[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0269612B1 - Process for manufacturing articles - Google Patents

Process for manufacturing articles Download PDF

Info

Publication number
EP0269612B1
EP0269612B1 EP19870890270 EP87890270A EP0269612B1 EP 0269612 B1 EP0269612 B1 EP 0269612B1 EP 19870890270 EP19870890270 EP 19870890270 EP 87890270 A EP87890270 A EP 87890270A EP 0269612 B1 EP0269612 B1 EP 0269612B1
Authority
EP
European Patent Office
Prior art keywords
metal
alloy
particles
process according
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19870890270
Other languages
German (de)
French (fr)
Other versions
EP0269612A3 (en
EP0269612A2 (en
Inventor
Oskar Dr. Pacher
Johann Dipl.-Ing. Stamberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehler GmbH
Original Assignee
Boehler GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehler GmbH filed Critical Boehler GmbH
Publication of EP0269612A2 publication Critical patent/EP0269612A2/en
Publication of EP0269612A3 publication Critical patent/EP0269612A3/en
Application granted granted Critical
Publication of EP0269612B1 publication Critical patent/EP0269612B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling

Definitions

  • the invention relates to a method for the powder-metallurgical production of moldings for tools, machine parts, articles of daily use with metals or metal alloys, powder-fine particles of the alloy components and / or master alloys and / or the alloy itself being mixed with at least one additive containing a metal and at least with heating to be compressed into a desired shaped body.
  • Powder metallurgy is particularly well suited for the production of tools, machine parts and articles of daily use for economic reasons.
  • Their advantage is that, starting from metal powders, a porous body is produced by mechanical pressing, which is then compressed to the final shape during a so-called sintering.
  • Sintering is generally understood to mean the caking of powder particles under the action of heat in an oven. In many cases, the air-filled pores originally present in the powder compact are removed. This process is very badly affected by the oxygen content of the powder. The oxygen content on the surface of the powder particles in particular has a sinter-inhibiting effect and leads to porosities and inadequate mechanical properties.
  • GB-PS 2 084 612 describes e.g. a method for producing a workpiece from gas-atomized powder with low oxygen content, which is characterized in that the powder is ground. The ground powder is then mixed with a pressing aid, pressed to a shaped body, sintered and hot isostatically compressed. The disadvantage of this process is still the use of the expensive gas-atomized powder, which can only be ground with great effort into a uniformly compressible fine powder.
  • Water atomized powders have the advantage that they have irregular shapes and can therefore be pressed well into preform bodies. However, they have the disadvantage that they contain a relatively large amount of oxide (700 to 1500 ppm) or are surrounded by an oxide layer which hinders the sintering process and causes porosity.
  • a process for the production of sintered blanks for rolling or forging by a powder metallurgical process, in particular the evaporation of alloy components during a tempering and sintering process of the metal powder is known from DE-A-2 461 736.
  • an additive containing a metal from the group of alkali metals and alkaline earth metals is added to a mechanically produced powder and the mixture is left at a temperature which is higher than the decomposition temperature of the additive to soften the powder grain material.
  • the mixture is then compacted and sintered.
  • the alkali metal-containing additive should be broken down under the influence of heat to form a uniform solid solution in the form of the alkali metal or in the form of an oxide on the surface of the metal particles.
  • this surface layer improves the sliding properties of the powder particles to one another and leads to a dense green blank
  • an azeotropic mixture is formed, for example with zinc, which prevents evaporation losses and accelerates the sintering process.
  • the object of the invention is to design a method of the type mentioned in such a way that a shaped body is obtained in a labor and energy-saving manner, the sintering properties of which are optimal and whose porosity is minimal.
  • this is achieved in that surface oxygen-containing particles or powders are brought into contact with at least one compound of at least one metal as an additive, which, at temperatures of 50 to 800 ° C., has at least one alloy-specific or alloy-compatible metal and / or releases a substoichiometric oxygen compound of such a metal with respect to oxygen, after which the final compression of the particles into the shaped body takes place at least with heating or with sintering with at least partial dissolution (breaking up) of the surface oxygen layer of the powder grains.
  • This makes it possible to produce moldings that have practically no porosity and excellent mechanical properties. Sintering at low temperatures is also possible, i.e.
  • the additives used according to the invention have the effect that the ease of sintering of the shaped body components is increased; the additives bring about an improvement in diffusion at the particle boundaries, so that the achievable sintered composite is improved.
  • the additives used according to the invention When heated as a result of decomposition, the additives used according to the invention release metal atoms or metal oxygen compounds whose oxygen content is substoichiometric, that is to say which contain oxygen in deficit, and which combine with the oxygen of oxides or oxide layers present on the particles or tear these layers apart. This creates metallic contact between the particles so that they can optimally sinter together. At the same time, the oxygen torn from the oxide compound reacts more easily to CO or CO2 with the carbon contained in the structure. The resulting metallic contact leaves a decrease in the sintering temperature. Obtained from preforms with 700 to 1500 ppm O2 moldings with max. 50 to 100 ppm O2.
  • the densities of sintered bodies achieved to date from about 99.5% to 99.8% based on the The maximum achievable density is increased and the densities of moldings produced by the process according to the invention are more than 99.8%.
  • the temperatures for the compression of the preforms are somewhat below the temperatures currently customary for the respective metals of the alloys. In the method according to the invention, the use of temperatures about 5 to 10 ° lower is possible, which makes the sintering process much more manageable compared to temperature fluctuations in the sintering furnace; sintering is currently taking place just below the melting point of the respective eutectic compounds.
  • particles obtained with water atomization optionally with an addition of up to max. 50% of gas atomized and / or ground particles, a metal, an alloy or pre-alloy with an irregular shape and size are used. Together with the irregularly shaped water-atomized particles, other particles can also be used, and a preform can be produced well and precisely due to the possible plastic deformation of the particles. Due to the addition of the additive, it is possible that particles or powders containing surface oxygen are also used. To form the preform body, it is expedient if the particles are subjected to a preform body formation after the addition of the additive with the application of pressure and / or temperature. The additive contributes to the cohesion of the particles.
  • a durable preform and a structure with a good structure are obtained when the particles are combined with the metal by mixing, in particular Stir, be brought into contact, preferably the entire surface of the particles being contacted, in particular wetted, with the compound of the metal.
  • the particles can be intimately bonded over their entire surface during sintering. Mixing can take place in known mixing devices.
  • the compound of the metal is brought into contact with the particles in a solid or fluid state at room temperature or in a state dissolved in a solvent.
  • An addition of a gaseous compound of a metal to the particles can be carried out as well as an admixture of powdery particles of a compound of a metal to the particles to be sintered.
  • the solvent of the compound of the metal is expediently evaporated off before the preform is formed.
  • the heating directly adjoins the preform formation or the evaporation of the solvent for the final compression.
  • the sintering process or the compression to form the shaped body follows the production of the preform directly following the admixing of the connection of a metal or the evaporation of the solvent that may be necessary without any further intermediate step; further reactive intermediate steps are also not required, which makes the procedure simple.
  • particles of tool steels are advantageously used ledeburitic cold work steels, high temperature or sintered alloys based on Ni and / or Co or the like. used. After sintering, the particles form the corresponding steels or alloys with a standardized composition.
  • the released metal (s) or the oxygen compound (s) which is substoichiometric with respect to oxygen comprises metals or oxygen compounds of metals from the group Fe, Co, Ni, Cr , Mo, W, Ta, Nb, V, Ti Zr, Hf, Al, Si.
  • the process becomes particularly simple with good results if, preferably in an organic solvent, dissolved complex, addition and / or coordination compounds of at least one alloy-specific or alloy-compatible metal, preferably with zero valence, are used.
  • Such compounds of metals release the metal or the oxygen-sub-stoichiometric metal compound at a relatively low temperature, and the connection residues leave the heated preform body relatively unhindered even before the compression process begins. It is expedient if the residues of the compound of the metal after release of the metal or the oxygen compound which is substoichiometric with respect to oxygen in the course of the temperature increase before reaching the compression temperature from the preform body, for example be removed by applying a vacuum.
  • the procedure according to the invention is carried out as follows: Particles of at least one metal or a metal alloy are mixed with at least one compound of an alloy-specific or alloy-compatible metal which, when heated, releases a metal or a compound of the metal which is substoichiometric with respect to oxygen.
  • the particles can be water-atomized metal powder, which to a certain extent, preferably 50%, is also gas-atomized or produced in another way or may contain pretreated powders. These particles are intimately mixed with the dissolved compound, for example by stirring, the particles being well wetted; after evaporation of the solvent, a layer of the compound should be deposited in molecular thickness on the particles. The particles are then pressed under pressure to form a preform.
  • the preform is pressed in a press mold, which is also the sintered mold, and has a density of 80%.
  • This preform is then heated to the compression temperature without further treatment, the connection being disassembled when heated.
  • the metals released remain in the structure and the connection residues, in particular organic components, leave the preform body.
  • the sintering temperature is reached, there is only the alloy structure that is sintered, since the organic components are selected such that they have left the structure before the main shrinkage process and have already released the reactive metal atoms and sub-stoichiometric oxygen compounds.
  • Evaporation of the solvent is carried out by means of a vacuum or vacuum, if appropriate using protective gas, as is heating of the preform and compression or sintering.
  • one or more compounds of one or more metals can be added to the particles to be compressed, which each give off one or more metal (s) or one or more oxygen substoichiometric oxygen compound (s) of a metal when heated.
  • the particles to be compacted also have substances which improve the compression or sintering properties, for example, before, after or simultaneously with the addition of the compound of a metal. Paraffin or others can be added.
  • a commercially available water-atomized high-speed steel powder with the material number 1.3343 and an oxygen content of 710 ppm was intimately mixed with 0.3% by weight of vanadyl acetylacetonate and with mineral spirits in a planetary mill. Then 1.5 wt .-% paraffin was added as a pressing or sintering aid and distributed homogeneously. After the solvent had been evaporated off, the powder was mechanically pressed into shaped bodies in a die at 5000 bar and then sintered under vacuum. The sintering conditions were 1235 ° C with a holding time of 30 minutes. The sintered density of the shaped body was 8.12 g / cm 3. The flexural strength was over 2000 N / mm2. The oxygen content was 20 ppm. The comparative body sintered without the additive according to the invention could only achieve a density of 8.00 g / cm 3 and a 20% lower bending strength.
  • a commercially available water-atomized high-speed steel powder with the material number 1.3215 was added with 0.5% cobalt acetylacetonate, 1% molybdenyl acetylacetonate and mixed with benzene in a planetary mill and then dried in a desiccator.
  • the mechanical pressing was carried out at 5500 bar.
  • the size of the moldings was 5 x 5 x 45 mm. Vacuum sintering of the pressed moldings took place at 1250 ° C., the holding time was 1 hour.
  • the density of the sintered body, to which the additives according to the invention were fed, could be increased by 0.15 g / cm3 compared to the comparison body produced without additives.
  • the flexural strength of the molded article produced according to the invention was 25% higher than that of the comparative article.
  • a commercially available water-atomized high-speed steel powder with the material number 1.3343 was mixed according to the invention with 0.5% by weight molybdenyl acetylacetonate, 0.5% by weight vanadyl acetylacetonate and 0.3% by weight aluminum acetylacetonate and benzene. After the solvent had been evaporated off, the dry powder was pressed in a mechanical press at 5000 bar to form inserts with the ISO designation SPGN 120308. The green compacts were sintered at 1240 ° C. and in vacuo for 30 min. The carbon content of the sintered alloy after sintering was 0.91% by weight and the oxygen content was 20 ppm. The residual porosity was less than 0.1% by volume. The comparison body sintered without additives showed a lower carbon content and a residual porosity of 0.7% by volume. A wear test using the grinding wheel method gave the following results in specific weight loss (%):
  • the cutting inserts according to the invention showed a significant improvement in wear behavior.
  • a mixture of a high-speed steel powder with the material number 1.3343 consisting of 50% water atomized and 50% gas atomized parts was produced and investigated in accordance with the conditions of Example 3.
  • the following tool life was determined in the machining test at a cutting speed of 40 m / min, a cutting depth of 2 mm and a feed of 0.23 mm / rev on a tempering steel with material number 1.6582 and a hardness of 230 HB 30:
  • Water-atomized powder based on cobalt (stellite 6) was mixed with 1% by weight of vanadyl acetylacetonate, 0.1 % By weight of aluminum acetylacetonate and 0.1% by weight of chromium acetylacetonate dissolved in acetone mixed in a stirrer.
  • the dried powder was pressed into molds in a die at 6000 bar and sintered in a vacuum oven at 1290 ° C. with a holding time of 60 min.
  • the residual porosity of the sintered body provided with the additive according to the invention was less than 0.1% by volume, while the comparison body produced without additive had a residual porosity of 12.1%.
  • Water-atomized powder with the material number 1.2379 was mixed according to the invention with 0.3% by weight molybdenyl acetylacetonate, 1% by weight vanadyl acetylacetonate and benzene in a planetary mill and then dried under vacuum and mechanically pressed to give shaped bodies.
  • the sintering took place at 1210 ° C. and a holding time of 1 hour.
  • the residual porosity was below 0.2 vol%.
  • the comparison body produced without additives showed a residual porosity of 3.8% by volume.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Description

