[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0252355B1 - Process and furnace for the steam cracking of hydrocarbons for the preparation of olefins and diolefins - Google Patents

Process and furnace for the steam cracking of hydrocarbons for the preparation of olefins and diolefins Download PDF

Info

Publication number
EP0252355B1
EP0252355B1 EP87108911A EP87108911A EP0252355B1 EP 0252355 B1 EP0252355 B1 EP 0252355B1 EP 87108911 A EP87108911 A EP 87108911A EP 87108911 A EP87108911 A EP 87108911A EP 0252355 B1 EP0252355 B1 EP 0252355B1
Authority
EP
European Patent Office
Prior art keywords
cracking
tube
hydrocarbons
mixture
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87108911A
Other languages
German (de)
French (fr)
Other versions
EP0252355A1 (en
Inventor
André Martens
Serge Bellet
Pierre Crouzet
Jean-Pierre Toulet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Naphtachimie SA
Original Assignee
Naphtachimie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8609217A external-priority patent/FR2600665B1/en
Priority claimed from FR8609220A external-priority patent/FR2600641B1/en
Priority claimed from FR8609218A external-priority patent/FR2600666B1/en
Application filed by Naphtachimie SA filed Critical Naphtachimie SA
Publication of EP0252355A1 publication Critical patent/EP0252355A1/en
Application granted granted Critical
Publication of EP0252355B1 publication Critical patent/EP0252355B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Definitions

  • the present invention relates to a process for cracking hydrocarbons in the presence of water vapor, intended for manufacturing olefins and diolefins, and in particular ethylene.
  • the present invention also relates to a device consisting of a cracking oven intended for the implementation of this process.
  • hydrocarbons are thus in particular transformed, on the one hand, into a gaseous hydrocarbon fraction comprising in particular olefins containing from 2 to 6 carbon atoms, such as ethylene, propylene and isobutene, and diolefins such as butadiene, and, on the other hand, in a liquid hydrocarbon fraction, called "steam cracking gasoline", comprising hydrocarbons containing from 5 to 12 carbon atoms, as well as undesirable by-products, such as methane.
  • steam cracking processes known until now, using in particular liquid hydrocarbons and in particular that described in GB-A 1 165 907 are carried out with the aim, obviously, of obtaining the highest possible yield of olefins and as diolefins, but under conditions which favor the production of ethylene over those of other olefins and diolefins.
  • steam cracking ovens are generally designed to operate under conditions known as high severity. These conditions are such that the mixture of hydrocarbons and water vapor, circulating in the cracking tube arranged in the form of a coil inside the radiant part of an oven, is subjected to a high temperature. and at low pressure, for a relatively short time.
  • steam cracking processes can use relatively higher cost gaseous hydrocarbons, such as liquefied petroleum gas, also called LPG, or ethane, a secondary product resulting from steam cracking of hydrocarbons.
  • gaseous hydrocarbons such as liquefied petroleum gas, also called LPG, or ethane
  • liquids such as naphtha or gas oil.
  • LPG liquefied petroleum gas
  • ethane a secondary product resulting from steam cracking of hydrocarbons.
  • liquids such as naphtha or gas oil.
  • an urgent need has also appeared to modify the steam cracking processes for gaseous hydrocarbons, in order to significantly increase the ethylene selectivity of steam cracking reactions.
  • a process and an oven for cracking liquid or gaseous hydrocarbons have now been found in the presence of water vapor, making it possible, in the case of liquid hydrocarbons, not only to very significantly increase the production of proplyene, isobutene and butadiene with respect to the production of ethylene, but also to significantly increase the yield of cracking into olefins and diolefins, and in the case of gaseous hydrocarbons very significantly increase the selectivity for ethylene of the steam cracking reaction and at the same time very significantly reduce the amount of methane produced, while also avoiding the drawbacks mentioned above.
  • the method and the device of the invention can, moreover, be easily adapted to already existing steam cracking installations.
  • the cracking temperature of the mixture of hydrocarbons and steam increases along the cracking tube, between the inlet and the outlet of the radiation area of the furnace, i.e. in the direction of flow of the mixture.
  • the mixture of hydrocarbons and water vapor is subjected to preheating before it enters the radiation zone of the oven, this preheating can be carried out by any known means, in particular in a zone of convection heating of the oven. .
  • the cracking temperature of the mixture of hydrocarbons and water vapor is at the entry of the radiation region of the oven between 400 ° C and 650 ° C, preferably between 430 ° C and 580 ° C; it is at the exit of this zone comprised between 720 ° C and 860 ° C, preferably comprised between 760 ° C and 810 ° C.
  • the cracking temperature of the mixture of hydrocarbons and steam is at the entry of the radiation zone of the furnace between 500 ° C and 700 ° C, preferably between 550 ° C and 660 ° C; it is at the exit of this zone between 800 ° C and 880 ° C, preferably between 810 ° C and 850 ° C.
  • the method according to the present invention is characterized by an average residence time of the mixture of hydrocarbons and water vapor, circulating in the cracking tube between the inlet and the outlet of the radiation zone of the furnace.
  • This average residence time can be relatively longer than that usually existing in steam cracking processes for hydrocarbons operating under conditions of high severity. It is generally between 300 and 1800 milliseconds, preferably com taken between 400 and 1400 milliseconds, especially when the hydrocarbons used are gaseous. It is, moreover, between 850 and 1800 milliseconds, preferably between 870 and 1500 milliseconds, and more particularly between 900 and 1400 milliseconds, when the hydrocarbons used are liquid.
  • the method according to the present invention is also characterized by the reaction volume of the cracking tube which in the first half of the length of the tube, located towards the entrance to the radiation zone, is 1.3 to 4 times greater, preferably 1.5 to 2.5 times greater than that of the second half of the length of the tube, located towards the exit of this area. More particularly, the reaction volume per unit length of the cracking tube decreases continuously or discontinuously from the entry to the exit from the radiation zone of the furnace. In practice, it is preferred to carry out this reduction in a discontinuous manner, in stages along the cracking tube.
  • the average residence time of the mixture per unit length of the cracking tube also called partial residence time
  • the average residence time of the mixture circulating in the first half of the length of the tube, located towards the entrance to the radiation area of the furnace is 2 to 4 times greater, preferably 2.6 to 3 times greater than that existing in the second half of the length of the tube, located towards the exit of this zone. It is also observed that the apparent surface speed of the mixture of hydrocarbons and water vapor circulating in the cracking tube increases in the direction of flow of the mixture.
  • this speed is relatively low in the first half of the length of the cracking tube, located towards the entrance to the radiation zone, for example between 30 and 80 m / sec, and higher in the second half of the length of the tube, located towards the exit of the radiation zone, for example between 90 and 150 m / sec.
  • the method according to the present invention allows the mixture of hydrocarbons and steam to pass relatively slowly through the part of the cracking tube where the temperature is relatively low, and on the contrary more quickly through the part of the cracking tube where the temperature is higher.
  • the cracking temperature of the mixture of hydrocarbons and steam does not increase uniformly along the tube, between the inlet and the outlet of the radiation zone of the furnace. More specifically, the increase in the cracking temperature of the mixture is relatively moderate in the first half of the length of the tube, located towards the entrance to the radiation zone of the furnace, while the increase in the cracking temperature of the mixing is more important in the second half of the length of the tube, located towards the exit of the radiation area of the oven.
  • the regulation of the cracking temperature of the mixture of hydrocarbons and steam, circulating in the tube between the inlet and the outlet of the radiation area of the furnace is obtained by a graded distribution of the thermal power applied to the pipe.
  • thermal power applied to the second half of the length of the tube, located towards the exit from the radiation area of the furnace is 1.5 to 5 times greater, preferably 2 to 4 times greater than that applied at the first half of the length of the tube, located towards the entrance to this area.
  • thermal power is meant here the quantity of heat supplied per unit of time and per unit of volume of the oven surrounding the cracking tube.
  • This combination also has the result of increasing the ethylene selectivity of the steam cracking reaction and of significantly reducing the quantity of methane produced, when gaseous hydrocarbons are used in particular. This result is also obtained with an improved thermal radiation efficiency compared to previously known methods, due to a relatively lower average cracking temperature.
  • the method according to the present invention also provides other advantages.
  • it makes it possible to reduce the coking phenomena occurring inside the cracking tube. It allows, in in addition, to increase the service life of a steam cracking installation, thus operating at a relatively low average cracking temperature.
  • composition of the mixture of hydrocarbons and steam, used in the process according to the invention is such that the weight ratio of the quantity of hydrocarbons to the quantity of steam is between 1 and 10, preferably between 2 and 6, in the case of gaseous hydrocarbons in particular, and preferably between 3 and 6, when it is in particular liquid hydrocarbons.
  • the liquid hydrocarbons used in the mixture with the water vapor, can be chosen from naphtha, consisting of hydrocarbons containing approximately from 5 to 10 carbon atoms, light gasolines consisting of hydrocarbons comprising approximately 5 or 6 carbon atoms, the diesel oil consisting of hydrocarbons containing approximately from 8 to 15 carbon atoms, as well as their mixtures. They can also be used in admixture with saturated and unsaturated hydrocarbons containing from 3 to 6 carbon atoms.
  • the gaseous hydrocarbons used in the mixture with water vapor, consist of alkanes comprising from 2 to 4 carbon atoms, in particular ethane, propane or butane, or by their mixtures. These alkanes can optionally be used in admixture with alkenes containing from 2 to 6 carbon atoms and / or methane and / or alkanes containing from 5 to 6 carbon atoms. It is possible, in particular, to use in the process of the invention natural gas or liquefied petroleum gas, also called LPG, or ethane, a secondary product resulting from the steam cracking of liquid hydrocarbons, such as naphtha or diesel.
  • LPG liquefied petroleum gas
  • ethane a secondary product resulting from the steam cracking of liquid hydrocarbons, such as naphtha or diesel.
  • the process of the present invention is particularly advantageous for increasing the production of higher olefins and diolefins compared to that of ethylene, in particular the production of olefins having 3 or 4 carbon atoms, such as propylene and isobutene and the production of diolefins such as butadiene.
  • This advantage is appreciated, in particular, by defining, on the one hand, a selectivity, Ss, in produced hydrocarbons comprising 3 carbon atoms, and on the other hand a selectivity, S 4 , in produced hydrocarbons comprising 4 carbon atoms, according to the following equations: and
  • the method makes it possible to carry out the steam cracking of liquid hydrocarbons with a selectivity S 3 equal to or greater than 0.73 and a selectivity S 4 equal or greater than 0.51, when the thermal power is applied in a homogeneous manner along of the cracking tube.
  • the selectivities S 3 and S 4 can become equal to or greater than 0.78 and 0.57 respectively, when the thermal power is applied in a non-homogeneous manner along the cracking tube, according to the process of the invention .
  • the steam cracking furnace comprises a thermal radiation enclosure through which at least one cracking tube passes, arranged in the form of a horizontal or vertical coil.
  • This cracking tube must have a ratio between the length and the mean internal diameter of between 200 and 600, preferably between 300 and 500.
  • the mean internal diameter of the cracking tube is preferably equal to or greater than 100 mm, so that the average residence time of the mixture in the cracking tube can be relatively long and that the pressure drops of the mixture circulating in the powerful cracking tube to be weak.
  • the mean internal diameter and the length of the tube must remain within ranges of values compatible with the mechanical and thermal stresses to which the materials constituting the cracking tube are subjected.
  • the average internal diameter of the cracking tube cannot exceed approximately 250 mm.
  • the internal mean diameter of the cracking tube can be between 70 mm and 160 mm, preferably between 80 and 150 mm.
  • the internal diameter of the cracking tube decreases continuously or discontinuously from the inlet to the outlet of the thermal radiation enclosure of the furnace, that is to say in the direction of the flow of the mixture of hydrocarbons and water vapor.
  • the reduction in the internal diameter of the cracking tube is such that the ratio between the internal diameters of the tube at the inlet and at the outlet of the thermal radiation enclosure is between 1.2 and 3, preferably included between 1.4 and 2.2, more particularly between 1.4 and 2.
  • the internal diameter of the cracking tube at the inlet of the thermal enclosure radiation is preferably between 140 and 220 mm, and that at the outlet of this enclosure is preferably between 70 and 120 mm.
  • the internal diameter of the cracking tube at the inlet of the thermal radiation enclosure is preferably between 110 and 180 mm, and that at the outlet of this enclosure is preferably between 60 and 100 mm.
  • the cracking tube is arranged in the form of a coil made up of a succession of straight sections connected together by elbows, these straight sections having decreasing internal diameters from the inlet to the outlet of the pipe. thermal radiation enclosure.
  • Figure 1 schematically illustrates a horizontal steam cracking furnace comprising a thermal radiation enclosure (1) through which passes a cracking tube arranged in the form of a coil consisting of eight horizontal straight sections connected together by elbows, the sections (2) and (3) having an internal diameter of 172 mm, the sections (4) and (5) an internal diameter of 150 mm, the sections (6) and (7) a diameter of 129 mm and the sections (8 ) and (9) an internal diameter of 108 mm, the inlet and outlet of the cracking tube in the thermal radiation enclosure being in (10) and (11) respectively.
  • a variant may consist in using a cracking tube which, upon entering the thermal radiation chamber of the furnace, is divided into a bundle of parallel tubes whose internal diameter can be constant and whose number decreases since l entry to the exit of the thermal enclosure, so that the reaction volume constituted by the set of tubes corresponding to the first half of the length of the cracking tube is 1.3 to 4 times greater, preferably 1.5 to 2.5 times greater than that corresponding to the second half of the length of the tube.
  • the steam cracking oven comprises a thermal radiation enclosure provided with heating means consisting of burners, arranged for example in rows on the floor and / or on the walls of the enclosure.
  • the arrangement, adjustment and / or size of the burners in the thermal enclosure are such that the thermal power can be distributed uniformly along the tube, and the mixture of hydrocarbons and steam is subjected to a temperature which increases rapidly in the first half of the tube, then more slowly in the second half of the tube.
  • the maximum heating power must be such that the skin temperature does not exceed the limit compatible with the nature of the metal or alloy constituting the cracking tube.
  • the steam cracking furnace comprises heating means constituted by burners whose thermal power increases along the cracking tube, from the inlet to the outlet of the enclosure.
  • thermal radiation so that the ratio between the thermal power of the burners applied to the first half of the length of the cracking tube, located towards the inlet of the thermal radiation enclosure, and that applied to the second half of the length of the tube, located towards the outlet of this enclosure, is between 40/60 and 15/85, preferably between 33/67 and 20/80.
  • the arrangement, adjustment and / or size of the burners in the thermal enclosure are such that the thermal power increases along the cracking tube from the inlet to the outlet of the enclosure.
  • This increasing profile of the thermal power of the burners applied along the cracking tube can be easily obtained by appropriately adjusting the gas or fuel-gas supply rate of each of the burners.
  • Another way is to have burners of the appropriate size and heating capacity in the thermal enclosure.
  • the maximum heating power must be such that the skin temperature does not exceed the limit compatible with the nature of the metal or alloy constituting the cracking tube.
  • a steam cracking furnace as shown diagrammatically in FIG. 1, comprises a thermal radiation enclosure (1) in brickwork, constituted by a rectangular parallelepiped whose internal dimensions are 9.75 m for the length, 1.70 m for the width and 4.85 m for the height.
  • a cracking tube of refractory steel based on nickel and chromium having an average internal diameter of 140 mm, a thickness of 8 mm and, taking into account the capacity of the enclosure, is placed.
  • the relationship between lon and the internal mean diameter of the tube is 457.
  • This cracking tube is arranged in the form of a serpentine, comprising eight straight horizontal sections, of equal length each, connected to each other by elbows.
  • the internal diameter of the sections (2) and (3) located towards the entrance to the thermal enclosure is 172 mm; the following sections (4) and (5) have an internal diameter of 150 mm; then sections (6) and (7) have an internal diameter of 129 mm; the internal diameter of the sections (8) and (9) located towards the outlet of the thermal enclosure is 108 mm.
  • the internal diameters of the cracking tube at the inlet (10) and at the outlet (11) of the enclosure (1) being 172 mm and 108 mm respectively, the ratio between the internal diameters of the tube to entry and exit is therefore 1.6.
  • the reaction volume of the first half of the length of the cracking tube, corresponding to the straight sections (2), (3), (4) and (5) is 1.84 times greater than the reaction volume of the second half the length of the cracking tube, corresponding to the straight sections (6), (7), (8) and (9).
  • the thermal radiation enclosure of the steam cracking furnace is provided with burners arranged on the walls of the enclosure, in five horizontal rows, located at equal distance from each other. The thermal power of all of these burners is evenly distributed between these five rows.
  • the liquid hydrocarbons consist of a naphtha with a density of 0.718, having a distillation range of ASTM 45/180 ° C. and weight contents of 35% in linear paraffins, 29.4% in branched paraffins, 28.3% in compounds cyclic and 7.3% aromatic compounds.
  • the composition of the mixture of naphtha and water vapor used is such that the weight ratio of the quantity of naphtha to the quantity of water vapor is 4.
  • the naphtha is thus introduced into the cracking tube according to a flow rate of 3500 kg / h and water vapor at a flow rate of 875 kg / h.
  • the cracking temperature of the mixture of naphtha and steam rises from 470 ° C at the entrance to the oven radiation zone up to 775 ° C at the exit from this zone.
  • the evolution of the cracking temperature of the mixture along the cracking tube is described by the curve (a) of FIG. 4, representing on the abscissa the reaction volume (in liters) crossed by the mixture and on the ordinate the cracking temperature (in ° C) of the mixture.
  • Curve (a) shows that the cracking temperature of the mixture increases in its initial part relatively slowly as a function of the reaction volume passed through.
  • the pressure of the mixture is at the outlet of the oven of 170 kPa.
  • the average residence time of the mixture of naphtha and water vapor circulating in the cracking tube between the inlet and the outlet of the radiation zone of the furnace is 1030 milliseconds. Furthermore, the average residence time of this mixture circulating in the first half of the length of the cracking tube is 2.3 times greater than that in the second half of the length of the tube.
  • Example 1 The operation is carried out in a steam cracking furnace identical to that of Example 1.
  • a mixture of naphtha and steam is circulated in the cracking tube of this furnace identical to that used in Example 1.
  • the flow rates of naphtha and water vapor circulating in the tube are respectively 4800 and 1200 kg / h, this increase in flow rates compared to those of Example 1 can be easily achieved thanks to the fact that the cracking tube used has a relatively low pressure drop.
  • the cracking temperature of the mixture of naphtha and water vapor rises from 480 ° C. at the entrance to the radiation zone of the furnace to 775 ° C. at the exit from this zone.
  • the pressure of the mixture is 170 kPa at the outlet of the oven.
  • the average residence time of the mixture of naphtha and water vapor circulating in the cracking tube between the inlet and the outlet of the radiation zone of the furnace is 900 milliseconds. Furthermore, the average residence time of this mixture circulating in the first half of the length of the cracked tube is 2.3 times greater than that in the second half of the length of the tube.
  • Per hour 640 kg of ethylene, 612 kg of propylene, 122 kg of isobutene, 200 kg of butadiene and 170 kg of ethane are thus produced.
  • the ethane thus produced in this furnace is then subjected to a secondary stage of steam cracking making it possible to transform it into ethylene according to a weight yield of 85% and thereby improving the overall production of ethylene from the steam cracking installation.
  • the productions of olefins and of diolefins are higher than those of Example 1, because of the gain on the flow rates of raw materials which makes it possible to accomplish the steam cracking furnace of the present invention.
  • the productions of higher olefins and of butadiene are relatively high compared to the production of ethylene.
  • the production of propylene, isobutene and butadiene are 780 kg, 155 kg and 255 kg respectively.
  • a steam cracking oven comprises a thermal radiation enclosure, identical in shape and size to that of Example 1.
  • a cracking tube of refractory steel based on nickel and chromium, of a weight is placed. total substantially identical to that of Example 1, having an internal diameter of 108 mm, a thickness of 8 mm and, taking into account the capacity of the enclosure and the mechanical and thermal stresses of the oven, a total length of 80 meters between the entrance and the exit of the enclosure.
  • the ratio between the length and the internal diameter of the tube is 740.
  • This cracking tube is arranged in the form of a coil comprising eight straight horizontal sections, of equal length each, connected to each other by elbows. The internal diameter of these straight sections is constant and equal to 108 mm.
  • the internal diameters of the tube at the inlet and at the outlet of the enclosure are identical.
  • the reaction volume of the first half of the length of the cracking tube, corresponding to the first four straight sections is identical to the reaction volume of the second half of the length of the cracking tube, corresponding to the last four straight sections.
  • the thermal radiation enclosure of the steam cracking furnace is provided with burners arranged on the walls of the enclosure, in five horizontal rows, located at equal distance from each other. The thermal power of all of these burners is evenly distributed between these five rows.
  • the cracking temperature of the mixture of naphtha and steam is 490 ° C at the entrance to the oven radiation zone and 775 ° C at the exit from this zone.
  • the evolution of the cracking temperature of the mixture along the cracking tube is described by curve (b) of FIG. 4, representing on the abscissa the reaction volume (in liters) crossed by the mixture and on the ordinate the cracking temperature (in ° C) of the mixture.
  • Curve (b) shows that the cracking temperature of the mixture increases in its initial part relatively rapidly as a function of the reaction volume passed through.
  • the pressure of the mixture is at the outlet of the oven of 170 kPa.
  • the average residence time of the mixture of naphtha and water vapor circulating in the cracking tube between the inlet and the outlet of the radiation zone of the furnace is 830 milliseconds.
  • the maximum capacity loss of such a steam cracking furnace is approximately 35%, for an unchanged volume of the thermal radiation enclosure and for substantially identical mechanical and thermal stresses of the furnace, in comparison with the furnace. described in Example 1.
  • a steam cracking oven comprises a thermal radiation enclosure, identical in shape and size to that of Example 1.
  • a cracking tube of refractory steel based on nickel and chromium, of a weight is placed. total substantially identical to that of Example 1, having an internal diameter of 140 mm, a thickness of 8 mm and, taking into account the capacity of the enclosure and the mechanical and thermal stresses of the oven, a total length of 64 meters between the entry and exit of the enclosure.
  • the ratio between the length and the internal diameter of the tube is 457.
  • This cracking tube is arranged in the form of a coil comprising eight horizontal straight sections, of equal length each, connected to each other by elbows. The internal diameter of these straight sections is constant and equal to 140 mm.
  • the internal diameters of the tube at the inlet and at the outlet of the enclosure are identical.
  • the reaction volume of the first half of the length of the cracking tube, corresponding to the first four straight sections is identical to the reaction volume of the second half of the length of the cracking tube, corresponding to the last four straight sections.
  • the thermal radiation enclosure of the steam cracking furnace is provided with burners arranged on the walls of the enclosure, in five horizontal rows, located at equal distance from each other. The thermal power of all of these burners is evenly distributed between these five rows.
  • a mixture of naphtha and water vapor is circulated, identical to that used in Example 1.
  • the naphtha is introduced therein at a rate of 3500 kg / h and the vapor of water at a flow rate of 875 kg / h.
  • the cracking temperature of the mixture of naphtha and water vapor rises from 500 ° C at the entrance to the radiation zone of the furnace up to 775 ° C at the exit from this zone.
  • the pressure of the mixture is at the outlet of the oven of 170 kPa.
  • the average residence time of the mixture of naphtha and water vapor circulating in the cracking tube between the inlet and the outlet of the radiation zone of the furnace is 900 milliseconds.
  • the heat flux table measured inside the thermal radiation enclosure of the furnace is, under these conditions, represented in FIG. 2 by the surface inscribed in the three-dimensional graph connecting by the three coordinate axes, the length L of the thermal enclosure, the height H of this enclosure and the thermal flux F.
  • FIG. 2 shows, in particular, that the maximum of the thermal flux of radiation is located in the lower part of the thermal enclosure, corresponding to the second half the length of the cracking tube located towards the outlet of the radiation thermal enclosure.
  • the liquid hydrocarbons consist of a naphtha of density 0.690, having a distillation range ASTM 45/180 ° C and weight contents of 38.2% in linear paraffins, of 36.9% in branched paraffins, of 17.1% in cyclanic compounds and 7.8% in aromatic compounds.
  • the composition of the mixture of naphtha and water vapor used is such that the weight ratio of the quantity of naphtha to the quantity of water vapor is 4.
  • the naphtha is thus introduced into the cracking tube according to a flow rate of 3500 kg / h and water vapor at a flow rate of 875 kg / h.
  • the cracking temperature of the mixture of naphtha and water vapor rises from 435 ° C at the entrance to the radiation zone of the furnace up to 775 ° C at the exit from this zone.
  • the evolution of the temperature of the mixture along the cracking tube is described by the curve (a) of FIG. 5 representing on the abscissa the average residence time (in milliseconds) of the mixture circulating in the cracking tube from the inlet up to the exit from the radiation area of the oven and on the ordinate the cracking temperature (in ° C) of the mixture.
  • Curve (a) shows that the cracking temperature of the mixture increases in its initial part relatively slowly as a function of the average residence time of the mixture in the cracking tube and that in particular most of the residence time of the mixture is performed at a relatively low cracking temperature, in particular at a temperature below 700 ° C.
  • the pressure of the mixture is at the outlet of the oven of 170 kPa.
  • the average residence time of the mixture of naphtha and water vapor circulating in the cracking tube between the inlet and the outlet of the radiation zone of the furnace is 1180 milliseconds. Furthermore, the average residence time of this mixture circulating in the first half of the length of the cracking tube is 2.6 times greater than that in the second half of the length of the tube.
  • Example 5 The operation is carried out in a steam cracking oven identical to that of Example 5.
  • a mixture of naphtha and steam identical to that used in Example 5 is circulated in the cracking tube of this oven.
  • flow rates of naphtha and water vapor circulating in the tube are respectively 4800 kg / h and 1200 kg / h, this increase in flow rates compared to those of Example 5 can be easily achieved thanks to the fact that the tube cracking agent used has a relatively low pressure drop.
  • Curve (b) shows that the cracking temperature of the mixture increases in its initial part relatively slowly as a function of the average residence time of the mixture in the cracking tube and that in particular most of the residence time of the mixture is performed at a relatively low cracking temperature, in particular at a temperature below 700 ° C.
  • the pressure of the mixture is 170 kPa at the outlet of the oven.
  • the average residence time of the mixture of naphtha and water vapor circulating in the cracking tube between the inlet and the outlet of the radiation zone of the furnace is 1020 milliseconds. Furthermore, the average residence time of this mixture circulating in the first half of the length of the cracking tube is 2.6 times greater than that in the second half of the length of the tube. 750 kg of ethylene, 770 kg of propylene, 110 kg of isobutene, 180 kg of butadiene and 200 kg of ethane are thus produced per hour.
  • the ethane thus produced in this furnace is then subjected to a secondary stage of steam cracking making it possible to transform it into ethylene at a weight yield of 85% and thereby improving the overall production of ethylene from the steam cracking installation.
  • the productions of olefins and of diolefin are higher than those of Example 5, due to the gain on the flow rates of raw materials which the steam cracking furnace of the present invention makes it possible to achieve.
  • the productions of higher olefins and of butadiene are relatively high compared to the production of ethylene.
  • the production of propylene, isobutene and butadiene are 837 kg, 158 kg and 260 kg respectively.
  • Example 3 The operation is carried out in a steam cracking oven comprising a thermal enclosure, a cracking tube and burners, identical to those of Example 3 (comparative).
  • the thermal power of all the burners is also as in Example 3 (comparative), distributed homogeneously between the five rows.
  • the thermal flux table measured inside the thermal radiation enclosure of the furnace is, under these conditions, represented in FIG. 3 by the surface inscribed in the three-dimensional graph connecting by the three coordinate axes, the length L of the thermal enclosure, the height H of this enclosure and the thermal flux F.
  • FIG. 3 shows, in particular, that the maximum of the thermal flux of radiation is located in the upper part of the thermal enclosure, corresponding to the first half the length of the cracking tube located towards the entrance to the thermal enclosure.
  • the cracking temperature of the mixture of naphtha and water vapor rises from 495 ° C at the entrance to the radiation zone of the furnace up to 775 ° C at the exit from this zone.
  • the evolution of the cracking temperature of the mixture along the cracking tube is described by curve (c) of FIG. 5, representing on the abscissa the average residence time (in milliseconds) of the mixture circulating in the cracking tube from the inlet to the outlet of the radiation area of the oven and on the ordinate the cracking temperature (in ° C) of the mixture.
  • Curve (c) clearly shows that the cracking temperature of the mixture increases in its initial part rapidly as a function of the residence time of the mixture in the cracking tube, and that in particular a significant part of the residence time of the mixture is achieved at a relatively high cracking temperature, in particular at a temperature above 700 ° C.
  • the pressure of the mixture is at the outlet of the oven of 170 kPa. Given the distribution of the heat flux in the enclosure, the thermal power applied to the second half of the length of the cracking tube is identical to that applied to the first half of the length of the tube.
  • the average residence time of the mixture of naphtha and water vapor circulating in the cracking tube between the inlet and the outlet of the radiation zone of the furnace is 840 milliseconds.
  • the maximum capacity loss of such a steam cracking furnace is approximately 35%, for an unchanged volume of the thermal radiation enclosure and for substantially identical mechanical and thermal stresses of the furnace, in comparison with the furnace. in example 5.
  • a steam cracking furnace as shown diagrammatically in FIG. 1, comprises a thermal radiation enclosure (1) identical to that described in Example 1.
  • a cracking tube of refractory steel based on nickel is placed. and of chromium, of dimensions different from that described in Example 1; it has an average internal diameter of 108 mm, a thickness of 8 mm and, taking into account the capacity of the enclosure (1), a total length of 80 meters, comprised between the inlet (10) and the outlet (11 ).
  • This cracking tube is arranged in the form of a serpentine, comprising eight horizontal straight sections, of equal length each, connected to each other by elbows.
  • the internal diameter of the sections (2) and (3) located towards the entrance to the thermal enclosure is 135 mm; the following sections (4) and (5) have an internal diameter of 117 mm; then sections (6) and (7) have an internal diameter of 99 mm; the internal diameter of the sections (8) and (9) located towards the outlet of the thermal enclosure is 81 mm.
  • the internal diameters of the cracking tube at the inlet (10) and at the outlet (11) of the enclosure (1) being 135 mm and 81 mm respectively
  • the ratio between the internal diameters of the tube to entry and exit is 1.7.
  • the reaction volume of the first half of the length of the cracking tube, corresponding to the straight sections (2), (3), (4), and (5) is 1.95 times greater than the reaction volume of the second half of the length of the cracking tube, corresponding to the straight sections (6), (7), (8) and (9).
  • a mixture of ethane and water vapor is circulated.
  • the composition of the mixture of ethane and water vapor used is such that the weight ratio of the amount of ethane to the amount of water vapor is 2.25.
  • Ethane is thus introduced into the cracking tube at a rate of 1800 kg / h and water vapor at a rate of 800 kg / h.
  • the cracking temperature of the mixture of ethane and water vapor rises from 585 ° C at the entrance to the radiation zone of the furnace up to 846 ° C at the exit from this zone.
  • the pressure of the mixture leaving the oven is 170 kPa.
  • the average residence time of the mixture of ethane and water vapor circulating in the cracking tube between the inlet and the outlet of the radiation zone of the furnace is 640 milliseconds.
  • Example 3 The operation is carried out in a steam cracking oven comprising a thermal enclosure, a cracking tube and burners, identical to those of Example 3 (comparative).
  • the thermal power of all the burners is, as in Example 3 (comparative), evenly distributed between the five rows.
  • a mixture of ethane and water vapor is circulated, identical to that used in Example 8.
  • the ethane is introduced therein at a rate of 1800 kg / h and the vapor water at a flow rate of 800 kg / h.
  • the cracking temperature of the mixture of ethane and water vapor rises from 636 ° C at the entrance to the radiation zone of the furnace up to 846 ° C at the exit from this zone.
  • the pressure of the mixture leaving the oven is 170 kPa.
  • the average residence time of the mixture of ethane and water vapor circulating in the cracking tube between the inlet and the outlet of the radiation zone of the furnace is 585 milliseconds.
  • Example 8 The procedure is exactly as in Example 8, except that instead of using ethane, a mixture of gaseous hydro carbides is used comprising 76% by weight of ethane, 19% by weight of propane and 5% by weight of propylene.
  • the pressure at the outlet of the oven is 175 kPa instead of 170 kPa.
  • the cracking temperature of the mixture is at the entry of the radiation zone of 575 ° C instead of 585 ° C, and at the exit of this zone of 848 ° C instead of 846 ° C.
  • the average residence time the mixture of gaseous hydrocarbons and water vapor circulating in the cracking tube between the entry and the exit of the radiation zone is 665 milliseconds instead of 640 milliseconds.
  • Example 9 The procedure is exactly as in Example 9 (comparative), except that instead of using ethane, a mixture of gaseous hydrocarbons is used identical to that used in Example 10.
  • the pressure the mixture at the outlet of the oven is 175 kPa, instead of 170 kPa.
  • the cracking temperature of the mixture is at the entry of the radiation zone of 610 ° C instead of 636 ° C and at the exit of this zone of 848 ° C instead of 846 ° C.
  • the residence time of the mixture of gaseous hydrocarbons and water vapor circulating in the cracking tube between the entry and the exit of the radiation zone is 610 milliseconds instead of 585 milliseconds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

