[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0288924B1 - Dispositif d'alimentation d'une lampe à décharge - Google Patents

Dispositif d'alimentation d'une lampe à décharge Download PDF

Info

Publication number
EP0288924B1
EP0288924B1 EP88106480A EP88106480A EP0288924B1 EP 0288924 B1 EP0288924 B1 EP 0288924B1 EP 88106480 A EP88106480 A EP 88106480A EP 88106480 A EP88106480 A EP 88106480A EP 0288924 B1 EP0288924 B1 EP 0288924B1
Authority
EP
European Patent Office
Prior art keywords
switch
lamp
signal
flop
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88106480A
Other languages
German (de)
English (en)
Other versions
EP0288924A1 (fr
Inventor
Philippe Déglon
Werner Schneiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omega Electronics SA
Original Assignee
Omega Electronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omega Electronics SA filed Critical Omega Electronics SA
Publication of EP0288924A1 publication Critical patent/EP0288924A1/fr
Application granted granted Critical
Publication of EP0288924B1 publication Critical patent/EP0288924B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices by means of a bridge converter in the final stage
    • H05B41/2828Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices by means of a bridge converter in the final stage using control circuits for the switching elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3927Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by pulse width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Definitions

  • the present invention relates to a device for supplying a discharge lamp provided with first and second electrodes, said device comprising a first generator capable of supplying a voltage pulse capable of creating the initiation of the discharge in the lamp. and a second generator capable of maintaining a discharge current in the lamp.
  • This holding generator which is a current source, is supplied from a DC voltage source and essentially comprises a cascade of two transistors which drive continuously when a setpoint signal is sent to the input of the first transistor.
  • the duration of application of the setpoint signal (which can be a video signal for example) conditions the period during which the current source conducts, period which can be of the order of 14 ms for a lamp giving its full brightness, period followed by a train of periods of similar duration if the lamp is to remain lit at this full brightness.
  • a voltage source from the network is used to supply the lamp, a voltage source of which the two half-waves are rectified. No filter is provided after rectification.
  • the cited power system provides, as is the case in the present invention, a switching generator provided with a transistor and a diode.
  • the control of the current in the lamp is carried out in a completely different manner from that described in the present invention, in the sense that, in the cited document, each time that the maximum current is reached, the transistor switch is triggered, this switch being triggered again when a minimum current is reached.
  • This results in a switching frequency which is essentially variable (between 10 and 40 kHz, depending on the text of the cited patent). Unlike this, the switching frequency of the present invention is fixed.
  • the lamp is supplied from a DC voltage and from a fixed frequency switching system.
  • this voltage is neither rectified nor filtered and the frequency of the chopping is essentially variable. This would not be suitable for supplying the light points of a large matrix display panel, where it is necessary to control with precision the states of several light sources close to each other.
  • the second generator comprises a first electrical circuit comprising the putting in series of a first DC voltage source, a first switch and a second switch, said first and second switches being arranged in such a way that when the first is closed, the second is open and vice versa, and a second electrical circuit comprising the placing in series of an inductor and of said lamp, connected in parallel to said second switch, that said switches are actuated by a first control device supplied with an alternating signal of fixed period T1 coming from an oscillator and that means are provided for measuring a value which is representative of the current flowing in the lamp, for comparing said representative value with a reference value supplied by a second DC voltage source U3 and to provide an equality signal when said values are sensiblemen t identical, said first control device using said equality signal and disposing said first switch first in a closed state during a first period T a which extends from the start of said fixed period T1 until the appearance of said signal of equality, then in an open state for a second period T b which ends with the end of said
  • FIG. 1a is a general diagram which shows the basic principle on which the invention is based.
  • a discharge lamp 1, which can be a fluorescent tube, is provided with two electrodes 2 and 3.
  • a first generator or choke 4 supplies a voltage pulse capable of creating the initiation of the discharge in the lamp.
  • the starter emits a single ignition pulse or on the contrary pulses repeated at predetermined periodic intervals.
  • the FIG. 1a again shows a second generator capable of maintaining the discharge current in the lamp, the second generator which will be now described and which is the main object of the present invention.
  • the second generator comprises a first electrical circuit 5 which comprises the placing in series of a DC voltage source U1, a first switch I1 and a second switch I2.
  • the switches I1 and I2 are arranged in such a way that when the first is open, the second is closed and vice versa. This interdependence appears in Figure 1a by the dotted line 13 which connects the respective contact tabs of said switches.
  • the diagram also shows that at the terminals of the second switch I2 is connected a second electrical circuit 6 composed of the placing in series of an inductance L and of the discharge lamp 1.
  • the switch I1 is actuated by a control device 7.
  • This device is supplied on its input 8 by an alternating signal of period T1 coming from an oscillator 9.
  • this signal is preferably chosen at high frequency for example between 150 and 600 kHz.
  • This signal has its own period T1 composed of alternation of duration T2 at high level followed by alternation of duration T3 at low level.
  • the duty cycle of this signal is defined as being the ratio T2 / T1
  • the alternating signal of period T1 is supplied by the oscillator 9 and the alternations T2 and T3 have a duration approximately equal.
  • FIG. 1a also shows that the supply device comprises means for measuring a value which is representative of the current flowing in the lamp, these means being symbolized by the loop 10 surrounding a conductor of the second electrical circuit 6.
  • the value representative of this current is sent to a comparator 11 which compares said value with a reference value contained in a block 12.
  • comparator 11 emits an equality signal which is introduced into the control device 7 by its input 14 and which will be used by said device to deliver to output 15 of the same device, in combination with the signal received on input 8, a control signal for switches I1 and I2.
  • FIG. 1d shows the alternating signal of period T1 present at the input 8 of the control device 7, signal coming from the oscillator 9.
  • the signal of period T1 is composed of a first high-level alternation T2 followed by a second alternation at low level T3.
  • the control circuit 7 is arranged in such a way that when the signal at the input 8 passes from the low level to the high level, the switch I1 closes and the switch I2 opens, the switches remain in these same positions if the signal applied at 8 goes from high level to low level.
  • the closing of the switch I1 is symbolized by the solid line 16. With I1 closed and I2 open the electrical circuits 5 and 6 appear as illustrated in FIG. 1b.
  • the voltage source U1 delivers a current i1 in the inductance L and the lamp 1 via the switch I1. Due to the presence of the inductance L and the resistance R of the lamp, the current i1 will increase during a period T a from a value close to zero to a value approximately similar to a reference value that is fixed (block 12 of Figure 1a). As soon as this value is reached, the comparator 11 supplies the input 14 of the control device with an equality signal 17 illustrated by FIG. 1d. This equality signal has the effect of opening the switch I1 and closing the switch I2. The situation of the electrical circuits 5 and 6 is then that presented in FIG. 1c.
  • the electrical energy stored in the inductance L during the previous phase then produces a current i2 which, via the switch I2, flows through the lamp 1.
  • the inductance L then behaves like a generator. Contrary to the current practice of certain known power supplies, this inductor is not a current limiter but behaves like a current reservoir.
  • the current i2 will decrease during a period T b until a new rise in the signal of period T1 appears at the input 8 of the control device 7, a signal which again closes the switch I1. At the end of period T b a new cycle begins again and so on.
  • the supply device according to the invention is based. It is in fact a stabilized or controlled current source which delivers a current of constant value regardless of the load applied to it.
  • this load is a discharge lamp whose arc voltage, as we have seen, varies in large proportions, we will always be assured of a constant luminous flux and this without requiring consumption outside that which is necessary for produce this luminous flux.
  • the switches described operate by all or nothing and consume almost no clean energy.
  • the current delivered by the device of the invention remains constant whatever the value of the load. If this load is large (R small), the period T a during which the switch is closed will also be small, while if this load is low (R large), this period T a will lengthen, the duty cycle defined by the expression T a / T1 in fact controlling the current flowing in the lamp.
  • the assembly also has the advantage of being resistant to short-circuits since, in this case, the period T a would be reduced to an extremely short duration which could in no case damage the voltage source U1.
  • the basic assembly has been explained by using two switches I1, I2 actuated by a control device.
  • switches I1, I2 actuated by a control device.
  • a diode to replace the switch I2, diode connected in such a way that it is non-conductive when the transistor is conductive.
  • This diode has the advantage of being self-controlled by the very direction of the voltage present at its terminals.
  • the switch I2 could also be a transistor controlled by the output signal of the device 7 and that the invention is not limited to the sole use of a diode.
  • a low value resistor placed in series in one of the circuits 5 or 6 of the supply device is advantageously used. For essentially practical reasons, this resistance will be placed in the first electrical circuit 5 and the voltage developed across its terminals will be measured, which voltage is representative of the current flowing in the lamp.
  • Other means however could be implemented such as, for example, the use of a current transformer placed in the second electrical circuit 6.
  • the diagram in FIG. 2 shows a first embodiment of the supply device according to the invention.
  • the control device 7 is here a type D flip-flop (D-FF) whose D and reset terminals are connected to at least 12 volts of the logic supply.
  • the flip-flop On its input 8, the flip-flop receives the alternating signal of period T1, also called clock signal (Cl) or synchronization signal (Sync).
  • the transistor Ti1 is controlled on its base by the output Q of the flip-flop.
  • the collector of transistor Ti1 is connected to diode D1 and the emitter to the voltage source U1 via a resistor RE.
  • the voltage U RE developed at the terminals of said resistor RE is compared to a reference voltage U3 by means of a comparator 11 which is here a transistor Ti2 working in commutation.
  • the comparator 11 which is here a transistor Ti2 working in commutation.
  • the clock signal Cl On the input 8 of the flip-flop is applied the clock signal Cl, which appears on line a of the diagram.
  • This signal oscillates between -12 V and 0 V (0 V symbolized by the sign 0 ⁇ ), or between the logical values 0 and 1 respectively.
  • This type of flip-flop (for example CMOS number 4013) has the particularity of having its output Q at the value carried by its input D when the signal Cl goes from 0 to 1 (arrows 18), the passage from 1 to 0 does not in no way changing the state of the Q output as long as the set and reset inputs are both at logic zero (-12 V).
  • output Q changes from 0 V to -12 V on each positive edge of signal Cl, which is shown at line e of the diagram, the rising edge 18 causing the falling edge 19 of the output Q (arrow 65).
  • U CTi2 - (U3 + V CETi2 ), is carried over to input 14 (set) of the flip-flop, which has the effect of changing said input set from -12 V to the indicated value (arrows 61).
  • the signal U CTi2 is given by line d of the diagram in FIG. 3.
  • the rising edge of the value U CTi2 has the effect of switching the flip-flop by its set input, of bringing its output Q to 0 V (arrow 62) and of render the transistor Ti1 nonconductive.
  • the voltage U RE then changes from the value indicated on line c to 0 V (arrow 63). From this moment, the energy stored in the inductance L produces a current i2 which circulates in the circuit 6 (line f of the diagram of figure 3) and which decreases since no source of tension is more to him applied. This current i2 will decrease until the transistor Ti1 becomes a new conductor, which takes place on the arrival of a new rising edge 18 presented by the signal T1 at the input Cl of the flip-flop.
  • the cycle which has just been described in detail then reproduces in the same way. It will be noted in passing that the voltage rise U CTi2 is followed by a return to -12 V which has no effect on the operation of the device.
  • the duty cycle T a / T1 then controls the current flowing in the lamp.
  • FIG. 3 has been completed by a line g which represents the current I D1 in the diode D1. It can be seen that during the conduction period T a of the transistor Ti1 no current flows in the diode while during the blocking period T b of the same transistor, a current i2 flows in the said diode.
  • the diagram in FIG. 3 also shows a current threshold I lmin below which the current in the lamp does not fall. This comes from the fact that the inductance L is not completely discharged when the cycle T1 starts again. This current explains the first voltage level at the terminals of the resistor RE and which is equal to (I lmin .RE).
  • the transistors are of the 2N5400 type and the diode of the 1N4148 type.
  • the voltage source U1 is 60 V and the reference voltage of 1.6 V.
  • a signal of period T1 3.2 ⁇ s, a resistance RE of 27 ohms and an inductance of 800 ⁇ H, a peak current is measured 80 mA in the tube (equivalent to approximately 50 mA eff ).
  • the inductance used is very small (a few mm3), which is another advantage of the device according to the invention. This is mainly due to the fact that the alternating signal of period T1 is chosen at high frequency, for example greater than 150 kHz.
