostly water and therefore have viscosities similar to water. Unfortunately, it is often necessary to apply bleach compositions to vertical or inclined surfaces. Because the composition has low viscosity, it will not adhere to a vertical or inclined surface. A thickened bleach composition which could be easily applied, for example by spraying, and could adhere to a vertical or inclined surface without dripping would be desirable. Thickened bleach compositions are disclosed in U.S. Patent Nos. 4,388,204; 4,390,448; EPO Publication No. 110,544 and British Patent No. 1,466,560. The bleach compositions of the references use various detergents or surface-active agents to thicken the composition.
- Bleach compositions are often applied to numerous items using dispensers like the manually operated atomizing dispensers disclosed in U.S. Patent No. 4,463,905.
- dispensers like the manually operated atomizing dispensers disclosed in U.S. Patent No. 4,463,905.
- typical bleach compositions when employed as a spray using such a dispenser, they can form an undesirable mist.
- This mist can cause problems if the vapors are inhaled, since the vapors can be disagreeably strong, as well as injurious to health.
- the mist can drift undesirably onto unprotected surfaces. For example, it can come into contact with clothing and other fabrics, skin and eyes. Therefore, it would be desirable to provide a thickened bleach composition that can be employed as a substantially nonmisting spray while still maintaining its stability.
- the present invention is a method of thickening an aqueous bleach composition containing a bleaching agent, comprising the step of contacting the composition with surfactant ions and organic counterions to form an aqueous solution under suitable solution conditions whereby the surfactant ions and organic counterions associate in the bleach composition thereby forming a viscoelastic surfactant.
- the present invention is a method for thickening an aqueous bleach composition containing a bleaching agent comprising the step of contacting the composition with an effective amount of (1) a surfactant ion having a hydrophobic moiety chemically bonded to an ionic, hydrophilic moiety and (2) an electrolyte having a moiety that is capable of associating with the surfactant ion to form a viscoelastic surfactant and, optionally (3) a further amount of an electrolyte having a moiety that is capable of associating with the surfactant ion, which further amount is sufficient to further thicken the bleach composition, increase its viscosity stability at higher temperatures, or both.
- the present invention is a thickened aqueous bleach composition made according to the method described above comprising a bleaching agent, surfactant ions and organic counterions, and water; the components of the composition being combined to form an aqueous solution under suitable solution conditions whereby the surfactant ions and organic counterions associate in the bleach composition thereby forming a viscoelastic surfactant.
- excess organic counterions to the bleach composition in accordance with the practice of this invention can further increase its viscosity, increase its viscosity stability at higher temperatures, or both.
- the thickened bleach compositions of this invention are useful because they exhibit good phase stability, bleach stability, and viscosity stability, and they will adhere to a vertical or inclined surface without dripping. They are also useful because they can be employed as a substantially non-misting spray.
- This invention allows the skilled artisan to produce a thickened bleach composition. It also allows the skilled artisan to apply the composition in the form of a spray to a surface by expelling the composition from a dispensing device.
- the thickened or gelled bleach composition can be expelled from the dispenser easily despite its thickened character because the composition is thickened with a viscoelastic surfactant that can provide a shear thinning behavior. Because the viscoelastic surfactant is also shear stable, it also allows the bleach composition to thicken after it is expelled from the dispenser, as for example, when the composition is applied to a surface. Therefore, the bleach composition can be applied to a vertical surface without substantial running or dripping.
- the bleach composition can be applied in the form of a stream or spray to a surface without the formation of an undesirable mist as the composition is expelled from a dispenser.
- bleach composition refers to an aqueous liquid that contains a bleach active agent.
- a bleach active agent include hydrogen peroxide, potassium perchlorate, sodium hypochlorite, sodium peroxide, sodium chlorite, calcium hypochlorite (i.e., chlorinated lime), sodium hypobromite, and iodine nonionic surfactant complexes.
- bleach compositions range from 0.5 to 50, preferably from 1 to 10 weight percent bleaching agent and from 50 to 99.5, preferably from 90 to 99, weight percent aqueous liquid. The concentration of bleaching agent required will depend on the bleaching agent employed.
- aqueous liquid refers to liquids which contain water. Included herein are substantially pure water, water containing inorganic salts, and aqueous alkaline and acidic solutions. Aqueous liquids include mixtures of water and water-miscible liquids, provided that the concentration of water-miscible liquids does not adversely affect the stability of the bleach composition or the viscoelastic properties of the aqueous liquid. Also included herein are emulsions of immiscible liquids in water, and sprayable aqueous slurries of small sized solid particulates. Therefore, the aqueous liquids of this invention can contain fine particulate bentonites, silica, and/or calcium carbonate.
- Water, water containing inorganic salts and aqueous alkaline, and acidic solutions are preferred. Most preferred is an aqueous alkaline solution wherein the total electrolyte concentration is less than 25, preferably less than 10, weight percent of the aqueous liquid.
- the aqueous liquid of this invention need not contain gritty materials, which are undesirable in some applications, to thicken the bleach composition.
- gritty materials can be difficult to adequately remove from certain surfaces.
- mist as it applies to aqueous liquids, means fine liquid droplets suspended in or falling through a moving or stationary gas atmosphere. Specifically, a mist provides an undesirable drift of aqueous droplets through a gas atmosphere.
- the properties of a mist, and tests to determine such properties are well known in the art and reference is made to Perry and Chilton, Chemical Engineer's Handbook , 5th Ed., Vol. 18, McGraw-Hill (1973).
- a mist is generally defined as a gas-suspended liquid particle which has a diameter of less than 10 ⁇ m, while a spray is a gas-suspended liquid particle which has a diameter of greater than 10 ⁇ m.
- spray and mist particles may vary depending upon the industrial use such as where a controlled droplet size is desired.
- antiimisting and “non-misting” as applied to an aqueous liquid refers to the property which comprises the tendency of said liquid to not form a mist, i.e., undersized droplets that are easily gas-suspended.
- the terms “dispenser” and “dispensing device” refer to devices which can provide a stream or spray of the bleach composition as defined herein.
- the dispenser is a hand-held device.
- the dispensing device can include a container for the bleach composition, a pump, and a spray-forming or stream-forming nozzle. The pump ejects the bleach composition from the container, through the nozzle, and into the atmosphere. Examples of suitable dispensing devices are disclosed in U.S. Patent Nos. 4,463,905; 3,572;590; 3,985,271; 2,826,399; 4,013,228 and 4,153,208.
- the preferred dispensing devices have parts that are resistant to chemical attack by bleach. They also can include a suitable aerosol device that has a propellant, an atomizer, or both. Preferably, the aerosol device is one which forms a spray when employed.
- viscous fluid Traditionally, engineers and scientists have been concerned with two separate and distinct classes of materials - the viscous fluid and the elastic solid.
- most traditional materials e.g., water, motor oil, and steel
- polymer melts and solutions were characterized as "viscoelastic”.
- viscoelastic refers to polymers that exhibit a combination of viscous (liquid-like) and elastic (solid-like) properties.