La présente invention se rapporte à un procédé de craquage d'hydrocarbures en présence de vapeur d'eau, destiné à fabriquer des oléfines et dioléfines, et notamment de l'éthylène. La présente invention a également pour objet un dispositif constitué par un four de craquage destiné à la mise en oeuvre de ce procédé.The present invention relates to a process for cracking hydrocarbons in the presence of water vapor, intended for manufacturing olefins and diolefins, and in particular ethylene. The present invention also relates to a device consisting of a cracking oven intended for the implementation of this process.

Il est connu de réaliser le craquage à la vapeur d'eau d'hydrocarbures liquides comportant de 5 à 15 atomes de carbone, tels que le naphta, les essences légères et le gas-oil, dans des fours dont la température de sortie est généralement comprises entre 750°C et 850°C, ou d'hydrocarbures gazeux, tels que des alcanes comportant de 2 à 4 atomes de carbone, éventuellement mélangés à du méthane et/ou des alcènes comportant de 2 à 4 atomes de carbone, dans des fours dont la température de sortie est généralement comprise entre 800°C et 880°C. Dans ce procédé, connu sous le nom de craquage ou de pyrolyse à la vapeur d'eau, ou encore sous le nom de vapocraquage, on fait passer à travers la partie radiante d'un four un mélange d'hydrocarbures et de vapeur d'eau circulant dans un tube de craquage disposé sous la forme d'un serpentin à l'intérieur de ce four, la pression de ce mélange à la sortie du four étant généralement comprise entre 120 kPa et 240 kPa. Les hydrocarbures sont ainsi notamment transformés, d'une part, en une fraction hydrocarbonée gazeuse comprenant en particulier des oléfines comportant de 2 à 6 atomes de carbone, telles que l'éthylène, le propylène et l'isobutène, et des dioléfines telles que le butadiène, et, d'autre part, en une fraction hydrocarbonée liquide, dite "gazoline de vapocraquage", comprenant des hydrocarbures comportant de 5 à 12 atomes de carbone, ainsi qu'en sous-produits indésirables, tels que le méthane.It is known to carry out the steam cracking of liquid hydrocarbons containing from 5 to 15 carbon atoms, such as naphtha, light gasolines and diesel oil, in ovens whose outlet temperature is generally between 750 ° C and 850 ° C, or gaseous hydrocarbons, such as alkanes having 2 to 4 carbon atoms, optionally mixed with methane and / or alkenes having 2 to 4 carbon atoms, in ovens whose outlet temperature is generally between 800 ° C and 880 ° C. In this process, known under the name of cracking or pyrolysis with steam, or also under the name of steam cracking, through the radiant part of an oven a mixture of hydrocarbons and water vapor circulating in a cracking tube arranged in the form of a coil inside this oven, the pressure of this mixture at the outlet of the oven generally being between 120 kPa and 240 k Pa. The hydrocarbons are thus in particular transformed, on the one hand, into a gaseous hydrocarbon fraction comprising in particular olefins containing from 2 to 6 carbon atoms, such as ethylene, propylene and isobutene, and diolefins such as butadiene, and, on the other hand, in a liquid hydrocarbon fraction, called "steam cracking gasoline", comprising hydrocarbons containing from 5 to 12 carbon atoms, as well as undesirable by-products, such as methane.