  • FIG. 2 shows a reference voltage source U3 crossed by an arrow.
  • the latter indicates that the reference voltage can be adjusted, for example manually by means of a button, to adjust the light intensity emitted by the lamp.
  • FIG. 2 also shows that the discharge lamp used, which is most often a fluorescent lamp, has a cold anode 2 and a hot cathode 3.
  • This cathode is a filament supplied by a continuous source U5.
  • This pulse is supplied by the choke 4 shown in dotted lines in FIG. 2.
  • This choke could be the one which will be described later on the subject of the third embodiment, but produced in such a way that it only provides a pulse high voltage when the lamp is turned on, instead of repeating pulses.
  • FIG. 6 A possible solution for making the starter is shown in the block diagram of FIG. 6 which is a variant of the execution presented in FIG. 1a.
  • the overvoltage pulse capable of creating the initiation of the discharge is produced by a third switch I3 connected in parallel on the terminals 2, 3 of the lamp 1.
  • This switch is controlled by a second control device 53, itself actuated by a first control device 7 already described with reference to FIG. 1a.
  • this third switch is closed.
  • the first switch I1 is also closed, the inductance L stores energy as explained above.
  • the lamp to be lit has been described in the diagrams 1a to 1c as having two cold electrodes 2 and 3.
  • the voltage necessary to initiate the discharge in the lamp is reduced by 1.5 to 2 times.
  • a heated electrode considerably increases the life of the lamp.
  • an electrode 3 provided with a filament supplied from a DC voltage source U5.
  • the second embodiment which will be explained now takes advantage of the supply device of the invention also to heat the filament.
  • FIG. 7 The basic diagram is shown in FIG. 7. In this diagram, we recognize the holding current generator formed by the first 5 and second 6 electrical circuits described above.
  • the lamp 1 is equipped with a first cold electrode 2 and a second electrode provided with a filament 56.
  • the second generator of this assembly, formed by circuits 5 and 6 will be used both for heating the filament and for maintaining of discharge into the lamp.
  • the second electrical circuit 6 includes the series inductance L, the first cold electrode 2 and a first terminal 54 of the filament 56.
  • This second circuit 6 is connected in parallel to the second switch I2 .
  • FIG. 7 also shows a third switch I3 connected on the one hand to the cold electrode 2 and on the other hand to a second terminal 55 of the filament 56.
  • the third switch I3 is actuated by a second control device 53, itself - even actuated by the first control device 7.
  • the second device 53 is arranged so that when the supply device is switched on (by a general switch not shown) the third switch I3 closes.
  • the filament 56 is then supplied with energy by the second generator 5,6 according to the same fundamental principle explained above.
  • the feeding of the filament takes place during a period of predetermined duration T d fixed for example by a time constant provided by the block 90 acting on an input of the second control device 53.
  • This heating period will last as long as it takes to make the filament glow, for example a second.
  • the third switch opens, this opening taking place the first time that the first switch I1 goes from the closed state to the open state after the period of predetermined duration T d .
  • This change of state is in the form of a logic signal at the output 15 of the first control device 7. This same logic signal acts on the second control device 53 and opens the switch I3.
  • FIG. 8 is a detailed diagram of the second embodiment explained above in principle. The new elements added to those of FIG. 2 will be described here.
  • the third switch I3 is a second transistor Ti3 which is controlled by the signal present at the output Q 57 of the control device 53 which is a second type D flip-flop
  • the output Q 15 of the first flip-flop 7 is connected to the input Cl of the second flip-flop 53.
  • the input D 58 of the second flip-flop is connected to the 0 volt of the logic supply by the through a resistor R3 and a capacitor C is connected between this input D and the -12 volts of the logic supply.
  • the set and reset terminals of the second flip-flop are also connected to -12 volts.
  • An inverting amplifier in the form of a transistor Ti4 is interposed between the output Q 57 and the base of the transistor Ti3. Its purpose is to amplify the signal present at the Q output and to invert it at the same time.
  • the second transistor Ti3 has its collector connected to the cold electrode 2 of the lamp and its emitter connected to the second terminal 55 of the filament 56 of the same lamp.
  • the input D 58 of the flip-flop 53 is found at logic level 0 (-12 V).
  • the output Q 57 of the flip-flop 53 is also at level 0, the transistor Ti4 conducts and provides a base current at transistor Ti3 which also conducts.
  • the filament 56 is then energized and is supplied by the same second generator 5,6 which has been described above (see FIG. 9a).
  • the current I f in the filament is made up of a succession of currents I f1 supplied by the circuit 5 and currents I f2 supplied by the circuit 6 (see beginning of FIG. 9d).
  • the lamp 1 is then short-circuited by Ti3 and the voltage U l between the terminals 2 and 55 is zero (see the beginning of FIG.
  • the opening of the transistor Ti3 causes an overvoltage 80 (FIG. 9f, arrow 68) at the terminals of the lamp, overvoltage due to the energy stored in the inductance L and which is released to create the ignition of the arc.
  • the switching of the output Q 57 of the second flip-flop which brings about the opening of the transistor Ti3 also leads the second generator 5,6 to supply the terminals 2,56 of the lamp with a current I l (FIG. 9c, arrow 67) formed as already described by an alternation of two currents I l1 and I l2 Following the overvoltage pulse 80, a holding voltage U l is then established at the terminals of the lamp (end of FIG. 9f).
  • the same second generator is used, the main object of the present invention, to supply the filament of the lamp first for a certain time, then to maintain the arc current in this lamp.
  • This system leads to the use of means which are much less expensive and cumbersome than the well-known heavy ballast which must be used today for the supply of fluorescent tubes used for lighting.
  • FIG. 8 shows a variable reference voltage source U3 which can be used to vary the light intensity of the lamp. This tension could be removed if one does not want such a feature. At this time we would connect the emitter of transistor Ti2 directly to the + of the source U1.
  • This third embodiment will be used to preferably supply discharge lamps forming the pixels or elementary light points making up a matrix display table.
  • the board can display still or moving images, in color or in black and white.
  • EP-A-0152026 US-A-4 649 322
  • a supply which has the disadvantage of being expensive in energy consumed and in joule losses, as already mentioned.
  • FIG. 4 presents a detailed diagram of the supply device according to this third embodiment of the invention.
  • the holding current generator formed by the first 5 and second 6 electrical circuits described in detail above.
  • the discharge lamp receives at predetermined periodic intervals T r voltage pulses creating initiating the lamp discharge.
  • T r voltage pulses are supplied by the generator 4.
  • Two embodiments of this generator have been described in detail in the document EP-A-0152026. Here we will briefly recall the operation of one of them, mentioning that the other could also be suitable here.
  • the generator 4 is composed of a DC voltage source U4, a coil 20, a switch 21 and a capacitor 22.
  • the energy accumulated in the coil 20 in the form of current during the conduction of the switch 21 is restored in the form of voltage across the capacitor 22 when the switch 21 opens.
  • the value of the accumulated energy is determined by the voltage U4, the inductance of the coil 20 and the accumulation period t1 - t0, t0 representing the closing time and t1 the opening time of the switch 21.
  • the opening and closing signals of the switch 21 are sent by line 32.
  • the overvoltage pulses are applied to the lamp via a diode 24 and a resistor 25.
  • Diode 24 prevents the current source, supplied by circuits 5 and 6, from supplying another lamp via the common line of the overvoltage generator, if generator 4 is used for several tubes at the same time.
  • the purpose of the resistor 25 is to limit the arc current in the tube from the moment it is started. This device ensures the lighting of several lamps by means of a single generator. Otherwise, since the lamps have different starting characteristics, only the lamp requiring the lowest voltage pulse would light up. Indeed, the voltage present at the terminals of the tube once the arc is established is significantly lower than the voltage necessary to cause it. An important current would then arise if no precautions were taken. This current would prevent, on the one hand, the priming voltage from reaching sufficient values to ignite the other tubes and could, on the other hand, lead to the destruction of the first primed tube.
  • the electrical circuit 6 further comprises a diode 31 which prevents the overvoltage pulse supplied by the generator 4 from going up to the source of current for maintaining the discharge.
  • the lamp In synchronism with each overvoltage pulse, the lamp is supplied with a discharge maintenance current, the duration of which will depend on a reference signal carrying information indicating the level of light flux which must be reached by the lamp. at some point.
  • a discharge maintenance current the duration of which will depend on a reference signal carrying information indicating the level of light flux which must be reached by the lamp. at some point.
  • the second generator comprises a first electrical circuit 5 comprising the series connection of a DC voltage source U1, of a first switch (replaced in FIG. 4 by the transistor Ti1) and a second switch (replaced in the same figure by a diode D1 connected in such a way that it is non-conductive when the transistor Ti1 is conductive) and a second electrical circuit 6 comprising the placing in series of an inductance L and of the lamp 1, second circuit connected in parallel to the diode D1.
  • a control device (this is the flip-flop 7) actuates the system.
  • the oscillator of FIG. 4 is presented at 70 and drives a frequency divider 71 on its input Cl.
  • the output Q1 provides the desired signal T1 which happens to be, in this example, the frequency of the oscillator 70 divided by two .
  • the signal T1 T a + T b only appears periodically (T r ) and for a duration Tc which is a function of the reference signal of which we have spoken above.
  • the signal of duration T c is applied to the input D of the flip-flop 7 and is included in the limits 0 ⁇ T c ⁇ T r .
  • the current source formed by the circuits 5 and 6 behaves as in the first embodiment: here we find indeed the same means for measuring the representative value of the current flowing in the lamp 1 (RE, 10), to compare (11, Ti2) this representative value with a reference value (U3, 12) and to provide an equality signal (set) when these values are substantially identical with, as a result, a current flow (i1, i2) in two phases of respective durations T a and T b as already explained.
  • the arrangement comprises the combination of the oscillator 70, the divider 71 and three monostable circuits 40, 41 and 42 of the type 555 well known in the art.
  • an image point must be able to be refreshed, or, in other words, must be able to be capable of receiving new information at least every 1/25 of a second in 50 Hz networks (1/30 of a second in 60 Hz networks), which leads to a repetition of overvoltage pulses every 40 ms .
  • this periodicity will be reduced to a third of this value, that is to say 13.33 ms, to avoid above all the blinking of the image.
  • the signal of period T r attacks the input 2 of a monostable circuit 40 which only engages on the falling edge of the signal of period T r to provide on its output 3 a short pulse 50 whose width depends on the values qu 'we give to R0 + R′0 and C0. This width can be varied by adjusting R0 ( Figure 5c).
  • the pulses 50 in turn control the circuit 41 which is also a monostable which engages on the falling edge of the pulse 50 and lengthens said pulse by an amount imposed by the values given to R1 + R′1 and C1. It can be adjusted by varying R1.
  • the pulse 51 which results therefrom and which is represented in FIG. 5d is collected at the output 3 of the circuit 41 and controls by line 32 the switch 21 of the generator 4.
  • the pulse of width t1 has been generated in this way - t0 necessary to create the overvoltage pulse capable of creating the ignition of the arc in the lamp, pulse which is represented at 80 on line 5g and which is repeated with the periodicity T r .
  • the pulses 51 in turn control the circuit 42 which is still a monostable which engages on the falling edge of the pulse 51 and lengthens said pulse by an amount imposed by the values given to R2 + R′2 and C2.
  • the pulse 52 of duration T c which results therefrom, and which is shown in FIG. 5e, is collected at the output 3 of the circuit 42 and controls, via the inverter 81, the input D of the flip-flop 7, this last commander, as we have seen, the holding current source formed by circuits 5 and 6.
  • the signal present at input D is shown in FIG. 5f.
  • the pulse 52, or its inverse present at the input D, is none other than the setpoint signal of duration T c , produced in this example by the circuit 42, circuit which operates in synchronism with the ignition generator 4 .
  • FIG. 5g shows the voltage U l which appears at the electrodes of the lamp and which is the result of the combination of diagrams 5b to 5f.
  • the overvoltage pulse 80 coincides with the falling edge of the pulse 51 and the modulation voltage 82 (or of maintaining the arc) coincides with the pulse 52.
  • the embodiment of Figure 4 allows to vary the light intensity by means of a potentiometric adjustment (R2) which is here the setpoint signal itself. It is clear that this adjustment would be carried out in a completely different manner if the reference signal were to be information delivered by a television camera for example.
  • the camera presents an analog signal at its output which is transformed into a digital signal by a converter.
  • We generally find at the output of the converter 25 32 possible tones, one of these tones corresponding to the light intensity of the point analyzed at a specific time.
  • These 32 tones result, in an exemplary embodiment, from the combination of 128 elementary slices of equal duration to take account of the sensitivity curve of the eye (see on this subject the document EP-A-0 152 025 already cited ).
  • the digital information is then sent to a counter which will output a signal at its output, the duration of which will correspond to the light intensity analyzed at that time. This signal will finally command a holding current source as explained above.
  • the reference voltage U3 may be adjustable, which will make it possible to adapt the brightness emitted to the ambient light.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)