- surfactants consist of molecules containing both polar and non-polar groups. They have a strong tendency to adsorb at surfaces or interfaces and thereby lower the surface or interfacial tension. Solutions of surfactants also form micelles, which are organized aggregates of the surfactants. A selected group of surfactant solutions also impart viscoelasticity to the solution as well. (See. S. Graysholt, J. Coll. and Interface Sci. , 57 , (3) pp. 575-6 (1976), for a study of various surfactant compositions that impart viscoelasticity to aqueous solutions). However, typical surfactant compositions will not inherently possess viscoelastic properties. As reported in H.
- viscoelastic surfactants can be added to a water-based heat transfer fluid to improve its performance (U.S. Patent 4,534,875).
- Viscoelasticity is caused by a different type of micelle formation than the usual spherical micelles formed by most surfactant compositions. Viscoelastic surfactants form rod-like or cylindrical micelles. Although cylindrical micelles and spherical micelles have about the same diameter of 50 ⁇ (0.005 ⁇ m), cylindrical micelles can reach 1,000 to 2,000 ⁇ (0.1 to 0.2 ⁇ m) in length and contain hundreds or thousands of individual surfactant molecules. This high degree of association requires a specific set of conditions that can only be achieved by matching the surfactant composition with a suitable solution environment. The solution environment will depend on factors such as the type and concentration of electrolyte and the structure and concentration of organic compounds present.
- a surfactant composition may form cylindrical micelles in one solution to impart viscoelastic properties to it and form spherical micelles in another solution.
- the solution with spherical micelles will exhibit normal surfactant behavior and will not exhibit viscoelasticity.
- a determination of whether a solution is viscoelastic can be easily determined by empirical evaluation as described hereinafter.
- viscoelastic surfactants exhibit reversible shear thinning behavior. This means that under conditions of high stress, such as when the composition is sprayed through a nozzle, the composition will exhibit low viscosity. When the conditions of high stress are replaced with conditions of low stress, such as obtained when the composition has left the nozzle and is only subjected to gravitational force as it resides on a vertical surface, the composition will exhibit high viscosity. Secondly, viscoelastic surfactants will remain stable despite repeated high shear applications.
- the thickened composition can be sprayed efficiently from a dispenser without undesirable mist and yet maintain its integrity on a vertical wall without running or dripping. Since typical polymeric thickeners will degrade when subjected to high shear, a bleach composition thickened with such a polymer will lose its integrity after repeated shearing.
- the surfactant compositions within the scope of this invention are ionic viscoelastic surfactants.
- the proper choice of counterion structure and solution environment gives viscoelasticity. It has been discovered that certain viscoelastic surfactants will thicken a bleach composition without unduly sacrificing bleach stability. What follows is a discussion of ionic surfactant compounds and the counterions necessary to impart viscoelasticity to bleach compositions.
- ionic surfactant compounds comprise an ionic, hydrophilic moiety chemically bonded to a hydrophobic moiety (herein called a surfactant ion) and a counterion sufficient to satisfy the charge of the surfactant ion.
- surfactant compounds are represented by the formula: R1(Y ⁇ )X ⁇ or R1(Z ⁇ )A ⁇ wherein R1(Y ⁇ ) and R1(Z ⁇ ) represent surfactant ions having a hydrophobic moiety represented by R1 and an ionic, solubilizing moiety represented by the cationic moiety Y ⁇ or the anionic moiety Z ⁇ chemically bonded thereto.
- X ⁇ and A ⁇ are the counterions associated with the respective surfactant ions.
- the hydrophobic moiety (i.e., R1) of the surfactant ion is a hydrocarbyl or inertly substituted hydrocarbyl radical having one or more substituent groups, e.g., halo groups such as -F, -Cl, or -Br or chain linkages, such as silicon linkage (-Si-), which are inert to the aqueous liquid and components contained therein.
- the hydrocarbyl radical is an aralkyl group or a long chain alkyl or inertly substituted alkyl, which alkyl groups are generally linear and have at least 12 carbon atoms.
- Representative long chain alkyl groups include dodecyl (lauryl), tetradecyl (myristyl), hexadecyl (cetyl), octadecyl (stearyl) and the derivatives of tallow, coco and soya.
- Preferred groups are generally alkyl groups having from 14 to 24 carbon atoms, with octadecyl, hexadecyl, and tetradecyl being the most preferred.
- the cationic, solubilizing hydrophilic moieties or groups are generally onium ions wherein the term "onium ions" refers to a cationic group which is essentially completely ionized in water over a wide range of pH, e.g., pH values of from 2 to 13.
- Representative onium ions include, for example, quaternary ammonium groups, i.e., -N ⁇ (R)3; tertiary sulfonium groups, i.e., -S ⁇ (R)2; and quaternary phosphonium groups, i.e., -P ⁇ (R)3, wherein each R is individually a hydrocarbyl or inertly substituted hydrocarbyl.
- the surfactant ion of the viscoelastic surfactant is preferably prepared having a quaternary ammonium group, i.e., -N ⁇ (R)3, with each R preferably being methyl or ethyl.
- anionic, solubilizing hydrophilic moieties or groups herein designated Z ⁇
- Z ⁇ include sulfate groups, ether sulfate groups, sulfonate groups, carboxylate groups, phosphate groups, and phosphonate groups.
- the surfactant ion of the viscoelastic surfactants is preferably prepared having a carboxylate or sulfate group.
- the most preferred anionic surfactant ion is an alkyl diphenyl ether disulphonate sold by The Dow Chemical Company, under the trademark "DOWFAX 2A1", especially where the alkyl group is octadecyl.
- Fluoroaliphatic species suitably employed in the practice of this invention include organic compounds represented by the formula: R f Z1 wherein R f is a saturated fluoroaliphatic moiety, preferably containing a F3C- moiety and Z1 is an ionic moiety.
- the fluoroaliphatics can be perfluorocarbons. Suitable ionic moieties will be described hereinafter.
- the fluoroaliphatic moiety advantageously contains from 3 to 20 carbons wherein all can be fully fluorinated, preferably from 3 to 10 of such carbons.
- This fluoroaliphatic moiety can be linear, branched or cyclic, preferably linear, and can contain an occasional carbon-bonded hydrogen or halogen other than fluorine.
- linear perfluoroaliphatic moieties represented by the formula: C n F 2n+1 wherein n is in the range of from 3 to 10.
- An example of a linear perfluorocarbon that is stable to oxidation is CF3(CF2) p SO3 ⁇ A ⁇ , wherein p is from 2 to 6. The method of its preparation is described in U.S. Patent 2,732,398.
- the counterions are organic ions that have a charge opposite that of the surfactant ions.
- the counterions and surfactant ions associate in the bleach composition and impart viscoelastic properties to it.
- Organic ions that are anionic serve as counterions for surfactant ions having a cationic, hydrophilic moiety; and the organic ions that are cationic serve as counterions for surfactant ions having an anionic, hydrophilic moiety.
- the organic counterions are formed by dissociation of the corresponding salts, acids, or bases.
- the preferred anionic counterions are sulfonates or carboxylates.
- anionic counterions which, when employed with a cationic surfactant ion, are capable of imparting viscoelastic properties to the bleach composition include various aromatic sulfonates such as p-toluene sulfonate and naphthalene sulfonate; and chlorobenzoic acid, where such counterions are water-soluble.
- the cationic counterion may be an onium ion, most preferably a quaternary ammonium group.