Die Erfindung betrifft ein Verfahren zur pulvermetallurgischen Herstellung von Formkörpern für Werkzeuge, Maschinenteile, Gebrauchsgegenstände mit Metallen bzw. Metalllegierungen, wobei pulverfeine Teilchen der Legierungsbestandteile und/oder von Vorlegierungen und/oder der Legierung selbst mit zumindest einem ein Metall enthaltenden Zusatzmittel versetzt und zumindest unter Erhitzung zu einem gewünschten Formkörper verdichtet werden.The invention relates to a method for the powder-metallurgical production of moldings for tools, machine parts, articles of daily use with metals or metal alloys, powder-fine particles of the alloy components and / or master alloys and / or the alloy itself being mixed with at least one additive containing a metal and at least with heating to be compressed into a desired shaped body.

Die Pulvermetallurgie eignet sich besonders aus wirtschaftlichen Gründen sehr gut für die Herstellung von Werkzeugen, Maschinenteilen und Gebrauchsgegenständen. Ihr Vorteil liegt darin, daß ausgehend von Metallpulvern durch mechanisches Pressen ein poröser Körper erzeugt wird, der anschließend während einer sogenannnten Sinterung zur endgültigen Form verdichtet wird.Powder metallurgy is particularly well suited for the production of tools, machine parts and articles of daily use for economic reasons. Their advantage is that, starting from metal powders, a porous body is produced by mechanical pressing, which is then compressed to the final shape during a so-called sintering.

Unter Sintern versteht man allgemein das Zusammenbacken von Pulverteilchen unter Wärmeeinwirkung in einem Ofen. Dabei werden in vielen Fällen die ursprünglich im Pulverpreßling vorhandenen, mit Luft gefüllten Poren beseitigt. Dieser Vorgang wird aber sehr stark durch den Sauerstoffgehalt der Pulver negativ beeinflußt. Besonders der Sauerstoffgehalt an der Oberfläche der Pulverteilchen wirkt sinterhemmend und führt zu Porositäten und unzureichenden mechanischen Eigenschaften.Sintering is generally understood to mean the caking of powder particles under the action of heat in an oven. In many cases, the air-filled pores originally present in the powder compact are removed. This process is very badly affected by the oxygen content of the powder. The oxygen content on the surface of the powder particles in particular has a sinter-inhibiting effect and leads to porosities and inadequate mechanical properties.

Man hat frühzeitig erkannt, daß Oxidbeläge aufgrund der schlechten Benetzbarkeit gegenüber der Metallmatrix die Sinterfreudigkeit reduzieren.It was recognized at an early stage that oxide coverings reduce the tendency to sinter due to the poor wettability compared to the metal matrix.

Es war deshalb naheliegend, Metallpulver in reduzierenden Atmosphären, insbesondere unter Wasserstoff, zu sintern.It was therefore obvious to sinter metal powder in reducing atmospheres, especially under hydrogen.

