EP0260624B1 - Fresh air supply system for holds in a ship - Google Patents
Fresh air supply system for holds in a ship Download PDFInfo
- Publication number
- EP0260624B1 EP0260624B1 EP19870113358 EP87113358A EP0260624B1 EP 0260624 B1 EP0260624 B1 EP 0260624B1 EP 19870113358 EP19870113358 EP 19870113358 EP 87113358 A EP87113358 A EP 87113358A EP 0260624 B1 EP0260624 B1 EP 0260624B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fresh air
- supply system
- air supply
- carbon dioxide
- hold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 26
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 17
- 239000001569 carbon dioxide Substances 0.000 claims description 13
- 238000007789 sealing Methods 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims 2
- 230000001276 controlling effect Effects 0.000 claims 1
- 241000196324 Embryophyta Species 0.000 description 9
- 235000013399 edible fruits Nutrition 0.000 description 5
- 230000005070 ripening Effects 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 241000234295 Musa Species 0.000 description 2
- 235000021015 bananas Nutrition 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 244000126968 Kalanchoe pinnata Species 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000002567 autonomic effect Effects 0.000 description 1
- 235000021028 berry Nutrition 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000009746 freeze damage Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63J—AUXILIARIES ON VESSELS
- B63J2/00—Arrangements of ventilation, heating, cooling, or air-conditioning
- B63J2/02—Ventilation; Air-conditioning
- B63J2/08—Ventilation; Air-conditioning of holds
Definitions
- the invention relates to a fresh air supply system for holds in a ship, particularly for holds accommodating cargo refrigerating plants, according to the precharacterising part of Claim 1.
- bananas are by far the greatest carbon dioxide producer at the correct transport temperature. A few approximate standard values are given as follows:
- the instruments used at present for measuring the C0 2 concentration in the hold of a ship are self- calibrating precision instruments which enable a regulation of the C0 2 concentration around a mean value.
- Previously existing control devices have suffered from such great inherent uncertainties that many fresh air plants, in the case of fruit transportation, have been allowed to operate at full capacity during the whole voyage, irrespective of whether this was necessary or not, with resultant unnecessarily heavy operating costs.
- the SE-C-181 618 describes an arrangement for conditioning various load departments in a ship whereby each department, which is isolated from the adjoining departments can be conditioned individually.
- a central air processing plant which comprises a pressure chamber and a suction chamber.
- Each individual cargo department is connected via an intake pipe to said pressure chamber and via and outtake pipe to said suction chamber.
- Fresh air is taken in from outside and is processed in the central air processing plant with respect to temperature and humidity.
- the pipes are connected to the respective chambers by controllable flaps.
- fresh air is delivered to the departments by controlling the afore-said flaps. This has to be done manually.
- the only automatic adjustment taking place is the maintenance of a static pressure in the pressure and the suction chamber in the central air processing plant.
- the EP-A-0 136 042 describes an individual container being equipped with its own autonomic air conditioning system.
- the container is substantially shielded against the ambient atmosphere.
- the container may be shipped on a freight train or a lorry or may form part of the cargo of a ship.
- the entire conditioning equipment is installed inside the container.
- the oxygen content inside said container is automatically controlled and kept on a level below that of the outside atmosphere in order to slow down the ripening process of the plant or fruit cargo.
- the means for adjusting the oxygen content to its desired level consists in inserting air from the outside into the container.
- the invention aims at the development of a fresh air supply system of the above-mentioned kind in which the carbon dioxide content in the hold of a ship is automatically maintained on a favorable level.
- the invention suggests a fresh air supply system according to the introductory part of Claim 1, which is characterized by the features of the characterizing part of Claim 1.
- fans arranged in holds do not always have sufficient capacity to effect the necessary change of air
- additional fans can be arranged in both the supply conduit and the outlet conduit.
- the revolution rate of these fans is controlled by the member sensing the carbon dioxide content via, for example, a computer, whereby too high a carbon dioxide content leads to increased rotational speed of these fans.
- FIG 1 shows the sides 1 of the ship and the insulated decks 2 in the ship.
- the insulated decks 2 divide the shown part of the ship into two separate refrigerating spaces. These, in turn, are divided by perforated decks 3 and 4 into two spaces so as to form a total of four holds, 5,6,7 and 8.
- circulation fans 10 producing about 350-500 Pa
- air coolers 11 can be arranged at a bulkhead 9 defining the holds.
- the outlet conduit 12 for the holds 5,6 and the outlet conduit 13 for the holds 7,8 are connected onto the respective air-cooler units, between the fans 10 and the air cooler 11.