Description

  • La présente invention est relative à un dispositif d'alimentation d'une lampe à décharge pourvue de première et de seconde électrodes, ledit dispositif comprenant un premier générateur susceptible de fournir une impulsion de tension apte à créer l'amorçage de la décharge dans la lampe et un second générateur apte à maintenir un courant de décharge dans la lampe.
  • Un tel arrangement a déjà été proposé dans le document EP-A-0 152 026 (US-A-4 649 322). Dans celui-ci, l'amorçage de la décharge dans la lampe est réalisé par un premier générateur qui fournit à intervalles périodiques prédéterminés des impulsions de tension. L'intensité lumineuse de la lampe est commandée par une source de courant issue d'un second générateur qui permet d'appliquer à la lampe un courant de maintien de la décharge dont la durée d'application peut être variée selon l'intensité lumineuse que l'on désire obtenir. L'arrangement en question comprend en outre un circuit qui permet l'application du courant de maintien en synchronisme avec l'impulsion de tension.
  • En plus de deux modes d'exécution du générateur d'impulsion, le document cité décrit une façon de réaliser le générateur de maintien de la décharge dans la lampe. Ce générateur de maintien, qui est une source de courant, est alimenté à partir d'une source de tension continue et comporte essentiellement une cascade de deux transistors qui conduisent continuellement quand un signal de consigne est envoyé à l'entrée du premier transistor. La durée d'application du signal de consigne (qui peut être un signal vidéo par exemple) conditionne la période pendant laquelle conduit la source de courant, période qui peut être de l'ordre de 14 ms pour une lampe donnant sa pleine luminosité, période suivie par un train de périodes de durée semblable si la lampe doit rester allumée à cette pleine luminosité. Dans le cas où l'arrangement décrit devait être adapté pour varier simplement l'intensité lumineuse d'une lampe fluorescente d'éclairage, par exemple au moyen d'une commande manuelle, une seule impulsion serait nécessaire, délivrée par un générateur d'impulsion au moment de l'allumage de la lampe, impulsion suivie par un courant continu se maintenant continuellement au niveau choisi.
  • Cette façon de faire est dispendieuse en énergie électrique qui est dissipée en chaleur et cela en pure perte. En effet, il est dit dans le document cité qu'une tension d'alimentation de 60 V continu permet d'assurer une tension d'arc d'environ 40 V dans le tube, ce qui laisse entendre qu'il existe une chute de tension de l'ordre de 20 V qui devra bien être absorbée dans le générateur de courant. En réalité on se rend compte que la tension d'arc peut varier dans de fortes proportions (10 à 60 V), dépendant en cela du régime dynamique auquel la lampe est soumise. La température a aussi une influence importante sur la valeur de cette tension d'arc. Donc, dans le montage cité, c'est le générateur de courant, formé des deux transistors dont il a été question, qui va absorber la différence existante entre la tension d'alimentation et la tension d'arc, différence dissipée en pure perte comme on l'a dit.
  • Le document US-A-3 890 537 décrit une alimention à découpage (chopper) qui sert de ballast à une lampe à décharge gazeuze.
  • Dans ce document, on utilise, pour alimenter la lampe, une source de tension en provenance du réseau, source de tension dont on redresse les deux alternances. Aucun filtre n'est prévu après redressement. Le système d'alimentation cité prévoit, comme c est le cas dans la présente invention, un générateur à découpage pourvu d'un transistor et d'une diode. Cependant le contrôle du courant dans la lampe est réalisé de façon toute différente de celle exposée dans la présente invention, en ce sens que, dans le document cité, chaque fois que le courant maximum est atteint, on déclenche l'interrupteur à transistor, cet interrupteur étant enclenché à nouveau lorsqu'un minimum de courant est atteint. Il découle de ceci une fréquence de découpage qui est essentiellement variable (entre 10 et 40 kHz, selon le texte du brevet cité). Contrairement à cela, la fréquence de découpage de la présente invention est fixe. Si la coupure du transistor est occasionnée par un maximum de courant dans la lampe, son réenclenchement par contre est indépendant de ce courant. Il n'est donc pas fait appel, dans la présente invention, à un comparateur à hystérèse, comme c'est le cas de l'invention citée.
  • Dans la présente invention donc, la lampe est alimentée à partir d'une tension continue et d'un système à découpage à fréquence fixe. Dans le document cité, cette tension n'est pas redressée ni filtrée et la fréquence du découpage est essentiellement variable. Cela ne saurait convenir à alimenter les points lumineux d'un grand tableau d'affichage matriciel, où il est nécessaire de contrôler avec exactitude les états de plusieurs sources lumineuses voisines l'une de l'autre.
  • C'est le but de la présente invention de remédier aux inconvénients cités et de proposer un dispositif qui soit une source de courant stabilisée, sans consommation propre, quelle que soit la valeur de la charge, charge qui se manifeste ici par la tension d'arc essentiellement variable présentée par la lampe.
  • Pour atteindre ce but, le second générateur comporte un premier circuit électrique comprenant la mise en série d'une première source de tension continue, d'un premier interrupteur et d'un second interrupteur, lesdits premier et second interrupteurs étant arrangés de telle façon que lorsque le premier est fermé, le second est ouvert et vice-versa, et un second circuit électrique comprenant la mise en série d'une inductance et de ladite lampe, branché en parallèle sur ledit second interrupteur, que lesdits interrupteurs sont actionnés par un premier dispositif de commande alimenté par un signal alternatif de période fixe T₁ en provenance d'un oscillateur et que des moyens sont prévus pour mesurer une valeur qui est représentative du courant circulant dans la lampe, pour comparer ladite valeur représentative à une valeur de référence fournie par une seconde source de tension continue U₃ et pour fournir un signal d'égalité quand lesdites valeurs sont sensiblement identiques, ledit premier dispositif de commande utilisant ledit signal d'égalité et disposant ledit premier interrupteur d'abord dans un état fermé pendant une première période Ta qui s'étend du début de ladite période fixe T₁ jusqu'à l'apparition dudit signal d'égalité, puis dans un état ouvert pendant une seconde période Tb qui se termine avec la fin de ladite période T₁, ledit premier interrupteur étant actionné selon un rapport cyclique Ta/T₁ contrôlant le courant circulant dans la lampe.
  • L'invention sera comprise maintenant à l'aide de la description qui va suivre et pour l'intelligence de laquelle on se référera, à titre d'exemple, au dessin dans lequel:
    • La figure 1a est un schéma général qui montre le principe de fonctionnement du dispositif d'alimentation d'une lampe à décharge selon l'invention,
    • Les figures 1b et 1c montrent le cheminement du courant dans le montage de la figure la selon la position des interrupteurs I₁ et I₂,
    • La figure 1d est un diagramme temporel simplifié expliquant le fonctionnement des schémas des figures 1a à 1c,
    • La figure 2 est un schéma de détail d'alimentation d'une lampe à décharge selon un premier mode d'exécution de l'invention,
    • La figure 3 est un diagramme temporel expliquant le fonctionnement du schéma de la figure 2,
    • La figure 4 est un schéma de détail d'alimentation d'une lampe à décharge selon un troisième mode d'exécution de l'invention,
    • La figure 5 est un diagramme temporel expliquant le fonctionnement du schéma de la figure 4.
    • La figure 6 est un schéma général expliquant une variante possible du premier mode d'exécution de l'invention et dérivé du schéma de la figure 1a,
    • La figure 7 est un schéma de principe exposant le fonctionnement du dispositif d'alimentation selon un deuxième mode d'exécution de l'invention,
    • La figure 8 est un schéma de détail d'alimentation d'une lampe à décharge qui se réfère au schéma de principe de la figure 7 et
    • La figure 9 est un diagramme temporel expliquant le fonctionnement du schéma de la figure 8.
  • La figure 1a est un schéma général qui montre le principe de base sur lequel s'appuie l'invention. Une lampe à décharge 1, qui peut être un tube fluorescent, est pourvue de deux électrodes 2 et 3. Un premier générateur ou starter 4 fournit une impulsion de tension apte à créer l'amorçage de la décharge dans la lampe. On verra par la suite que selon le mode d'exécution de l'invention le starter émet une impulsion unique d'amorçage ou au contraire des impulsions répétées à intervalles périodiques prédéterminés. La figure 1a montre encore un second générateur apte à maintenir le courant de décharge dans la lampe, second générateur qui va être décrit maintenant et qui fait l'objet principal de la présente invention.
  • Le second générateur comporte un premier circuit électrique 5 qui comprend la mise en série d'une source de tension continue U₁, d'un premier interrupteur I₁ et d'un second interrupteur I₂. Les interrupteurs I₁ et I₂ sont arrangés de telle façon que lorsque le premier est ouvert, le second est fermé et inversement. Cette interdépendance apparaît dans la figure 1a par la ligne pointillée 13 qui relie les languettes de contact respectives desdits interrupteurs. Le schéma montre encore qu'aux bornes du second interrupteur I₂ est connecté un second circuit électrique 6 composé de la mise en série d'une inductance L et de la lampe à décharge 1.
  • L'interrupteur I₁ est actionné par un dispositif de commande 7. Ce dispositif est alimenté sur son entrée 8 par un signal alternatif de période T₁ en provenance d'un oscillateur 9. On verra plus loin que ce signal est choisi de préférence à fréquence élevée comprise par exemple entre 150 et 600 kHz. Ce signal possède une période propre T₁ composée d'une alternance de durée T₂ à haut niveau suivie d'une alternance de durée T₃ à bas niveau. Le rapport cyclique de ce signal est défini comme étant le rapport T₂/T₁ Le signal alternatif de période T₁ est fourni par l'oscillateur 9 et les alternances T₂ et T₃ ont une durée à peu près égale.
  • La figure 1a montre aussi que le dispositif d'alimentation comporte des moyens pour mesurer une valeur qui est représentative du courant circulant dans la lampe, ces moyens étant symbolisés par la boucle 10 entourant un conducteur du second circuit électrique 6. La valeur représentative de ce courant est envoyée à un comparateur 11 qui compare ladite valeur à une valeur de référence contenue dans un bloc 12. Quand lesdites valeurs sont sensiblement identiques, le comparateur 11 émet un signal d'égalité qui est introduit dans le dispositif de commande 7 par son entrée 14 et qui va être utilisé par ledit dispositif pour délivrer à la sortie 15 du même dispositif, en combinaison avec le signal reçu sur l'entrée 8, un signal de commande pour les interrupteurs I₁ et I₂. Le fonctionnement du dispositif va être expliqué maintenant en s'aidant des figures 1b à 1d.