Bei niedriglegierten Eisenwerkstoffen erreicht man mit derartigen Sinterungen durchaus brauchbare Ergebnisse; bei hochlegierten Stählen - insbesondere bei solchen, die Vanadin, Chrom, Niob, Aluminium enthalten - war eine Reduktion der thermodynamisch besonders stabilen Oxide über die Gasphase nicht möglich.With low-alloyed iron materials, sinterings of this type can be used to achieve useful results; in the case of high-alloy steels - especially those containing vanadium, chromium, niobium, aluminum - it was not possible to reduce the thermodynamically particularly stable oxides via the gas phase.

Auch das wechselweise Sintern unter reduzierender Atmosphäre und Vakuum hat bei hochlegierten Stählen keine wesentliche Abhilfe gebracht. Dies dürfte darauf zurückzuführen sein, daß sich die sich vielfach an der Oberfläche bildenden Oxikarbide unter den angegebenen Bedingungen nicht reduzieren lassen.The alternate sintering under a reducing atmosphere and vacuum has not brought about any significant remedy for high-alloy steels. This is probably due to the fact that the oxicarbides that often form on the surface cannot be reduced under the specified conditions.

Für hochwertige Legierungen und Werkzeugstähle hat man deshalb versucht, Pulver mit möglichst geringem Sauerstoffgehalt zu erzeugen.For high-quality alloys and tool steels, attempts have therefore been made to produce powders with the lowest possible oxygen content.

Es gehört zum Stand der Technik, sauerstoffarme Pulver durch eine sogenannte Schutzgasverdüsung herzustellen. Bei diesem Verfahren wird die flüssige Metallschmelze in einer Schutzgasatmosphäre , z.B. Ar, N₂ oder He, zu feinen Metalltröpfchen zerstäubt, die in der Atmosphäre sehr rasch abkühlen und dabei Pulver bilden. Derartige Pulver haben aber den Nachteil, daß sie durch mechanisches Pressen nicht verdichtet werden können, da die einzelnen Pulverteilchen extrem hart sind.It is part of the state of the art to produce low-oxygen powders by so-called inert gas atomization. In this process, the molten metal is in a protective gas atmosphere, e.g. Ar, N₂ or He, atomized into fine metal droplets that cool very quickly in the atmosphere and thereby form powder. However, such powders have the disadvantage that they cannot be compressed by mechanical pressing, since the individual powder particles are extremely hard.

Zur Erzeugung eines kompakten Körpers ist es deshalb notwendig, diese Pulver in gasdichte Metall- oder Glaskapseln einzufüllen, die Luft daraus zu entfernen, die Kapseln gasdicht zu verschließen und diese bei hohen Temperaturen und bei hohem Druck in einer sogenannten heiß - isostatischen Presse zu verdichten. Die Körper, die man auf diese Weise erhält, sind zuerst vom Kapselmaterial zu befreien und sind dann noch einer mechanischen Formgebung und Bearbeitung zu unterziehen, um daraus z.B. ein Werkzeug zu erhalten. Der Nachteil dieses Verfahrens liegt in den aufwendigen Verfahrensschritten, die sehr teuer sind. Es hat deshalb nicht an Versuchen gefehlt, das Verfahren zu verkürzen und wirtschaftlicher zu gestalten. Besonders die sogenannte Einkapselung, also das Abfüllen der verdüsten Pulver in eine Metall- oder Glaskapsel, war Ansatzpunkt vielfacher Entwicklungen.To produce a compact body, it is therefore necessary to pour these powders into gas-tight metal or glass capsules, to remove the air from them, to seal the capsules gas-tight and to compress them at high temperatures and high pressure in a so-called hot-isostatic press. The bodies that one obtained in this way must first be freed of the capsule material and then subjected to mechanical shaping and processing in order to obtain a tool, for example. The disadvantage of this process lies in the complex process steps, which are very expensive. There has been no shortage of attempts to shorten the process and make it more economical. The so-called encapsulation, i.e. the filling of the atomized powder into a metal or glass capsule, was the starting point for many developments.

Die GB-PS 2 084 612 beschreibt z.B. ein Verfahren zur Herstellung eines Werkstückes aus gasverdüstem Pulver mit geringem Sauerstoffgehalt, das sich dadurch auszeichnet, daß das Pulver vermahlen wird. Das vermahlene Pulver wird anschließend mit einem Preßhilfsmittel vermischt, zu einam Formkörper verpreßt, gesintert und heißisostatisch verdichtet. Als Nachteil dieses Verfahrens ist immer noch der Einsatz des teuren gasverdüsten Pulvers zu sehen, das sich nur mit größtem Aufwand zu einem gleichmäßig verpreßbaren Feinpulver vermahlen läßt.GB-PS 2 084 612 describes e.g. a method for producing a workpiece from gas-atomized powder with low oxygen content, which is characterized in that the powder is ground. The ground powder is then mixed with a pressing aid, pressed to a shaped body, sintered and hot isostatically compressed. The disadvantage of this process is still the use of the expensive gas-atomized powder, which can only be ground with great effort into a uniformly compressible fine powder.

Wasserverdüste Pulver haben den Vorteil, daß sie unregelmäßige Formen besitzen und dadurch gut zu Vorformkörpern verpreßt werden können. Sie besitzen jedoch den Nachteil, daß sie relativ viel Oxid ( 700 bis 1500 ppm) enthalten bzw. mit einer Oxidschicht umgeben sind, die den Sintervorgang behindert und Porosität bewirkt.Water atomized powders have the advantage that they have irregular shapes and can therefore be pressed well into preform bodies. However, they have the disadvantage that they contain a relatively large amount of oxide (700 to 1500 ppm) or are surrounded by an oxide layer which hinders the sintering process and causes porosity.

Ferner ist es aus der AT-PS 351 278 bekannt, einen Formkörper aus zwei Metallkomponenten herzustellen, wobei eine Komponente als Metallpulver und die andere als Metallsalz vorliegt. Unter Zusatz von Ruß erfolgt eine Vermischung der Komponenten. Nach einer Umwandlung des Metallsalzes in Metalloxid erfolgt im Zuge der Erhitzung eine Reduktion des Oxides zum Metall, das sich in der anderen Metallkomponente löst. Auch dieses Verfahren bedingt mehrere Stufen, insbesondere zweimaliges Mischen und zwei Reaktionsschritte, die letztendlich die Neubildung eines völlig porenfreien und formtreuen Sinterkörpers erschweren. Ferner erfolgt die Reduktion des Oxides nur bei sehr hohen Temperaturen, so daß ein Sintern bei zumindest 1800°C erfolgen muß und bei niedrigen Temperaturen nicht möglich ist.Furthermore, it is known from AT-PS 351 278 to produce a molded body from two metal components, one component being in the form of a metal powder and the other in the form of a metal salt. With the addition of soot, the components are mixed. After conversion of the metal salt into metal oxide, the oxide is reduced to metal in the course of the heating other metal component dissolves. This process also requires several stages, in particular two mixing steps and two reaction steps, which ultimately make it more difficult to form a sintered body that is completely non-porous and true to shape. Furthermore, the oxide is only reduced at very high temperatures, so that sintering must take place at at least 1800 ° C. and is not possible at low temperatures.