Il est connu, en particulier, que l'éthylène se forme à plus haute température que les oléfines supérieures comportant au moins 3 atomes de carbone. On sait, par ailleurs, que ces oléfines supérieures subissent à des températures élevées en présence d'hydrogène, des réactions secondaires d'hydrocraquage et de condensation, favorisant la formation d'hydrocarbures légers et d'essence. Généralement, dans un tel procédé de vapocraquage, mettant en oeuvre des hydrocarbures liquides ou gazeux on détermine le rendement en oléfines, notamment en éthylène, et le rendement en dioléfines, notamment en butadiène, par le rapport pondéral des quantités d'oléfines ou de dioléfines produites à la quantité d'hydrocarbures mise en oeuvre. On détermine également le taux pondéral de conversion des hydrocarbures mis en oeuvre par l'équation suivante:

  • Taux pondéral de conversion = 100 -(% en poids de la fraction hydrocarbonée à la sortie du four, ayant un intervalle de distillation ASTM 45/205°C).
It is known, in particular, that ethylene is formed at a higher temperature than higher olefins containing at least 3 carbon atoms. It is known, moreover, that these higher olefins undergo at high temperatures in the presence of hydrogen, secondary hydrocracking and condensation reactions, favoring the formation of light hydrocarbons and gasoline. Generally, in such a steam cracking process, using liquid or gaseous hydrocarbons, the yield of olefins, in particular ethylene, and the yield of diolefins, especially butadiene, are determined by the weight ratio of the quantities of olefins or of diolefins. produced at the quantity of hydrocarbons used. The weight conversion rate of the hydrocarbons used is also determined by the following equation:
  • Weight conversion rate = 1 00 - (% by weight of the hydrocarbon fraction at the outlet of the oven, having a distillation range of ASTM 45/205 ° C).

Les procédés de vapocraquage, connus jusqu'à présent, mettant en oeuvre notamment des hydrocarbures liquides et en particulier celui décrit dans GB-A 1 165 907 sont réalisés dans le but, évidemment, d'obtenir un rendement le plus élevé possible en oléfines et en dioléfines, mais dans des conditions qui favorisent la production d'éthylène par rapport à celles des autres oléfines et des dioléfines. Pour obtenir ce résultat, les fours de vapocraquage sont généralement conçus pour fonctionner selon des conditions dites de haute sévérité. Ces conditions sont telles que le mélange d'hydrocarbures et de vapeur d'eau, circulant dans le tube de craquage disposé sous la forme d'un serpentin à l'intérieur de la partie radiante d'un four, est soumis à une température élevée et à une pression faible, pendant un temps relativement court.The steam cracking processes, known until now, using in particular liquid hydrocarbons and in particular that described in GB-A 1 165 907 are carried out with the aim, obviously, of obtaining the highest possible yield of olefins and as diolefins, but under conditions which favor the production of ethylene over those of other olefins and diolefins. To obtain this result, steam cracking ovens are generally designed to operate under conditions known as high severity. These conditions are such that the mixture of hydrocarbons and water vapor, circulating in the cracking tube arranged in the form of a coil inside the radiant part of an oven, is subjected to a high temperature. and at low pressure, for a relatively short time.

Il est également connu que le développement d'installations industrielles de vapocraquage d'hydrocarbures gazeux, tels que le gaz naturel constitué principalement d'éthane, a conduit à des excédents d'éthylène sur le marché. Il est, ainsi, apparu depuis quelques années un besoin urgent de modifier les procédés de vapocraquage des hydrocarbures liquides dans le but d'accroître sensiblement la production des oléfines supérieures et des dioléfines par rapport à la production d'éthylène. Cependant, compte tenu de la taille importante des installations industrielles de vapocraquage et du coût élevé des investissements, il n'est pas concevable que la modification envisagée du procédé entraîne des transformations trop importantes et onéreuses des unités déjà existantes de vapocraquage. Par ailleurs, il n'est pas non plus concevable économiquement que le procédé de vapocraquage des hydrocarbures soit modifié en acceptant une baisse, aussi minime soit elle, du rendement en oléfines et en dioléfines. Ainsi, depuis plusieurs années, de nombreuses études ont été entreprises dans ce domaine et des efforts incessants de recherche ont été réalisés aussi bien au stade laboratoire qu'au stade industriel.It is also known that the development of industrial installations for steam cracking gaseous hydrocarbons, such as natural gas consisting mainly of ethane, has led to excess ethylene on the market. It has thus appeared in recent years an urgent need to modify the steam cracking processes of liquid hydrocarbons in order to significantly increase the production of higher olefins and diolefins compared to the production of ethylene. However, in view of the large size of industrial steam cracking installations and the high cost of investment, it is not conceivable that the envisaged modification of the process results in excessively large and costly transformations of the already existing steam cracking units. Furthermore, it is also not economically conceivable that the process of steam cracking of hydrocarbons be modified by accepting a drop, however small it may be, in the yield of olefins and diolefins. Thus, for several years, numerous studies have been undertaken in this field and incessant research efforts have been made both at the laboratory stage and at the industrial stage.

Par ailleurs, dans les procédés de vapocraquage connus jusqu'à présent, mettant en oeuvre des hydrocarbures gazeux généralement d'un prix peu élevé, tels que le gaz naturel, on cherche à convertir en oléfines la quantité la plus élevée possible d'hydrocarbures gazeux. Ces procédés sont donc réalisés dans le but d'obtenir un taux élevé de conversion, ce taux de conversion étant défini par le rapport pondéral de la quantité d'hydrocarbures transformée à la quantité d'hydrocarbures mise en oeuvre. Cependant, ce taux élevé de conversion est généralement obtenu au détriment de la sélectivité en oléfines et notamment en éthylène de la réaction de vapocraquage, cette sélectivité en éthylène étant définie par le rapport pondéral de la quantité d'éthylène fabriquée à la quantité d'hydrocarbures gazeux transformée. Ces procédés sont réalisés à l'aide de fours de vapocraquage qui sont conçus également pour fonctionner selon des conditions dites de haute sévérité. Cependant les procédés mettant en oeuvre ces fours de vapocraquage peuvent présenter de sérieux inconvénients, tels que des phénomènes importants de cokage à l'intérieur du tube de craquage et un effet de vieillissement prématuré des installations de vapocraquage.Furthermore, in the steam cracking processes known up to now, using gaseous hydrocarbons generally of a low price, such as natural gas, it is sought to convert the highest possible quantity of gaseous hydrocarbons into olefins. . These processes are therefore carried out with the aim of obtaining a high conversion rate, this conversion rate being defined by the weight ratio of the quantity of hydrocarbons transformed to the quantity of hydrocarbons used. However, this high conversion rate is generally obtained to the detriment of the selectivity in olefins and in particular in ethylene of the steam cracking reaction, this selectivity in ethylene being defined by the weight ratio of the quantity of ethylene manufactured to the quantity of hydrocarbons gaseous transformed. These processes are carried out using steam cracking ovens which are also designed to operate under so-called high severity conditions. However, the processes using these steam cracking ovens can present serious drawbacks, such as significant phenomena of coking inside the cracking tube and a premature aging effect of the steam cracking installations.

Selon les circonstances économiques, les procédés de vapocraquage peuvent mettre en oeuvre des hydrocarbures gazeux d'un prix relativement plus élevé, tels que le gaz de pétrole liquéfié, également appelé LPG, ou de l'éthane, produit secondaire issu du vapocraquage d'hydrocarbures liquides, tels que le naphta ou le gaz-oil. Dans ce cas, il est avantageux de rechercher un procédé de vapocraquage ayant une sélectivité en éthylène la plus élevée possible, en particulier un procédé permettant de fabriquer pour une quantité donnée d'éthylène la quantité la plus faible possible de sous-produits indésirables, tels que le méthane. Il est apparu depuis quelques années un besoin urgent de modifier également les procédés de vapocraquage des hydrocarbures gazeux, dans le but d'accroître sensiblement la sélectivité en éthylène des réactions de vapocraquage.Depending on the economic circumstances, steam cracking processes can use relatively higher cost gaseous hydrocarbons, such as liquefied petroleum gas, also called LPG, or ethane, a secondary product resulting from steam cracking of hydrocarbons. liquids, such as naphtha or gas oil. In this case, it is advantageous to seek a steam cracking process having the highest possible ethylene selectivity, in particular a process making it possible to manufacture, for a given quantity of ethylene, the lowest possible quantity of undesirable by-products, such as than methane. In recent years, an urgent need has also appeared to modify the steam cracking processes for gaseous hydrocarbons, in order to significantly increase the ethylene selectivity of steam cracking reactions.

Il a été maintenant trouvé un procédé et un four de craquage d'hydrocarbures liquide ou gazeux en présence de vapeur d'eau permettant dans le cas d'hydrocarbures liquides, non seulement d'accroître très sensiblement la production en proplyène, en isobutène et en butadiène par rapport à la production d'éthylène, mais également d'accroître significativement le rendement du craquage en oléfines et en dioléfines, et dans le cas d'hydrocarbures gazeuz d'accroître très sensiblement la sélectivité en éthylène de la réaction de vapocraquage et en même temps de diminuer très notablement la quantité de méthane produite, en évitant également les inconvénients cités précédemment. Le procédé et le dispositif de l'invention peuvent, en outre, être facilement adaptés aux installations de vapocraquage déjà existantes.A process and an oven for cracking liquid or gaseous hydrocarbons have now been found in the presence of water vapor, making it possible, in the case of liquid hydrocarbons, not only to very significantly increase the production of proplyene, isobutene and butadiene with respect to the production of ethylene, but also to significantly increase the yield of cracking into olefins and diolefins, and in the case of gaseous hydrocarbons very significantly increase the selectivity for ethylene of the steam cracking reaction and at the same time very significantly reduce the amount of methane produced, while also avoiding the drawbacks mentioned above. The method and the device of the invention can, moreover, be easily adapted to already existing steam cracking installations.

La présente invention concerne tout d'abord un procédé de fabrication d'oléfines et de dioléfines par craquage d'hydrocarbures liquides ou gazeux en présence de vapeur d'eau, consistant à faire passer, à travers une zone de radiation d'un four, un mélange d'hydrocarbures et de vapeur d'eau, circulant dans un tube de craquage placé à l'intérieur de cette zone, sous une pression de sortie de four comprise entre 120 kPa et 240 kPa, la température de craquage du mélange étant, à l'entrée de la zone de radiation, comprise entre 400 et 700°C, et à la sortie de cette zone, comprise entre 720 et 880°C, procédé caractérisé en ce que

  • (a) le temps de séjour moyen du mélange d'hydrocarbures et de vapeur d'eau circulant dans le tube de craquage entre l'entrée et la sortie de la zone de radiation est compris entre 300 et 1800 millisecondes, et
  • (b) le volume réactionnel de la première moitié de la longueur du tube de craquage, située vers l'entrée de la zone de radiation, est de 1,3 à 4 fois supérieur à celui de la deuxième moitié de la longueur du tube, située vers la sortie de cette zone.
    • La figure 1 est une illustration schématique d'un four horizontal de vapocraquage, comprenant une enceinte thermique de radiation, également appelée zone de radiation, à travers laquelle passe un tube de craquage disposé sous la forme d'un serpentin.
    • Les figures 2 et 3 sont des graphiques tridimensionnels représentant la répartition du flux thermique à l'intérieur de l'enceinte thermique de radiation d'un four horizontal de vapocraquage, répartition obtenue respectivement selon une puissance de chauffe de type non-homogène et de type homogène.
    • La figure 4 est un graphique représentant l'augmentation de la température de craquage d'un mélange d'hydrocarbures et de vapeur d'eau circulant dans un tube de craquage depuis l'entrée jusqu'à la sortie de la zone de radiation d'un four horizontal de vapocraquage, en fonction du volume réactionnel que traverse le mélange.
    • La figure 5 est un graphique représentant l'augmentation de la température de craquage d'un mélange d'hydrocarbures et de vapeur d'eau circulant dans un tube de craquage depuis l'entrée jusqu'à la sortie de la zone de radiation d'un four horizontal de vapocraquage en fonction du temps de séjour moyen du mélange dans le four.
The present invention firstly relates to a process for the manufacture of olefins and diolefins by cracking liquid or gaseous hydrocarbons in the presence of water vapor, consisting in passing, through a radiation zone of a furnace, a mixture of hydrocarbons and steam, circulating in a cracking tube placed inside this zone, under an oven outlet pressure between 120 kPa and 240 kPa, the cracking temperature of the mixture being, at the entrance to the radiation zone, between 400 and 700 ° C, and at the exit from this zone, between 720 and 880 ° C, process characterized in that
  • (a) the average residence time of the mixture of hydrocarbons and water vapor circulating in the cracking tube between the entry and the exit of the radiation zone is between 300 and 1800 milliseconds, and
  • (b) the reaction volume of the first half of the length of the cracking tube, located towards the entrance to the radiation zone, is 1.3 to 4 times that of the second half of the length of the tube, located towards the exit of this area.
    • Figure 1 is a schematic illustration of a horizontal steam cracking oven, comprising a thermal radiation enclosure, also called a radiation zone, through which passes a cracking tube arranged in the form of a coil.
    • Figures 2 and 3 are three-dimensional graphs representing the distribution of the heat flux inside the thermal radiation enclosure of a horizontal steam cracking oven, distribution obtained respectively according to a heating power of non-homogeneous type and of type homogeneous.
    • FIG. 4 is a graph representing the increase in the cracking temperature of a mixture of hydrocarbons and water vapor circulating in a cracking tube from the entry to the exit from the radiation zone of a horizontal steam cracking oven, depending on the reaction volume through which the mixture passes.
    • FIG. 5 is a graph showing the increase in the cracking temperature of a mixture of hydrocarbons and water vapor circulating in a cracking tube from the entry to the exit from the radiation zone of a horizontal steam cracking oven as a function of the average residence time of the mixture in the oven.

La température de craquage du mélange d'hydrocarbures et de vapeur d'eau augmente le long du tube de craquage, entre l'entrée et la sortie de la zone de radiation du four, c'est-à-dire dans le sens d'écoulement du mélange. De préférence, le mélange d'hydrocarbures et de vapeur d'eau est soumis à un préchauffage avant son entrée dans la zone de radiation du four, ce préchauffage pouvant être réalisé par tout moyen connu, notamment dans une zone de chauffage par convection du four. En particulier, dans le cas d'hydrocarbures liquides, la température de craquage du mélange d'hydrocarbures et de vapeur d'eau est à l'entrée de la zone de radiation du four comprise entre 400°C et 650°C, de préférence comprise entre 430°C et 580°C ; elle est à la sortie de cette zone comprise entre 720°C et 860°C, de préférence comprise entre 760°C et 810°C. Dans le cas d'hydrocarbures gazeux, la température de craquage du mélange d'hydrocarbures et de vapeur d'eau est à l'entrée de la zone de radiation du four comprise entre 500°C et 700°C, de préférence comprise entre 550°C et 660°C ; elle est à la sortie de cette zone comprise entre 800°C et 880°C, de préférence comprise entre 810°C et 850°C.The cracking temperature of the mixture of hydrocarbons and steam increases along the cracking tube, between the inlet and the outlet of the radiation area of the furnace, i.e. in the direction of flow of the mixture. Preferably, the mixture of hydrocarbons and water vapor is subjected to preheating before it enters the radiation zone of the oven, this preheating can be carried out by any known means, in particular in a zone of convection heating of the oven. . In particular, in the case of liquid hydrocarbons, the cracking temperature of the mixture of hydrocarbons and water vapor is at the entry of the radiation region of the oven between 400 ° C and 650 ° C, preferably between 430 ° C and 580 ° C; it is at the exit of this zone comprised between 720 ° C and 860 ° C, preferably comprised between 760 ° C and 810 ° C. In the case of gaseous hydrocarbons, the cracking temperature of the mixture of hydrocarbons and steam is at the entry of the radiation zone of the furnace between 500 ° C and 700 ° C, preferably between 550 ° C and 660 ° C; it is at the exit of this zone between 800 ° C and 880 ° C, preferably between 810 ° C and 850 ° C.

Le procédé, selon la présente invention, est caractérisé par un temps de séjour moyen du mélange d'hydrocarbures et de vapeur d'eau, circulant dans le tube de craquage entre l'entrée et la sortie de la zone de radiation du four. Ce temps de séjour moyen peut être relativement plus long que celui existant habituellement dans les procédés de vapocraquage des hydrocarbures fonctionnant dans des conditions de haute sévérité. Il est, généralement compris entre 300 et 1800 millisecondes, de préférence compris entre 400 et 1400 millisecondes, notamment lorsque les hydrocarbures mis en oeuvre sont gazeux. Il est, par ailleurs, compris entre 850 et 1800 millisecondes, de préférence compris entre 870 et 1500 millisecondes, et plus particulièrement compris entre 900 et 1400 millisecondes, lorsque les hydrocarbures mis en oeuvre sont liquides.The method according to the present invention is characterized by an average residence time of the mixture of hydrocarbons and water vapor, circulating in the cracking tube between the inlet and the outlet of the radiation zone of the furnace. This average residence time can be relatively longer than that usually existing in steam cracking processes for hydrocarbons operating under conditions of high severity. It is generally between 300 and 1800 milliseconds, preferably com taken between 400 and 1400 milliseconds, especially when the hydrocarbons used are gaseous. It is, moreover, between 850 and 1800 milliseconds, preferably between 870 and 1500 milliseconds, and more particularly between 900 and 1400 milliseconds, when the hydrocarbons used are liquid.

Par ailleurs, le procédé selon la présente invention est, également, caractérisé par le volume réactionnel du tube de craquage qui dans la première moitié de la longueur du tube, située vers l'entrée de la zone de radiation, est de 1,3 à 4 fois supérieur, de préférence de 1,5 à 2,5 fois supérieur à celui de la deuxième moitié de la longueur du tube, située vers la sortie de cette zone. Plus particulièrement, le volume réactionnel par unité de longueur du tube de craquage diminue d'une façon continue ou discontinue depuis l'entrée jusqu'à la sortie de la zone de radiation du four. En pratique, on préfère réaliser cette diminution d'une façon discontinue, par paliers le long du tube de craquage.Furthermore, the method according to the present invention is also characterized by the reaction volume of the cracking tube which in the first half of the length of the tube, located towards the entrance to the radiation zone, is 1.3 to 4 times greater, preferably 1.5 to 2.5 times greater than that of the second half of the length of the tube, located towards the exit of this area. More particularly, the reaction volume per unit length of the cracking tube decreases continuously or discontinuously from the entry to the exit from the radiation zone of the furnace. In practice, it is preferred to carry out this reduction in a discontinuous manner, in stages along the cracking tube.