- Representative cationic counterions in the form of a quaternary ammonium group include benzyl trimethyl ammonium or alkyl trimethyl ammonium wherein the alkyl group is advantageously octyl, decyl, dodecyl and cetyl. Most preferred is an alkyltrimethylammonium such as hexadecyltrimethylammonium supplied in the form of the bromide (HTAB). It is highly desirable to avoid stoichiometric amounts of surfactant ions and counterions when the alkyl groups of the counterions are large.
- the use of cationic counterions is generally less preferred than the use of anionic counterions.
- the particular surfactant ions and counterions are selected so that the combination imparts viscoelastic properties to an aqueous liquid.
- the aforementioned surfactant ions and counterions those combinations which form such viscoelastic surfactants will vary but are easily determined by the test methods hereinbefore described.
- the preferred surfactant compounds include those represented by the formula: wherein n is an integer from 13 to 23, preferably an integer from 15 to 21; each R is independently an alkyl group, or alkylaryl, preferably independently methyl, ethyl or benzyl; and X ⁇ is a p-toluene sulfonate.
- Especially preferred surfactant ions include cetyltrimethylammonium, myristyltrimethylammonium, and octadecyltrimethylammonium. Combinations of surfactant compounds can also be employed.
- the viscoelastic surfactants are easily prepared by admixing the basic form of the desired cationic surfactant ions with a stoichiometric amount of the acidic form of the desired anionic counterions or by admixing the acidic form of the desired anionic surfactant ions with a stoichiometric amount of the basic form of the desired cationic counterions.
- stoichiometric amounts of the salts of the surfactant ions and counterions can be admixed to form the viscoelastic surfactant. See, for example, the procedures described in U.S. Patent 2,541,816.
- the concentration of viscoelastic surfactant required to impart viscoelastic properties to the bleach composition, where the viscoelasticity is measured by the techniques previously described, is that which measurably increases the viscosity of the composition.
- the type and concentration of viscoelastic surfactant required to increase the viscosity depends on the composition of the aqueous liquid, temperature, shear rate to which the bleach composition will be subjected, and the end use contemplated. In general, the requisite concentration of any specific viscoelastic surfactant is determined experimentally.
- the concentration of viscoelastic surfactant ranges from 0.05 to 10 weight percent of the bleach composition. More preferably, the concentration of viscoelastic surfactant ranges from 0.1 to 2 weight percent of the bleach composition.
- excess organic counterions are added to the bleach composition to further increase its viscosity, increase its viscosity stability at higher temperatures, or both.
- the counterions employed will have a charge opposite that of the surfactant ions and will dissolve in the bleach composition.
- the excess organic counterions employed are the same as the counterions employed to associate with the surfactant ions to form the viscoelastic surfactant.
- the excess organic counterions can be different from the counterions which form the viscoelastic surfactant.
- concentration of excess organic counterions required to further increase the viscosity, increase the stability at higher temperatures, or both, will depend on the composition of the aqueous liquid, the surfactant ions and counterions employed, and the desired viscosity. Ordinarily, the concentration of excess counterions which will produce a noticeable effect ranges from 0.1 to 20, and more assuredly and preferably from 0.5 to 5, moles per mole of surfactant ions.
- the bleach composition may contain an emulsion of an immiscible liquid, such as an oil or other organic ingredient, at a concentration ranging from 0.05 to 20 weight percent of the bleach composition.
- concentration of immiscible liquid must be lower than that which will adversely affect the stability of the bleach composition.
- Viscoelastic surfactants employed in such emulsions tend to lose their viscoelasticity, possibly because the oil penetrates the micelles and destroys the aggregates required for viscoelasticity. Viscoelastic surfactants containing excess organic counterions maintain viscoelasticity in an emulsion longer than those without the excess organic counterions.
- fluorinated viscoelastic surfactants maintain viscoelasticity in an emulsion longer at concentrations ranging up to 50 weight percent, most preferably up to 10 weight percent of the bleach composition.
- the bleach compositions of this invention exhibit good bleach stability, phase stability, and viscosity stability.
- Good bleach stability refers to a thickened bleach composition that experiences less than 10 percent bleach degradation, which is the loss of the bleach active agent, for more than 30 days when stored under atmospheric conditions in a clear container in the dark at 30°C.
- Good viscosity stability refers to a bleach composition that exhibits a viscosity at room temperature greater than 600 cps (0.6 Pa ⁇ s) when subjected to a shear rate less than 5 sec ⁇ 1, more than 30 days after the composition is formulated and stored using the test conditions above.
- Good phase stability refers to the lack of development of separate phases for the bleach composition and viscoelastic surfactant until the bleach activity falls below useful values (for example, 75 percent bleach degradation).
- the bleach composition can be a foam, which is a thickened liquid having a dispersion of gas therein.
- the bleach composition can be vigorously agitated prior to use as a spray or stream.
- a surfactant, or other foam forming material can be used as an additive.
- a fine mesh screen device can be fitted over the nozzle of the dispensing device to intercept emitted bleach composition.
- the sample was transferred to a polyethylene bottle which was sealed and placed in a constant temperature (31°C) dark environment. Portions of the sample were periodically removed in order to evaluate the NaOCl concentration. The amount of NaOCl was determined using titration techniques employing sodium thiosulfate and starch/iodine indicator. Viscosity of the thickened bleach compositions were periodically evaluated using a Rheometrics Fluids Rheometer in a steady shear mode, and cone and plate configuration. Data are presented in Table I.
- the sample was transferred into a dispensing device which is generally described in U.S. Patent No. 4,463,905.
- the screen in front of the nozzle was removed. A portion of the sample was sprayed onto a greasy vertical enamel painted surface and was observed to provide a good distribution of spray which uniformly covered the surface.
- the treated surface was cleaned by the sprayed bleach sample.
- the sample which was sprayed onto the vertical metallic surface was observed to adhere to said surface for several minutes (i.e., 10 minutes) without a substantial amount of dripping occurring.
- the screen in front of the nozzle was reattached to the dispensing device. A portion of the sample was sprayed onto the vertical glass surface as described hereinbefore.
- the sample which was sprayed onto the vertical glass surface formed a white, non-transparent, fairly thick foam; which foam adhered to the surface for several minutes (i.e., 10 minutes) without the occurrence of substantial amounts of dripping.
- the sample in all three instances was applied as a spray wherein the dispensing device was operated without greater effort than was required for the spraying of essentially pure water.
- the bleach composition which was sprayed on the aforementioned surfaces was rinsed from the surface using water and no visible film remained on the surfaces.
- a thickened bleach composition was prepared using the formulation and procedure of Example 1, except that sodium 3,4-dichlorobenzoate was substituted in an equimolar amount for sodium p-toluene sulfonate.
- the sample was transferred to a polyethylene bottle which was sealed and placed in a constant temperature (31°C) dark environment. Samples of the composition were periodically evaluated using the techniques of Example 1. Data are presented in Table II.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
Abstract
Description
- The present invention relates to bleach compositions. In particular, it relates to thickened bleach compositions and the method of thickening them.
- Bleach compositions are typically aqueous solutions of alkali metal and alkaline earth metal hypochlorites. They are useful as cleaning agents, disinfectants, bactericides and fungicides. For example, bleach compositions are useful for cleaning textiles, dishes and glassware; and sinks, bathtubs and numerous other porcelain items.