- These outlet conduits 12,13 run inside the supply conduits 14,15, that is to say, the conduits with the colder air run inside the conduits with warmer air, which means that the insulation of these conduits can be dispensed with.
- an additional advantage is gained, namely, that only half as many holes in the deck are needed, although the diameter of these holes will be somewhat greater than normal.
- At the outlets of the outlet conduits 12 and 13 there are arranged variable-speed controlled fans 16 and 17, respectively, and immediately inside of these there are arranged the motor-controlled valves 18 and 19, respectively, which are capable of closing the outlets completely.
- the inlets of the supply conduits 14,15 there are arranged similar fans 20 and 21, respectively, and controllable valves 22 and 23, respectively.
- a member 24 For controlling the controllable valves and fans, a member 24 is provided for monitoring the carbon dioxide content in the holds. This member 24, in turn, delivers control signals by means of a computer 25 to the above-mentioned valves and fans. The member 24 also communicates with a container 26 containing carbon dioxide of a known content for self-calibration of the sensing member 24.
- the fans 10 operate both during intake and exhaust of air since - as will be clear from the figures - the outlet conduits 12,13 have been connected onto the air-cooler units between the fans 10 and the air cooler 11.
- the fans 10 are suitably allowed to run at full speed and control the air flow through the holds by means of the valves 18,19 and 22,23. If the fans 10 should not have sufficient capacity to keep the carbon dioxide content at the desired value, even with the valves fully open, the computer 25 is allowed to deliver a starting signal to the fans 16,17 and 20,21, which are controlled to run at a suitable speed. Otherwise, of course, numerous combinations of control are possible since both controllable valves and fans are available.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Storage Of Fruits Or Vegetables (AREA)
- Storage Of Harvested Produce (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Description
- The invention relates to a fresh air supply system for holds in a ship, particularly for holds accommodating cargo refrigerating plants, according to the precharacterising part of Claim 1.
- During the last thirty years most fresh air supply systems for cargo refrigerating plants in ships have been equipped with a high pressure system which was developed in the fifties when oil costs were less pronounced - or perhaps not given a though of at all. Today, the operating costs for a ship are considerable, which, among other things, calls for keeping the energy consumption as low as possible.
- The reason for the need to ventilate the refrigerating plant is that fruit, berries and vegetables which are to be transported consume oxygen present in the air during the ripening process while at the same time giving off heat, C02 and water. Bananas also produce ethylene. The higher the temperature during the transportation of a cargo, the faster will be the ripening process. It is therefore desired always to transport the cargo at as low a temperature as possible without subjecting the cargo to freeze damage and without stopping the ripening process. If the ripening is stopped, it can never be revived. To achieve a maximum storage time and maximum quality of the products, it has been found that certain values of the C02 concentration in the air in the storage facilities of the refrigerating plant are suitable.
-
-
- From these tables it is clear that the fresh air requirement varies most considerably depending on the kind of fruit that is transported.
- The fresh air supply systems which are presently available must, of course, be able to fulfill the highest demands that may be placed on them although these extreme conditions very seldom occur in reality. Furthermore, it should be noted that each unnecessary cubic meter of fresh air supplied to the cargo space causes extra costs for oil for generator operation to produce the current necessary for operating the fans and, above all, for defrosting of the air coolers in the refrigerating spaces.
- The instruments used at present for measuring the C02 concentration in the hold of a ship are self- calibrating precision instruments which enable a regulation of the C02 concentration around a mean value. Previously existing control devices have suffered from such great inherent uncertainties that many fresh air plants, in the case of fruit transportation, have been allowed to operate at full capacity during the whole voyage, irrespective of whether this was necessary or not, with resultant unnecessarily heavy operating costs.
- The SE-C-181 618 describes an arrangement for conditioning various load departments in a ship whereby each department, which is isolated from the adjoining departments can be conditioned individually. This is achieved by a central air processing plant which comprises a pressure chamber and a suction chamber. Each individual cargo department is connected via an intake pipe to said pressure chamber and via and outtake pipe to said suction chamber. Fresh air is taken in from outside and is processed in the central air processing plant with respect to temperature and humidity. The pipes are connected to the respective chambers by controllable flaps. In dependence on the readings of temperature and humidity taken in the various departments and displayed in the central air processing plant, fresh air is delivered to the departments by controlling the afore-said flaps. This has to be done manually. The only automatic adjustment taking place is the maintenance of a static pressure in the pressure and the suction chamber in the central air processing plant.