On constate que dans ces conditions que le temps de séjour moyen du mélange par unité de longueur du tube de craquage, également appelé temps de séjour partiel, n'est pas constant tout le long du tube de craquage depuis l'entrée jusqu'à la sortie de la zone de radiation du four, mais tend à diminuer significativement dans le sens de l'écoulement du mélange dans le tube de craquage. Plus précisément, le temps de séjour moyen du mélange circulant dans la première moitié de la longueur du tube, située vers l'entrée de la zone de radiation du four, est de 2 à 4 fois supérieur, de préférence de 2,6 à 3 fois supérieur à celui existant dans la deuxième moitié de la longueur du tube, située vers la sortie de cette zone. On observe également que la vitesse superficielle apparente du mélange d'hydrocarbures et de vapeur d'eau circulant dans le tube de craquage augmente dans le sens d'écoulement du mélange. Ainsi, cette vitesse est relativement faible dans la première moitié de la longueur du tube de craquage, située vers l'entrée de la zone de radiation, par exemple comprise entre 30 et 80 m/sec, et plus élevée dans la deuxième moitié de la longueur du tube, située vers la sortie de la zone de radiation, par exemple comprise entre 90 et 150 m/sec. Ainsi, le procédé selon la présente invention permet au mélange d'hydrocarbures et de vapeur d'eau de traverser relativement lentement la partie du tube de craquage où la température est relativement faible, et au contraire plus rapidement la partie du tube de craquage où la température est plus élevée. Il permet de ce fait d'accroître non seulement la production de propylène, d'isobutène et de butadiène par rapport à celle d'éthylène mais aussi le rendement du craquage en oléfines et en dioléfines, notamment lorsque des hydrocarbures liquides sont mis en oeuvre.It is found that under these conditions that the average residence time of the mixture per unit length of the cracking tube, also called partial residence time, is not constant along the cracking tube from the inlet to the out of the radiation area of the oven, but tends to decrease significantly in the direction of flow of the mixture in the cracking tube. More specifically, the average residence time of the mixture circulating in the first half of the length of the tube, located towards the entrance to the radiation area of the furnace, is 2 to 4 times greater, preferably 2.6 to 3 times greater than that existing in the second half of the length of the tube, located towards the exit of this zone. It is also observed that the apparent surface speed of the mixture of hydrocarbons and water vapor circulating in the cracking tube increases in the direction of flow of the mixture. Thus, this speed is relatively low in the first half of the length of the cracking tube, located towards the entrance to the radiation zone, for example between 30 and 80 m / sec, and higher in the second half of the length of the tube, located towards the exit of the radiation zone, for example between 90 and 150 m / sec. Thus, the method according to the present invention allows the mixture of hydrocarbons and steam to pass relatively slowly through the part of the cracking tube where the temperature is relatively low, and on the contrary more quickly through the part of the cracking tube where the temperature is higher. It therefore makes it possible not only to increase the production of propylene, isobutene and butadiene relative to that of ethylene but also the yield of cracking into olefins and diolefins, in particular when liquid hydrocarbons are used.

On a toutefois remarqué que les meilleurs résultats sont obtenus, lorsque l'augmentation de la température de craquage du mélange d'hydrocarbures et de vapeur d'eau entre l'entrée et la sortie de la zone de radiation du four est associée à une répartition non homogène de la puissance thermique du four appliquée le long du tube, répartition telle que la puissance thermique appliquée à la deuxième moitié de la longueur du tube, située vers la sortie de la zone de radiation, est de 1,5 à 5 fois supérieure à celle appliquée à la première moitié de la longueur du tube, située vers l'entrée de cette zone.It has however been observed that the best results are obtained when the increase in the cracking temperature of the mixture of hydrocarbons and water vapor between the inlet and the outlet of the radiation zone of the furnace is associated with a distribution. uneven thermal power of the oven applied along the tube, distribution such that the thermal power applied to the second half of the length of the tube, located towards the exit of the radiation area, is 1.5 to 5 times greater to that applied to the first half of the length of the tube, located towards the entrance of this zone.

Ainsi, la température de craquage du mélange d'hydrocarbures et de vapeur n'augmente pas d'une façon uniforme le long du tube, entre l'entrée et la sortie de la zone de radiation du four. Plus précisément, l'augmentation de la température de craquage du mélange est relativement modérée dans la première moitié de la longueur du tube, située vers l'entrée de la zone de radiation du four, tandis que l'augmentation de la température de craquage du mélange est plus importante dans la seconde moitié de la longueur du tube, située vers la sortie de la zone de radiation du four. Le réglage de la température de craquage du mélange d'hydrocarbures et de vapeur, circulant dans le tube entre l'entrée et ta sortie de la zone de radiation du four, est obtenue par une répartition graduée de la puissance thermique appliquée au tube. En particulier, la puissance thermique appliquée à la deuxième moitié de la longueur du tube, située vers la sortie de la zone de radiation du four, est de 1,5 à 5 fois supérieure, de préférence de 2 à 4 fois supérieure à celle appliquée à la première moitié de la longueur du tube, située vers l'entrée de cette zone. Par puissance thermique, on entend ici la quantité du chaleur apportée par unité de temps et par unité de volume du four environnant le tube de craquage.Thus, the cracking temperature of the mixture of hydrocarbons and steam does not increase uniformly along the tube, between the inlet and the outlet of the radiation zone of the furnace. More specifically, the increase in the cracking temperature of the mixture is relatively moderate in the first half of the length of the tube, located towards the entrance to the radiation zone of the furnace, while the increase in the cracking temperature of the mixing is more important in the second half of the length of the tube, located towards the exit of the radiation area of the oven. The regulation of the cracking temperature of the mixture of hydrocarbons and steam, circulating in the tube between the inlet and the outlet of the radiation area of the furnace, is obtained by a graded distribution of the thermal power applied to the pipe. In particular, the thermal power applied to the second half of the length of the tube, located towards the exit from the radiation area of the furnace, is 1.5 to 5 times greater, preferably 2 to 4 times greater than that applied at the first half of the length of the tube, located towards the entrance to this area. By thermal power is meant here the quantity of heat supplied per unit of time and per unit of volume of the oven surrounding the cracking tube.

On constate que dans ces conditions la combinaison d'une répartition non homogène de la puissance thermique appliquée le long du tube de craquage avec un volume réactionnel décroissant par unité de longueur du tube de craquage a pour résultat de faire augmenter significativement le temps de séjour moyen du mélange dans la première moitié de la longueur du tube de craquage située vers l'entrée de la zone radiation du four. L'effet de cette combinaison permet ainsi au mélange d'hydrocarbures et de vapeur d'eau de traverser relativement lentement la partie du tube de craquage où la puissance thermique appliquée est la plus faible, et au contraire plus rapidement la partie du tube de craquage où la puissance thermique appliquée est la plus importante. Ceci a pour résultat d'accroître d'une façon considerable à la fois la production de propylène, d'isobutène et de butadiène par rapport à la production d'éthylène, et le rendement du craquage en oléfines et en dioléfines, notamment lorsque l'on met en oeuvre dans le procédé les hydrocarbures liquides. Cette combinaison a également pour résultat d'accroître la sélectivité en éthylène de la réaction de vapocraquage et de diminuer significativement la quantité de méthane produite, lorsque des hydrocarbures gazeux sont en particulier mis en oeuvre. Ce résultat est, en outre, obtenu avec un rendement thermique de radiation amélioré par rapport aux procédés antérieurement connus, du fait d'une température moyenne de craquage relativement plus faible.It is found that under these conditions the combination of a non-uniform distribution of the thermal power applied along the cracking tube with a decreasing reaction volume per unit length of the cracking tube has the result of significantly increasing the average residence time of the mixture in the first half of the length of the cracking tube located towards the entrance to the radiation area of the oven. The effect of this combination thus allows the mixture of hydrocarbons and water vapor to pass relatively slowly through the part of the cracking tube where the applied thermal power is the lowest, and on the contrary more quickly through the part of the cracking tube. where the thermal power applied is the greatest. This has the result of considerably increasing both the production of propylene, isobutene and butadiene relative to the production of ethylene, and the yield of cracking into olefins and diolefins, in particular when the liquid hydrocarbons are used in the process. This combination also has the result of increasing the ethylene selectivity of the steam cracking reaction and of significantly reducing the quantity of methane produced, when gaseous hydrocarbons are used in particular. This result is also obtained with an improved thermal radiation efficiency compared to previously known methods, due to a relatively lower average cracking temperature.

Le procédé selon la présente invention procure, en outre, d'autres avantages. En particulier, il permet de diminuer les phénomènes de cokage se produisant à l'intérieur du tube de craquage. Il permet, en outre, d'accroître la durée de vie d'une installation de vapocraquage, fonctionnant ainsi à une température moyenne de craquage relativement faible.The method according to the present invention also provides other advantages. In particular, it makes it possible to reduce the coking phenomena occurring inside the cracking tube. It allows, in in addition, to increase the service life of a steam cracking installation, thus operating at a relatively low average cracking temperature.

La composition du mélange d'hydrocarbures et de vapeur d'eau, mise en oeuvre dans le procédé selon l'invention, est telle que le rapport pondéral de la quantité d'hydrocarbures à la quantité de vapeur d'eau est compris entre 1 et 10, de préférence compris entre 2 et 6, lorsqu'il s'agit d'hydrocarbures gazeux notamment, et de préférence compris entre 3 et 6, lorsqu'il s'agit en particulier d'hydrocarbures liquides.The composition of the mixture of hydrocarbons and steam, used in the process according to the invention, is such that the weight ratio of the quantity of hydrocarbons to the quantity of steam is between 1 and 10, preferably between 2 and 6, in the case of gaseous hydrocarbons in particular, and preferably between 3 and 6, when it is in particular liquid hydrocarbons.

Les hydrocarbures liquides, mis en oeuvre dans le mélange avec la vapeur d'eau, peuvent être choisis parmi le naphta, constitué d'hydrocarbures comportant environ de 5 à 10 atomes de carbons, les essences légères constituées d'hydrocarbures comportant environ 5 ou 6 atomes de carbone, le gas-oil constitué d'hydrocarbures comportant environ de 8 à 15 atomes de carbone, ainsi que leurs mélanges. Ils peuvent, en outre, être utilisés en mélange avec des hydrocarbures saturés et insaturés comportant de 3 à 6 atomes de carbone.The liquid hydrocarbons, used in the mixture with the water vapor, can be chosen from naphtha, consisting of hydrocarbons containing approximately from 5 to 10 carbon atoms, light gasolines consisting of hydrocarbons comprising approximately 5 or 6 carbon atoms, the diesel oil consisting of hydrocarbons containing approximately from 8 to 15 carbon atoms, as well as their mixtures. They can also be used in admixture with saturated and unsaturated hydrocarbons containing from 3 to 6 carbon atoms.

Les hydrocarbures gazeux, mis en oeuvre dans le mélange avec la vapeur d'eau, sont constitués par des alcanes comportant de 2 à 4 atomes de carbone, en particulier l'éthane, le propane ou le butane, ou par leurs mélanges. Ces alcanes peuvent être mis en oeuvre éventuellement en mélange avec des alcènes comportant de 2 à 6 atomes de carbone et/ou du méthane et/ou des alcanes comportant de 5 à 6 atomes de carbone. On peut, en particulier, mettre en oeuvre dans le procédé de l'invention du gaz naturel ou du gaz de pétrole liquéfié, également appelé LPG, ou de l'éthane, produit secondaire issu du vapocraquage d'hdyrcarbures liquides, tels que le naphta ou le gaz-oil.The gaseous hydrocarbons, used in the mixture with water vapor, consist of alkanes comprising from 2 to 4 carbon atoms, in particular ethane, propane or butane, or by their mixtures. These alkanes can optionally be used in admixture with alkenes containing from 2 to 6 carbon atoms and / or methane and / or alkanes containing from 5 to 6 carbon atoms. It is possible, in particular, to use in the process of the invention natural gas or liquefied petroleum gas, also called LPG, or ethane, a secondary product resulting from the steam cracking of liquid hydrocarbons, such as naphtha or diesel.

Le procédé de la présente invention, mettant en oeuvre des hydrocarbures liquides, est particulièrement avantageux pour accroître la production des oléfines supérieures et des dioléfines par rapport à celle de d'éthylène, notamment la production des oléfines comportant 3 ou 4 atomes de carbone, telles que le propylène et l'isobutène et la production des dioléfines telles que le butadiène. On apprécie cet avantage, notamment, en définissant, d'une part, une sélectivité, Ss, en hydrocarbures produits comportant 3 atomes de carbone, et d'autre part une sélectivité, S4, en hydrocarbures produits comportant 4 atomes de carbone, selon les équations suivantes :

Figure imgb0001
et
Figure imgb0002
The process of the present invention, using liquid hydrocarbons, is particularly advantageous for increasing the production of higher olefins and diolefins compared to that of ethylene, in particular the production of olefins having 3 or 4 carbon atoms, such as propylene and isobutene and the production of diolefins such as butadiene. This advantage is appreciated, in particular, by defining, on the one hand, a selectivity, Ss, in produced hydrocarbons comprising 3 carbon atoms, and on the other hand a selectivity, S 4 , in produced hydrocarbons comprising 4 carbon atoms, according to the following equations:
Figure imgb0001
and
Figure imgb0002

Ainsi, le procédé permet de réaliser le vapocraquage des hydrocarbures liquides avec une sélectivité S3 égale ou supérieure à 0,73 et une sélectivité S4 égale ou supérieure à 0,51, lorsque la puissance thermique est appliquée d'une façon homogène le long du tube de craquage. Les sélectivités S3 et S4 peuvent devenir respectivement égales ou supérieures à 0,78 et à 0,57, lorsque la puissance thermique est appliquée d'une façon non-homogène le long du tube de craquage, selon le procédé de l'invention.Thus, the method makes it possible to carry out the steam cracking of liquid hydrocarbons with a selectivity S 3 equal to or greater than 0.73 and a selectivity S 4 equal or greater than 0.51, when the thermal power is applied in a homogeneous manner along of the cracking tube. The selectivities S 3 and S 4 can become equal to or greater than 0.78 and 0.57 respectively, when the thermal power is applied in a non-homogeneous manner along the cracking tube, according to the process of the invention .

La présente invention concerne, également, un dispositif permettant la mise en oeuvre du procédé de vapocraquage d'hydrocarbures décrit précédemment, en particulier un dispositif constitué par un four de craquage d'hydrocarbures en présence de vapeur d'eau comprenant une enceinte thermique de radiation munie de moyens de chauffe, enceinte à travers laquelle passe au moins un tube de craquage où circule le mélange de vapeur d'eau et d'hyrdrocarbures à craquer, dispositif caractérisé en ce que :

  • (a) le rapport entre la longueur et le diamètre moyen interne du tube de craquage traversant l'enceinte thermique de radiation est compris entre 200 et 600, et
  • (b) le diamètre interne du tube de craquage diminue d'une façon continue ou discontinue depuis l'entrée jusqu'à la sortie de l'enceinte thermique de radiation, de telle sorte que le rapport entre les diamètres internes du tube à l'entrée et à la sortie de cette enceinte est compris entre 1,2 et 3.
The present invention also relates to a device allowing the implementation of the hydrocarbon steam cracking process described above, in particular a device consisting of a hydrocarbon cracking oven in the presence of water vapor comprising a thermal radiation enclosure provided with heating means, enclosure through which at least one cracking tube passes through which the mixture of water vapor and hyrdrocarbons to be cracked circulates, device characterized in that:
  • (a) the ratio between the length and the mean internal diameter of the cracking tube passing through the thermal radiation enclosure is between 200 and 600, and
  • (b) the internal diameter of the cracking tube decreases continuously or discontinuously from the entry to the exit of the thermal radiation enclosure, so that the ratio between the internal diameters of the tube to the input and output of this enclosure is between 1.2 and 3.

Le four de vapocraquage, selon la présente invention, comprend une enceinte thermique de radiation à travers laquelle passe au moins un tube de craquage disposé sous la forme d'un serpentin horizontal ou vertical. Ce tube de craquage doit présenter un rapport entre la longueur et le diamètre moyen interne compris entre 200 et 600, de préférence compris entre 300 et 500. En particulier, lorsque des hydrocarbures liquides sont mis en oeuvre dans ce four, le diamètre moyen interne du tube de craquage est, de préférence, égal ou supérieur à 100 mm, de telle sorte que le temps de séjour moyen du mélange dans le tube de craquage puisse être relativement important et que les pertes de charge du mélange circulant dans le tube de craquage puissant être faibles. Toutefois, le diamètre moyen interne et la longueur du tube doivent rester dans des domaines de valeurs compatibles avec les contraintes mécaniques et thermiques auxquelles sont soumis les matériaux constituant le tube de craquage. En particulier, le diamètre moyen interne du tube de craquage ne peut excéder 250 mm environ. Par ailleurs, lorsque des hydrocarbures gazeux sont mis en oeuvre dans ce four, le diamètre moyen interne du tube de craquage peut être compris entre 70 mm et 160 mm, de préférence compris entre 80 et 150 mm.The steam cracking furnace according to the present invention comprises a thermal radiation enclosure through which at least one cracking tube passes, arranged in the form of a horizontal or vertical coil. This cracking tube must have a ratio between the length and the mean internal diameter of between 200 and 600, preferably between 300 and 500. In particular, when liquid hydrocarbons are used in this furnace, the mean internal diameter of the cracking tube is preferably equal to or greater than 100 mm, so that the average residence time of the mixture in the cracking tube can be relatively long and that the pressure drops of the mixture circulating in the powerful cracking tube to be weak. However, the mean internal diameter and the length of the tube must remain within ranges of values compatible with the mechanical and thermal stresses to which the materials constituting the cracking tube are subjected. In particular, the average internal diameter of the cracking tube cannot exceed approximately 250 mm. Furthermore, when hydrocarbons gaseous bures are used in this oven, the internal mean diameter of the cracking tube can be between 70 mm and 160 mm, preferably between 80 and 150 mm.