- Bleach compositions contain mostly water and therefore have viscosities similar to water. Unfortunately, it is often necessary to apply bleach compositions to vertical or inclined surfaces. Because the composition has low viscosity, it will not adhere to a vertical or inclined surface. A thickened bleach composition which could be easily applied, for example by spraying, and could adhere to a vertical or inclined surface without dripping would be desirable. Thickened bleach compositions are disclosed in U.S. Patent Nos. 4,388,204; 4,390,448; EPO Publication No. 110,544 and British Patent No. 1,466,560. The bleach compositions of the references use various detergents or surface-active agents to thicken the composition. However, no one- or two-component surfactant additive system has been proven satisfactory with regard to phase stability, bleach stability, and viscosity stability. Therefore, it would be desirable to provide a thickened bleach composition that employs only a one- or two-component additive system and exhibits good phase stability and bleach stability, as well as viscosity stability.
- Bleach compositions are often applied to numerous items using dispensers like the manually operated atomizing dispensers disclosed in U.S. Patent No. 4,463,905. Unfortunately, when typical bleach compositions are employed as a spray using such a dispenser, they can form an undesirable mist. This mist can cause problems if the vapors are inhaled, since the vapors can be disagreeably strong, as well as injurious to health. In addition, the mist can drift undesirably onto unprotected surfaces. For example, it can come into contact with clothing and other fabrics, skin and eyes. Therefore, it would be desirable to provide a thickened bleach composition that can be employed as a substantially nonmisting spray while still maintaining its stability.
- Accordingly, in one aspect, the present invention is a method of thickening an aqueous bleach composition containing a bleaching agent, comprising the step of contacting the composition with surfactant ions and organic counterions to form an aqueous solution under suitable solution conditions whereby the surfactant ions and organic counterions associate in the bleach composition thereby forming a viscoelastic surfactant.
- In another aspect, the present invention is a method for thickening an aqueous bleach composition containing a bleaching agent comprising the step of contacting the composition with an effective amount of (1) a surfactant ion having a hydrophobic moiety chemically bonded to an ionic, hydrophilic moiety and (2) an electrolyte having a moiety that is capable of associating with the surfactant ion to form a viscoelastic surfactant and, optionally (3) a further amount of an electrolyte having a moiety that is capable of associating with the surfactant ion, which further amount is sufficient to further thicken the bleach composition, increase its viscosity stability at higher temperatures, or both.
- In yet another aspect, the present invention is a thickened aqueous bleach composition made according to the method described above comprising a bleaching agent, surfactant ions and organic counterions, and water; the components of the composition being combined to form an aqueous solution under suitable solution conditions whereby the surfactant ions and organic counterions associate in the bleach composition thereby forming a viscoelastic surfactant.
- The addition of excess organic counterions to the bleach composition in accordance with the practice of this invention can further increase its viscosity, increase its viscosity stability at higher temperatures, or both.
- The thickened bleach compositions of this invention are useful because they exhibit good phase stability, bleach stability, and viscosity stability, and they will adhere to a vertical or inclined surface without dripping. They are also useful because they can be employed as a substantially non-misting spray.
- This invention allows the skilled artisan to produce a thickened bleach composition. It also allows the skilled artisan to apply the composition in the form of a spray to a surface by expelling the composition from a dispensing device. The thickened or gelled bleach composition can be expelled from the dispenser easily despite its thickened character because the composition is thickened with a viscoelastic surfactant that can provide a shear thinning behavior. Because the viscoelastic surfactant is also shear stable, it also allows the bleach composition to thicken after it is expelled from the dispenser, as for example, when the composition is applied to a surface. Therefore, the bleach composition can be applied to a vertical surface without substantial running or dripping. In addition, the bleach composition can be applied in the form of a stream or spray to a surface without the formation of an undesirable mist as the composition is expelled from a dispenser.
- As used herein, the term "bleach composition" refers to an aqueous liquid that contains a bleach active agent. Such agents include hydrogen peroxide, potassium perchlorate, sodium hypochlorite, sodium peroxide, sodium chlorite, calcium hypochlorite (i.e., chlorinated lime), sodium hypobromite, and iodine nonionic surfactant complexes. Typically, bleach compositions range from 0.5 to 50, preferably from 1 to 10 weight percent bleaching agent and from 50 to 99.5, preferably from 90 to 99, weight percent aqueous liquid. The concentration of bleaching agent required will depend on the bleaching agent employed.
- The term "aqueous liquid" refers to liquids which contain water. Included herein are substantially pure water, water containing inorganic salts, and aqueous alkaline and acidic solutions. Aqueous liquids include mixtures of water and water-miscible liquids, provided that the concentration of water-miscible liquids does not adversely affect the stability of the bleach composition or the viscoelastic properties of the aqueous liquid. Also included herein are emulsions of immiscible liquids in water, and sprayable aqueous slurries of small sized solid particulates. Therefore, the aqueous liquids of this invention can contain fine particulate bentonites, silica, and/or calcium carbonate. Water, water containing inorganic salts and aqueous alkaline, and acidic solutions are preferred. Most preferred is an aqueous alkaline solution wherein the total electrolyte concentration is less than 25, preferably less than 10, weight percent of the aqueous liquid.
- The aqueous liquid of this invention need not contain gritty materials, which are undesirable in some applications, to thicken the bleach composition. For example, gritty materials can be difficult to adequately remove from certain surfaces.
- The term "mist" as it applies to aqueous liquids, means fine liquid droplets suspended in or falling through a moving or stationary gas atmosphere. Specifically, a mist provides an undesirable drift of aqueous droplets through a gas atmosphere. The properties of a mist, and tests to determine such properties are well known in the art and reference is made to Perry and Chilton, Chemical Engineer's Handbook, 5th Ed., Vol. 18, McGraw-Hill (1973). In distinguishing a mist from a spray, a mist is generally defined as a gas-suspended liquid particle which has a diameter of less than 10 µm, while a spray is a gas-suspended liquid particle which has a diameter of greater than 10 µm. However, it is understood that the specific size of spray and mist particles may vary depending upon the industrial use such as where a controlled droplet size is desired. As used herein, the terms "antimisting" and "non-misting" as applied to an aqueous liquid refers to the property which comprises the tendency of said liquid to not form a mist, i.e., undersized droplets that are easily gas-suspended.
- The terms "dispenser" and "dispensing device" refer to devices which can provide a stream or spray of the bleach composition as defined herein. Typically, the dispenser is a hand-held device. For example, the dispensing device can include a container for the bleach composition, a pump, and a spray-forming or stream-forming nozzle. The pump ejects the bleach composition from the container, through the nozzle, and into the atmosphere. Examples of suitable dispensing devices are disclosed in U.S. Patent Nos. 4,463,905; 3,572;590; 3,985,271; 2,826,399; 4,013,228 and 4,153,208. The preferred dispensing devices have parts that are resistant to chemical attack by bleach. They also can include a suitable aerosol device that has a propellant, an atomizer, or both. Preferably, the aerosol device is one which forms a spray when employed.