  • La figure 1d montre le signal alternatif de période T₁ présent à l'entrée 8 du dispositif de commande 7, signal provenant de l'oscillateur 9. Le signal de période T₁ est composé d'une première alternance à niveau haut T₂ suivi d'une seconde alternance à niveau bas T₃. Le circuit de commande 7 est arrangé de telle façon que lorsque le signal à l'entrée 8 passe du niveau bas au niveau haut, l'interrupteur I₁ se ferme et l'interrupteur I₂ s'ouvre, les interrupteurs se maintenant dans ces positions même si le signal appliqué en 8 passe du niveau haut au niveau bas. Dans le graphique de la figure 1d, la fermeture de l'interrupteur I₁ est symbolisée par le trait continu 16. Avec I₁ fermé et I₂ ouvert les circuits électriques 5 et 6 se présentent comme illustrés en figure 1b. La source de tension U₁ débite un courant i₁ dans l'inductance L et la lampe 1 via l'interrupteur I₁. Par le fait de la présence de l'inductance L et de la résistance R de la lampe, le courant i₁ va croître durant une période Ta depuis une valeur avoisinant zéro jusqu'à une valeur approximativement semblable à une valeur de référence qu'on se fixe (bloc 12 de la figure 1a). Dès que cette valeur est atteinte, le comparateur 11 fournit à l'entrée 14 du dispositif de commande un signal d'égalité 17 illustré par la figure 1d. Ce signal d'égalité a pour effet d'ouvrir l'interrupteur I₁ et de fermer l'interrupteur I₂. La situation des circuits électriques 5 et 6 est alors celle présentée en figure 1c. L'énergie électrique emmagasinée dans l'inductance L lors de la phase précédente, produit alors un courant i₂ qui, via l'interrupteur I₂, circule dans la lampe 1. L'inductance L se comporte alors comme un générateur. Contrairement à la pratique courante de certaines alimentations connues, cette inductance n'est pas un limiteur de courant mais se comporte comme un réservoir de courant. Le courant i₂ va diminuer durant une période Tb jusqu'à ce qu'apparaisse une nouvelle montée du signal de période T₁ à l'entrée 8 du dispositif de commande 7, signal qui ferme à nouveau l'interrupteur I₁. Dès la fin de la période Tb un nouveau cycle recommence et ainsi de suite.
  • On vient de décrire le principe général sur lequel est basé le dispositif d'alimentation selon l'invention. Il s'agit en fait d'une source de courant stabilisé ou contrôlé qui débite un courant de valeur constante quelle que soit la charge qui lui est appliquée. Comme cette charge est une lampe a décharge dont la tension d'arc, on l'a vu, varie dans de grandes proportions, on sera toujours assuré d'un flux lumineux constant et ceci sans nécessiter de consommation hors de celle qui est nécessaire pour produire ce flux lumineux. En effet les interrupteurs décrits fonctionnent par tout ou rien et ne consomment quasiment aucune énergie propre.
  • Dans ce montage donc, le courant débité par le dispositif de l'invention reste constant quelle que soit la valeur de la charge. Si cette charge est importante (R petit), la période Ta pendant laquelle l'interrupteur est fermé sera petite également, alors que si cette charge est faible (R grand), cette période Ta s'allongera, le rapport cyclique défini par l'expression Ta/T₁ contrôlant en fait le courant circulant dans la lampe. Le montage présente aussi l'avantage d'être résistant aux courts-circuits puisque, dans ce cas, la période Ta serait réduite à une durée extrêmement brève ne pouvant en aucun cas détériorer la source de tension U₁.
  • Le montage de base a été expliqué en se servant de deux interrupteurs I₁, I₂ actionnés par un dispositif de commande. En pratique on pourra utiliser un transistor travaillant en commutation à la place de l'interrupteur I₁, transistor commandé sur sa base par le signal issu de la sortie 15 du dispositif 7. En pratique également, on utilisera avantageusement une diode pour remplacer l'interrupteur I₂, diode branchée de telle manière qu'elle soit non conductrice quand le transistor est conducteur. Cette diode présente l'avantage d'être auto-commandée par le sens même de la tension présente à ses bornes. Il est clair que l'interrupteur I₂ pourrait être aussi un transistor commandé par le signal de sortie du dispositif 7 et que l'invention n'est pas limitée à la seule utilisation d'une diode.
  • Pour mesurer le courant circulant dans la lampe on utilisera avantageusement une résistance de faible valeur placé en série dans l'un des circuits 5 ou 6 du dispositif d'alimentation. Pour des raisons essentiellement pratiques, on disposera cette résistance dans le premier circuit électrique 5 et on mesurera la tension développée à ses bornes, tension qui est représentative du courant circulant dans la lampe. D'autres moyens cependant pourraient être mis en oeuvre comme, par exemple, l'utilisation d'un transformateur de courant placé dans le second circuit électrique 6.
  • On va décrire maintenant trois modes d'exécution pratique de l'invention, le premier et le second appliqués à une seule lampe d'éclairage et le troisième à une lampe utilisée pour former l'un des pixels d'un tableau d'affichage matriciel. Dans l'un et l'autre cas, on expliquera de quoi sont constitués les blocs de la figure 1a qui a servi à exposer l'invention dans son principe.
  • 1. Premier mode d'exécution
  • Le schéma de la figure 2 montre un premier mode d'exécution du dispositif d'alimentation selon l'invention. Le dispositif de commande 7 est ici un flip-flop du type D (D-FF) dont les bornes D et reset sont connectées au moins 12 volts de l'alimentation de la logique. Sur son entrée 8, le flip-flop reçoit le signal alternatif de période T₁, appelé aussi signal d'horloge (Cl) ou signal de synchronisation (Sync). Le transistor Ti1 est commandé sur sa base par la sortie Q du flip-flop. Le collecteur du transistor Ti1 est connecté à la diode D1 et l'émetteur à la source de tension U₁ par l'intermédiaire d'une résistance RE. La tension URE développée aux bornes de ladite résistance RE est comparée à une tension de référence U₃ au moyen d'un comparateur 11 qui est ici un transistor Ti2 travaillant en commutation. Au moment où la tension URE est approximativement égale à la tention U₃, le transistor Ti2 émet un signal d'égalité qui agit directement sur l'entrée set 14 du flip-flop. Le fonctionnement du montage qui vient d'être décrit va être expliqué maintenant à l'aide du diagramme temporel présenté en figure 3.
  • Sur l'entrée 8 du flip-flop est appliqué le signal d'horloge Cl, ce qui apparaît à la ligne a du diagramme. Ce signal oscille entre -12 V et 0 V (0 V symbolisé par le signe 0̸), soit entre les valeurs logiques 0 et 1 respectivement. Ce type de flip-flop (par exemple numéro CMOS 4013) a la particularité de disposer sa sortie Q à la valeur portée par son entrée D quand le signal Cl passe de 0 à 1 (flèches 18), le passage de 1 à 0 ne changeant en rien l'état de la sortie Q pour autant que les entrées set et reset soient toutes deux au zéro logique (-12 V). Comme l'entrée D se trouve à la valeur logique 0 (-12 V, ligne b du diagramme de la figure 3), la sortie Q passe de 0 V à -12 V à chaque flanc positif du signal Cl, ce qui est montré à la ligne e du diagramme, le flanc montant 18 entraînant le flanc descendant 19 de la sortie Q (flèche 65).
  • Le passage de 0 à -12 V de la sortie Q a pour effet de disposer le transistor Ti1 de l'état bloqué (interrupteur I₁ ouvert) à l'état conducteur (interrupteur I₁ fermé). Un courant i₁ commence à circuler dans le circuit défini par la figure 1b, courant dont la vitesse de croissance est limitée par la présence de l'inductance L (voir ligne f du diagramme de la figure 3 qui représente le courant I₁ dans la lampe 1).
  • On observera maintenant la tension URE aux bornes de la résistance RE et qui est représentée par la ligne c du diagramme de la figure 3. Cette tension, d'abord égale à zéro quand le transistor Ti1 est non conducteur, va devenir de plus en plus négative dès que ledit transistor est conducteur, et ceci jusqu'au moment où elle devient égale à la somme des tensions représentées par la tension de référence U₃ et la tension VBETi2 existant entre la base et l'émetteur du transistor Ti2, soit -(U₃ + VBETi2). Dès cet instant (représenté par le point 64 de la ligne c) le transistor Ti2, de non conducteur qu'il était, devient conducteur et la tension de référence U₃, additionnée à celle existant entre le collecteur et l'émetteur de Ti2 quand il conduit, soit UCTi2 = -(U₃ + VCETi2), est reportée à l'entrée 14 (set) du flip-flop, ce qui a pour effet de faire passer ladite entrée set de -12 V à la valeur indiquée (flèches 61). Le signal UCTi2 est donné par la ligne d du diagramme de la figure 3.
  • Le flanc de montée de la valeur UCTi2, dont l'amplitude finale est proche du un logique, a pour effet de faire basculer le flip-flop par son entrée set, de ramener sa sortie Q à 0 V (flèche 62) et de rendre non conducteur le transistor Ti1. La tension URE passe alors de la valeur indiquée sur la ligne c à 0 V (flèche 63). A partir de cet instant, l'énergie emmagasinée dans l'inductance L produit un courant i₂ qui circule dans le circuit 6 (ligne f du diagramme de la figure 3) et qui va en diminuant puisqu'aucune source de tension ne lui est plus appliquée. Ce courant i₂ va diminuer jusqu'à ce que le transistor Ti1 devienne à nouveau conducteur, ce qui a lieu à l'arrivée d'un nouveau flanc montant 18 présenté par le signal T₁ à l'entrée Cl du flip-flop. Le cycle qui vient d'être décrit en détail se reproduit alors de la même façon. On notera en passant que la montée de tension UCTi2 est suivie par un retour à -12 V qui n'a pas d'effet sur le fonctionnement du dispositif.
  • Ainsi le signal alternatif de période T₁ appliqué à l'entrée Cl du flip-flop et composé de deux alternances égales T₂ et T₃, devient, vu de la lampe 1, un signal d'égale période T₁ mais composé de deux alternances Ta et Tb dont les durées respectives varient l'une par rapport à l'autre selon le courant qu'on impose à la lampe. Le rapport cyclique Ta/T₁ contrôle alors le courant qui circule dans la lampe.
  • On a complété le diagramme de la figure 3 par une ligne g qui représente le courant ID1 dans la diode D1. On s'aperçoit que pendant la période de conduction Ta du transistor Ti₁ aucun courant ne circule dans la diode alors que pendant la période de blocage Tb du même transistor, un courant i₂ circule dans ladite diode.
  • Le diagramme de la figure 3 montre encore un seuil de courant Ilmin en dessous duquel le courant dans la lampe ne tombe pas. Ceci provient du fait que l'inductance L n'est pas totalement déchargée lorsque le cycle T₁ recommence. Ce courant explique le premier palier de tension se trouvant aux bornes de la résistance RE et qui vaut (Ilmin.RE).