Par ailleurs, le diamètre interne du tube de craquage diminue d'une façon continue ou discontinue depuis l'entrée jusqu'à la sortie de l'enceinte thermique de radiation du four, c'est-à-dire dans le sens de l'écoulement du mélange d'hydrocarbures et de vapeur d'eau. En particulier, la diminution du diamètre interne du tube de craquage est telle que le rapport entre les diamètres internes du tube à l'entrée et à la sortie de l'enceinte thermique de radiation est compris entre 1,2 et 3, de préférence compris entre 1,4 et 2,2, plus particulièrement compris entre 1,4 et 2. En pratique, lorsque des hydrocarbures liquides sont mis en oeuvre dans ce four, le diamètre interne du tube de craquage à l'entrée de l'enceinte thermique de radiation est compris de préférence entre 140 et 220 mm, et celui à la sortie de cette enceinte est compris de préférence entre 70 et 120 mm. Par ailleurs, lorsque dans ce four on met en oeuvre des hydrocarbures gazeux, le diamètre interne du tube de craquage à l'entrée de l'enceinte thermique de radiation est compris de préférence entre 110 et 180 mm, et celui à la sortie de cette enceinte est compris de préférence entre 60 et 100 mm. Ces valeurs tiennent compte du fait que l'on veut éviter d'accroître exagérément les pertes de charge du tube de craquage, notamment dans la partie où le diamètre interne du tube est le plus faible. La diminution du diamètre interne peut être continue tout le long du tube de craquage. Cependant, on préfère mettre en oeuvre un tube de craquage constitué d'une succession de tubes de diamètre interne décroissant depuis l'entrée jusqu'à la sortie de l'enceinte thermique de radiation du four.Furthermore, the internal diameter of the cracking tube decreases continuously or discontinuously from the inlet to the outlet of the thermal radiation enclosure of the furnace, that is to say in the direction of the flow of the mixture of hydrocarbons and water vapor. In particular, the reduction in the internal diameter of the cracking tube is such that the ratio between the internal diameters of the tube at the inlet and at the outlet of the thermal radiation enclosure is between 1.2 and 3, preferably included between 1.4 and 2.2, more particularly between 1.4 and 2. In practice, when liquid hydrocarbons are used in this furnace, the internal diameter of the cracking tube at the inlet of the thermal enclosure radiation is preferably between 140 and 220 mm, and that at the outlet of this enclosure is preferably between 70 and 120 mm. Furthermore, when gaseous hydrocarbons are used in this furnace, the internal diameter of the cracking tube at the inlet of the thermal radiation enclosure is preferably between 110 and 180 mm, and that at the outlet of this enclosure is preferably between 60 and 100 mm. These values take into account the fact that one wants to avoid excessively increasing the pressure drops of the cracking tube, in particular in the part where the internal diameter of the tube is the smallest. The decrease in internal diameter can be continuous all along the cracking tube. However, it is preferred to use a cracking tube consisting of a succession of tubes of decreasing internal diameter from the inlet to the outlet of the thermal radiation enclosure of the furnace.

En pratique, le tube de craquage est disposé sous la forme d'un serpentin constitué d'une succession de sections droites reliées entre elles par des coudes, ces sections droites ayant des diamètres internes décroissants depuis l'entrée jusqu'à la sortie de l'enceinte thermique de radiation.In practice, the cracking tube is arranged in the form of a coil made up of a succession of straight sections connected together by elbows, these straight sections having decreasing internal diameters from the inlet to the outlet of the pipe. thermal radiation enclosure.

La figure 1 illustre schématiquement un four horizontal de vapocraquage comprenant une enceinte thermique de radiation (1) à travers laquelle passe un tube de craquage disposé sous la forme d'un serpentin constitué de huit sections droites horizontales reliées entre elles par des coudes, les sections (2) et (3) ayant un diamètre interne de 172 mm, les sections (4) et (5) un diamètre interne de 150 mm, les sections (6) et (7) un diamètre de 129 mm et les sections (8) et (9) un diamètre interne de 108 mm, l'entrée et la sortie du tube de craquage dans l'enceinte thermique de radiation étant respectivement en (10) et (11).Figure 1 schematically illustrates a horizontal steam cracking furnace comprising a thermal radiation enclosure (1) through which passes a cracking tube arranged in the form of a coil consisting of eight horizontal straight sections connected together by elbows, the sections (2) and (3) having an internal diameter of 172 mm, the sections (4) and (5) an internal diameter of 150 mm, the sections (6) and (7) a diameter of 129 mm and the sections (8 ) and (9) an internal diameter of 108 mm, the inlet and outlet of the cracking tube in the thermal radiation enclosure being in (10) and (11) respectively.

Une variante peut consister à mettre en oeuvre un tube de craquage qui, dès l'entrée dans l'enceinte thermique de radiation du four, est divisé en un faisceau de tubes parallèles dont le diamètre interne peut être constant et dont le nombre diminue depuis l'entrée jusqu'à la sortie de l'enceinte thermique, de telle sorte que le volume réactionnel constitué par l'ensemble des tubes correspondant à la première moitié de la longueur du tube de craquage est de 1,3 à 4 fois supérieur, de préférence de 1,5 à 2,5 fois supérieur à celui correspondant à la deuxième moitié de la longueur du tube.A variant may consist in using a cracking tube which, upon entering the thermal radiation chamber of the furnace, is divided into a bundle of parallel tubes whose internal diameter can be constant and whose number decreases since l entry to the exit of the thermal enclosure, so that the reaction volume constituted by the set of tubes corresponding to the first half of the length of the cracking tube is 1.3 to 4 times greater, preferably 1.5 to 2.5 times greater than that corresponding to the second half of the length of the tube.

Le four vapocraquage comprend une enceinte thermique de radiation munie de moyens de chauffe constitués de brûleurs, disposés par exemple en rangées sur la sole et/ou sur les murs de l'enceinte. La disposition, le réglage et/ou la taille des brûleurs dans l'enceinte thermique sont tels que la puissance thermique peut être répartie de façon homogène le long du tube, et que le mélange d'hydrocarbures et de vapeur d'eau est soumis à une température qui croît rapidement dans la première moitié du tube, puis plus lentement dans la deuxième moitié du tube. Toutefois, la puissance maximum de chauffe doit être telle que la température de peau n'excède pas la limite compatible avec la nature du métal ou de l'alliage constituant le tube de craquage.The steam cracking oven comprises a thermal radiation enclosure provided with heating means consisting of burners, arranged for example in rows on the floor and / or on the walls of the enclosure. The arrangement, adjustment and / or size of the burners in the thermal enclosure are such that the thermal power can be distributed uniformly along the tube, and the mixture of hydrocarbons and steam is subjected to a temperature which increases rapidly in the first half of the tube, then more slowly in the second half of the tube. However, the maximum heating power must be such that the skin temperature does not exceed the limit compatible with the nature of the metal or alloy constituting the cracking tube.

On a toutefois observé que les meilleurs résultats sont obtenus, lorsque le four de vapocraquage comprend des moyens de chauffe constitués par des brûleurs dont la puissance thermique augmente le long du tube de craquage, depuis l'entrée jusqu'à la sortie de l'enceinte thermique de radiation, de telle sorte que le rapport entre la puissance thermique des brûleurs appliquée à la première moitié de la longueur du tube de craquage, située vers l'entrée de l'enceinte thermique de radiation, et celle appliquée à la deuxième moitié de la longueur du tube, située vers la sortie de cette enceinte, est compris entre 40/60 et 15/85, de préférence compris entre 33/67 et 20/80. La disposition, le réglage et/ou la taille des brûleurs dans l'enceinte thermique sont tels que la puissance thermique est croissante le long du tube de craquage depuis l'entrée jusqu'à la sortie de l'enceinte. Ce profil croissant de la puissance thermique des brûleurs appliquée le long du tube de craquage peut être facilement obtenu en réglant d'une façon appropriée le débit d'alimentation en gaz ou en fuel-gaz de chacun des brûleurs. Une autre manière consiste à disposer dans l'enceinte thermique des brûleurs de taille et de puissance de chauffe appropriées. Toutefois, la puissance maximum de chauffe doit être telle que la température de peau n'excède pas la limite compatible avec la nature du métal ou de l'alliage constituant le tube de craquage.However, it has been observed that the best results are obtained when the steam cracking furnace comprises heating means constituted by burners whose thermal power increases along the cracking tube, from the inlet to the outlet of the enclosure. thermal radiation, so that the ratio between the thermal power of the burners applied to the first half of the length of the cracking tube, located towards the inlet of the thermal radiation enclosure, and that applied to the second half of the length of the tube, located towards the outlet of this enclosure, is between 40/60 and 15/85, preferably between 33/67 and 20/80. The arrangement, adjustment and / or size of the burners in the thermal enclosure are such that the thermal power increases along the cracking tube from the inlet to the outlet of the enclosure. This increasing profile of the thermal power of the burners applied along the cracking tube can be easily obtained by appropriately adjusting the gas or fuel-gas supply rate of each of the burners. Another way is to have burners of the appropriate size and heating capacity in the thermal enclosure. However, the maximum heating power must be such that the skin temperature does not exceed the limit compatible with the nature of the metal or alloy constituting the cracking tube.

Les exemples non limitatifs suivant illustrent la présente invention.The following nonlimiting examples illustrate the present invention.

Exempte 1Free 1

Un four de vapocraquage, tel que représenté schématiquement à la figure 1, comprend une enceinte thermique de radiation (1) en briquetage, constituée par un parallélépipède rectangle dont les dimensions internes sont de 9,75 m pour la longueur, de 1,70 m pour la largeur et de 4,85 m pour la hauteur. Dans l'enceinte (1), on place un tube de craquage en acier réfractaire à base de nickel et de chrome, ayant un diamètre moyen interne de 140 mm, une épaisseur de 8 mm et, compte tenu de la capacité de l'enceinte (1 ), une longueur totale de 64 mètres, comprise entre l'entrée (10) et la sortie (11). Le rapport entre la longueur et le diamètre moyen interne du tube est de 457. Ce tube de craquage est disposé sous la forme d'un serpentin, comprenant huit sections droites horizontales, d'égale longueur chacune, reliées entre elles par des coudes. Le diamètre interne des sections (2) et (3) situées vers l'entrée de l'enceinte thermique est de 172 mm ; les sections (4) et (5) qui suivent, ont un diamètre interne de 150 mm ; puis les sections (6) et (7) ont un diamètre interne de 129 mm ; le diamètre interne des sections (8) et (9) situées vers la sortie de l'enceinte thermique est de 108 mm.A steam cracking furnace, as shown diagrammatically in FIG. 1, comprises a thermal radiation enclosure (1) in brickwork, constituted by a rectangular parallelepiped whose internal dimensions are 9.75 m for the length, 1.70 m for the width and 4.85 m for the height. In the enclosure (1), a cracking tube of refractory steel based on nickel and chromium, having an average internal diameter of 140 mm, a thickness of 8 mm and, taking into account the capacity of the enclosure, is placed. (1), a total length of 64 meters, between the inlet (10) and the outlet (11). The relationship between lon and the internal mean diameter of the tube is 457. This cracking tube is arranged in the form of a serpentine, comprising eight straight horizontal sections, of equal length each, connected to each other by elbows. The internal diameter of the sections (2) and (3) located towards the entrance to the thermal enclosure is 172 mm; the following sections (4) and (5) have an internal diameter of 150 mm; then sections (6) and (7) have an internal diameter of 129 mm; the internal diameter of the sections (8) and (9) located towards the outlet of the thermal enclosure is 108 mm.

Par ailleurs, les diamètres internes du tube de craquage à l'entrée (10) et à la sortie (11) de l'enceinte (1) étant respectivement de 172 mm et de 108 mm, le rapport entre les diamètres internes du tube à l'entrée et à la sortie est donc de 1,6. Par ailleurs, le volume réactionnel de la première moitié de la longueur du tube de craquage, correspondant aux sections droites (2), (3), (4) et (5), est 1,84 fois supérieur au volume réactionnel de la deuxième moitié de la longueur du tube de craquage, correspondant aux sections droites (6), (7), (8) et (9).Furthermore, the internal diameters of the cracking tube at the inlet (10) and at the outlet (11) of the enclosure (1) being 172 mm and 108 mm respectively, the ratio between the internal diameters of the tube to entry and exit is therefore 1.6. Furthermore, the reaction volume of the first half of the length of the cracking tube, corresponding to the straight sections (2), (3), (4) and (5), is 1.84 times greater than the reaction volume of the second half the length of the cracking tube, corresponding to the straight sections (6), (7), (8) and (9).

L'enceinte thermique de radiation du four de vapocraquage est munie de brûleurs disposés sur les murs de l'enceinte, suivant cinq rangées horizontales, situées à égale distance les unes des autres. La puissance thermique de l'ensemble de ces brûleurs est répartie de façon homogène entre ces cinq rangées.The thermal radiation enclosure of the steam cracking furnace is provided with burners arranged on the walls of the enclosure, in five horizontal rows, located at equal distance from each other. The thermal power of all of these burners is evenly distributed between these five rows.

Dans ce tube de craquage, on fait circuler un mélange d'hydrocarbures liquides et de vapeur d'eau. Les hydrocarbures liquides sont constitués par un naphta de densité 0,718, ayant un intervalle de distillation ASTM 45/180°C et des teneurs pondérales de 35 % en paraffines linéaires, de 29,4 % en paraffines ramifiées, de 28,3 % en composés cyclaniques et de 7,3 % en composés aromatiques. La composition du mélange de naphta et de vapeur d'eau mise en oeuvre est telle que le rapport pondéral de la quantité de naphta à la quantité de vapeur d'eau est de 4. On introduit ainsi dans le tube de craquage le naphta suivant un débit de 3500 kg/h et la vapeur d'eau suivant un débit de 875 kg/h.In this cracking tube, a mixture of liquid hydrocarbons and water vapor is circulated. The liquid hydrocarbons consist of a naphtha with a density of 0.718, having a distillation range of ASTM 45/180 ° C. and weight contents of 35% in linear paraffins, 29.4% in branched paraffins, 28.3% in compounds cyclic and 7.3% aromatic compounds. The composition of the mixture of naphtha and water vapor used is such that the weight ratio of the quantity of naphtha to the quantity of water vapor is 4. The naphtha is thus introduced into the cracking tube according to a flow rate of 3500 kg / h and water vapor at a flow rate of 875 kg / h.

La température de craquage du mélange de naphta et de vapeur d'eau s'élève de 470°C à l'entrée de la zone de radiation du four jusqu'à 775°C à la sortie de cette zone. L'évolution de la température de craquage du mélange le long du tube de craquage est décrite par la courbe (a) de la figure 4, représentant en abscisse le volume réactionnel (en litres) traversé par le mélange et en ordonnée la température de craquage (en °C) du mélange. La courbe (a) montre que la température de craquage du mélange augmente dans sa partie initiale relativement lentement en fonction du volume réactionnel traversé. La pression du mélange est à la sortie du four de 170 kPa.The cracking temperature of the mixture of naphtha and steam rises from 470 ° C at the entrance to the oven radiation zone up to 775 ° C at the exit from this zone. The evolution of the cracking temperature of the mixture along the cracking tube is described by the curve (a) of FIG. 4, representing on the abscissa the reaction volume (in liters) crossed by the mixture and on the ordinate the cracking temperature (in ° C) of the mixture. Curve (a) shows that the cracking temperature of the mixture increases in its initial part relatively slowly as a function of the reaction volume passed through. The pressure of the mixture is at the outlet of the oven of 170 kPa.

Le temps de séjour moyen du mélange de naphta et de vapeur d'eau circulant dans le tube de craquage entre l'entrée et la sortie de la zone de radiation du four est de 1030 millisecondes. Par ailleurs, le temps de séjour moyen de ce mélange circulant dans la première moité de la longueur du tube de craquage est 2,3 fois supérieur à celui dans la deuxième moitié de la longueur du tube.The average residence time of the mixture of naphtha and water vapor circulating in the cracking tube between the inlet and the outlet of the radiation zone of the furnace is 1030 milliseconds. Furthermore, the average residence time of this mixture circulating in the first half of the length of the cracking tube is 2.3 times greater than that in the second half of the length of the tube.

Dans ces conditions, on produit par heure 580 kg d'éthylène, 520 kg de propylène, 105 kg d'isobutène, 165 kg de butadiène et 145 kg d'éthane. L'éthane ainsi fabriqué dans ce four est soumis ensuite à une étape secondaire de vapocraquage permettant de le transformer en éthylène selon un rendement pondéral de 85 % et améliorant, de ce fait, la production globale en éthylène de l'installation de vapocraquage. On constate en outre que les productions en oléfines supérieures et en butadiène sont relativement élevées par rapport à la production de l'éthylène. Ainsi, pour une tonne d'éthylène produite et recueillie à la sortie de l'installation de vapocraquage, les productions de propylène, d'isobutène et de butadiène sont respectivemnt de 740 kg, de 150 kg et de 235 kg.Under these conditions, 580 kg of ethylene, 520 kg of propylene, 105 kg of isobutene, 165 kg of butadiene and 145 kg of ethane are produced per hour. The ethane thus produced in this furnace is then subjected to a secondary stage of steam cracking making it possible to transform it into ethylene according to a weight yield of 85% and thereby improving the overall production of ethylene from the steam cracking installation. It is also found that the production of higher olefins and butadiene are relatively high compared to the production of ethylene. Thus, for a ton of ethylene produced and collected at the outlet of the steam cracking installation, the production of propylene, isobutene and butadiene are 740 kg, 150 kg and 235 kg respectively.

Par ailleurs, la sélectivité Sa en hydrocarbures produits, comportant 3 atomes de carbone, et la sélectivité S4 en hydrocarbures produits, comportant 4 atomes de carbone, sont les suivantes :

  • S3 = 0,74
  • S4 = 0,53
Furthermore, the selectivity Sa in produced hydrocarbons, comprising 3 carbon atoms, and the selectivity S 4 in produced hydrocarbons, comprising 4 carbon atoms, are the following:
  • S 3 = 0.74
  • S 4 = 0.53

Ces deux valeurs, relativement élevées, montrent que la réaction de vapocraquage du naphta ainsi réalisée favorise la formation des oléfines comportant de 3 à 4 atomes de carbone, ainsi que la formation du butadiène.These two relatively high values show that the steam cracking reaction of naphtha thus carried out promotes the formation of olefins containing 3 to 4 carbon atoms, as well as the formation of butadiene.