- Traditionally, engineers and scientists have been concerned with two separate and distinct classes of materials - the viscous fluid and the elastic solid. The simple linear engineering models, Newton's law for flow and Hooke's law for elasticity, worked well because most traditional materials (e.g., water, motor oil, and steel) fell in one of these two categories. However, as polymer science developed, scientists realized that these two categories represented only the extremes of a broad spectrum of material properties, and that polymers fell somewhere in the middle. As a result, polymer melts and solutions were characterized as "viscoelastic". The term "viscoelastic" refers to polymers that exhibit a combination of viscous (liquid-like) and elastic (solid-like) properties.
- The phenomenon of viscoelasticity has been discovered in certain aqueous surfactant solutions. Surfactants consist of molecules containing both polar and non-polar groups. They have a strong tendency to adsorb at surfaces or interfaces and thereby lower the surface or interfacial tension. Solutions of surfactants also form micelles, which are organized aggregates of the surfactants. A selected group of surfactant solutions also impart viscoelasticity to the solution as well. (See. S. Graysholt, J. Coll. and Interface Sci., 57, (3) pp. 575-6 (1976), for a study of various surfactant compositions that impart viscoelasticity to aqueous solutions). However, typical surfactant compositions will not inherently possess viscoelastic properties. As reported in H. Hoffmann, Advances in Coll. and Interface Sci., 17 pp. 276 (1982), surfactant compositions that impart viscoelastic properties to solutions are rare. Therefore, although all surfactant compositions will reduce surface tension, few will impart viscoelasticity. Those that do are known as "viscoelastic surfactants", and they possess desirable properties. It has been discovered that viscoelastic surfactants can be added to a water-based heat transfer fluid to improve its performance (U.S. Patent 4,534,875).
- Viscoelasticity is caused by a different type of micelle formation than the usual spherical micelles formed by most surfactant compositions. Viscoelastic surfactants form rod-like or cylindrical micelles. Although cylindrical micelles and spherical micelles have about the same diameter of 50 Å (0.005 µm), cylindrical micelles can reach 1,000 to 2,000 Å (0.1 to 0.2 µm) in length and contain hundreds or thousands of individual surfactant molecules. This high degree of association requires a specific set of conditions that can only be achieved by matching the surfactant composition with a suitable solution environment. The solution environment will depend on factors such as the type and concentration of electrolyte and the structure and concentration of organic compounds present. Therefore, a surfactant composition may form cylindrical micelles in one solution to impart viscoelastic properties to it and form spherical micelles in another solution. The solution with spherical micelles will exhibit normal surfactant behavior and will not exhibit viscoelasticity. A determination of whether a solution is viscoelastic can be easily determined by empirical evaluation as described hereinafter.
- The formation of long, cylindrical micelles in viscoelastic surfactants creates useful rheological properties. First, viscoelastic surfactants exhibit reversible shear thinning behavior. This means that under conditions of high stress, such as when the composition is sprayed through a nozzle, the composition will exhibit low viscosity. When the conditions of high stress are replaced with conditions of low stress, such as obtained when the composition has left the nozzle and is only subjected to gravitational force as it resides on a vertical surface, the composition will exhibit high viscosity. Secondly, viscoelastic surfactants will remain stable despite repeated high shear applications. Therefore, the thickened composition can be sprayed efficiently from a dispenser without undesirable mist and yet maintain its integrity on a vertical wall without running or dripping. Since typical polymeric thickeners will degrade when subjected to high shear, a bleach composition thickened with such a polymer will lose its integrity after repeated shearing.
- The major test specified by the references discussed above to determine if an aqueous solution possesses viscoelastic properties consists of swirling the solution and visually observing whether the air bubbles created by the swirling recoil after the swirling is stopped. This has been the traditional test for many years. It is possible to quantify the degree of viscoelasticity a solution possesses by measuring the time required for the recoil motion to stop, as described in an article by J. Nash, J. of Appl. Chem., 6, pp. 540 (1956).
- The surfactant compositions within the scope of this invention are ionic viscoelastic surfactants. The proper choice of counterion structure and solution environment gives viscoelasticity. It has been discovered that certain viscoelastic surfactants will thicken a bleach composition without unduly sacrificing bleach stability. What follows is a discussion of ionic surfactant compounds and the counterions necessary to impart viscoelasticity to bleach compositions.
- In general, ionic surfactant compounds comprise an ionic, hydrophilic moiety chemically bonded to a hydrophobic moiety (herein called a surfactant ion) and a counterion sufficient to satisfy the charge of the surfactant ion. Examples of such surfactant compounds are represented by the formula:
R₁(Y⊕)X⊖ or R₁(Z⊖)A⊕
wherein R₁(Y⊕) and R₁(Z⊖) represent surfactant ions having a hydrophobic moiety represented by R₁ and an ionic, solubilizing moiety represented by the cationic moiety Y⊕ or the anionic moiety Z⊖ chemically bonded thereto. X⊖ and A⊕ are the counterions associated with the respective surfactant ions. - In general, the hydrophobic moiety (i.e., R₁) of the surfactant ion is a hydrocarbyl or inertly substituted hydrocarbyl radical having one or more substituent groups, e.g., halo groups such as -F, -Cl, or -Br or chain linkages, such as silicon linkage (-Si-), which are inert to the aqueous liquid and components contained therein. Typically, the hydrocarbyl radical is an aralkyl group or a long chain alkyl or inertly substituted alkyl, which alkyl groups are generally linear and have at least 12 carbon atoms. Representative long chain alkyl groups include dodecyl (lauryl), tetradecyl (myristyl), hexadecyl (cetyl), octadecyl (stearyl) and the derivatives of tallow, coco and soya. Preferred groups are generally alkyl groups having from 14 to 24 carbon atoms, with octadecyl, hexadecyl, and tetradecyl being the most preferred.
- The cationic, solubilizing hydrophilic moieties or groups, i.e., Y⊕, are generally onium ions wherein the term "onium ions" refers to a cationic group which is essentially completely ionized in water over a wide range of pH, e.g., pH values of from 2 to 13. Representative onium ions include, for example, quaternary ammonium groups, i.e., -N⊕(R)₃; tertiary sulfonium groups, i.e., -S⊕(R)₂; and quaternary phosphonium groups, i.e., -P⊕(R)₃, wherein each R is individually a hydrocarbyl or inertly substituted hydrocarbyl. Of such cationic groups, the surfactant ion of the viscoelastic surfactant is preferably prepared having a quaternary ammonium group, i.e., -N⊕(R)₃, with each R preferably being methyl or ethyl.
- Representative anionic, solubilizing hydrophilic moieties or groups, herein designated Z⊖, include sulfate groups, ether sulfate groups, sulfonate groups, carboxylate groups, phosphate groups, and phosphonate groups. Of such anionic groups, the surfactant ion of the viscoelastic surfactants is preferably prepared having a carboxylate or sulfate group. The most preferred anionic surfactant ion is an alkyl diphenyl ether disulphonate sold by The Dow Chemical Company, under the trademark "DOWFAX 2A1", especially where the alkyl group is octadecyl.