Ein Verfahren zur Herstellung von gesinterten Rohlingen zum Walzen oder Schmieden nach einem pulvermetallurgischen Verfahren, wobei insbesondere ein Verdampfen von Legierungskomponenten bei einem Anlaß- und Sintervorgang des Metallpulvers vermieden werden soll, ist aus der DE-A- 2 461 736 bekannt geworden. Dabei wird ein ein Metall aus der Gruppe der Alkalimetalle und Erdalkalimetalle enthaltendes Zusatzmittel einem mechanisch hergestelltem Pulver zugesetzt und die Mischung zur Entfestigung des Pulverkornwerkstoffes bei einer Temperatur angelassen, die höher als die Zersetzungstemperatur des Zusatzmittels ist. Anschließend erfolgt ein Verdichten und Sintern der Mischung. Das alkalimetallhaltige Zusatzmittel soll unter Wärmeeinfluß zu einer gleichmäßigen festen Lösung in Form des Alkalimetalles oder in Form eines Oxides auf der Oberfläche der Metallpartikel abgebaut werden. Diese Oberflächenschicht verbessert einerseits die Gleiteigenschaften der Pulverpartikel zueinander und führt zu einem dichten grünen Rohling, andererseits wird eine azeotrope Mischung zum Beispiel mit Zink gebildet, wodurch Verdampfungsverluste verhindert und der Sintervorgang beschleunigt werden.A process for the production of sintered blanks for rolling or forging by a powder metallurgical process, in particular the evaporation of alloy components during a tempering and sintering process of the metal powder is known from DE-A-2 461 736. In this case, an additive containing a metal from the group of alkali metals and alkaline earth metals is added to a mechanically produced powder and the mixture is left at a temperature which is higher than the decomposition temperature of the additive to soften the powder grain material. The mixture is then compacted and sintered. The alkali metal-containing additive should be broken down under the influence of heat to form a uniform solid solution in the form of the alkali metal or in the form of an oxide on the surface of the metal particles. On the one hand, this surface layer improves the sliding properties of the powder particles to one another and leads to a dense green blank, on the other hand an azeotropic mixture is formed, for example with zinc, which prevents evaporation losses and accelerates the sintering process.

Aufgabe der Erfindung ist es, ein Verfahren der eingangs genannten Art derart zu gestalten, daß in arbeits- und energiesparender Weise ein Formkörper erhalten wird, dessen Sintereigenschaften optimal sind und dessen Porosität minimal ist.The object of the invention is to design a method of the type mentioned in such a way that a shaped body is obtained in a labor and energy-saving manner, the sintering properties of which are optimal and whose porosity is minimal.

Dies wird bei einem Verfahren der eingangs genannten Art dadurch erreicht, daß oberflächensauerstoffenthaltende Teilchen bzw. Pulver mit mindestens einer Verbindung zumindest eines Metalles als Zusatzmittel in Kontakt gebracht werden, die bei Temperaturen von 50 bis 800°C zumindest ein legierungseigenes oder legierungsverträgliches Metall und/oder eine bezüglich Sauerstoff substöchiometrische Sauerstoffverbindung eines derartigen Metalls freisetzt, wonach zumindest unter Erhitzen oder unter Sintern bei zumindest teilweiser(em) Auflösung (Aufbrechen) der Oberflächensauerstoffschicht der Pulverkörner die endgültige Verdichtung der Teilchen zum Formkörper erfolgt. Damit wird es möglich, Formkörper herzustellen, die praktisch keine Porosität und ausgezeichnete mechanische Eigenschaften besitzen. Ferner ist dabei ein Sintern bei niedrigen Temperaturen möglich, d.h. es muß nicht bei Temperaturen bei bzw. knapp unterhalb der Schmelztemperatur gesintert werden, so daß örtliche Überhitzungen der Formkörper z.B. aufgrund zu kleiner Sinterintervalle und schwankender Ofentemperaturen ausgeschlossen werden können. Überdies bewirken die erfindungsgemäß eingesetzten Zusatzmittel, daß die Sinterfreudigkeit der Formkörperbestandteile erhöht wird; die Zusatzmittel bewirken eine Verbesserung der Diffusion an den Teilchengrenzen, so daß der erzielbare Sinterverbund verbessert wird.In a method of the type mentioned at the outset, this is achieved in that surface oxygen-containing particles or powders are brought into contact with at least one compound of at least one metal as an additive, which, at temperatures of 50 to 800 ° C., has at least one alloy-specific or alloy-compatible metal and / or releases a substoichiometric oxygen compound of such a metal with respect to oxygen, after which the final compression of the particles into the shaped body takes place at least with heating or with sintering with at least partial dissolution (breaking up) of the surface oxygen layer of the powder grains. This makes it possible to produce moldings that have practically no porosity and excellent mechanical properties. Sintering at low temperatures is also possible, i.e. it does not have to be sintered at temperatures at or just below the melting temperature, so that local overheating of the shaped bodies e.g. due to insufficient sintering intervals and fluctuating furnace temperatures. In addition, the additives used according to the invention have the effect that the ease of sintering of the shaped body components is increased; the additives bring about an improvement in diffusion at the particle boundaries, so that the achievable sintered composite is improved.

Die erfindungsgemäß eingesetzten Zusatzmittel geben bei Erwärmung infolge Zersetzung Metallatome bzw. Metallsauerstoffverbindungen ab, deren Sauerstoffgehalt substöchiometrisch ist, die also Sauerstoff im Unterschuß enthalten, und welche sich mit dem auf den Teilchen vorhandenen Sauerstoff von Oxiden bzw. Oxidschichten verbinden bzw. diese Schichten aufreißen. Dadurch entsteht zwischen den Teilchen metallischer Kontakt, sodaß diese optimal zusammensintern können. Gleichzeitig reagiert der aus der Oxidverbindung gerissene Sauerstoff mit dem im Gefüge enthaltenen Kohlenstoff leichter zu CO bzw. CO₂. Der sich ergebende metallische Kontakt läßt eine Erniedrigung der Sintertemperatur zu. Man erhält aus Vorformkörpern mit 700 bis 1500 ppm O₂ Formkörper mit max. 50 bis 100 ppm O₂. Die bisher erzielten Dichten von Sinterkörpern von etwa 99,5% bis 99,8% bezogen auf die maximal erreichbare Dichte werden erhöht und die Dichten von nach dem erfindungsgemäßen Verfahren hergestellten Formkörpern betragen mehr als 99,8 %. Die Temperaturen zur Verdichtung der Vorformkörper liegen etwas unterhalb der für die jeweiligen Metalle der Legierungen derzeit üblichen Temperaturen. Beim erfindungsgemäßen Verfahren ist der Einsatz von etwa 5 bis 10° tieferen Temperaturen möglich, womit der Sintervorgang gegenüber Temperaturschwankungen im Sinterofen weitaus besser beherrschbar wird; derzeit wird knapp unterhalb des Schmelzpunktes der jeweiligen eutektischen Verbindungen gesintert.When heated as a result of decomposition, the additives used according to the invention release metal atoms or metal oxygen compounds whose oxygen content is substoichiometric, that is to say which contain oxygen in deficit, and which combine with the oxygen of oxides or oxide layers present on the particles or tear these layers apart. This creates metallic contact between the particles so that they can optimally sinter together. At the same time, the oxygen torn from the oxide compound reacts more easily to CO or CO₂ with the carbon contained in the structure. The resulting metallic contact leaves a decrease in the sintering temperature. Obtained from preforms with 700 to 1500 ppm O₂ moldings with max. 50 to 100 ppm O₂. The densities of sintered bodies achieved to date from about 99.5% to 99.8% based on the The maximum achievable density is increased and the densities of moldings produced by the process according to the invention are more than 99.8%. The temperatures for the compression of the preforms are somewhat below the temperatures currently customary for the respective metals of the alloys. In the method according to the invention, the use of temperatures about 5 to 10 ° lower is possible, which makes the sintering process much more manageable compared to temperature fluctuations in the sintering furnace; sintering is currently taking place just below the melting point of the respective eutectic compounds.

Bevorzugt ist es, wenn mit Wasserverdüsung erhaltene Teilchen, gegebenenfalls mit einem Zusatz bis zu max. 50% an gasverdüsten und/oder gemahlenen Teilchen, eines Metalles, einer Legierung oder Vorlegierung mit unregelmäßiger Gestalt und Größe eingesetzt werden. Gemeinsam mit den unregelmäßige Gestalt aufweisenden wasserverdüsten Teilchen können auch andere Teilchen eingesetzt werden und es kann aufgrund der möglichen plastischen Verformung der Teilchen ein Vorformkörper gut und genau hergestellt werden. Aufgrund der Zugabe des Zusatzmittels ist es möglich, daß auch Oberflächensauerstoff enthaltende Teilchen bzw. Pulver eingesetzt werden. Zur Ausbildung des Vorformkörpers ist es zweckmäßig, wenn die Teilchen nach Zusatz des Zusatzmittels mit Druck- und/oder Temperaturbeaufschlagung einer Vorformkörperbildung unterworfen werden. Das Zusatzmittel trägt zum Zusammenhalt der Teilchen bei.It is preferred if particles obtained with water atomization, optionally with an addition of up to max. 50% of gas atomized and / or ground particles, a metal, an alloy or pre-alloy with an irregular shape and size are used. Together with the irregularly shaped water-atomized particles, other particles can also be used, and a preform can be produced well and precisely due to the possible plastic deformation of the particles. Due to the addition of the additive, it is possible that particles or powders containing surface oxygen are also used. To form the preform body, it is expedient if the particles are subjected to a preform body formation after the addition of the additive with the application of pressure and / or temperature. The additive contributes to the cohesion of the particles.