Exempte 2Free 2

On opère dans un four de vapocraquage indentique à celui de l'exemple 1. On fait circuler dans le tube de craquage de ce four un mélange de naphta et de vapeur d'eau identique à celui mis en oeuvre à l'exemple 1. Les débits de naphta et de vapeur d'eau circulant dans le tube sont respectivement de 4800 et 1200 kg/h, cette augmentation des débits par rapport à ceux de l'exemple 1 pouvant être facilement réalisée grâce au fait que le tube de craquage utilisé présente une perte de charge relativement faible.The operation is carried out in a steam cracking furnace identical to that of Example 1. A mixture of naphtha and steam is circulated in the cracking tube of this furnace identical to that used in Example 1. The flow rates of naphtha and water vapor circulating in the tube are respectively 4800 and 1200 kg / h, this increase in flow rates compared to those of Example 1 can be easily achieved thanks to the fact that the cracking tube used has a relatively low pressure drop.

Dans ces conditions, la température de craquage du mélange de naphta et de vapeur d'eau s'élève de 480°C à l'entrée de la zone de radiation du four jusqu'à 775°C à la sortie de cette zone. La pression du mélange est de 170 kPa à la sortie du four.Under these conditions, the cracking temperature of the mixture of naphtha and water vapor rises from 480 ° C. at the entrance to the radiation zone of the furnace to 775 ° C. at the exit from this zone. The pressure of the mixture is 170 kPa at the outlet of the oven.

Dans ces conditions, le temps de séjour moyen du mélange de naphta et de vapeur d'eau circulant dans le tube de craquage entre l'entrée et la sortie de la zone de radiation du four est de 900 millisecondes. Par ailleurs, le temps de séjour moyen de ce mélange circulant dans la première moitié de la longueur du tube de craquage est 2,3 fois supérieur à celui dans la deuxième moitié de la longueur du tube. On produit ainsi par heur 640 kg d'éthylène, 612 kg de propylène, 122 kg d'isobutène, 200 kg de butadiène et 170 kg d'éthane. L'éthane ainsi fabriqué dans ce four est soumis ensuite à une étape secondaire de vapocraquage permettant de le transformer en éthylène selon un rendement pondéral de 85 % et améliorant, de ce fait, la production globale en éthylène de l'installation de vapocraquage. On constate que les productions en oléfines et en dioléfines sont supérieures à celles de l'exemple 1, du fait du gain sur les débits de matières premières que permet d'accomplir le four de vapocraquage de la présente invention. Par ailleurs, on observe également que les productions en oléfines supérieures et en butadiène sont relativement élevées par rapport à la production de l'éthylène. Ainsi, pour une tonne d'éthylène produite et recueillie à la sortie de l'installation de vapocraquage, les productions de propylène, d'isobutène et de butadiène sont respectivement de 780 kg, de 155 kg et de 255 kg.Under these conditions, the average residence time of the mixture of naphtha and water vapor circulating in the cracking tube between the inlet and the outlet of the radiation zone of the furnace is 900 milliseconds. Furthermore, the average residence time of this mixture circulating in the first half of the length of the cracked tube is 2.3 times greater than that in the second half of the length of the tube. Per hour, 640 kg of ethylene, 612 kg of propylene, 122 kg of isobutene, 200 kg of butadiene and 170 kg of ethane are thus produced. The ethane thus produced in this furnace is then subjected to a secondary stage of steam cracking making it possible to transform it into ethylene according to a weight yield of 85% and thereby improving the overall production of ethylene from the steam cracking installation. It is found that the productions of olefins and of diolefins are higher than those of Example 1, because of the gain on the flow rates of raw materials which makes it possible to accomplish the steam cracking furnace of the present invention. Furthermore, it is also observed that the productions of higher olefins and of butadiene are relatively high compared to the production of ethylene. Thus, for a tonne of ethylene produced and collected at the outlet of the steam cracking installation, the production of propylene, isobutene and butadiene are 780 kg, 155 kg and 255 kg respectively.

Par ailleurs, les sélectivités S3 et S4 sont les suivantes :

  • Sa = 0,77
  • S4 = 0,56.
Furthermore, the selectivities S 3 and S 4 are as follows:
  • Sa = 0.77
  • S 4 = 0.56.

Ces deux valeurs relativement élevées montrent que pour ce type de four et grâce au procédé de l'invention, la réaction de vapocraquage du naphta favorise la formation des oléfines comportant de 3 à 4 atomes de carbone, ainsi que la formation du butadiène, au détriment de la formation de l'éthylène.These two relatively high values show that for this type of oven and thanks to the process of the invention, the steam cracking reaction of naphtha promotes the formation of olefins having 3 to 4 carbon atoms, as well as the formation of butadiene, to the detriment of the formation of ethylene.

Exemple 3 (comcaratiftExample 3 (comcaratift

Un four de vapocraquage comprend une enceinte thermique de radiation, identique en forme et en taille à celle de l'exemple 1. Dans cette enceinte, on place un tube de craquage en acier réfractaire à base de nickel et de chrome, d'un poids total sensiblement identique à celui de l'exemple 1, ayant un diamètre interne de 108 mm, une épaisseur de 8 mm et, compte tenu de la capacité de l'enceinte et des contraintes mécaniques et thermiques du four, une longueur totale de 80 mètres comprise entre l'entrée et la sortie de l'enceinte. Le rapport entre la longueur et le diamètre interne du tube est de 740. Ce tube de craquage est disposé sous la forme d'un serpentin comprenant huit sections droites horizontales, d'égale longueur chacune, reliées entre elles par des coudes. Le diamètre interne de ces sections droites est constant et égal à 108 mm. Ainsi, les diamètres internes du tube à l'entrée et à la sortie de l'enceinte sont identiques. De même, le volume réactionnel de la première moitié de la longueur du tube de craquage, correspondant aux quatre premières sections droites, est identique au volume réactionnel de la deuxième moitié de la longueur du tube de craquage, correspondant aux quatre dernières sections droites.A steam cracking oven comprises a thermal radiation enclosure, identical in shape and size to that of Example 1. In this enclosure, a cracking tube of refractory steel based on nickel and chromium, of a weight, is placed. total substantially identical to that of Example 1, having an internal diameter of 108 mm, a thickness of 8 mm and, taking into account the capacity of the enclosure and the mechanical and thermal stresses of the oven, a total length of 80 meters between the entrance and the exit of the enclosure. The ratio between the length and the internal diameter of the tube is 740. This cracking tube is arranged in the form of a coil comprising eight straight horizontal sections, of equal length each, connected to each other by elbows. The internal diameter of these straight sections is constant and equal to 108 mm. Thus, the internal diameters of the tube at the inlet and at the outlet of the enclosure are identical. Likewise, the reaction volume of the first half of the length of the cracking tube, corresponding to the first four straight sections, is identical to the reaction volume of the second half of the length of the cracking tube, corresponding to the last four straight sections.

L'enceinte thermique de radiation du four de vapocraquage est munie de brûleurs disposés sur les murs de l'enceinte, suivant cinq rangées horizontales, situées à égale distance les unes des autres. La puissance thermique de l'ensemble de ces brûleurs est répartie de façon homogène entre ces cinq rangées.The thermal radiation enclosure of the steam cracking furnace is provided with burners arranged on the walls of the enclosure, in five horizontal rows, located at equal distance from each other. The thermal power of all of these burners is evenly distributed between these five rows.

Dans ce tube de craquage, on fait circuler un mélange de naphta et de vapeur d'eau, identique à celui mis en oeuvre à l'exemple 1. Compte tenu des pertes de charge relativement élevées dans ce tube de craquage, les débits en naphta et en vapeur d'eau sont respectivement de 3500 kg/h et 875 kg/h.In this cracking tube, a mixture of naphtha and steam is circulated, identical to that used in Example 1. Taking into account the relatively high pressure drops in this cracking tube, the flow rates in naphtha and in steam are 3500 kg / h and 875 kg / h respectively.

La température de craquage du mélange de naphta et de vapeur d'eau est de 490°C à l'entrée de la zone de radiation du four et de 775°C à la sortie de cette zone. L'évolution de la température de craquage du mélange le long du tube de craquage est décrite par la courbe (b) de la figure 4, représentant en abscisse le volume réactionnel (en litres) traversé par le mélange et en ordonnée la température de craquage (en °C) du mélange. La courbe (b) montre que la température de craquage du mélange augmente dans sa partie initiale relativement rapidement en fonction du volume réactionnel traversé. La pression du mélange est à la sortie du four de 170 kPa.The cracking temperature of the mixture of naphtha and steam is 490 ° C at the entrance to the oven radiation zone and 775 ° C at the exit from this zone. The evolution of the cracking temperature of the mixture along the cracking tube is described by curve (b) of FIG. 4, representing on the abscissa the reaction volume (in liters) crossed by the mixture and on the ordinate the cracking temperature (in ° C) of the mixture. Curve (b) shows that the cracking temperature of the mixture increases in its initial part relatively rapidly as a function of the reaction volume passed through. The pressure of the mixture is at the outlet of the oven of 170 kPa.

Le temps de séjour moyen du mélange de naphta et de vapeur d'eau circulant dans le tube de craquage entre l'entrée et la sortie de la zone de radiation du four est de 830 millisecondes.The average residence time of the mixture of naphtha and water vapor circulating in the cracking tube between the inlet and the outlet of the radiation zone of the furnace is 830 milliseconds.

Dans ces conditions, on produit par heure 588 kg d'éthylène, 501 kg de propylène, 95 kg d'isobutène, 147 kg de butadiène et 155 kg d'éthane. L'éthane ainsi fabriqué dans ce four est soumis ensuite à une étape secondaire de vapocraquage permettant de le transformer en éthylène selon un rendement pondéral de 85 % et améliorant, de ce fait, la production globale en éthylène de l'installation de vapocraquage. On constate que les productions en oléfines et en dioléfines sont inférieures à celles de l'exemple 2 et que les productions en propylène, en isobutène et en butadiène par rapport à la production de l'éthylène sont relativement moins élevées que celles observées dans les exemples 1 et 2. Ainsi, pour une tonne d'éthylène produite et recueillie à la sortie de l'installation de vapocraquage, les productions de propylène, d'isobutène et de butadiène sont respectivement de 696 kg, de 132 kg et de 204 kg.Under these conditions, 588 kg of ethylene, 501 kg of propylene, 95 kg of isobutene, 147 kg of butadiene and 155 kg of ethane are produced per hour. The ethane thus produced in this furnace is then subjected to a secondary stage of steam cracking making it possible to transform it into ethylene according to a weight yield of 85% and thereby improving the overall production of ethylene from the steam cracking installation. It is noted that the productions of olefins and of diolefins are lower than those of Example 2 and that the productions of propylene, isobutene and butadiene compared to the production of ethylene are relatively lower than those observed in the examples 1 and 2. Thus, for a tonne of ethylene produced and collected at the outlet of the steam cracking installation, the productions of propylene, isobutene and butadiene are 696 kg, 132 kg and 204 kg respectively.

Par ailleurs, les sélectivités S3 et S4 sont les suivantes :

  • Ss - 0,70
S4 - 0,48.Furthermore, the selectivities S 3 and S 4 are as follows:
  • Ss - 0.70
S 4 - 0.48.

Ces deux valeurs sont moins élevées que celles obtenues dans les exemples 1 et 2.These two values are lower than those obtained in Examples 1 and 2.

En outre, la perte de capacité maximale d'un tel four de vapocraquage est d'environ 35 %, pour un volume inchangé de l'enceinte thermique de radiation et pour des contraintes mécaniques et thermiques du four sensiblement identiques, en comparaison avec le four décrit dans l'exemple 1.In addition, the maximum capacity loss of such a steam cracking furnace is approximately 35%, for an unchanged volume of the thermal radiation enclosure and for substantially identical mechanical and thermal stresses of the furnace, in comparison with the furnace. described in Example 1.

Exemcle 4 (comcaratif)Example 4 (comcarative)

Un four de vapocraquage comprend une enceinte thermique de radiation, identique en forme et en taille à celle de l'exemple 1. Dans cette enceinte, on place un tube de craquage en acier réfrataire à base de nickel et de chrome, d'un poids total sensiblement identique à celui de l'exemple 1, ayant un diamètre interne de 140 mm, une épaisseur de 8 mm et, compte tenu de la capacité de l'enceinte et des contraintes mécaniques et thermiques du four, une longueur totale de 64 mètres comprises entre l'entrée et la sortie de l'enceinte. Le rapport entre la longueur et le diamètre interne du tube est de 457. Ce tube de craquage est disposé sous la forme d'un serpentin comprenant huit sections droites horizontales, d'égale longueur chacune, reliées entre elles par des coudes. Le diamètre interne de ces sections droites est constant et égal à 140 mm. Ainsi, les diamètres internes du tube à l'entrée et à la sortie de l'enceinte sont identiques. De même, le volume réactionnel de la première moitié de la longueur du tube de craquage, correspondant aux quatre premières sections droites, est identique au volume réactionnel de la deuxième moitié de la longueur du tube de craquage, correspondant aux quatre dernières sections droites.A steam cracking oven comprises a thermal radiation enclosure, identical in shape and size to that of Example 1. In this enclosure, a cracking tube of refractory steel based on nickel and chromium, of a weight, is placed. total substantially identical to that of Example 1, having an internal diameter of 140 mm, a thickness of 8 mm and, taking into account the capacity of the enclosure and the mechanical and thermal stresses of the oven, a total length of 64 meters between the entry and exit of the enclosure. The ratio between the length and the internal diameter of the tube is 457. This cracking tube is arranged in the form of a coil comprising eight horizontal straight sections, of equal length each, connected to each other by elbows. The internal diameter of these straight sections is constant and equal to 140 mm. Thus, the internal diameters of the tube at the inlet and at the outlet of the enclosure are identical. Likewise, the reaction volume of the first half of the length of the cracking tube, corresponding to the first four straight sections, is identical to the reaction volume of the second half of the length of the cracking tube, corresponding to the last four straight sections.

L'enceinte thermique de radiation du four de vapocraquage est munie de brûleurs disposés sur les murs de l'enceinte, suivant cinq rangées horizontales, situées à égale distance les unes des autres. La puissance thermique de l'ensemble de ces brûleurs est répartie de façon homogène entre ces cinq rangées.The thermal radiation enclosure of the steam cracking furnace is provided with burners arranged on the walls of the enclosure, in five horizontal rows, located at equal distance from each other. The thermal power of all of these burners is evenly distributed between these five rows.

Dans ce tube de craquage, on fait circuler un mélange de naphta et de vapeur d'eau, identique à celui mis en oeuvre à l'exemple 1. On y introduit le naphta suivant un débit de 3500 kg/h et la vapeur d'eau suivant un débit de 875 kg/h.In this cracking tube, a mixture of naphtha and water vapor is circulated, identical to that used in Example 1. The naphtha is introduced therein at a rate of 3500 kg / h and the vapor of water at a flow rate of 875 kg / h.

La température de craquage du mélange de naphta et de vapeur d'eau s'élève de 500°C à l'entrée de la zone de radiation du four jusqu'à 775°C à la sortie de cette zone. La pression du mélange est à la sortie du four de 170 kPa.The cracking temperature of the mixture of naphtha and water vapor rises from 500 ° C at the entrance to the radiation zone of the furnace up to 775 ° C at the exit from this zone. The pressure of the mixture is at the outlet of the oven of 170 kPa.

Le temps de séjour moyen du mélange de naphta et de vapeur d'eau circulant dans le tube de craquage entre l'entrée et la sortie de la zone de radiation du four est de 900 millisecondes.The average residence time of the mixture of naphtha and water vapor circulating in the cracking tube between the inlet and the outlet of the radiation zone of the furnace is 900 milliseconds.

Dans ces conditions, on produit par heure 585 kg d'éthylène, 506 kg de propylène, 101 kg d'isobutène, 156 kg de butadiène et 150 kg d'éthane. L'éthane ainsi fabriqué dans ce four est ensuite soumis à une étape secondaire de vapocraquage permettant de la transformer en éthylène selon un rendement pondéral de 85 % et améliorant, de ce fait, la production globale en éthylène de l'installation de vapocraquage. On constate que les productions en propylène, en isobutène et en butadiène sont relativement faibles. Ainsi, pour une tonne d'éthylène produite, et recueillie à la sortie de l'installation de vapocraquage, les productions de propylène, d'isobutène et de butadiène sont respectivement de 710 kg, de 140 kg et de 219 kg. Par ailleurs, les sélectivités S3 et S4 sont les suivantes :

  • S3 = 0,715
  • S4 = 0,500.
Under these conditions, 585 kg of ethylene, 506 kg of propylene, 101 kg of isobutene, 156 kg of butadiene and 150 kg of ethane are produced per hour. The ethane thus produced in this furnace is then subjected to a secondary steam cracking step making it possible to transform it into ethylene according to a weight yield of 85% and thereby improving the overall production of ethylene of the steam cracking installation. It can be seen that the propylene, isobutene and butadiene productions are relatively low. Thus, for a ton of ethylene produced, and collected at the outlet of the steam cracking installation, the productions of propylene, isobutene and butadiene are respectively 710 kg, 140 kg and 219 kg. Furthermore, the selectivities S 3 and S 4 are as follows:
  • S 3 = 0.715
  • S 4 = 0.500.

Ces deux valeurs sont moins élevées que celles obtenues dans l'exemple 1.These two values are lower than those obtained in Example 1.