  • Pour donner maintenant un exemple de réalisation pratique, on mentionnera que les transistors sont du type 2N5400 et la diode du type 1N4148. La source de tension U₁ est de 60 V et la tension de référence de 1,6 V. Avec un signal de période T₁ = 3,2 µs, une résistance RE de 27 ohms et une inductance de 800 µH, on mesure un courant crête de 80 mA dans le tube (équivalent à environ 50 mAeff). On observera ici que l'inductance mise en oeuvre est de très petite dimension (quelques mm³) ce qui est un autre avantage du dispositif selon l'invention. Ceci est dû principalement au fait que le signal alternatif de période T₁ est choisi à fréquence élevée, par exemple supérieure à 150 kHz.
  • La figure 2 montre une source de tension de référence U₃ traversée d'une flèche. Cette dernière indique que la tension de référence peut être ajustée, par exemple manuellement au moyen d'un bouton, pour régler l'intensité lumineuse émise par la lampe. On comprend qu'en variant cette tension, on déplace dans la période T₁, le moment où apparaît le signal d'égalité à la sortie du transistor Ti2 et on modifie conséquemment le rapport cyclique Ta/T₁ qui contrôle la valeur du courant dans la lampe. En diminuant la valeur de U₃ on diminue le courant dans la lampe et en conséquence sa luminosité.
  • Le schéma de la figure 2 montre encore que la lampe à décharge utilisée, qui est le plus souvent une lampe à fluorescence, possède une anode froide 2 et une cathode chaude 3. Cette cathode est un filament alimenté par une source continue U₅. Des considérations ont été faites dans le document EP-A-0152026 au sujet de cette alimentation et le lecteur s'y reportera pour obtenir plus de détail.
  • Pour amorcer la décharge dans la lampe d'éclairage 1, il suffit de lui envoyer une impulsion à haute tension au moment où l'on enclenche le système. Cette impulsion est fournie par le starter 4 montré en pointillé sur la figure 2. Ce starter pourrait être celui qui va être décrit plus loin à propos du troisième mode d'exécution, mais réalisé de telle façon qu'il ne fournisse qu'une impulsion à haute tension au moment de l'allumage de la lampe, au lieu de fournir des impulsions qui se répètent.
  • Une solution possible de réalisation du starter est montré dans le schéma de principe de la figure 6 qui est une variante de l'exécution présentée en figure 1a. L'impulsion de surtension apte à créer l'amorçage de la décharge est produite par un troisième interrupteur I₃ connecté en parallèle sur les bornes 2, 3 de la lampe 1. Cet interrupteur est commandé par un second dispositif de commande 53, lui-même actionné par un premier dispositif de commande 7 déjà décrit à propos de la figure 1a. On s'arrange pour qu'à l'enclenchement du dispositif d'alimentation ce troisième interrupteur soit fermé. Comme, à ce moment, le premier interrupteur I₁ est également fermé, l'inductance L emmagasine de l'énergie comme on l'a expliqué plus haut. L'ouverture de l'interrupteur I₃, synchrone avec l'ouverture de l'interrupteur I₁ par le fait de l'interdépendance des premier et second dispositifs de commande 7 et 53, libère l'énergie emmagasinée dans l'inductance et crée la surtension demandée aux bornes de la lampe. Une explication détaillée du fonctionnement du starter sera donnée lors de la discussion qui sera faite à propos du deuxième mode d'exécution de l'invention.
  • La lampe qu'il s'agit d'allumer a été décrite dans les schémas de principe 1a à 1c comme possédant deux électrodes froides 2 et 3. On sait cependant que si une des électrodes peut être chauffée au moyen d'un filament, on réduit de 1,5 à 2 fois le voltage nécessaire à amorcer la décharge dans la lampe. On sait aussi qu'une électrode chauffée accro't considérablement la durée de vie de la lampe. Pour cela on a montré en figure 2 une électrode 3 pourvue d'un filament alimenté à partir d'une source de tension continue U₅. Le deuxième mode d'exécution qui va être expliqué maintenant met à profit le dispositif d'alimentation de l'invention aussi pour chauffer le filament.
  • 2. Deuxième mode d'exécution
  • Le schéma de principe est montré en figure 7. On reconnaît dans ce schéma le générateur de courant de maintien formé par les premier 5 et second 6 circuits électriques décrits plus haut. La lampe 1 est équipée d'une première électrode froide 2 et d'une seconde électrode pourvue d'un filament 56. Le second générateur de ce montage, formé des circuits 5 et 6 va servir à la fois au chauffage du filament et au maintien de la décharge dans la lampe.
  • Dans ce but, le second circuit électrique 6 comporte la mise en série de l'inductance L, de la première électrode froide 2 et d'une première borne 54 du filament 56. Ce second circuit 6 est branché en parallèle sur le second interrupteur I₂. La figure 7 montre encore un troisième interrupteur I₃ connecté d'une part à `l'électrode froide 2 et d'autre part à une seconde borne 55 du filament 56. Le troisième interrupteur I₃ est actionné par un second dispositif de commande 53, lui-même actionné par le premier dispositif de commande 7. Le second dispositif 53 est arrangé de telle manière qu'à l'enclenchement du dispositif d'alimentation (par un interrupteur général non représenté) le troisième interrupteur I₃ se ferme. Le filament 56 est alors alimenté en énergie par le second générateur 5,6 selon le même principe fondamental expliqué plus haut. L'alimentation du filament a lieu pendant une période de durée prédéterminée Td fixée par exemple par une constante de temps fournie par le bloc 90 agissant sur une entrée du second dispositif de commande 53. Cette période de chauffage durera le temps qu'il faut pour rendre le filament incandescent, par exemple une seconde. Quand la période de chauffage qu'on s'est fixé est écoulée, le troisième interrupteur s'ouvre, cette ouverture ayant lieu la première fois que le premier interrupteur I₁ passe de l'état fermé à l'état ouvert après la période de durée prédéterminée Td. Ce changement d'état se présente sous la forme d'un signal logique à la sortie 15 du premier dispositif de commande 7. Ce même signal logique agit sur le second dispositif de commande 53 et ouvre l'interrupteur I₃. Comme il se trouve qu'au moment de l'ouverture du premier interrupteur l'énergie emmagasinée dans l'inductance L est maximum (voir point 64 de la figure 3c, correspondant à un maximum de courant i₁ dans la lampe selon la figure 3f), l'ouverture du troisième interrupteur I₃, qui est synchrone au premier, provoque une surtension dans la lampe, surtension qui crée l'amorçage de la décharge. Ensuite de cela le troisième interrupteur I₃ reste ouvert et la lampe 1 est alimentée en courant de maintien par le second générateur 5, 6.
  • La figure 8 est un schéma de détail du deuxième mode d'exécution expliqué ci-dessus dans son principe. On décrira ici les éléments nouveaux ajoutés à ceux de la figure 2. Le troisième interrupteur I₃ est un second transistor Ti3 qui est commandé par le signal présent à la sortie Q 57 du dispositif de commande 53 qui est un second flip-flop du type D. La sortie Q 15 du premier flip-flop 7 est connectée à l'entrée Cl du second flip-flop 53. L'entrée D 58 du second flip-flop est relié au 0 volt de l'alimentation de la logique par l'intermédiaire d'une résistance R₃ et un condensateur C est connecté entre cette entrée D et le -12 volts de l'alimentation de la logique. Les bornes set et reset du second flip-flop sont également reliées au -12 volts. Un amplificateur-inverseur se présentant sous la forme d'un transistor Ti4 est interposé entre la sortie Q 57 et la base du transistor Ti3. Il a pour but d'amplifier le signal présent à la sortie Q et de l'inverser en même temps. Le second transistor Ti3 a son collecteur connecté à l'électrode froide 2 de la lampe et son émetteur connecté à la seconde borne 55 du filament 56 de la même lampe.
  • Pour expliquer le fonctionnement du circuit de la figure 8 on se réfère au diagramme temporel de la figure 9.
  • A l'enclenchement du système, par exemple au moyen d'un interrupteur (non représenté), l'entrée D 58 du flip-flop 53 se touve au niveau logique 0 (-12 V). La sortie Q 57 du flip-flop 53 se trouve également au niveau 0, le transistor Ti4 conduit et fournit un courant de base au transistor Ti3 qui conduit également. Le filament 56 est alors sous tension et est alimenté par le même second générateur 5,6 qui a été décrit ci-dessus (voir figure 9a). Le courant If dans le filament se compose d'une succession de courants If1 fourni par le circuit 5 et de courants If2 fourni par le circuit 6 (voir début de la figure 9d). La lampe 1 est alors court-circuitée par Ti3 et la tension Ul entre les bornes 2 et 55 est nulle (voir début de la figure 9f). Après l'enclenchement du système, l'entrée D 58 du flip-flop 53 est amenée progressivement de -12 V à 0 V et ceci pendant une période de durée prédéterminée Td qui est fixée par la constante de temps R₃C et qui est calculée suffisante pour amener le filament à l'incandescence (voir début de la figure 9b). A la fin de la période Td, l'entrée D 58 du second flip-flop se trouve au niveau 1 (0V). Dès cet instant on comprend que le prochain flanc de montée 69 appliqué à l'entrée Cl du second flip-flop (et en provenance de la sortie Q 15 du premier flip-flop 7) fait basculer la sortie Q 57 dudit second flip-flop (flèche 65) qui passe à 1 (0V). A cet instant le transistor Ti3 s'ouvre et le courant If dans le filament 56 est interrompu (flèche 66). L'ouverture du transistor Ti3 provoque une surtension 80 (figure 9f, flèche 68) aux bornes de la lampe, surtension due à l'énergie emmagasinée dans l'inductance L et qui est libérée pour créer l'amorçage de l'arc. Le basculement de la sortie Q 57 du second flip-flop qui amène l'ouverture du transistor Ti3 conduit aussi le second générateur 5,6 à alimenter les bornes 2,56 de la lampe par un courant Il (figure 9c, flèche 67) formé comme déjà décrit par une alternance de deux courants Il1 et Il2 Faisant suite à l'impulsion de surtension 80, une tension de maintien Ul s'établit alors aux bornes de la lampe (fin de la figure 9f).
  • Ainsi dans ce second mode d'exécution on utilise le même second générateur, objet principal de la présente invention, pour alimenter d'abord le filament de la lampe pendant un certain temps, puis pour maintenir le courant d'arc dans cette lampe. Ce système conduit à utiliser des moyens qui sont bien moins coûteux et encombrants que le lourd ballast bien connu qu'on doit utiliser aujourd'hui pour l'alimentation de tubes fluorescents utilisés pour l'éclairage.
  • On notera pour finir que la figure 8 fait état d'une source de tension de référence variable U₃ qui peut être utilisée pour varier l'intensité lumineuse de la lampe. Cette tension pourrait être supprimée si l'on ne souhaite pas une telle particularité. A ce moment on connecterait l'émetteur du transistor Ti2 directement au + de la source U₁.
  • 2. Troisième mode d'exécution
  • Ce troisième mode d'exécution sera utilisé pour alimenter de préférence des lampes à décharge formant les pixels ou points lumineux élémentaires composant un tableau d'affichage matriciel. Le tableau peut afficher des images fixes ou animées, en couleur ou en noir et blanc. Une façon d'alimenter les lampes a été exposée dans le document cité en préambule de cette description et qui porte le numéro EP-A-0152026 (US-A-4 649 322), alimentation qui présente l'inconvénient d'être dispendieux en énergie consommée et en pertes joules, comme on l'a déjà mentionné. Aussi va-t-on remplacer la source de courant du document cité par celle qui fait l'objet de la présente invention.