- The EP-A-0 136 042 describes an individual container being equipped with its own autonomic air conditioning system. The container is substantially shielded against the ambient atmosphere. The container may be shipped on a freight train or a lorry or may form part of the cargo of a ship. The entire conditioning equipment is installed inside the container. In addition to the temperature, the oxygen content inside said container is automatically controlled and kept on a level below that of the outside atmosphere in order to slow down the ripening process of the plant or fruit cargo. The means for adjusting the oxygen content to its desired level consists in inserting air from the outside into the container. In addition to the control of the oxygen content there may also be provided means to control the carbon dioxide content in the container. This is achieved by a carbon dioxide scrubber installed inside the container.
- The invention aims at the development of a fresh air supply system of the above-mentioned kind in which the carbon dioxide content in the hold of a ship is automatically maintained on a favorable level.
- To achieve this aim the invention suggests a fresh air supply system according to the introductory part of Claim 1, which is characterized by the features of the characterizing part of Claim 1.
- Further developments of the invention are characterized by the features of the additional claims.
- To bring about a particularly accurate control, automatically controllable, fully sealing valves-are arranged in both the supply pipe and the outlet pipe.
- Furthermore, since the fans arranged in holds do not always have sufficient capacity to effect the necessary change of air, additional fans can be arranged in both the supply conduit and the outlet conduit. The revolution rate of these fans is controlled by the member sensing the carbon dioxide content via, for example, a computer, whereby too high a carbon dioxide content leads to increased rotational speed of these fans.
- The invention will now be described in greater detail with reference to the accompanying drawing showing - by way of example - in
- Figure 1 a schematic cross-section of the cargo spaces of a ship,
- Figure 2 schematically a vertical cross-section through the cargo space shown in Figure 1.
- Figure 1, shows the sides 1 of the ship and the
insulated decks 2 in the ship. Theinsulated decks 2 divide the shown part of the ship into two separate refrigerating spaces. These, in turn, are divided byperforated decks 3 and 4 into two spaces so as to form a total of four holds, 5,6,7 and 8. - As will be clear from Figure 2, circulation fans 10 (producing about 350-500 Pa) and
air coolers 11 can be arranged at a bulkhead 9 defining the holds. - The outlet conduit 12 for the
holds outlet conduit 13 for theholds fans 10 and theair cooler 11. These outlet conduits 12,13 run inside thesupply conduits fans valves supply conduits similar fans controllable valves - For controlling the controllable valves and fans, a
member 24 is provided for monitoring the carbon dioxide content in the holds. Thismember 24, in turn, delivers control signals by means of acomputer 25 to the above-mentioned valves and fans. Themember 24 also communicates with acontainer 26 containing carbon dioxide of a known content for self-calibration of thesensing member 24. - The
fans 10 operate both during intake and exhaust of air since - as will be clear from the figures - the outlet conduits 12,13 have been connected onto the air-cooler units between thefans 10 and theair cooler 11. Thefans 10 are suitably allowed to run at full speed and control the air flow through the holds by means of thevalves fans 10 should not have sufficient capacity to keep the carbon dioxide content at the desired value, even with the valves fully open, thecomputer 25 is allowed to deliver a starting signal to thefans
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE8603893 | 1986-09-16 | ||
SE8603893A SE455857B (en) | 1986-09-16 | 1986-09-16 | FRESH CLEANING SYSTEM FOR CARGO COOLING INSTALLATIONS |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0260624A1 EP0260624A1 (en) | 1988-03-23 |
EP0260624B1 true EP0260624B1 (en) | 1992-11-19 |
EP0260624B2 EP0260624B2 (en) | 1999-03-17 |
Family
ID=20365607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19870113358 Expired - Lifetime EP0260624B2 (en) | 1986-09-16 | 1987-09-12 | Fresh air supply system for holds in a ship |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0260624B2 (en) |
DE (1) | DE3782703T3 (en) |
ES (1) | ES2037044T5 (en) |
SE (1) | SE455857B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103108802A (en) * | 2010-09-16 | 2013-05-15 | 乌本产权有限公司 | Ship comprising a ventilation device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE501150C2 (en) * | 1993-04-23 | 1994-11-28 | Stal Refrigeration Abb | Method and apparatus for air distribution in cargo spaces |
DE29621845U1 (en) * | 1996-12-03 | 1997-06-12 | Sick, Wolfgang, 22955 Hoisdorf | Air supply or exhaust device |
JP5820423B2 (en) * | 2013-04-04 | 2015-11-24 | 株式会社コトラシステム | Anti-condensation device for cargo in cargo |
CN113291452B (en) * | 2021-06-22 | 2023-05-05 | 广船国际有限公司 | Air conditioning system for residential area of methanol dual-fuel ship |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3360380A (en) * | 1964-04-20 | 1967-12-26 | Whirlpool Co | Method of storing banas |