- Fluoroaliphatic species suitably employed in the practice of this invention include organic compounds represented by the formula:
RfZ¹
wherein Rf is a saturated fluoroaliphatic moiety, preferably containing a F₃C- moiety and Z¹ is an ionic moiety. The fluoroaliphatics can be perfluorocarbons. Suitable ionic moieties will be described hereinafter. The fluoroaliphatic moiety advantageously contains from 3 to 20 carbons wherein all can be fully fluorinated, preferably from 3 to 10 of such carbons. This fluoroaliphatic moiety can be linear, branched or cyclic, preferably linear, and can contain an occasional carbon-bonded hydrogen or halogen other than fluorine. More preferable are those linear perfluoroaliphatic moieties represented by the formula: CnF2n+1 wherein n is in the range of from 3 to 10. An example of a linear perfluorocarbon that is stable to oxidation is CF₃(CF₂)pSO₃⊖A⊕, wherein p is from 2 to 6. The method of its preparation is described in U.S. Patent 2,732,398. - The counterions (i.e., X⊖ or A⊕) are organic ions that have a charge opposite that of the surfactant ions. The counterions and surfactant ions associate in the bleach composition and impart viscoelastic properties to it. Organic ions that are anionic serve as counterions for surfactant ions having a cationic, hydrophilic moiety; and the organic ions that are cationic serve as counterions for surfactant ions having an anionic, hydrophilic moiety. The organic counterions are formed by dissociation of the corresponding salts, acids, or bases.
- The preferred anionic counterions are sulfonates or carboxylates. Representative of such anionic counterions which, when employed with a cationic surfactant ion, are capable of imparting viscoelastic properties to the bleach composition include various aromatic sulfonates such as p-toluene sulfonate and naphthalene sulfonate; and chlorobenzoic acid, where such counterions are water-soluble. Most preferred are p-toluene sulfonate, 3,4-dichlorobenzoate, and an alkyl diphenyl ether disulphonate sold by The Dow Chemical Company, under the trademark "DOWFAX 2A1", especially where the alkyl group is octadecyl.
- The cationic counterion may be an onium ion, most preferably a quaternary ammonium group. Representative cationic counterions in the form of a quaternary ammonium group include benzyl trimethyl ammonium or alkyl trimethyl ammonium wherein the alkyl group is advantageously octyl, decyl, dodecyl and cetyl. Most preferred is an alkyltrimethylammonium such as hexadecyltrimethylammonium supplied in the form of the bromide (HTAB). It is highly desirable to avoid stoichiometric amounts of surfactant ions and counterions when the alkyl groups of the counterions are large. The use of cationic counterions is generally less preferred than the use of anionic counterions.
- The particular surfactant ions and counterions are selected so that the combination imparts viscoelastic properties to an aqueous liquid. Of the aforementioned surfactant ions and counterions, those combinations which form such viscoelastic surfactants will vary but are easily determined by the test methods hereinbefore described. Of the surfactant compounds which impart viscoelastic properties to an aqueous liquid, the preferred surfactant compounds include those represented by the formula:
- The viscoelastic surfactants are easily prepared by admixing the basic form of the desired cationic surfactant ions with a stoichiometric amount of the acidic form of the desired anionic counterions or by admixing the acidic form of the desired anionic surfactant ions with a stoichiometric amount of the basic form of the desired cationic counterions. Alternatively, stoichiometric amounts of the salts of the surfactant ions and counterions can be admixed to form the viscoelastic surfactant. See, for example, the procedures described in U.S. Patent 2,541,816. Once the viscoelastic surfactant is prepared, the thickened bleach composition is prepared by admixing the viscoelastic surfactant with the bleach composition.
- The concentration of viscoelastic surfactant required to impart viscoelastic properties to the bleach composition, where the viscoelasticity is measured by the techniques previously described, is that which measurably increases the viscosity of the composition. The type and concentration of viscoelastic surfactant required to increase the viscosity depends on the composition of the aqueous liquid, temperature, shear rate to which the bleach composition will be subjected, and the end use contemplated. In general, the requisite concentration of any specific viscoelastic surfactant is determined experimentally. Preferably, the concentration of viscoelastic surfactant ranges from 0.05 to 10 weight percent of the bleach composition. More preferably, the concentration of viscoelastic surfactant ranges from 0.1 to 2 weight percent of the bleach composition.
- In a preferred embodiment of this invention, excess organic counterions are added to the bleach composition to further increase its viscosity, increase its viscosity stability at higher temperatures, or both. The counterions employed will have a charge opposite that of the surfactant ions and will dissolve in the bleach composition. Preferably, the excess organic counterions employed are the same as the counterions employed to associate with the surfactant ions to form the viscoelastic surfactant. However, the excess organic counterions can be different from the counterions which form the viscoelastic surfactant.
- The concentration of excess organic counterions required to further increase the viscosity, increase the stability at higher temperatures, or both, will depend on the composition of the aqueous liquid, the surfactant ions and counterions employed, and the desired viscosity. Ordinarily, the concentration of excess counterions which will produce a noticeable effect ranges from 0.1 to 20, and more assuredly and preferably from 0.5 to 5, moles per mole of surfactant ions.
- The bleach composition may contain an emulsion of an immiscible liquid, such as an oil or other organic ingredient, at a concentration ranging from 0.05 to 20 weight percent of the bleach composition. However, the concentration of immiscible liquid must be lower than that which will adversely affect the stability of the bleach composition. Viscoelastic surfactants employed in such emulsions tend to lose their viscoelasticity, possibly because the oil penetrates the micelles and destroys the aggregates required for viscoelasticity. Viscoelastic surfactants containing excess organic counterions maintain viscoelasticity in an emulsion longer than those without the excess organic counterions. Moreover, fluorinated viscoelastic surfactants maintain viscoelasticity in an emulsion longer at concentrations ranging up to 50 weight percent, most preferably up to 10 weight percent of the bleach composition.
- The bleach compositions of this invention exhibit good bleach stability, phase stability, and viscosity stability. Good bleach stability refers to a thickened bleach composition that experiences less than 10 percent bleach degradation, which is the loss of the bleach active agent, for more than 30 days when stored under atmospheric conditions in a clear container in the dark at 30°C. Good viscosity stability refers to a bleach composition that exhibits a viscosity at room temperature greater than 600 cps (0.6 Pa·s) when subjected to a shear rate less than 5 sec⁻¹, more than 30 days after the composition is formulated and stored using the test conditions above. Good phase stability refers to the lack of development of separate phases for the bleach composition and viscoelastic surfactant until the bleach activity falls below useful values (for example, 75 percent bleach degradation).
- If desired, the bleach composition can be a foam, which is a thickened liquid having a dispersion of gas therein. For example, the bleach composition can be vigorously agitated prior to use as a spray or stream. In addition, a surfactant, or other foam forming material can be used as an additive. Furthermore, a fine mesh screen device can be fitted over the nozzle of the dispensing device to intercept emitted bleach composition.
- The following examples are presented to further illustrate but not limit the scope of this invention. All parts and percentages are by weight unless otherwise indicated.
- To 71.43 grams (g) of a commercially available NaOCl bleach formulation, sold by Gibraltar National Corporation under the trademark "ROMAN BLEACH", which contained an aqueous liquid and 5.6 percent active NaOCl was added 27.45 g distilled water. To this solution was added 0.73 g hexadecyltrimethylammonium bromide and 0.39 g sodium p-toluene sulfonate. The mixture was agitated to the point at which a uniform viscoelastic solution resulted.