  • Pour ce faire on se référera à la figure 4 qui présente un schéma de détail du dispositif d'alimentation selon ce troisième mode d'exécution de l'invention. On reconnait dans ce schéma le générateur de courant de maintien formé par les premier 5 et second 6 circuits électriques décrits en détail plus haut.
  • Dans ce troisième mode d'exécution, où l'intensité lumineuse de la lampe est réglée en fonction d'un signal de consigne (par exemple un signal vidéo), la lampe à décharge reçoit à intervalles périodiques prédéterminés Tr des impulsions de tension créant l'amorçage de la décharge de lampe. Ces impulsions à haute tension sont fournies par le générateur 4. Deux formes d'exécution de ce générateur ont été décrites en détail dans le document EP-A-0152026. On rappellera ici brièvement le fonctionnement de l'un d'eux en mentionnant que l'autre pourrait aussi convenir ici.
  • Le générateur 4 se compose d'une source de tension continue U₄, d'une bobine 20, d'un interrupteur 21 et d'un condensateur 22. Dans un tel système, l'énergie accumulée dans la bobine 20 sous forme de courant pendant la conduction de l'interrupteur 21 est restituée sous forme de tension aux bornes du condensateur 22 lors de l'ouverture de l'interrupteur 21. La valeur de l'énergie accumulée est déterminée par la tension U₄, l'inductance de la bobine 20 et la période d'accumulation t₁ - t₀, t₀ représentant l'instant de fermeture et t₁ l'instant d'ouverture de l'interrupteur 21. Les signaux d'ouverture et de fermeture de l'interrupteur 21 sont envoyés par la ligne 32. Les impulsions de surtension sont appliquées à la lampe par l'intermédiaire d'une diode 24 et d'une résistance 25. La diode 24 empêche que la source de courant, fournie par les circuits 5 et 6, n'alimente une autre lampe via la ligne commune du générateur de surtension, si le générateur 4 est utilisé pour plusieurs tubes à la fois. La résistance 25 a pour but de limiter le courant d'arc dans le tube dès l'instant où il est amorcé. Cet artifice permet d'assurer l'allumage de plusieurs lampes au moyen d'un générateur unique. Sans cela, du fait que les lampes présentent des caractéristiques d'amorçage différentes, seule la lampe exigeant l'impulsion de tension la plus faible s'allumerait. En effet, la tension présente aux bornes du tube une fois l'arc établi est nettement plus faible que la tension nécessaire à la provoquer. Un courant important prendrait alors naissance si aucune précaution n'était prise. Ce courant empêcherait, d'une part, la tension d'amorçage d'atteindre des valeurs suffisantes pour amorcer les autres tubes et pourrait, d'autre part, entraîner la destruction du premier tube amorcé.
  • Le circuit électrique 6 comprend en outre une diode 31 qui interdit à l'impulsion de surtension fournie par le générateur 4 de remonter jusqu'à la source de courant de maintien de la décharge.
  • En synchronisme avec chaque impulsion de surtension, est fourni à la lampe un courant de maintien de la décharge dont la durée va dépendre d'un signal de consigne porteur d'une information indiquant le niveau de flux lumineux qui doit être atteint par la lampe à un moment donné. Ce système, basé sur le temps d'application du courant et non sur son amplitude, est décrit en détail dans le document EP-A 0 152 026 cité ci-dessus. On pourra donc s'y reporter pour obtenir d'autres informations souhaitables.
  • Comme dans le premier mode d'exécution, le second générateur selon l'invention comporte un premier circuit électrique 5 comprenant la mise en série d'une source de tension continue U₁, d'un premier interrupteur (remplacé dans la figure 4 par le transistor Ti1) et d'un second interrupteur (remplacé dans la même figure par une diode D1 branchée de telle façon qu'elle soit non conductrice quand le transistor Ti1 est conducteur) et un second circuit électrique 6 comprenant la mise en série d'une inductance L et de la lampe 1, second circuit branché en parallèle sur la diode D1. Un dispositif de commande (il s'agit ici du flip-flop 7) actionne le système. Le flip-flop 7 est alimenté sur son entrée Cl par un signal alternatif de période T₁ = T₂ + T₃ en provenance d'un oscillateur. L'oscillateur de la figure 4 est présenté en 70 et attaque un diviseur de fréquence 71 sur son entrée Cl. La sortie Q₁ fournit le signal désiré T₁ qui se trouve être, dans cet exemple, la fréquence de l'oscillateur 70 divisée par deux.
  • Dans le premier mode d'exécution la sortie du dispositif 7 (Q) fournissait en permanence un signal T₁ = Ta + Tb puisque l'entrée D du flip-flop se trouvait en permanence au -12 V de l'alimentation de la logique. Dans ce troisième mode d'exécution au contraire, le signal T₁ = Ta + Tb n'apparaît que périodiquement (Tr) et pendant une durée Tc qui est fonction du signal de consigne dont on a parlé plus haut. Le signal de durée Tc est appliqué à l'entrée D du flip-flop 7 et est compris dans les limites 0 ≦ Tc ≦ Tr. Quand le signal de durée Tc est présent à l'entrée D, la source de courant formée par les circuits 5 et 6 se comporte comme dans le premier mode d'exécution: on trouve ici en effet les mêmes moyens pour mesurer la valeur représentative du courant circulant dans la lampe 1 (RE, 10), pour comparer (11, Ti2) cette valeur représentative à une valeur de référence (U₃, 12) et pour fournir un signal d'égalité (set) quand ces valeurs sont sensiblement identiques avec, pour résultat, une circulation de courant (i₁, i₂) en deux phases de durées respectives Ta et Tb comme on l'a déjà expliqué.
  • On va expliquer maintenant, en s'aidant également du diagramme de la figure 5, comment on s'y prend, selon un mode possible de réalisation, pour assurer la synchronisation du signal d'amorçage et du signal de durée Tc de maintien de courant dans la lampe. L'arrangement comporte la combinaison de l'oscillateur 70, du diviseur 71 et de trois circuits monostables 40, 41 et 42 du type 555 bien connus de l'état de la technique.
  • On part d'un oscillateur à haute fréquence 70. Celui-ci alimente le diviseur de fréquence 71 (du type MC 14020) à la sortie Q₁ duquel on trouve le signal de période T₁ d'alimentation du flip-flop 7 (figure 5a). Un signal à fréquence beaucoup plus basse, égale ici à la fréquence de l'oscillateur divisée par 2¹³, est prélevé à la sortie Q₁₃ du diviseur. Soit Tr la périodicité de ce dernier signal (figure 5b). Cette période Tr représente la cadence de répétition des impulsions de surtension.
  • Dans le cas particulier où le dispositif décrit trouve son application dans la reproduction d'images animées issues d'un signal vidéo par exemple, on comprendra qu'un point image doit pouvoir être rafraîchi, ou, en d'autres termes, doit pouvoir être capable de recevoir une nouvelle information au moins tous les 1/25 de seconde dans les réseaux à 50 Hz (1/30 de seconde dans les réseaux à 60 Hz), ce qui conduit à une répétition d'impulsions de surtension toutes les 40 ms. Cependant, cette périodicité sera réduite au tiers de cette valeur, soit à 13,33 ms, pour éviter surtout le clignotement de l'image.
  • Le signal de période Tr attaque l'entrée 2 d'un circuit monostable 40 qui ne s'enclenche que sur le flanc descendant du signal de période Tr pour fournir sur sa sortie 3 une courte impulsion 50 dont la largeur dépend des valeurs qu'on donne à R₀ + R′₀ et C₀. Cette largeur peut être variée en ajustant R₀ (figure 5c). Les impulsions 50 commandent à leur tour le circuit 41 qui est également un monostable qui s'enclenche sur le flanc descendant de l'impulsion 50 et allonge ladite impulsion d'une quantité imposée par les valeurs données à R₁ + R′₁ et C₁. Elle peut être ajustée en variant R₁. L'impulsion 51 qui en résulte et qui est représentée sur la figure 5d est recueillie à la sortie 3 du circuit 41 et commande par la ligne 32 l'interrupteur 21 du générateur 4. On a généré de cette façon l'impulsion de largeur t₁ - t₀ nécessaire à créer l'impulsion de surtension apte à créer l'amorçage de l'arc dans la lampe, impulsion qui est représenté en 80 sur la ligne 5g et qui se répète avec la périodicité Tr. Les impulsions 51 commandent à leur tour le circuit 42 qui est encore un monostable qui s'enclenche sur le flanc descendant de l'impulsion 51 et allonge ladite impulsion d'une quantité imposée par les valeurs données à R₂ + R′₂ et C₂. L'impulsion 52 de durée Tc qui en résulte, et qu'on a représentée sur la figure 5e, est recueillie à la sortie 3 du circuit 42 et commande, par l'intermédiaire de l'inverseur 81, l'entrée D du flip-flop 7, ce dernier commandant, comme on l'a vu, la source de courant de maintien formé des circuits 5 et 6. Le signal présent à l'entrée D est montré en figure 5f. L'impulsion 52, ou son inverse présent à l'entrée D, n'est autre que le signal de consigne de durée Tc, fabriquée dans cet exemple par le circuit 42, circuit qui fonctionne en synchronisme avec le générateur d'amorçage 4.
  • Il faut mentionner encore à propos de la figure 4 la présence du circuit comportant le transistor 60 qui a pour but la remise à zéro du monostable 42 dès qu'apparaît à la sortie 3 du circuit 40 une nouvelle impulsion 50, ceci pour éviter tout chevauchement de l'impulsion 50 sur une impulsion 52 qui ne serait pas terminée.
  • La figure 5g montre la tension Ul qui apparaît aux électrodes de la lampe et qui est le résultat de la combinaison des diagrammes 5b à 5f. Ainsi, l'impulsion de surtension 80 coïncide avec le flanc descendant de l'impulsion 51 et la tension de modulation 82 (ou de maintien de l'arc) coïncide avec l'impulsion 52.
  • Le schéma de réalisation de la figure 4 permet de varier l'intensité de lumière au moyen d'un réglage potentiométrique (R₂) qui est ici le signal de consigne à proprement parler. Il est clair que ce réglage serait réalisé de façon toute différente si le signal de consigne devait être une information livrée par une caméra de télévision par exemple. Dans ce cas, la caméra présente à sa sortie un signal analogique qu'on transforme en signal digital par un convertisseur. On trouve généralement à la sortie du convertisseur 2⁵ = 32 tons possibles, l'un de ces tons correspondant à l'intensité lumineuse du point analysé à un moment précis. Ces 32 tons résultent, dans un exemple de réalisation, de la combinaison de 128 tranches élémentaires d'égale durée pour tenir compte de la courbe de sensibilité de l'oeil (voir à ce sujet le document EP-A-0 152 025 déjà cité). L'information digitale est ensuite envoyée à un compteur qui restituera à sa sortie un signal dont la durée correspondra à l'intensité lumineuse analysée à ce moment. Ce signal commandera enfin une source de courant de maintien comme cela a été expliqué plus haut.
  • Pour donner un exemple des différents signaux mis en jeu dans ce troisième mode d'exécution, on citera:

    Oscillateur 70 : 614,4 kHz

    Diviseur 71, sortie Q₁: 307,2 kHz
    T₁ = 3,2 µs, T₂ = T₃ = 1,6 µs
    0 ≦ Ta ≦ 3,2 µs

    Diviseur 71, sortie Q₁₃: 75 Hz = 614,6 kHz : 2¹³
    Tr = 13,33 ms
    0≦ Tc ≦ 13,33 ms

       On notera pour terminer que la tension de référence U₃ pourra être ajustable ce qui permettra d'adapter la luminosité émise à la lumière ambiante.

Claims (9)

  1. Dispositif d'alimentation d'une lampe à décharge (1) pourvue de première (2) et de seconde (3, 56) électrodes, ledit dispositif comprenant un premier générateur (4) susceptible de fournir une impulsion de tension apte à créer l'amorçage de la décharge dans la lampe et un second générateur apte à maintenir un courant de décharge dans la lampe, caractérisé par le fait que le second générateur comporte un premier circuit électrique (5) comprenant la mise en série d'une première source de tension continue (U₁), d'un premier interrupteur (I₁) et d'un second interrupteur (I₂), lesdits premier et second interrupteurs étant arrangés de telle façon que lorsque le premier est fermé, le second est ouvert et vice versa, et un second circuit électrique (6) comprenant la mise en série d'une inductance (L) et de ladite lampe, branché en parallèle sur ledit second interrupteur, que lesdits interrupteurs sont actionnés par un premier dispositif de commande (7) alimenté par un signal alternatif de période fixe T₁ en provenance d'un oscillateur (9) et que des moyens (10, 11, 12) sont prévus pour mesurer une valeur qui est représentative du courant circulant dans la lampe, pour comparer ladite valeur représentative à une valeur de référence fournie par une seconde source de tension continue (U₃) et pour fournir un signal d'égalité quand lesdites valeurs sont sensiblement identiques, ledit premier dispositif de commande utilisant ledit signal d'égalité et disposant ledit premier interrupteur d'abord dans un état fermé pendant une première période Ta qui s'étend du début de ladite période fixe T₁ jusqu'à l'apparition dudit signal d'égalité, puis dans un état ouvert pendant une seconde période Tb qui se termine avec la fin de ladite période T₁, ledit premier interrupteur étant actionné selon un rapport cyclique Ta/T₁ contrôlant le courant circulant dans la lampe.
  2. Dispositif d'alimentation selon la revendication 1, caractérisé par le fait que le premier interrupteur (I₁) est un transistor (Ti1) commandé par le premier dispositif de commande (7), que le second interrupteur (I₂) est une diode (D1) branchée de telle manière qu'elle soit non conductrice quand ledit premier interrupteur est fermé, que les moyens (10) pour mesurer la valeur qui est représentative du courant circulant dans la lampe sont réalisés par une résistance (RE) disposée en série dans le premier circuit électrique (5), que le premier dispositif de commande (7) est un premier flip-flop du type D alimenté sur son entrée d'horloge (8) par le signal alternatif de période T₁ et que le transistor (Ti1) est commandé sur sa base par la sortie Q (15) dudit flip-flop, le col lecteur et l'émetteur dudit transistor étant connectés respectivement à la diode (D1) et à la source de tension (U₁) par l'intermédiaire de ladite résistance (RE), la tension (URE) développée aux bornes de ladite résistance étant comparée à ladite seconde source de tension continue (U₃) au moyen d'un comparateur (Ti2), le signal d'égalité issu dudit comparateur agissant sur l'entrée set (14) dudit flip-flop.
  3. Dispositif d'alimentation selon la revendication 2, caractérisé par le fait que ladite seconde source de tension continue (U₃) est ajustable.
  4. Dispositif d'alimentation selon la revendication 1, caractérisé par le fait que le premier générateur susceptible de fournir une impulsion de tension apte à créer l'amorçage de la décharge dans la lampe (1) comporte un troisième interrupteur (I₃) connecté en parallèle sur les électrodes (2, 3) de la lampe et actionné par un second dispositif de commande (53) lui-même actionné par ledit premier dispositif de commande (7), ledit second dispositif étant arrangé de telle manière que ledit troisième interrupteur soit fermé à l'enclenchement dudit dispositif d'alimentation puis s'ouvre la première fois que ledit premier interrupteur (I₁) passe de l'état fermé à l'état ouvert.
  5. Dispositif d'alimentation selon la revendication 4, caractérisé par le fait que la lampe à décharge comporte une première électrode froide (2) et une seconde électrode (3) pourvue d'un filament (56) équipé de première (54) et de seconde (55) bornes, que ledit second circuit électronique (6) comprend la mise en série de ladite inductance (L), de ladite première électrode froide (2) et de ladite première borne (54), que ledit troisième interrupteur est connecté d'une part à ladite première électrode froide (2) et d'autre part à ladite seconde borne (55), que ledit second générateur (5, 6) est apte à chauffer le filament pendant une période de durée prédéterminée Td, puis à mainternir le courant de décharge dans la lampe et que ledit second dispositif de commande (53) est arrangé de telle manière que ledit troisième interrupteur (I₃) se ferme à l'enclenchement dudit dispositif d'alimentation, puis s ouvre après ladite période prédéterminée Td, ladite ouverture ayant lieu la première fois que ledit premier interrupteur (I₁) passe de l'état fermé à l'état ouvert après ladite période de durée prédéterminée.
  6. Dispositif d'alimentation selon la revendication 5, caractérisé par le fait qu'il comporte l'arrangement décrit en revendication 2, que le troisième interrupteur (I₃) est un second transistor (Ti₃) commandé par le second dispositif de commande (53) consistant en un second flip-flop du type D alimenté sur son entrée d'horloge (C1) par le signal présent à la sortie Q dudit premier flip-flop, ladite période de durée prédéterminée Td étant présente sous forme d'un signal correspondant à l'entrée D (58) dudit second flip-flop (53) et que le second transistor (Ti3) est commandé par le signal présent à la sortie Q (57) dudit second flip-flop par l'intermédiaire d'un amplificateur-inverseur (Ti4), le collecteur et l'émetteur dudit second transistor étant connectés respectivement à la première électrode froide (2) et à la seconde borne (55) dudit filament (56) de ladite lampe.
  7. Dispositif d'alimentation selon la revendication 1, caractérisé par le fait que le premier générateur (4) est susceptible de fournir à intervalles périodiques prédéterminés Tr des impulsions de tension aptes à créer l'amorçage de la décharge dans la lampe, que le second générateur (5, 6) est apte à fournir en synchronisme avec chaque impulsion de tension, un courant de maintien de la décharge et que ledit signal de période T₁ est appliqué pendant une durée Tc qui est une fonction d'un signal de consigne, ladite durée d'application étant comprise dans les limites 0 ≦ Tc ≦ Tr.
  8. Dispositif d'alimentation selon la revendication 7, caractérisé par le fait que le premier interrupteur (I₁) est un transistor (Ti1) commandé par le premier dispositif de commande (7), que le second interrupteur (I₂) est une diode (D1) branchée de telle manière qu'elle soit non conductrice quand ledit premier interrupteur est fermé, que les moyens (10) pour mesurer la valeur qui est représentative du courant circulant dans la lampe soient réalisés par une résistance (RE) disposée en série dans le premier circuit électrique (5), que le premier dispositif de commande (7) est un flip-flop du type D alimenté sur son entrée d'horloge (8) par le signal alternatif de période T₁ et sur son entrée D par le signal de consigne de durée Tc et que le transistor (Ti1) est commandé sur sa base par la sortie Q (15) dudit flip-flop, le collecteur et l'émetteur dudit transistor étant connectés respectivement à la diode (D1) et à la source de tension (U₁) par l'intermédiaire de ladite résistance (RE), la tension (URE) développée aux bornes de ladite résistance étant comparée à ladite seconde source de tension continue (U₃) au moyen d'un comparateur (Ti2), le signal d'égalité issu dudit comparateur agissant sur l'entrée set (14) dudit flip-flop.
  9. Dispositif d'alimentation selon la revendication 8, caractérisé par le fait que ladite seconde source de tension continue (U₃) est ajustable.
EP88106480A 1987-04-29 1988-04-22 Dispositif d'alimentation d'une lampe à décharge Expired - Lifetime EP0288924B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8706145 1987-04-29
FR8706145A FR2614748A1 (fr) 1987-04-29 1987-04-29 Dispositif d'alimentation d'une lampe a decharge