Ein haltbarer Vorformkörper und ein eine gute Struktur aufweisender Formkörper ergibt sich, wenn die Teilchen mit der Verbindung des Metalls durch Vermischen, insbesondere Verrühren, in Kontakt gebracht werden, wobei vorzugsweise die gesamte Oberfläche der Teilchen mit der Verbindung des Metalls kontaktiert, insbesondere benetzt, wird. Dadurch können die Teilchen beim Sintern über ihre gesamte Oberfläche innig verbunden werden. Das Vermischen kann in bekannten Mischeinrichtungen erfolgen.A durable preform and a structure with a good structure are obtained when the particles are combined with the metal by mixing, in particular Stir, be brought into contact, preferably the entire surface of the particles being contacted, in particular wetted, with the compound of the metal. As a result, the particles can be intimately bonded over their entire surface during sintering. Mixing can take place in known mixing devices.

Je nach Art der Teilchen und der eingesetzten Verbindungen zumindest eines Metalles kann vorgesehen sein, daß die Verbindung des Metalls mit den Teilchen in bei Raumtemperatur festem oder fluidem Zustand oder in in einem Lösungsmittel gelöstem Zustand in Kontakt gebracht wird. Es ist eine Anlagerung einer gasförmigen Verbindung eines Metalls an die Teilchen ebenso durchführbar wie ein Zumischen von pulverförmigen Teilchen einer Verbindung eines Metalls zu den zu sinternden Teilchen. Zweckmäßigerweise wird vor der Vorformkörperbildung das Lösungsmittel der Verbindung des Metalles abgedampft.Depending on the nature of the particles and the compounds used of at least one metal, it can be provided that the compound of the metal is brought into contact with the particles in a solid or fluid state at room temperature or in a state dissolved in a solvent. An addition of a gaseous compound of a metal to the particles can be carried out as well as an admixture of powdery particles of a compound of a metal to the particles to be sintered. The solvent of the compound of the metal is expediently evaporated off before the preform is formed.

Besonders vorteilhaft im Hinblick auf die Verfahrensführung ist es, wenn die Erwärmung zur endgültigen Verdichtung unmittelbar an die Vorformkörperbildung bzw. an das Abdampfen des Lösungsmittels anschließt. An die dem Zumischen der Verbindung eines Metalls direkt folgende Herstellung des Vorformkörpers bzw. an das allenfalls notwendige Abdampfen des Lösungsmittels schließt der Sintervorgang bzw. die Verdichtung zum Formkörper ohne weiteren Zwischenschritt an; weitere reaktive Zwischenschritte sind auch nicht erforderlich, womit die Verfahrensführung einfach wird.It is particularly advantageous with regard to the process control if the heating directly adjoins the preform formation or the evaporation of the solvent for the final compression. The sintering process or the compression to form the shaped body follows the production of the preform directly following the admixing of the connection of a metal or the evaporation of the solvent that may be necessary without any further intermediate step; further reactive intermediate steps are also not required, which makes the procedure simple.

Bei dem erfindungsgemäßen Verfahren werden vorteilhafterweise Teilchen von Werkzeug-, insbesondere Schnellarbeitsstählen ledeburitischen Kaltarbeitsstählen, Hochtemperatur- bzw. Sinterlegierungen auf Ni- und/oder Co-Basis od.dgl. eingesetzt. Die Teilchen ergeben nach dem Sintern die entsprechenden Stähle bzw. Legierungen genormter Zusammensetzung.In the method according to the invention, particles of tool steels, in particular high-speed steels, are advantageously used ledeburitic cold work steels, high temperature or sintered alloys based on Ni and / or Co or the like. used. After sintering, the particles form the corresponding steels or alloys with a standardized composition.

Erfindungsgemäß ist es besonders vorteilhaft, daß das bzw. die freigesetzte(n) Metall(n) bzw. die bezüglich Sauerstoff substöchiometrische(n) Sauerstoffverbindung(en) eines Metalles Metalle bzw. Sauerstoffverbindungen von Metallen aus der Gruppe Fe, Co, Ni, Cr, Mo, W, Ta, Nb, V, Ti Zr, Hf, Al, Si sind.According to the invention, it is particularly advantageous that the released metal (s) or the oxygen compound (s) which is substoichiometric with respect to oxygen comprises metals or oxygen compounds of metals from the group Fe, Co, Ni, Cr , Mo, W, Ta, Nb, V, Ti Zr, Hf, Al, Si.

Besonders einfach wird das Verfahren bei guten Ergebnissen, wenn vorzugsweise in einem organischen Lösungsmittel, gelöste Komplex-, Anlagerungs- und/oder Koordinationsverbindungen mindestens eines legierungseigenen oder legierungsverträglichen Metalles, vorzugsweise mit der Wertigkeit Null, eingesetzt werden. Derartige Verbindungen von Metallen geben bei relativ niedriger Temperatur das Metall bzw. die bezüglich Sauerstoff substöchiometrische Sauerstoffverbindung des Metalls ab und die Verbindungsreste verlassen relativ ungehindert den erwärmten Vorformkörper noch bevor der Verdichtungsvorgang einsetzt. Zweckmäßig ist es hiebei, wenn die Reste der Verbindung des Metalles nach Freisetzen des Metalles bzw. der bezüglich Sauerstoff substöchiometrischen Sauerstoffverbindung im Zuge der Temperaturehöhung vor Erreichen der Verdichtungstemperatur aus dem Vorformkörper z.B. durch Anlegen eines Vakuums abgeführt werden.The process becomes particularly simple with good results if, preferably in an organic solvent, dissolved complex, addition and / or coordination compounds of at least one alloy-specific or alloy-compatible metal, preferably with zero valence, are used. Such compounds of metals release the metal or the oxygen-sub-stoichiometric metal compound at a relatively low temperature, and the connection residues leave the heated preform body relatively unhindered even before the compression process begins. It is expedient if the residues of the compound of the metal after release of the metal or the oxygen compound which is substoichiometric with respect to oxygen in the course of the temperature increase before reaching the compression temperature from the preform body, for example be removed by applying a vacuum.

Es ist ferner möglich, daß, gegebenenfalls ausschließlich, Carbonylgruppen aufweisende Verbindungen z.B. Oxalate, der legierungseigenen oder legierungsverträglichen Metalle eingesetzt werden. Eine weitere Möglichkeit besteht darin, daß, gegebenenfalls ausschließlich, (Cyclo-)Alkyle, -Alkenyle oder -Alkinyle, beispielsweise C₁ - C₅-Alkyl, Allyl, Cycloalkadienyl, Cyclopentadienyl, Cycloheptatrienyl, Cyclooactadienyl, der legierungseigenen oder legierungsverträglichen Metalle eingesetzt werden.It is also possible that, if appropriate exclusively, compounds containing carbonyl groups, for example Oxalates, the alloy's own or alloy-compatible metals are used. Another possibility is that, optionally exclusively, (cyclo) alkyls, alkenyls or alkynyls, for example C₁ - C₅ alkyl, allyl, cycloalkadienyl, cyclopentadienyl, cycloheptatrienyl, cyclooactadienyl, of the alloy's own or alloy-compatible metals are used.