- The sample was transferred to a polyethylene bottle which was sealed and placed in a constant temperature (31°C) dark environment. Portions of the sample were periodically removed in order to evaluate the NaOCl concentration. The amount of NaOCl was determined using titration techniques employing sodium thiosulfate and starch/iodine indicator. Viscosity of the thickened bleach compositions were periodically evaluated using a Rheometrics Fluids Rheometer in a steady shear mode, and cone and plate configuration. Data are presented in Table I.
- The data in Table I illustrate that the thickened formulation of this invention is shear thinning and exhibits excellent bleach stability over time as well as acceptable high viscosity stability. Conversely, a similar bleach composition thickened with 1 percent sodium polyacrylate rather than a viscoelastic surfactant (Comparative Run A) experienced 84 percent reduction in viscosity after 18 days of similar treatment conditions. This is an unacceptably high rate of loss of thickening activity.
- To 178.57 g of a commercially available NaOCl bleach formulation, sold by Gibraltar National Corporation under the Trademark "ROMAN BLEACH", which contained an aqueous liquid and 5.6 percent active NaOCl was added 166.45 g deionized water. To this solution was added 2.50 g hexadecyltrimethylammonium bromide and 2.50 g sodium p-toluene sulfonate.
- The sample was transferred into a dispensing device which is generally described in U.S. Patent No. 4,463,905. The screen in front of the nozzle was removed. A portion of the sample was sprayed onto a greasy vertical enamel painted surface and was observed to provide a good distribution of spray which uniformly covered the surface. The treated surface was cleaned by the sprayed bleach sample. The sample which was sprayed onto the vertical metallic surface was observed to adhere to said surface for several minutes (i.e., 10 minutes) without a substantial amount of dripping occurring. The screen in front of the nozzle was reattached to the dispensing device. A portion of the sample was sprayed onto the vertical glass surface as described hereinbefore. The sample which was sprayed onto the vertical glass surface formed a white, non-transparent, fairly thick foam; which foam adhered to the surface for several minutes (i.e., 10 minutes) without the occurrence of substantial amounts of dripping. The sample in all three instances was applied as a spray wherein the dispensing device was operated without greater effort than was required for the spraying of essentially pure water. The bleach composition which was sprayed on the aforementioned surfaces was rinsed from the surface using water and no visible film remained on the surfaces.
- A thickened bleach composition was prepared using the formulation and procedure of Example 1, except that sodium 3,4-dichlorobenzoate was substituted in an equimolar amount for sodium p-toluene sulfonate. The sample was transferred to a polyethylene bottle which was sealed and placed in a constant temperature (31°C) dark environment. Samples of the composition were periodically evaluated using the techniques of Example 1. Data are presented in Table II.
- The data in Table II illustrate that carboxylate counterions can replace sulphonate counterions to form a viscoelastic surfactant. The bleach composition thickened with the viscoelastic surfactant exhibited excellent bleach stability and viscosity stability over time.
Claims (10)
R₁(Y⊕)X⊖ or R₁(Z⊖)A⊕
wherein R₁ is a hydrophobic moiety, Y⊕ is a cationic solubilizing hydrophilic moiety chemically bonded to R₁, Z⊖ is an anionic solubilizing hydrophilic moiety chemically bonded to R₁, X⊖ is a counterion associated with Y⊕ and A⊕ is a counterion associated with Z⊖.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA000541326A CA1337783C (en) | 1987-07-06 | 1987-07-06 | Spray application of bleach compositions |
EP87306130A EP0298172B1 (en) | 1987-07-06 | 1987-07-10 | Thickened bleach compositions and method for preparing the same |
DE8787306130T DE3779913T2 (en) | 1987-07-06 | 1987-07-10 | Thickened bleaching agents and process for their manufacture. |
AT87306130T ATE77404T1 (en) | 1987-07-06 | 1987-07-10 | THICKENED BLEACHES AND PROCESS FOR THEIR MANUFACTURE. |
ES198787306130T ES2032446T3 (en) | 1987-07-06 | 1987-07-10 | THICKENED WHITENING COMPOSITIONS AND METHOD FOR PREPARING THEM. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA000541326A CA1337783C (en) | 1987-07-06 | 1987-07-06 | Spray application of bleach compositions |
EP87306130A EP0298172B1 (en) | 1987-07-06 | 1987-07-10 | Thickened bleach compositions and method for preparing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0298172A1 true EP0298172A1 (en) | 1989-01-11 |
EP0298172B1 EP0298172B1 (en) | 1992-06-17 |
Family
ID=25671404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87306130A Expired - Lifetime EP0298172B1 (en) | 1987-07-06 | 1987-07-10 | Thickened bleach compositions and method for preparing the same |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0298172B1 (en) |
AT (1) | ATE77404T1 (en) |
CA (1) | CA1337783C (en) |
DE (1) | DE3779913T2 (en) |
ES (1) | ES2032446T3 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0342786A2 (en) * | 1988-05-20 | 1989-11-23 | The Clorox Company | Viscoelastic cleaning compositions with long relaxation times |
EP0398021A2 (en) * | 1989-05-18 | 1990-11-22 | Colgate-Palmolive Company | Linear viscoelastic aqueous liquid automatic dishwasher detergent composition |
EP0523826A1 (en) * | 1991-07-11 | 1993-01-20 | Colgate-Palmolive Company | Viscoelastic aqueous liquid detergent composition, especially for automatic dishwashers of improved dispensability |
EP0606712A1 (en) * | 1993-01-13 | 1994-07-20 | The Clorox Company | Acidic aqueous cleaning compositions |
WO1994024259A1 (en) * | 1993-04-15 | 1994-10-27 | Unilever Plc | Hygienic cleaning composition and apparatus for spraying said composition |
EP0668345A1 (en) * | 1994-02-22 | 1995-08-23 | The Procter & Gamble Company | Hypochlorite bleaching compositions |
EP2256175A2 (en) | 2005-11-14 | 2010-12-01 | Stepan Company | Viscoelastic cationic carbohydrate ether compositions |
EP2325278A1 (en) | 2005-11-07 | 2011-05-25 | Stepan Company | Polycationic viscoelastic compositions |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6844305B1 (en) | 1999-08-27 | 2005-01-18 | The Proctor & Gamble Company | Aqueous liquid detergent compositions comprising a polymeric stabilization system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4166794A (en) * | 1978-05-25 | 1979-09-04 | Colgate-Palmolive Company | Liquid bleach-softener compositions |
EP0144166A2 (en) * | 1983-11-11 | 1985-06-12 | The Procter & Gamble Company | Cleaning compositions |
US4594184A (en) * | 1985-05-23 | 1986-06-10 | The Procter & Gamble Company | Chlorine bleach compatible liquid detergent compositions |
EP0188025A2 (en) * | 1985-01-03 | 1986-07-23 | Unilever N.V. | Liquid bleaching compositions |
EP0204472A2 (en) * | 1985-05-28 | 1986-12-10 | The Procter & Gamble Company | Cleaning compositions |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7908798A (en) * | 1979-12-05 | 1981-07-01 | Unilever Nv | LIQUID, THICKENED CHLORINE BLEACH. |