Publications (2)

Publication Number Publication Date
EP0288924A1 EP0288924A1 (fr) 1988-11-02
EP0288924B1 true EP0288924B1 (fr) 1992-07-08

Family

ID=9350663

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88106480A Expired - Lifetime EP0288924B1 (fr) 1987-04-29 1988-04-22 Dispositif d'alimentation d'une lampe à décharge

Country Status (9)

Country Link
US (1) US4937505A (fr)
EP (1) EP0288924B1 (fr)
JP (1) JPS6448395A (fr)
KR (1) KR970001422B1 (fr)
CN (1) CN1015590B (fr)
AU (1) AU608835B2 (fr)
CA (1) CA1293292C (fr)
DE (1) DE3872580T2 (fr)
FR (1) FR2614748A1 (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264592A (ja) * 1988-08-31 1990-03-05 Toshiba Lighting & Technol Corp 大型映像表示装置
US5068572A (en) * 1989-06-08 1991-11-26 U.S. Philips Corporation Switch mode power supply
DE4015397A1 (de) * 1990-05-14 1991-11-21 Hella Kg Hueck & Co Schaltungsanordnung zum zuenden und betreiben einer hochdruckgasentladungslampe in kraftfahrzeugen
GB2277415B (en) * 1993-04-23 1997-12-03 Matsushita Electric Works Ltd Discharge lamp lighting device
US5500575A (en) * 1993-10-27 1996-03-19 Lighting Control, Inc. Switchmode AC power controller
US5515261A (en) * 1994-12-21 1996-05-07 Lumion Corporation Power factor correction circuitry
US6002213A (en) * 1995-10-05 1999-12-14 International Rectifier Corporation MOS gate driver circuit with analog input and variable dead time band
AT407461B (de) * 1996-04-24 2001-03-26 Kurz Martin Ansteuerung für entladungslampe
US6034488A (en) * 1996-06-04 2000-03-07 Lighting Control, Inc. Electronic ballast for fluorescent lighting system including a voltage monitoring circuit
US6340869B1 (en) * 1997-08-05 2002-01-22 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Method for operating direct current metal halogen arc lamp circuit pertaining thereto
US5854539A (en) * 1997-08-26 1998-12-29 Stmicroelectronics, Inc. Electroluminescent lamp driver circuit with signal tracking
CN2414582Y (zh) * 2000-02-02 2001-01-10 马士科技有限公司 荧光灯电子镇流器
JP2002184589A (ja) * 2000-10-03 2002-06-28 Matsushita Electric Ind Co Ltd 蛍光ランプおよび電力変換器
US7402921B2 (en) * 2005-04-21 2008-07-22 American Power Conversion Corporation Method and apparatus for providing uninterruptible power
US8327656B2 (en) * 2006-08-15 2012-12-11 American Power Conversion Corporation Method and apparatus for cooling
US9568206B2 (en) * 2006-08-15 2017-02-14 Schneider Electric It Corporation Method and apparatus for cooling
US8322155B2 (en) * 2006-08-15 2012-12-04 American Power Conversion Corporation Method and apparatus for cooling
US7705489B2 (en) * 2006-09-08 2010-04-27 American Power Conversion Corporation Method and apparatus for providing uninterruptible power
US7681404B2 (en) * 2006-12-18 2010-03-23 American Power Conversion Corporation Modular ice storage for uninterruptible chilled water
US20080142068A1 (en) * 2006-12-18 2008-06-19 American Power Conversion Corporation Direct Thermoelectric chiller assembly
US8425287B2 (en) * 2007-01-23 2013-04-23 Schneider Electric It Corporation In-row air containment and cooling system and method
CA2686564C (fr) 2007-05-15 2018-04-17 American Power Conversion Corporation Procedes et systemes pour gerer la puissance et le refroidissement d'une installation
US9519517B2 (en) * 2009-02-13 2016-12-13 Schneider Electtic It Corporation Data center control
US8167676B2 (en) * 2009-06-19 2012-05-01 Vaxo Technologies, Llc Fluorescent lighting system
US8878389B2 (en) 2011-01-11 2014-11-04 Schneider Electric It Corporation Method and apparatus for providing uninterruptible power
US8884464B2 (en) 2011-08-29 2014-11-11 Schneider Electric It Corporation Twin boost converter with integrated charger for UPS system
CN103124465A (zh) * 2011-11-18 2013-05-29 重庆四联光电科技有限公司 Led灯具的电源冗余方法及装置
EP2796025A4 (fr) 2011-12-22 2016-06-29 Schneider Electric It Corp Système et procédé de prédiction de valeurs de température dans un système électronique
US9952103B2 (en) 2011-12-22 2018-04-24 Schneider Electric It Corporation Analysis of effect of transient events on temperature in a data center
CN115220511B (zh) * 2022-07-14 2023-10-31 无锡卓海科技股份有限公司 具有检测灯丝加热电流和发射电流的电子枪高压电源装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890537A (en) * 1974-01-02 1975-06-17 Gen Electric Solid state chopper ballast for gaseous discharge lamps
JPS52138381A (en) * 1976-05-13 1977-11-18 Mitsubishi Electric Corp Device for adjusting luminosity of discharge lamp
FI63314C (fi) * 1981-06-08 1983-05-10 Helvar Oy Elektroniskt foerkopplingsdon foer gasurladdningslampa
NL8104200A (nl) * 1981-09-11 1983-04-05 Philips Nv Elektrische schakeling voor het bedrijven van een gas- en/of dampontladingslamp.
FR2559334B1 (fr) * 1984-02-03 1988-02-26 Ssih Equipment Sa Dispositif d'alimentation pour commander l'intensite lumineuse d'au moins une lampe a decharge et utilisation dudit dispositif
US4777409A (en) * 1984-03-23 1988-10-11 Tracy Stanley J Fluorescent lamp energizing circuit
JP2533476B2 (ja) * 1985-05-27 1996-09-11 松下電工株式会社 放電灯点灯装置

Also Published As

Publication number Publication date
EP0288924A1 (fr) 1988-11-02
KR970001422B1 (en) 1997-02-06
DE3872580D1 (de) 1992-08-13
DE3872580T2 (de) 1993-02-18
AU608835B2 (en) 1991-04-18
US4937505A (en) 1990-06-26
FR2614748A1 (fr) 1988-11-04
CN1015590B (zh) 1992-02-19
KR880013422A (ko) 1988-11-30
JPS6448395A (en) 1989-02-22
CA1293292C (fr) 1991-12-17
CN88102588A (zh) 1988-11-16
AU1526188A (en) 1988-11-03
FR2614748B1 (fr) 1995-02-24

Similar Documents

Publication Publication Date Title
EP0288924B1 (fr) Dispositif d'alimentation d'une lampe à décharge
BE1001099A4 (fr) Circuit d'etat solide pour commander une lampe a decharge a courant continu.
FR2707051A1 (fr)
EP0066481A1 (fr) Dispositif d'alimentation électronique pour lampes à décharge
FR2486348A1 (fr) Circuit d'alimentation de puissance pour une lampe de decharge a haute intensite
FR2661588A1 (fr) Circuit d'eclairage pour lampe a decharge pour vehicules.
FR2505601A1 (fr)
EP0296558B1 (fr) Dispositif d'alimentation d'une lampe à décharge
FR2489069A1 (fr) Dispositif d'allumage de lampe a decharge a courant electrique continu
FR2493092A1 (fr) Circuit d'amorcage et de commande pour lampes a decharge
EP0390699A1 (fr) Circuit d'alimentation d'une lampe à arc, notamment pour un projecteur de véhicule automobile
EP0152026B1 (fr) Dispositif d'alimentation pour commander l'intensité lumineuse d'au moins une lampe à décharge et utilisation dudit dispositif
EP0918449B1 (fr) Circuit de commande de lampe fluorescente
EP3345456B1 (fr) Convertisseur électronique et système d'éclairage comprenant un tel convertisseur
FR2644662A1 (fr) Dispositif d'allumage de lampe a decharge a courant continu
FR2520575A1 (fr) Circuit d'alimentation d'un tube luminescent
EP1120019B1 (fr) Circuit de commande d'une charge a alimenter par une tension alternative
FR2472902A1 (fr) Dispositif d'eclairage a lampe a arc a niveaux d'eclairement haut et bas
FR2461429A1 (fr) Perfectionnement apporte aux convertisseurs de frequence utilises pour l'allumage et l'alimentation d'une lampe a decharge
FR2496383A1 (fr) Circuit pour l'allumage et la commande graduelle d'une lampe fluorescente
FR2665322A1 (fr) Convertisseur pour alimentation de lampes.
FR2492211A1 (fr) Appareil generateur de lumiere-eclair electrique
CH570096A5 (en) Two-terminal fluorescent lamp starter - has threshold trigger cct. delivering control pulses to bidirectional-conduction electronic switch
FR2522458A1 (fr) Dispositif d'allumage d'une lampe a tube d'eclairage fluorescent et lampe ainsi equipee
LU83920A1 (fr) Dispositif de demarrage pour lampes a decharge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI NL

17P Request for examination filed

Effective date: 19881126

17Q First examination report despatched

Effective date: 19910409

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI NL

REF Corresponds to:

Ref document number: 3872580

Country of ref document: DE

Date of ref document: 19920813

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960326

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960423

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960430

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970416

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19971101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19971101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050422