NZ205453A (en) * | 1983-09-01 | 1988-03-30 | New Zealand Shipping | Transporting respiring comestibles while monitoring and adjusting oxygen and carbon dioxide levels |
JPS61286500A (en) * | 1985-06-11 | 1986-12-17 | 三菱電機株式会社 | Ventilation controller |
-
1986
- 1986-09-16 SE SE8603893A patent/SE455857B/en not_active IP Right Cessation
-
1987
- 1987-09-12 DE DE3782703T patent/DE3782703T3/en not_active Expired - Fee Related
- 1987-09-12 ES ES87113358T patent/ES2037044T5/en not_active Expired - Lifetime
- 1987-09-12 EP EP19870113358 patent/EP0260624B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103108802A (en) * | 2010-09-16 | 2013-05-15 | 乌本产权有限公司 | Ship comprising a ventilation device |
CN103108802B (en) * | 2010-09-16 | 2016-08-10 | 乌本产权有限公司 | There is the ship of ventilation installation |
Also Published As
Publication number | Publication date |
---|---|
SE8603893L (en) | 1988-03-17 |
SE8603893D0 (en) | 1986-09-16 |
DE3782703T2 (en) | 1993-06-09 |
DE3782703D1 (en) | 1992-12-24 |
EP0260624A1 (en) | 1988-03-23 |
ES2037044T3 (en) | 1993-06-16 |
SE455857B (en) | 1988-08-15 |
DE3782703T3 (en) | 1999-11-11 |
ES2037044T5 (en) | 1999-09-16 |
EP0260624B2 (en) | 1999-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4829774A (en) | Transportable refrigerating container | |
US3521459A (en) | Method for storing and transporting food in a fresh condition | |
US5249428A (en) | Method and apparatus for establishing a controlled atmosphere in the compartments of a vessel for conserving fresh vegetables | |
EP0353021B1 (en) | Controlled environment transportation of respiring comestibles | |
EP0368678B1 (en) | A method of and apparatus for storing produce | |
EP2078458B1 (en) | Device for controlling the gas medium inside a container | |
US2160831A (en) | Method of and apparatus for preventing damage to cargo in cargo compartments | |
WO1990015546A1 (en) | Method and apparatus for producing a controlled atmosphere | |
US5127233A (en) | Humidity control system for a controlled atmosphere container | |
EP0260624B1 (en) | Fresh air supply system for holds in a ship | |
US5787716A (en) | Dry ice sublimation cooling system utilizing a vacuum | |
US5172558A (en) | Cooling process and refrigerated container | |
US4265096A (en) | Freezing plant for food products | |
EP0298406B1 (en) | Cooling system for container transportation | |
USRE27457E (en) | Method for storing and transporting food in a fresh condition | |
US20220322687A2 (en) | Transport container with gas selective membrane exhaust | |
JPS5950554B2 (en) | container wheeler | |
US20110296984A1 (en) | Carbon dioxide (co2) scrubber for controlled atmosphere sea van container | |
CN115140309B (en) | Food storage system of multifunctional cargo compartment of airplane | |
JPH0611235A (en) | Refrigerating apparatus for containers | |
RU1773803C (en) | Shipboard air distributing recirculating plant | |
Harrison et al. | Controlled atmosphere systems for marine vessels | |
GB1498839A (en) | Ships for the transportation of refrigerated containers | |
JPH0385287A (en) | Ca storage container | |
JPH0560330B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19880920 |
|
17Q | First examination report despatched |
Effective date: 19891120 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 3782703 Country of ref document: DE Date of ref document: 19921224 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2037044 Country of ref document: ES Kind code of ref document: T3 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: SABROE REFRIGERATION A/S MARINE DIVISION Effective date: 19930817 |
|
NLT1 | Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1 |
Owner name: ABB STAL REFRIGERATION AKTIEBOLAG TE NORRKOEPING, |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: SABROE REFRIGERATION A/S MARINE DIVISION |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 19990317 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): BE DE ES FR GB IT NL |
|
NLR2 | Nl: decision of opposition | ||
ITF | It: translation for a ep patent filed | ||
ET3 | Fr: translation filed ** decision concerning opposition | ||
NLR3 | Nl: receipt of modified translations in the netherlands language after an opposition procedure | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19990916 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Kind code of ref document: T5 Effective date: 19990617 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20000811 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20000918 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20000929 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20001011 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20001016 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010930 |
|
BERE | Be: lapsed |
Owner name: STAL REFRIGERATION A.B. Effective date: 20010930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020401 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20010912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020531 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20020401 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20020401 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20021011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050912 |