Besonders gute Ergebnisse erhält man, wenn, vorzugsweise in organischen Lösungsmitteln, gelöste Acetylacetonate der legierungseigenen oder legierungsverträglichen Metalle, insbesondere von Co, Ni, Cr, Mo und/oder V, eingesetzt werden. Hiebei ist es vorteilhaft, wenn man das Acetylacetonat des legierungseigenen oder legierungsverträglichen Metalls, insbesondere Co-Acetylacetonat, bezogen auf das in ihm enthaltene Metall, in Mengen von 0,05 bis 0,8 Gew.-%, vorzugsweise von 0,08 bis 0,2 Gew.-%, des Gewichtes der eingesetzten Teilchen eingesetzt wird, Möglich ist z.B. auch die gleichzeitige Zugabe von Ni-Acetylacetonat und Co-Acetylacetonat.Particularly good results are obtained if, preferably in organic solvents, dissolved acetylacetonates of the alloy's own or alloy-compatible metals, in particular of Co, Ni, Cr, Mo and / or V, are used. It is advantageous here if the acetylacetonate of the alloy's own or alloy-compatible metal, in particular co-acetylacetonate, based on the metal contained therein, in amounts of 0.05 to 0.8% by weight, preferably 0.08 to 0 , 2 wt .-%, of the weight of the particles used, is possible, for example also the simultaneous addition of Ni acetylacetonate and Co acetylacetonate.

Bei der Durchführung des erfindungsgemäßen Verfahrens wird folgendermaßen vorgegangen:
Teilchen zumindest eines Metalles oder einer Metallegierung werden mit zumindest einer Verbindung eines legierungseigenen oder legierungsverträglichen Metalles vermischt, die bei Erwärmung ein Metall oder eine bezüglich Sauerstoff substöchiometrische Verbindung des Metalls freisetzt. Die Teilchen können wasserverdüste Metallpulver sein, die bis zu einem gewissen Anteil, vorzugsweise 50 % auch gasverdüste oder auf andere Weise hergestellte bzw. vorbehandelte Pulver enthalten können. Diese Teilchen werden mit der gelösten Verbindung, z.B. durch Rühren, innig vermischt, wobei die Teilchen gut benetzt werden; nach Abdampfen des Lösungsmittels soll auf den Teilchen eine Schicht der Verbindung in molekularer Dicke abgelagert sein. Die Teilchen werden sodann unter Druck zu einem Vorformkörper verpreßt. Der Vorformkörper wird in einer Preßform gepreßt, die gleichzeitig auch die Sinterform darstellt, und hat eine Dichte von 80 %. Dieser Vorformkörper wird sodann, ohne weitere Behandlung auf die Verdichtungstemperatur erwärmt, wobei beim Erwärmen die Verbindung zerlegt wird. Die freiwerdenden Metalle verbleiben im Gefüge und die Verbindungsreste, insbesondere organische Bestandteile, verlassen den Vorformkörper. Bei Erreichen der Sintertemperatur liegt nur mehr das Legierungsgefüge vor, das gesintert wird, da die organischen Bestandteile derart gewählt sind, daß sie vor dem Hauptschwindungsvorgang das Gefüge verlassen haben und die reaktionsfreudigen Metallatome und substöchiometrischen Sauerstoffverbindungen bereits abgegeben haben.
The procedure according to the invention is carried out as follows:
Particles of at least one metal or a metal alloy are mixed with at least one compound of an alloy-specific or alloy-compatible metal which, when heated, releases a metal or a compound of the metal which is substoichiometric with respect to oxygen. The particles can be water-atomized metal powder, which to a certain extent, preferably 50%, is also gas-atomized or produced in another way or may contain pretreated powders. These particles are intimately mixed with the dissolved compound, for example by stirring, the particles being well wetted; after evaporation of the solvent, a layer of the compound should be deposited in molecular thickness on the particles. The particles are then pressed under pressure to form a preform. The preform is pressed in a press mold, which is also the sintered mold, and has a density of 80%. This preform is then heated to the compression temperature without further treatment, the connection being disassembled when heated. The metals released remain in the structure and the connection residues, in particular organic components, leave the preform body. When the sintering temperature is reached, there is only the alloy structure that is sintered, since the organic components are selected such that they have left the structure before the main shrinkage process and have already released the reactive metal atoms and sub-stoichiometric oxygen compounds.

Das Abdampfen des Lösungsmittels erfolgt mittels Unterdruck bzw. Vakuum, gegebenenfalls unter Einsatz von Schutzgas, ebenso das Erwärmen des Vorformkörpers und das Verdichten bzw. Sintern.Evaporation of the solvent is carried out by means of a vacuum or vacuum, if appropriate using protective gas, as is heating of the preform and compression or sintering.

Je nach Bedarf können eine oder mehrere Verbindungen eines oder mehrerer Metalle den zu verdichtenden Teilchen zugegeben werden, die jeweils bei Erwärmen ein oder mehrere Metall(e) oder eine oder mehrere bezüglich Sauerstoff substöchiometrische Sauerstoffverbindung(en) eines Metalles abgeben.Depending on requirements, one or more compounds of one or more metals can be added to the particles to be compressed, which each give off one or more metal (s) or one or more oxygen substoichiometric oxygen compound (s) of a metal when heated.

Zu bemerken ist ferner, daß den zu verdichtenden Teilchen vor, nach oder gleichzeitig mit der Zugabe der Verbindung eines Metalls auch die Verpreß- bzw. Sintereigenschaften verbessernde Substanzen, z.B. Paraffin oder andere, zugegeben werden können.It should also be noted that the particles to be compacted also have substances which improve the compression or sintering properties, for example, before, after or simultaneously with the addition of the compound of a metal. Paraffin or others can be added.

Im folgenden wird die Erfindung anhand von Beispielen näher erläutert:The invention is explained in more detail below with the aid of examples:

Beispiel 1example 1

Ein handelsübliches wasserverdüstes Schnellarbeitsstahlpulver mit der Werkstoffnummer 1.3343 und einem Sauerstoffgehalt von 710 ppm wurde mit 0.3 Gew.-% Vanadyl-Acetylacetonat und mit Feinbenzin in einer Planetenmühle innigst vermischt. Danach wurden 1.5 Gew.-% Paraffin als Preß- bzw. Sinterhilfsmittel zugegeben und homogen verteilt. Nach dem Abdampfen des Lösungsmittels wurde das Pulver in einer Matrize mechanisch bei 5000 bar zu Formkörpern verpreßt und anschließend unter Vakuum gesintert. Die Sinterbedingungen waren 1235°C bei einer Haltezeit von 30 Minuten. Die erreichte Sinterdichte des Formkörpers betrug 8.12 g/cm³. Die Biegebruchfestigkeit lag über 2000 N/mm². Der Sauerstoffgehalt betrug 20 ppm. Der ohne erfindungsgemäße Zusatzmittel gesinterte Vergleichskörper konnte nur eine Dichte von 8.00 g/cm³ und eine um 20 % niedrigere Biegebruchfestigkeit erreichen.A commercially available water-atomized high-speed steel powder with the material number 1.3343 and an oxygen content of 710 ppm was intimately mixed with 0.3% by weight of vanadyl acetylacetonate and with mineral spirits in a planetary mill. Then 1.5 wt .-% paraffin was added as a pressing or sintering aid and distributed homogeneously. After the solvent had been evaporated off, the powder was mechanically pressed into shaped bodies in a die at 5000 bar and then sintered under vacuum. The sintering conditions were 1235 ° C with a holding time of 30 minutes. The sintered density of the shaped body was 8.12 g / cm 3. The flexural strength was over 2000 N / mm². The oxygen content was 20 ppm. The comparative body sintered without the additive according to the invention could only achieve a density of 8.00 g / cm 3 and a 20% lower bending strength.