CH647543A5 (en) * | 1980-05-13 | 1985-01-31 | Sandoz Ag | HYPOCHLORITE-BASED CLEANER WITH THICKENING AGENTS. |
US4615825A (en) * | 1981-10-30 | 1986-10-07 | The Dow Chemical Company | Friction reduction using a viscoelastic surfactant |
-
1987
- 1987-07-06 CA CA000541326A patent/CA1337783C/en not_active Expired - Fee Related
- 1987-07-10 DE DE8787306130T patent/DE3779913T2/en not_active Expired - Lifetime
- 1987-07-10 EP EP87306130A patent/EP0298172B1/en not_active Expired - Lifetime
- 1987-07-10 ES ES198787306130T patent/ES2032446T3/en not_active Expired - Lifetime
- 1987-07-10 AT AT87306130T patent/ATE77404T1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4166794A (en) * | 1978-05-25 | 1979-09-04 | Colgate-Palmolive Company | Liquid bleach-softener compositions |
EP0144166A2 (en) * | 1983-11-11 | 1985-06-12 | The Procter & Gamble Company | Cleaning compositions |
EP0188025A2 (en) * | 1985-01-03 | 1986-07-23 | Unilever N.V. | Liquid bleaching compositions |
US4594184A (en) * | 1985-05-23 | 1986-06-10 | The Procter & Gamble Company | Chlorine bleach compatible liquid detergent compositions |
EP0204472A2 (en) * | 1985-05-28 | 1986-12-10 | The Procter & Gamble Company | Cleaning compositions |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0342786A2 (en) * | 1988-05-20 | 1989-11-23 | The Clorox Company | Viscoelastic cleaning compositions with long relaxation times |
EP0342786A3 (en) * | 1988-05-20 | 1990-12-19 | The Clorox Company | Viscoelastic cleaning compositions with long relaxation times |
EP0398021A2 (en) * | 1989-05-18 | 1990-11-22 | Colgate-Palmolive Company | Linear viscoelastic aqueous liquid automatic dishwasher detergent composition |
EP0398021A3 (en) * | 1989-05-18 | 1991-10-02 | Colgate-Palmolive Company | Linear viscoelastic aqueous liquid automatic dishwasher detergent composition |
GR900100382A (en) * | 1989-05-18 | 1991-10-10 | Colgate Palmolive Co | Linear viscoelastic aqueous liquid automatic dishwasher detergent composition |
GR1001216B (en) * | 1991-07-11 | 1993-06-21 | Colgate Palmolive Co | Viscoelastic aqueous liquid detergent composition, especially for automatic dishwashers of improved dispensability. |
EP0523826A1 (en) * | 1991-07-11 | 1993-01-20 | Colgate-Palmolive Company | Viscoelastic aqueous liquid detergent composition, especially for automatic dishwashers of improved dispensability |
EP0606712A1 (en) * | 1993-01-13 | 1994-07-20 | The Clorox Company | Acidic aqueous cleaning compositions |
WO1994024259A1 (en) * | 1993-04-15 | 1994-10-27 | Unilever Plc | Hygienic cleaning composition and apparatus for spraying said composition |
EP0668345A1 (en) * | 1994-02-22 | 1995-08-23 | The Procter & Gamble Company | Hypochlorite bleaching compositions |
EP2325278A1 (en) | 2005-11-07 | 2011-05-25 | Stepan Company | Polycationic viscoelastic compositions |
US8222455B2 (en) | 2005-11-07 | 2012-07-17 | Stepan Company | Polycationic viscoelastic compositions |
EP2256175A2 (en) | 2005-11-14 | 2010-12-01 | Stepan Company | Viscoelastic cationic carbohydrate ether compositions |
Also Published As
Publication number | Publication date |
---|---|
DE3779913T2 (en) | 1992-12-10 |
ES2032446T3 (en) | 1993-02-16 |
CA1337783C (en) | 1995-12-26 |
ATE77404T1 (en) | 1992-07-15 |
DE3779913D1 (en) | 1992-07-23 |
EP0298172B1 (en) | 1992-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4800036A (en) | Aqueous bleach compositions thickened with a viscoelastic surfactant | |
KR100244961B1 (en) | Thickened hypochlorite solutions with reduced bleach odor and methods of manufacture and use | |
DE69327222T2 (en) | Composition and method for causing expansion viscosity in detergents | |
CN1039351C (en) | Foam liquid hand surface detergent compositions | |
US5837065A (en) | Concentrated all-purpose light duty liquid cleaning composition and method of use | |
KR100227630B1 (en) | Acidic aqueous cleaning compositions | |
EP0298172B1 (en) | Thickened bleach compositions and method for preparing the same | |
KR100271398B1 (en) | Cleaning composition and method for improving the stretch viscosity of the cleaning composition | |
US2955047A (en) | Cleaning compositions | |
JP2562064B2 (en) | Bleaching composition | |
US4970014A (en) | Aluminum cleaning and brightening composition and method of manufacture thereof | |
DE69720430T3 (en) | SELF-DAMAGING MICRO-EMULSION CLEANER | |
EP1874909A2 (en) | Oxydizing compositions and methods thereof | |
PT89679B (en) | PROCESS FOR PREPARING AN APPROPRIATE PRODUCT FOR CLEANING, ACID, INTENDED FOR HARD SURFACES | |
PL176537B1 (en) | Hygenic cleaning composition and apparatus for atomising same | |
CN109477039B (en) | Defoaming effect enhancer and foamable detergent composition containing the same | |
PT89595B (en) | METHOD FOR THE PREPARATION OF THIXOTROPIC AQUEOUS DETERGENT COMPOUNDS FOR AUTOMATIC LAUNDRY OF CRAZY CONTAINING A ALKALINE METAL TRIPOLIPHOSPHATE | |
MXPA97003841A (en) | Thickening compositions thickenes, method of use and procedure to make mys | |
EP0673992B1 (en) | Concentrated liquid glass and window cleaning composition and method of use | |
GB2273105A (en) | Thickened aqueous cleansing compositions | |
US3345295A (en) | Copper cleaning compositions | |
KR20010015748A (en) | Alkoxylated Amines and Their Use in Cleaning Compositions | |
MX2008015478A (en) | Liquid hard surface cleaning composition. | |
US3924157A (en) | Composition and method for electrifying a gaseous atmosphere | |
JP2973135B2 (en) | Aluminum fin detergent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19890120 |
|
17Q | First examination report despatched |
Effective date: 19901119 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 77404 Country of ref document: AT Date of ref document: 19920715 Kind code of ref document: T |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3779913 Country of ref document: DE Date of ref document: 19920723 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2032446 Country of ref document: ES Kind code of ref document: T3 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: HENKEL KGAA TFP / PATENTABTEILUNG Effective date: 19930315 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: HENKEL KGAA TFP / PATENTABTEILUNG |
|
EAL | Se: european patent in force in sweden |
Ref document number: 87306130.3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19950524 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19950526 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19950529 Year of fee payment: 9 Ref country code: CH Payment date: 19950529 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19950613 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19950628 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19950703 Year of fee payment: 9 Ref country code: AT Payment date: 19950703 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19950731 Year of fee payment: 9 |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19960710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19960711 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19960711 |
|
RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19960710 |
|
27W | Patent revoked |
Effective date: 19961027 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19970201 |
|
EUG | Se: european patent has lapsed |
Ref document number: 87306130.3 |