Exempte 5Free 5

On opère dans un four de vapocraquage identique à celui de l'exemple 1, excepté le fait que la puissance thermique de l'ensemble des brûleurs n'est pas répartie de façon homogène entre les cinq rangées de brûleurs, mais est répartie de la façon suivante :

  • - 5 % de la puissance thermique totale sur la première rangée de brûleurs, située dans le haut de l'enceinte, au voisinage de l'entrée du tube de craquage,
  • - 10 % sur la deuxième rangée de brûleurs, située immédiatement en dessous de la première,
  • - 15 % sur la troisième rangée de brûleurs, située immédiatement en dessous de la deuxième,
  • - 30 % sur la quatrième rangée de brûleurs, située immédiatement en dessous de la troisième, et
  • - 40 % sur la cinquième rangée de brûleurs, située immédiatement en dessous de la quatrième, au voisinage de la sortie du tube de craquage. Ainsi, le rapport entre la puissance thermique des brûleurs appliquée à la première moitié de la longueur du tube, située vers l'entrée de l'enceinte, et celle appliquée à la deuxième moitié de la longueur du tube, située vers la sortie de cette enceinte, est de 22,5/77,5.
The operation is carried out in a steam cracking furnace identical to that of Example 1, except that the thermal power of all the burners is not evenly distributed between the five rows of burners, but is distributed in the same way next :
  • - 5% of the total thermal power on the first row of burners, located at the top of the enclosure, near the entrance to the cracking tube,
  • - 10% on the second row of burners, located immediately below the first,
  • - 15% on the third row of burners, located immediately below the second,
  • - 30% on the fourth row of burners, located immediately below the third, and
  • - 40% on the fifth row of burners, located immediately below the fourth, near the outlet of the cracking tube. Thus, the ratio between the thermal power of the burners applied to the first half of the length of the tube, located towards the inlet of the enclosure, and that applied to the second half of the length of the tube, located towards the outlet of this pregnant, is 22.5 / 77.5.

La nappe de flux thermique mesurée à l'intérieur de l'enceinte thermique de radiation du four est, dans ces conditions, représentée à la figure 2 par la surface inscrite dans le graphique tridimensionnel reliant par les trois axes de coordonnée, la longueur L de l'enceinte thermique, la hauteur H de cette enceinte et le flux thermique F. La figure 2 montre, en particulier, que le maximum du flux thermique de radiation se situe dans la partie inférieure de l'enceinte thermique, correspondant à la deuxième moitié de la longueur du tube de craquage située vers la sortie de l'enceinte thermique de radiation.The heat flux table measured inside the thermal radiation enclosure of the furnace is, under these conditions, represented in FIG. 2 by the surface inscribed in the three-dimensional graph connecting by the three coordinate axes, the length L of the thermal enclosure, the height H of this enclosure and the thermal flux F. FIG. 2 shows, in particular, that the maximum of the thermal flux of radiation is located in the lower part of the thermal enclosure, corresponding to the second half the length of the cracking tube located towards the outlet of the radiation thermal enclosure.

Dans ce tube de craquage, on fait circuler un mélange d'hydrocarbures liquides et de vapeur d'eau. Les hydrocarbures liquides sont constitués par un naphta de densité 0,690, ayant un intervalle de distillation ASTM 45/180°C et des teneurs pondérales de 38,2 % en paraffines linéaires, de 36,9 % en paraffines ramifiées, de 17,1 % en composés cyclaniques et de 7,8 % en composés aromatiques. La composition du mélange de naphta et de vapeur d'eau mise en oeuvre est telle que le rapport pondéral de la quantité de naphta à la quantité de vapeur d'eau est de 4. On introduit ainsi dans le tube de craquage le naphta suivant un débit de 3500 kg/h et la vapeur d'eau suivant un débit de 875 kg/h.In this cracking tube, a mixture of liquid hydrocarbons and water vapor is circulated. The liquid hydrocarbons consist of a naphtha of density 0.690, having a distillation range ASTM 45/180 ° C and weight contents of 38.2% in linear paraffins, of 36.9% in branched paraffins, of 17.1% in cyclanic compounds and 7.8% in aromatic compounds. The composition of the mixture of naphtha and water vapor used is such that the weight ratio of the quantity of naphtha to the quantity of water vapor is 4. The naphtha is thus introduced into the cracking tube according to a flow rate of 3500 kg / h and water vapor at a flow rate of 875 kg / h.

La température de craquage du mélange de naphta et de vapeur d'eau s'élève de 435°C à l'entrée de la zone de radiation du four jusqu'à 775°C à la sortie de cette zone. L'évolution de la température du mélange le long du tube de craquage est décrite par la courbe (a) de la figure 5 représentant en abscisse le temps de séjour moyen (en millisecondes) du mélange circulant dans le tube de craquage depuis l'entrée jusqu'à la sortie de la zone de radiation du four et en ordonnée la température de craquage (en °C) du mélange. La courbe (a) montre que la température de craquage du mélange augmente dans sa partie initiale relativement lentement en fonction du temps de séjour moyen du mélange dans le tube de craquage et qu'en particulier la plus grande partie du temps de séjour du mélange est réalisée à une température de craquage relativement faible, notamment à une température inférieure à 700°C. La pression du mélange est à la sortie du four de 170 kPa. Compte tenu de la répartition du flux thermique dans l'enceinte de radiation, la puissance thermique appliquée à la deuxième moitié de la longueur du tube de craquage, située vers la sortie de la zone de radiation, est 3,4 fois supérieure à celle appliquée à la première moitié du tube, située vers l'entrée de cette zone.The cracking temperature of the mixture of naphtha and water vapor rises from 435 ° C at the entrance to the radiation zone of the furnace up to 775 ° C at the exit from this zone. The evolution of the temperature of the mixture along the cracking tube is described by the curve (a) of FIG. 5 representing on the abscissa the average residence time (in milliseconds) of the mixture circulating in the cracking tube from the inlet up to the exit from the radiation area of the oven and on the ordinate the cracking temperature (in ° C) of the mixture. Curve (a) shows that the cracking temperature of the mixture increases in its initial part relatively slowly as a function of the average residence time of the mixture in the cracking tube and that in particular most of the residence time of the mixture is performed at a relatively low cracking temperature, in particular at a temperature below 700 ° C. The pressure of the mixture is at the outlet of the oven of 170 kPa. Given the distribution of the heat flux in the radiation enclosure, the thermal power applied to the second half of the length of the cracking tube, located towards the exit of the radiation area, is 3.4 times that applied to the first half of the tube, located towards the entrance to this area.

Le temps de séjour moyen du mélange de naphta et de vapeur d'eau circulant dans le tube de craquage entre l'entrée et la sortie de la zone de radiation du four est de 1180 millisecondes. Par ailleurs, le temps de séjour moyen de ce mélange circulant dans la première moitié de la longueur du tube de craquage est 2,6 fois supérieur à celui dans la deuxième moitié de la longueur du tube.The average residence time of the mixture of naphtha and water vapor circulating in the cracking tube between the inlet and the outlet of the radiation zone of the furnace is 1180 milliseconds. Furthermore, the average residence time of this mixture circulating in the first half of the length of the cracking tube is 2.6 times greater than that in the second half of the length of the tube.

Dans ces conditions, on produit par heure 620 kg d'éthylène, 590 kg de propylène, 110 kg d'isobutène, 180 kg de butadiène et 150 kg d'éthane. L'éthane ainsi fabriqué dans ce four est soumis ensuite à une étape secondaire de vapocraquage permettant de le transformer en éthylène selon un rendement pondéral de 85 % et améliorant, de ce fait, la production globale en éthylène de l'installation de vapocraquage. On constate en outre que les productions en oléfines supérieures et en butadiène sont relativement élevées par rapport à la production d'éthylène. Ainsi, pour une tonne d'éthylène produite, et recueuillie à la sortie de l'installation de vapocraquage, les productions de propylène, d'isobutène et de butadiène sont respectivement de 790 kg, de 147 kg et de 240 kg.Under these conditions, 620 kg of ethylene, 590 kg of propylene, 110 kg of isobutene, 180 kg of butadiene and 150 kg of ethane are produced per hour. The ethane thus produced in this furnace is then subjected to a secondary stage of steam cracking making it possible to transform it into ethylene according to a weight yield of 85% and thereby improving the overall production of ethylene from the steam cracking installation. It is also found that the production of higher olefins and butadiene are relatively high compared to the production of ethylene. Thus, for a tonne of ethylene produced and collected at the outlet of the steam cracking installation, the productions of propylene, isobutene and butadiene are 790 kg, 147 kg and 240 kg respectively.

Par ailleurs, la sélectivité Sa en hydrocarbures produits, comportant 3 atomes de carbone, et la sélectivité S4 en hydrocarbures produits, comportant 4 atomes de carbone, sont les suivantes :

  • Sa = 0,79
  • S4 = 0,57.
Furthermore, the selectivity Sa in produced hydrocarbons, comprising 3 carbon atoms, and the selectivity S 4 in produced hydrocarbons, comprising 4 carbon atoms, are the following:
  • Sa = 0.79
  • S 4 = 0.57.

Ces deux valeurs, relativement élevées, montrent que la réaction de vapocraquage du naphta favorise la formation des oléfines comportant de 3 à 4 atomes de carbone, ainsi que la formation du butadiène.These two relatively high values show that the steam cracking reaction of naphtha promotes the formation of olefins having 3 to 4 carbon atoms, as well as the formation of butadiene.

Exemple 6Example 6

On opère dans un four de vapocraquage identique à celui de l'exemple 5. On fait circuler dans le tube de craquage de ce four un mélange de naphta et de vapeur d'eau identique à celui mis en oeuvre à l'exemple 5. Les débits de naphta et de vapeur d'eau circulant dans le tube sont respectivement de 4800 kg/h et de 1200 kg/h, cette augmentation des débits par rapport à ceux de l'exemple 5 pouvant être facilement réalisée grâce au fait que le tube de craquage utilisé présente une perte de charge relativement faible.The operation is carried out in a steam cracking oven identical to that of Example 5. A mixture of naphtha and steam identical to that used in Example 5 is circulated in the cracking tube of this oven. flow rates of naphtha and water vapor circulating in the tube are respectively 4800 kg / h and 1200 kg / h, this increase in flow rates compared to those of Example 5 can be easily achieved thanks to the fact that the tube cracking agent used has a relatively low pressure drop.

Dans ces conditions, la température de craquage du mélange de naphta et de vapeur d'eau s'élève de 445°C à l'entrée de la zone de radiation du four jusqu'à 775°C à la sortie de cette zone. L'évolution de la température de craquage du mélange le long du tube de craquage est décrite par la courbe (b) de la figure 5, représentant en abscisse le temps de séjour moyen (en millisecondes) du mélange circulant dans le tube de craquage depuis l'entrée jusqu'à la sortie de la zone de radiation du four et en ordonnée la température de craquage (en °C) du mélange. La courbe (b) montre que la température de craquage du mélange augmente dans sa partie initiale relativement lentement en fonction du temps de séjour moyen du mélange dans le tube de craquage et qu'en particulier la plus grande partie du temps de séjour du mélange est réalisée à une température de craquage relativement faible, notamment à une température inférieure à 700°C. La pression du mélange est de 170 kPa à la sortie du four.Under these conditions, the cracking temperature of the mixture of naphtha and water vapor rises from 445 ° C. at the entrance to the radiation zone of the furnace up to 775 ° C. at the exit from this zone. The evolution of the cracking temperature of the mixture along the cracking tube is described by curve (b) of FIG. 5, representing on the abscissa the average residence time (in milliseconds) of the mixture circulating in the cracking tube from the inlet to the outlet of the radiation area of the oven and on the ordinate the cracking temperature (in ° C) of the mixture. Curve (b) shows that the cracking temperature of the mixture increases in its initial part relatively slowly as a function of the average residence time of the mixture in the cracking tube and that in particular most of the residence time of the mixture is performed at a relatively low cracking temperature, in particular at a temperature below 700 ° C. The pressure of the mixture is 170 kPa at the outlet of the oven.

Dans ces conditions, le temps de séjour moyen du mélange de naphta et de vapeur d'eau circulant dans le tube de craquage entre l'entrée et la sortie de la zone de radiation du four est de 1020 millisecondes. Par ailleurs, le temps de séjour moyen de ce mélange circulant dans la première moitié de la longueur du tube de craquage est 2,6 fois supérieur à celui dans la deuxième moitié de la longueur du tube. On produit ainsi par heure 750 kg d'éthylène, 770 kg de propylène, 110 kg d'isobutène, 180 kg de butadiène et 200 kg d'éthane. L'éthane ainsi fabriqué dans ce four est soumis ensuite à une étape secondaire de vapocraquage permettant de la transformer en éthylène selon un rendement pondéral de 85 % et améliorant, de ce fait, la production globale en éthylène de l'installation de vapocraquage. On constate en outre que les productions en oléfines et en dioléfine sont supérieures à celles de l'exemple 5, du fait du gain sur les débits de matières premières que permet d'accomplir le four de vapocraquage de la présente invention. Par ailleurs, on observe également que les productions en oléfines supérieures et en butadiène sont relativement élevées par rapport à la production d'éthylène. Ainsi pour une tonne d'éthylène produite et recueillie à la sortie de l'installation de vapocraquage, les productions de propylène, d'isobutène et de butadiène sont respectivement de 837 kg, de 158 kg et de 260 kg.Under these conditions, the average residence time of the mixture of naphtha and water vapor circulating in the cracking tube between the inlet and the outlet of the radiation zone of the furnace is 1020 milliseconds. Furthermore, the average residence time of this mixture circulating in the first half of the length of the cracking tube is 2.6 times greater than that in the second half of the length of the tube. 750 kg of ethylene, 770 kg of propylene, 110 kg of isobutene, 180 kg of butadiene and 200 kg of ethane are thus produced per hour. The ethane thus produced in this furnace is then subjected to a secondary stage of steam cracking making it possible to transform it into ethylene at a weight yield of 85% and thereby improving the overall production of ethylene from the steam cracking installation. It is further noted that the productions of olefins and of diolefin are higher than those of Example 5, due to the gain on the flow rates of raw materials which the steam cracking furnace of the present invention makes it possible to achieve. Furthermore, it is also observed that the productions of higher olefins and of butadiene are relatively high compared to the production of ethylene. Thus for a tonne of ethylene produced and collected at the outlet of the steam cracking installation, the production of propylene, isobutene and butadiene are 837 kg, 158 kg and 260 kg respectively.

Par ailleurs, les sélectivités Sa et S4 sont les suivantes :

  • Sa = 0,84
  • S4 = 0,61.
Furthermore, the selectivities Sa and S 4 are as follows:
  • Sa = 0.84
  • S 4 = 0.61.

Ces deux valeurs relativement élevées montrent que la réaction de vapocraquage du naphta ainsi réalisée favorise la formation des oléfines comportant de 3 à 4 atomes de carbone, ainsi que la formation du butadiène, au détriment de la formation de l'éthylène.These two relatively high values show that the steam cracking reaction of naphtha thus carried out promotes the formation of olefins containing 3 to 4 carbon atoms, as well as the formation of butadiene, to the detriment of the formation of ethylene.

Exemple 7 (comparatif)Example 7 (comparative)

On opère dans un four de vapocraquage comprenant une enceinte thermique, un tube de craquage et des brûleurs, identiques à ceux de l'exemple 3 (comparatif). La puissance thermique de l'ensemble des brûleurs est également comme à l'exemple 3 (comparatif), répartie de façon homogène entre les cinq rangées.The operation is carried out in a steam cracking oven comprising a thermal enclosure, a cracking tube and burners, identical to those of Example 3 (comparative). The thermal power of all the burners is also as in Example 3 (comparative), distributed homogeneously between the five rows.

La nappe de flux thermique mesurée à l'intérieur de l'enceinte thermique de radiation du four est, dans ces conditions, représentée à la figure 3 par la surface inscrite dans le graphique tridimensionnel reliant par les trois axes de coordonnée, la longueur L de l'enceinte thermique, la hauteur H de cette enceinte et le flux thermique F. La figure 3 montre, en particulier, que le maximum du flux thermique de radiation se situe dans la partie supérieure de l'enceinte thermique, correspondant à la première moitié de la longueur du tube de craquage située vers l'entrée de l'enceinte thermique.The thermal flux table measured inside the thermal radiation enclosure of the furnace is, under these conditions, represented in FIG. 3 by the surface inscribed in the three-dimensional graph connecting by the three coordinate axes, the length L of the thermal enclosure, the height H of this enclosure and the thermal flux F. FIG. 3 shows, in particular, that the maximum of the thermal flux of radiation is located in the upper part of the thermal enclosure, corresponding to the first half the length of the cracking tube located towards the entrance to the thermal enclosure.

Dans ce tube de craquage, on fait circuler un mélange de naphta et de vapeur d'eau, identique à celui mis en oeuvre à l'exemple 5. Compte tenu des pertes de charge relativement élevées dans ce tube de craquage, les débits en naphta et en vapeur d'eau sont respectivement de 3500 kg/h et 875 kg/h.In this cracking tube, a mixture of naphtha and steam is circulated, identical to that used in Example 5. Taking into account the relatively high pressure drops in this cracking tube, the flow rates in naphtha and in steam are 3500 kg / h and 875 kg / h respectively.

La température de craquage du mélange de naphta et de vapeur d'eau s'élève de 495°C à l'entrée de la zone de radiation du four jusqu'à 775°C à la sortie de cette zone. L'évolution de la température de craquage du mélange le long du tube de craquage est décrite par la courbe (c) de la figure 5, représentant en abscisse le temps de séjour moyen (en millisecondes) du mélange circulant dans le tube de craquage depuis l'entrée jusqu'à la sortie de la zone de radiation du four et en ordonnée la température de craquage (en °C) du mélange. La courbe (c) montre clairement que le température de craquage du mélange augmente dans sa partie initiale rapidement en fonction du temps de séjour du mélange dans le tube de craquage, et qu'en particulier une partie importante du temps de séjour du mélange est réalisée à une température de craquage relativement élevée, notamment à une température supérieure à 700°C. La pression du mélange est à la sortie du four de 170 kPa. Compte tenu de la répartition du flux thermique dans l'enceinte, la puissance thermique appliquée à la deuxième moitié de la longueur du tube de craque est identique à celle appliquée à la première moitié de la longueur du tube.The cracking temperature of the mixture of naphtha and water vapor rises from 495 ° C at the entrance to the radiation zone of the furnace up to 775 ° C at the exit from this zone. The evolution of the cracking temperature of the mixture along the cracking tube is described by curve (c) of FIG. 5, representing on the abscissa the average residence time (in milliseconds) of the mixture circulating in the cracking tube from the inlet to the outlet of the radiation area of the oven and on the ordinate the cracking temperature (in ° C) of the mixture. Curve (c) clearly shows that the cracking temperature of the mixture increases in its initial part rapidly as a function of the residence time of the mixture in the cracking tube, and that in particular a significant part of the residence time of the mixture is achieved at a relatively high cracking temperature, in particular at a temperature above 700 ° C. The pressure of the mixture is at the outlet of the oven of 170 kPa. Given the distribution of the heat flux in the enclosure, the thermal power applied to the second half of the length of the cracking tube is identical to that applied to the first half of the length of the tube.