Beispiel 2Example 2

Ein handelsübliches wasserverdüstes Schnellarbeitsstahlpulver mit der Werkstoffnummer 1.3215 wurde mit einem Zusatz von 0.5 % Cobalt-Acetylacetonat, 1 % Molybdänyl-Acetylacetonat und mit Benzol in einer Planetenmühle vermischt und anschließend im Exsikkator getrocknet. Das mechanische Pressen erfolgte bei 5500 bar. Die Größe der Formkörper betrug 5 x 5 x 45 mm. Das Vakuumsintern der gepreßten Formkörper erfolgte bei 1250°C, die Haltezeit war 1 Stunde. Die Dichte Des Sinterkörpers, dem die erfindungsgemäßen Zusatzmittel zugeführt wurden, konnte gegenüber dem ohne Zusatzmittel hergestellten Vergleichskörper um 0.15 g/cm³ gesteigert werden. Die Biegebruchfestigkeit des gemäß der Erfindung hergestellten Formkörpers lag gegenüber dem VErgleichskörper um 25 % höher.A commercially available water-atomized high-speed steel powder with the material number 1.3215 was added with 0.5% cobalt acetylacetonate, 1% molybdenyl acetylacetonate and mixed with benzene in a planetary mill and then dried in a desiccator. The mechanical pressing was carried out at 5500 bar. The size of the moldings was 5 x 5 x 45 mm. Vacuum sintering of the pressed moldings took place at 1250 ° C., the holding time was 1 hour. The density of the sintered body, to which the additives according to the invention were fed, could be increased by 0.15 g / cm³ compared to the comparison body produced without additives. The flexural strength of the molded article produced according to the invention was 25% higher than that of the comparative article.

Beispiel 3Example 3

Ein handelsübliches wasserverdüstes Schnellarbeitsstahlpulver mit der Werkstoffnummer 1.3343 wurde gemäß der Erfindung mit 0.5 Gew.-% Molybdänyl-Acetylacetonat, 0.5 Gew.-% Vanadyl-Acetylacetonat und 0.3 Gew.-% Aluminium-Acetylacetonat und Benzol vermischt. Nach Abdampfen des Lösungsmittels wurde das trockene Pulver in einer mechanischen Presse bei 5000 bar zu Schneidplatten der ISO-Bezeichnung SPGN 120308 verpreßt. Die Grünlinge wurden bei 1240°C und 30 min in Vakuum gesintert. Der Kohlenstoffgehalt der Sinterlegierung betrug nach dem Sintern 0.91 Gew.-%, der Sauerstoffgehalt 20 ppm. Die Restporosität war kleiner 0.1 Vol.-%. Der ohne Zusatzmittel gesinterte Vergleichskörper zeigte einen niedrigeren Kohlenstoffgehalt und eine Restporosität von 0.7 Vol.-%. Ein Verschleißtest mit Hilfe der Schleifradmethode ergab folgende Ergebnisse im spezifischen Gewichtsverlust (%):

Figure imgb0001
Figure imgb0002
A commercially available water-atomized high-speed steel powder with the material number 1.3343 was mixed according to the invention with 0.5% by weight molybdenyl acetylacetonate, 0.5% by weight vanadyl acetylacetonate and 0.3% by weight aluminum acetylacetonate and benzene. After the solvent had been evaporated off, the dry powder was pressed in a mechanical press at 5000 bar to form inserts with the ISO designation SPGN 120308. The green compacts were sintered at 1240 ° C. and in vacuo for 30 min. The carbon content of the sintered alloy after sintering was 0.91% by weight and the oxygen content was 20 ppm. The residual porosity was less than 0.1% by volume. The comparison body sintered without additives showed a lower carbon content and a residual porosity of 0.7% by volume. A wear test using the grinding wheel method gave the following results in specific weight loss (%):
Figure imgb0001
Figure imgb0002

Die Schneidplatten gemäß der Erfindung zeigten eine signifikante Verbesserung hinsichtlich des Verschleißverhaltens.The cutting inserts according to the invention showed a significant improvement in wear behavior.

Beispiel 4Example 4

Eine Mischung eines Schnellarbeitsstahlpulvers mit der Werkstoffnummer 1.3343 bestehend aus 50 % wasserverdüsten und 50 % gasverdüsten Anteilen wurde gemäß den Bedingungen des Beispiels 3 hergestellt und untersucht. Im Zerspanungstest bei einer Schnittgeschwindigkeit von 40 m/min, einer Schnittiefe von 2 mm und einem Vorschub von 0.23 mm/U an einem Vergütungsstahl mit der Werkstoffnummer 1.6582 und einer Härte von 230 HB 30 wurden folgende Standzeiten ermittelt:

Figure imgb0003
A mixture of a high-speed steel powder with the material number 1.3343 consisting of 50% water atomized and 50% gas atomized parts was produced and investigated in accordance with the conditions of Example 3. The following tool life was determined in the machining test at a cutting speed of 40 m / min, a cutting depth of 2 mm and a feed of 0.23 mm / rev on a tempering steel with material number 1.6582 and a hardness of 230 HB 30:
Figure imgb0003

Beispiel 5Example 5

Wasserverdüstes Pulver auf Cobalt-Basis (Stellit 6) wurde erfindungsgemäß mit 1 Gew.-% Vanadyl-Acetylacetonat, 0.1 Gew.-% Aluminium-Acetylacetonat und 0.1 Gew.-% Chrom-Acetylacetonat gelöst in Aceton in einem Rührwerk vermischt. Das getrocknete Pulver wurde in einer Matrize bei 6000 bar zu Formkörpern verpreßt und im Vakuumofen bei 1290°C bei einer Haltezeit von 60 min gesintert. Die Restporosität des mit dem erfindungsgemäßen Zusatzmittel gestellten Sinterkörpers lag unter 0.1 Vol-%, während der ohne Zusatzmittel hergestellte Vergleichskörper eine Restporosität von 12.1 % aufwies.Water-atomized powder based on cobalt (stellite 6) was mixed with 1% by weight of vanadyl acetylacetonate, 0.1 % By weight of aluminum acetylacetonate and 0.1% by weight of chromium acetylacetonate dissolved in acetone mixed in a stirrer. The dried powder was pressed into molds in a die at 6000 bar and sintered in a vacuum oven at 1290 ° C. with a holding time of 60 min. The residual porosity of the sintered body provided with the additive according to the invention was less than 0.1% by volume, while the comparison body produced without additive had a residual porosity of 12.1%.

Beispiel 6Example 6

Wasserverdüstes Pulver mit der Werkstoffnummer 1.2379 wurde erfindungsgemäß mit 0.3 Gew.-% Molybdänyl-Acetylacetonat, 1 Gew.-% Vanadyl-Acetylacetonat und Benzol in einer Planetenmühle vermischt und anschließend unter Vakuum getrocknet und mechanisch zu Formkßrpern verpreßt. Die Sinterung erfolgte bei 1210°C und 1 Stunde Haltezeit. Die Restporosität lag unter 0.2 Vol-%. Der ohne Zusatzmittel hergestellte Vergleichskörper zeigte eine Restporosität von 3.8 Vol-%.Water-atomized powder with the material number 1.2379 was mixed according to the invention with 0.3% by weight molybdenyl acetylacetonate, 1% by weight vanadyl acetylacetonate and benzene in a planetary mill and then dried under vacuum and mechanically pressed to give shaped bodies. The sintering took place at 1210 ° C. and a holding time of 1 hour. The residual porosity was below 0.2 vol%. The comparison body produced without additives showed a residual porosity of 3.8% by volume.

Claims (16)

  1. Process for powder-metallurgical preparation of formed bodies for tools, machine components, utensils, with metals and/or metal alloys, in which at least one additive containing a metal is added to powder-fine particles of the alloy components and/or of pre-alloys and/or of the actual alloy and these are at least compacted with heating to a desired formed body, wherein surface-oxygen-containing particles and/or powders are brought into contact with at least one compound of at least one metal as additive which at temperatures of from 50 to 800° C liberates at least one metal contained in the alloy or compatible with the alloy and/or a compound of such a metal in a substoichiometric ratio in respect of oxygen, after which the final compaction of the particles into the formed body takes place at least with heating or sintering with at least partial dissolution (disintegration) of the surface oxygen layer of the powder grains.
  2. Process according to Claim 1, characterised in that the particles are subjected to a process forming a pre-form body after addition of the additive with application of pressure and/or temperature.
  3. Process according to Claim 1 or 2, characterised in that at least some of the powders used are prepared using the water atomisation process.
  4. Process according to one of Claims 1 to 3, characterised in that the particles are brought into contact with the metal compound by mixing, especially stirring, the entire surface of the particles preferably being contacted, especially wetted, with the metal compound.
  5. Process according to one of Claims 1 to 4, characterised in that the metal compound is brought into contact with the particles in a solid or fluid state which obtains at room temperature or in a dissolved state in a solvent.
  6. Process according to Claim 5, characterised in that the solvent is evaporated from the metal compound prior to formation of the pre-form body.
  7. Process according to one of Claims 1 to 6, characterised in that heating for the final compaction immediately follows formation of the pre-form body or evaporation of the solvent.
  8. Process according to one of Claims 1 to 7, characterised in that the liberated metal and/or metals and/or the oxygen compound(s) of a metal in a substoichiometric ratio in respect of oxygen are metals or oxygen compounds of metals from the group Fe, Co, Ni, Cr, Mo, W, Ta, Nb, V, Ti, Zr, Hf, Al, Si.
  9. Process according to one of Claims 1 to 8, characterised in that particles obtained by water atomisation, possibly with the addition of up to a maximum of 50% gas-atomised and/or ground particles, of a metal, an alloy or a pre-alloy of irregular configuration and size are used.
  10. Process according to one of Claims 1 to 9, characterised in that particles of tool steels, especially high-speed steels, ledeburitic cold work steels, high-temperature or sintering alloys based on Ni and/or Co or similar are used.
  11. Process according to one of Claims 1 to 10, characterised in that complex, addition and/or coordination compounds of at least one metal contained in the alloy or compatible with the alloy, preferably of zero valency, which are dissolved, preferably in an organic solvent, are used.
  12. Process according to one of Claims 1 to 11, characterised in that compounds exhibiting carbonyl groups, eg oxalates, of the metals contained in the alloy or which are compatible with the alloy are used, possibly exclusively.
  13. Process according to one of Claims 1 to 12, characterised in that (cyclo-)alkyls, -alkenyls or -alkinyls, for example C₁ - C₅ alkyl, allyl, cycloalkadienyl, cyclopentadienyl, cycloheptatrienyl, cyclooctadienyl, of the metals contained in the alloy or compatible with the alloy are used, possibly exclusively.
  14. Process according to one of Claims 1 to 3*, characterised in that acetylacetonates of the metals contained in the alloy or compatible with the alloy, especially of Co, Ni, Cr, Mo and/or V, which are dissolved, preferably in organic solvents, are used.
  15. Process according to one of Claims 1 to 14, characterised in that the acetylacetonate of the metal contained in the alloy or compatible with the alloy, especially cobalt acetylacetonate, is used in quantities of from 0.05 to 0.8 wt-%, and preferably from 0.08 to 0.2 wt-%, of the weight of the particles used, calculated on the metal it contains.
  16. Process according to one of Claims 1 to 15, characterised in that the residue of the metal compound is removed from the pre-form body, eg by application of a vacuum, after liberation of the metal or of the oxygen compound which is in a substoichiometric ratio in respect of oxygen, during the course of raising the temperature before compaction temperature is reached.
EP19870890270 1986-11-28 1987-11-26 Process for manufacturing articles Expired - Lifetime EP0269612B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT3178/86 1986-11-28
AT317886A AT388124B (en) 1986-11-28 1986-11-28 METHOD FOR PRODUCING MOLDED BODIES

Publications (3)

Publication Number Publication Date
EP0269612A2 EP0269612A2 (en) 1988-06-01
EP0269612A3 EP0269612A3 (en) 1989-08-09
EP0269612B1 true EP0269612B1 (en) 1992-11-11

Family

ID=3546560

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19870890270 Expired - Lifetime EP0269612B1 (en) 1986-11-28 1987-11-26 Process for manufacturing articles

Country Status (3)

Country Link
EP (1) EP0269612B1 (en)
AT (1) AT388124B (en)
DE (1) DE3782618D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10224738B4 (en) * 2001-06-05 2011-07-28 DENSO CORPORATION, Aichi-pref. Current-carrying element for a DC motor in a fuel pump, method of manufacturing the same and fuel pump

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1180948B (en) * 1957-04-02 1964-11-05 Onera (Off Nat Aerospatiale) Process for the production of a compressible powder from chromium or a chromium alloy suitable for powder metallurgical purposes
DE1458360A1 (en) * 1963-09-02 1969-01-09 Deutsche Edelstahlwerke Ag Process for sintering and heat treatment of work pieces made of metals with high oxygen affinity
GB1329246A (en) * 1970-10-30 1973-09-05 Bandstahlkombinat Veb Process for the production of alloyed iron powder mixture
US4029475A (en) * 1973-12-31 1977-06-14 Kabushiki Kaisha Hamai Seisakusho Blank for rolling and forging and method of producing same
US4028063A (en) * 1974-11-11 1977-06-07 Gte Laboratories Incorporated Compacts for preparing silver-cadmium oxide alloys
FR2308691A1 (en) * 1975-04-23 1976-11-19 Cime Bocuze NEW PROCESS FOR PREPARATION BY SINTING OF MOLYBDENE-BASED ALLOYS
SE8105681L (en) * 1980-10-01 1982-04-02 Uddeholms Ab PROCEDURE FOR THE PREPARATION OF FORMALS WITH PREDICTED FORM

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10224738B4 (en) * 2001-06-05 2011-07-28 DENSO CORPORATION, Aichi-pref. Current-carrying element for a DC motor in a fuel pump, method of manufacturing the same and fuel pump

Also Published As

Publication number Publication date
EP0269612A3 (en) 1989-08-09
DE3782618D1 (en) 1992-12-17
AT388124B (en) 1989-05-10
EP0269612A2 (en) 1988-06-01
ATA317886A (en) 1988-10-15

Similar Documents

Publication Publication Date Title
DE69915797T2 (en) METHOD FOR PRODUCING SEALED PARTS THROUGH UNIAXIAL PRESSING AGGLOMERED BALL-MOLDED METAL POWDER.
DE60121242T2 (en) Molybdenum-copper composite powder and its production and processing into a pseudo alloy
DE2943601C2 (en) Pre-alloyed steel powder for the powder metallurgical production of high-strength parts
DE68910190T3 (en) Process for the production of sputtering targets from tungsten titanium.
DE1783134C3 (en) Process for the powder metallurgical production of hard alloys
AT509613B1 (en) METHOD FOR PRODUCING MOLDINGS FROM ALUMINUM ALLOYS
DE10041194A1 (en) Process for the production of composite components by powder injection molding and suitable composite powder
CA2332889A1 (en) Sinter-active metal and alloy powders for powder metallurgy applications and methods for their production and their use
EP1268105A1 (en) Method for manufacturing metal parts
EP0956173A1 (en) Metal powder granulates, method for their production and use of the same
DE3027401C2 (en)
DE19756608A1 (en) Liquid phase sintered ferrous metal article production
DE4319460A1 (en) Composite materials based on boron carbide, titanium diboride and elemental carbon and process for their production
AT7187U1 (en) METHOD FOR PRODUCING A MOLYBDENUM ALLOY
DE2528188A1 (en) PROCESS FOR THE MANUFACTURING OF IRON OR IRON ALLOY POWDER WITH LOW OXYGEN CONTENT
DE2415035B2 (en) Process for the powder-metallurgical production of a sliding piece of high strength, in particular a crown seal for rotary piston machines
DE3630369C2 (en)
DE2928385C2 (en)
DE10110341A1 (en) Metal powder composite and starting material and method for producing such
EP0853995B1 (en) Injection moulding composition containing metal oxide for making metal shapes
DE2001341A1 (en) Alloy or mixed metal based on molybdenum
EP0269612B1 (en) Process for manufacturing articles
DE4104275C2 (en) Molding and process for its manufacture
EP0217807B1 (en) Sintering method
DE2630687C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19871209

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE ES FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BOEHLER GESELLSCHAFT M.B.H.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19901211

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921111

Ref country code: NL

Effective date: 19921111

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19921111

Ref country code: GB

Effective date: 19921111

Ref country code: FR

Effective date: 19921111

Ref country code: BE

Effective date: 19921111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19921130

Ref country code: CH

Effective date: 19921130

REF Corresponds to:

Ref document number: 3782618

Country of ref document: DE

Date of ref document: 19921217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930222

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19921111

REG Reference to a national code

Ref country code: CH

Ref legal event code: AUV

Free format text: DAS OBENGENANNTE PATENT IST, MANGELS BEZAHLUNG DER 6. JAHRESGEBUEHR GELOESCHT WORDEN.

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931115

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950801