Le temps de séjour moyen du mélange de naphta et de vapeur d'eau circulant dans le tube de craquage entre l'entrée et la sortie de la zone de radiation du four est de 840 millisecondes.The average residence time of the mixture of naphtha and water vapor circulating in the cracking tube between the inlet and the outlet of the radiation zone of the furnace is 840 milliseconds.

Dans ces conditions, on produit par heure 635 kg d'éthylène, 545 kg de propylène, 90 kg d'isobutène, 140 kg de butadiène et 170 kg d'éthane. L'éthane ainsi fabriqué dans ce four est soumis ensuite à une étape secondaire de vapocraquage permettant de le transformer en éthylène selon un rendement pondéral de 85 % et améliorant, de ce fait, la production globale en éthylène de l'installation de vapocraquage. On constate en outre que les productions en oléfines et dioléfine sont inférieures à celle de l'exemple 6 et que les productions en propylène, en isobutène et en butadiène par rapport à la production d'éthylène sont relativement moins élevées que dans les exemples 5 et 6. Ainsi, pour une tonne d'éthylène produite et recueillie à la sortie de l'installation de vapocraquage, les productions de propylène, d'isobutène et de butadiène sont respectivement de 700 kg, de 115 kg et de 180 kg.Under these conditions, 635 kg of ethylene, 545 kg of propylene, 90 kg of isobutene, 140 kg of butadiene and 170 kg of ethane are produced per hour. The ethane thus produced in this furnace is then subjected to a secondary stage of steam cracking making it possible to transform it into ethylene according to a weight yield of 85% and thereby improving the overall production of ethylene from the steam cracking installation. It is further noted that the productions of olefins and diolefins are lower than that of Example 6 and that the productions of propylene, isobutene and butadiene compared to the production of ethylene are relatively lower than in Examples 5 and 6. Thus, for a tonne of ethylene produced and collected at the outlet of the steam cracking installation, the productions of propylene, isobutene and butadiene are 700 kg, 115 kg and 180 kg respectively.

Par ailleurs, les sélectivités S3 et S4 sont les suivantes :

  • Sa = 0,700
  • S4 = 0,465.
Furthermore, the selectivities S 3 and S 4 are as follows:
  • Sa = 0.700
  • S 4 = 0.465.

Ces deux valeurs sont moins élevées que celles obtenues aux exemples 5 et 6.These two values are lower than those obtained in Examples 5 and 6.

En outre, le perte de capacité maximale d'un tel four de vapocraquage est d'environ 35 %, pour un volume inchangé de l'enceinte thermique de radiation et pour des contraintes mécaniques et thermiques du four sensiblement indentiques, en comparaison avec le four dans l'exemple 5.In addition, the maximum capacity loss of such a steam cracking furnace is approximately 35%, for an unchanged volume of the thermal radiation enclosure and for substantially identical mechanical and thermal stresses of the furnace, in comparison with the furnace. in example 5.

ExempleExample

Un four de vapocraquage, tel que représenté schématiquement à la figure 1, comprend une enceinte thermique de radiation (1) identique à celle décrite à l'exemple 1. Dans cette enceinte, on place un tube de craquage en acier réfractaire à base de nickel et de chrome, de dimensions différentes de celui décrit à l'exemple 1 ; il a un diamètre moyen interne de 108 mm, une épaisseur de 8 mm et, compte tenu de la capacité de l'enceinte (1), une longueur totale de 80 mètres, comprise entre l'entrée (10) et la sortie (11). Ce tube de craquage est disposé sous la forme d'un serpentin, comprenant huit sections droites horizontales, d'égale longueur chacune, reliées entre elles par des coudes. Le diamètre interne des sections (2) et (3) situées vers l'entrée de l'enceinte thermique est de 135 mm ; les sections (4) et (5) qui suivent, ont un diamètre interne de 117 mm ; puis les sections (6) et (7) ont un diamètre interne de 99 mm ; le diamètre interne des sections (8) et (9) situées vers la sortie de l'enceinte thermique est de 81 mm.A steam cracking furnace, as shown diagrammatically in FIG. 1, comprises a thermal radiation enclosure (1) identical to that described in Example 1. In this enclosure, a cracking tube of refractory steel based on nickel is placed. and of chromium, of dimensions different from that described in Example 1; it has an average internal diameter of 108 mm, a thickness of 8 mm and, taking into account the capacity of the enclosure (1), a total length of 80 meters, comprised between the inlet (10) and the outlet (11 ). This cracking tube is arranged in the form of a serpentine, comprising eight horizontal straight sections, of equal length each, connected to each other by elbows. The internal diameter of the sections (2) and (3) located towards the entrance to the thermal enclosure is 135 mm; the following sections (4) and (5) have an internal diameter of 117 mm; then sections (6) and (7) have an internal diameter of 99 mm; the internal diameter of the sections (8) and (9) located towards the outlet of the thermal enclosure is 81 mm.

Par ailleurs, les diamètres internes du tube de craquage à l'entrée (10) et à la sortie (11 ) de l'enceinte (1 ) étant respectivement de 135 mm et de 81 mm, le rapport entre les diamètres internes du tube à l'entrée et à la sortie est donc de 1,7. Par ailleurs, le volume réactionnel de la première moitié de la longueur du tube de craquage, correspondant aux sections droites (2), (3), (4), et (5), est 1,95 fois supérieur au volume réactionnel de la deuxième moitié de la longueur du tube de craquage, correspondant aux sections droites (6), (7), (8) et (9).Furthermore, the internal diameters of the cracking tube at the inlet (10) and at the outlet (11) of the enclosure (1) being 135 mm and 81 mm respectively, the ratio between the internal diameters of the tube to entry and exit is 1.7. Furthermore, the reaction volume of the first half of the length of the cracking tube, corresponding to the straight sections (2), (3), (4), and (5), is 1.95 times greater than the reaction volume of the second half of the length of the cracking tube, corresponding to the straight sections (6), (7), (8) and (9).

L'enceinte thermique de radiation du four de vapocraquage est munie de brûleurs disposés sur les murs de l'enceinte, suivant cinq rangées horizontales, situées à égale distance les unes des autres. La puissance thermique totale est répartie entre les cinq rangées de brûleurs de la façon suivante :

  • - 5 % de la puissance thermique totale sur la première rangée de brûleurs, située dans le haut de l'enceinte, au voisinage de l'entrée du tube de craquage,
  • - 10 % sur la deuxième rangée de brûleurs, située immédiatement en dessous de la première,
  • - 20 % sur la troisième rangée de brûleurs, située immédiatement en dessous de la deuxième,
  • - 25 % sur la quatrième rangée de brûleurs, située immédiatement en dessous de la troisième, et
  • - 40 % sur la cinquième rangée de brûleurs, située immédiatement en dessous de la quatrième, au voisinage de la sortie du tube de craquage. Ainsi, le rapport entre la puissance thermique des brûleurs appliquée à la première moitié de la longueur du tube, située vers l'entrée de l'enceinte, et celle appliquée à la deuxième moitié de la longueur du tube, située vers la sortie de cette enceinte, est de 25/75.
The thermal radiation enclosure of the steam cracking furnace is provided with burners arranged on the walls of the enclosure, in five horizontal rows, located at equal distance from each other. The total thermal power is distributed among the five rows of burners as follows:
  • - 5% of the total thermal power on the first row of burners, located at the top of the enclosure, near the entrance to the cracking tube,
  • - 10% on the second row of burners, located immediately below the first,
  • - 20% on the third row of burners, located immediately below the second,
  • - 25% on the fourth row of burners, located immediately below the third, and
  • - 40% on the fifth row of burners, located immediately below the fourth, near the outlet of the cracking tube. Thus, the ratio between the thermal power of the burners applied to the first half of the length of the tube, located towards the inlet of the enclosure, and that applied to the second half of the length of the tube, located towards the outlet of this pregnant, is 25/75.

Dans ce tube de craquage, on fait circuler un mélange d'éthane et de vapeur d'eau. La composition du mélange d'éthane et de vapeur d'eau mise en oeuvre est telle que le rapport pondéral de la quantité d'éthane à la quantité de vapeur d'eau est de 2,25. On introduit ainsi dans le tube de craquage l'éthane suivant un débit de 1800 kg/h et la vapeur d'eau suivant un débit de 800 kg/h.In this cracking tube, a mixture of ethane and water vapor is circulated. The composition of the mixture of ethane and water vapor used is such that the weight ratio of the amount of ethane to the amount of water vapor is 2.25. Ethane is thus introduced into the cracking tube at a rate of 1800 kg / h and water vapor at a rate of 800 kg / h.

La température de craquage du mélange d'éthane et de vapeur d'eau s'élève de 585°C à l'entrée de la zone de radiation du four jusqu'à 846°C à la sortie de cette zone. La pression du mélange à la sortie du four est de 170 kPa. Compte tenu de la répartition du flux thermique dans l'enceinte, la puissance thermique appliquée à la deuxième moitié de la longueur du tube de craquage, située vers la sortie de la zone de radiation, est 3 fois supérieure à celle appliquée à la première moitié de la longueur du tube, située vers l'entrée de cette zone.The cracking temperature of the mixture of ethane and water vapor rises from 585 ° C at the entrance to the radiation zone of the furnace up to 846 ° C at the exit from this zone. The pressure of the mixture leaving the oven is 170 kPa. Taking into account the distribution of the thermal flux in the enclosure, the thermal power applied to the second half of the length of the cracking tube, located towards the exit of the radiation zone, is 3 times greater than that applied to the first half the length of the tube, located towards the entrance of this area.

Le temps de séjour moyen du mélange d'éthane et de vapeur d'eau circulant dans le tube de craquage entre l'entrée et la sortie de la zone de radiation du four est de 640 millisecondes.The average residence time of the mixture of ethane and water vapor circulating in the cracking tube between the inlet and the outlet of the radiation zone of the furnace is 640 milliseconds.

Dans ces conditions, on fabrique per tonne d'éthane transformée 850 kg d'éthylène et 55 kg de méthane. On constate que la sélectivité en éthylène est donc de 85 %.Under these conditions, 850 kg of ethylene and 55 kg of methane are produced per ton of processed ethane. It can be seen that the selectivity for ethylene is therefore 85%.

Exemele 9 (comparatif)Example 9 (comparative)

On opère dans un four de vapocraquage comprenant une enceinte thermique, un tube de craquage et des brûleurs, identiques à ceux de l'exemple 3 (comparatif). La puissance thermique de l'ensemble des brûleurs est, comme à l'exemple 3 (comparatif), répartie de façon homogène entre les cinq rangées.The operation is carried out in a steam cracking oven comprising a thermal enclosure, a cracking tube and burners, identical to those of Example 3 (comparative). The thermal power of all the burners is, as in Example 3 (comparative), evenly distributed between the five rows.

Dans ce tube de craquage, on fait circuler un mélange d'éthane et de vapeur d'eau, identique à celui mis en oeuvre à l'exemple 8. On y introduit l'éthane suivant un débit de 1800 kg/h et la vapeur d'eau suivant un débit de 800 kg/h.In this cracking tube, a mixture of ethane and water vapor is circulated, identical to that used in Example 8. The ethane is introduced therein at a rate of 1800 kg / h and the vapor water at a flow rate of 800 kg / h.

La température de craquage du mélange d'éthane et de vapeur d'eau s'élève de 636°C à l'entrée de la zone de radiation du four jusqu'à 846°C à la sortie de cette zone. La pression du mélange à la sortie du four est de 170 kPa. Compte tenu de la répartition du flux thermique dans l'enceinte, la puissance thermique appliquée à la deuxième moitié de la longueur du tube de craquage est identique à celle appliquée à la première moitié de la longueur du tube.The cracking temperature of the mixture of ethane and water vapor rises from 636 ° C at the entrance to the radiation zone of the furnace up to 846 ° C at the exit from this zone. The pressure of the mixture leaving the oven is 170 kPa. Given the distribution of the heat flux in the enclosure, the thermal power applied to the second half of the length of the cracking tube is identical to that applied to the first half of the length of the tube.

Le temps de séjour moyen du mélange d'éthane et de vapeur d'eau circulant dans le tube de craquage entre l'entrée et la sortie de la zone de radiation du four est de 585 millisecondes.The average residence time of the mixture of ethane and water vapor circulating in the cracking tube between the inlet and the outlet of the radiation zone of the furnace is 585 milliseconds.

Dans ces conditions, on fabrique par tonne d'éthane transformée 805 kg d'éthylène et 71 kg de méthane.Under these conditions, 805 kg of ethylene and 71 kg of methane are produced per tonne of transformed ethane.

On constate que la sélectivité en éthylène est de 80,5 %, valeur inférieure à celle de l'exemple 8 et que la quantité de méthane produite a augmenté par rapport à celle de l'exemple 8.It is noted that the selectivity for ethylene is 80.5%, a value lower than that of Example 8 and that the quantity of methane produced has increased compared to that of Example 8.

Exemple 10Example 10

On opère exactement comme à l'exemple 8, excepté le fait qu'au lieu d'utiliser de l'éthane, on utilise un mélange d'hydro carbures gazeux comprenant 76 % en poids d'éthane, 19 % en poids de propane et 5 % en poids de propylène. La pression à la sortie du four est de 175 kPa au lieu de 170 kPa. La température de craquage du mélange est à l'entrée de la zone de radiation de 575°C au lieu de 585°C, et à la sortie de cette zone de 848°C au lieu de 846°C. Le temps de séjour moyen du mélange d'hydrocarbures gazeux et de vapeur d'eau circulant dans le tube de craquage entre l'entrée et la sortie de la zone de radiation est de 665 millisecondes au lieu de 640 millisecondes.The procedure is exactly as in Example 8, except that instead of using ethane, a mixture of gaseous hydro carbides is used comprising 76% by weight of ethane, 19% by weight of propane and 5% by weight of propylene. The pressure at the outlet of the oven is 175 kPa instead of 170 kPa. The cracking temperature of the mixture is at the entry of the radiation zone of 575 ° C instead of 585 ° C, and at the exit of this zone of 848 ° C instead of 846 ° C. The average residence time the mixture of gaseous hydrocarbons and water vapor circulating in the cracking tube between the entry and the exit of the radiation zone is 665 milliseconds instead of 640 milliseconds.

Dans ces conditions, on fabrique par tonne du mélange d'hydrocarbures gazeux transformée 785 kg d'éthylène et 120 kg de méthane. On constate que la sélectivité en éthylène est de 78,5 %.Under these conditions, 785 kg of ethylene and 120 kg of methane are produced per ton of the mixture of gaseous hydrocarbons transformed. It is found that the selectivity for ethylene is 78.5%.

On opère exactement comme à l'exemple 9 (comparatif), excepté le fait qu'au lieu d'utiliser de l'éthane, on utilise un mélange d'hydrocarbures gazeux identique à celui mis en oeuvre à l'exemple 10. La pression du mélange à la sortie du four est 175 kPa, au lieu de 170 kPa. La température de craquage du mélange est à l'entrée de la zone de radiation de 610°C au lieu de 636°C et à la sortie de cette zone de 848°C au lieu de 846°C. Le temps de séjour du mélange d'hydrocarbures gazeux et de vapeur d'eau circulant dans le tube de craquage entre l'entrée et la sortie de la zone de radiation est de 610 millisecondes au lieu de 585 millisecondes.The procedure is exactly as in Example 9 (comparative), except that instead of using ethane, a mixture of gaseous hydrocarbons is used identical to that used in Example 10. The pressure the mixture at the outlet of the oven is 175 kPa, instead of 170 kPa. The cracking temperature of the mixture is at the entry of the radiation zone of 610 ° C instead of 636 ° C and at the exit of this zone of 848 ° C instead of 846 ° C. The residence time of the mixture of gaseous hydrocarbons and water vapor circulating in the cracking tube between the entry and the exit of the radiation zone is 610 milliseconds instead of 585 milliseconds.

Dans ces conditions, on fabrique par tonne du mélange d'hydrocarbures gazeux transformée 750 kg d'éthylène et 195 kg de méthane. On constate que la sélectivité en éthylène est de 75%, valeur inférieure à celle de l'exemple 10 et que la quantité de méthane fabriquée a considérablement augmenté.Under these conditions, 750 kg of ethylene and 195 kg of methane are manufactured per ton of the mixture of gaseous hydrocarbons transformed. It is found that the selectivity for ethylene is 75%, a value lower than that of Example 10 and that the quantity of methane produced has considerably increased.

Claims (10)

1. A process for the preparation of olefins and diolefins by cracking liquid or gaseous hydrocarbons in the presence of steam, wherein through a radiation zone of a furnace a mixture of hydrocarbons and steam, circulating in a cracking tube disposed within said zone, is caused to flow at a furnace outlet pressure in the range of 120 to 240 kPa, with the cracking temperature of the mixture at the inlet of the radiation zone ranging from 400 to 700°C and at the outlet of said zone from 720 to 880°C, characterized in that
(a) between the inlet and the outlet of the radiation zone the mean residence period of the mixture of hydrocarbons and steam circulating in the cracking tube ranges from 300 to 1800 milliseconds, and
(b) the reaction volume of the first half of the cracking tube length closer to the inlet of the radiation zone is 1.3 to 4 times greater than that of the second half of the tube length which is located closer to the outlet of said zone.
2. The process according to claim 1, characterized in that the increase of the cracking temperature of the mixture of hydrocarbons and steam is connected with a nonhomogeneous distribution of the thermal capacity of the furnace effective alongside the cracking tube, which distribution is such that the thermal capacity effective on the second half of the tube length closer to the outlet of the radiation zone is 1.5 to 5 times greater than that effective on the first half of the tube length closer to the inlet of said zone.
3. The process according to claim 2, characterized in that the thermal capacity effective on the second half of the tube length is 2 to 4 times greater than that effective on the first half of the tube length.
4. The process according to claim 1, characterized in that the mean residence period of the mixture of hydrocarbons and steam circulating in the cracking tube ranges from 850 to 1800 milliseconds between the inlet and the outlet of the radiation zone if liquid hydrocarbons are employed.
5. The process according to claim 1, characterized in that the mean residence period of the mixture of hydrocarbons and steam circulating in the cracking tube ranges from 400 to 1400 milliseconds between the inlet and the outlet of the radiation zone if gaseous hydrocarbons are employed.
6. The process according to claim 1, characterized in that the composition of the mixture of hydrocarbons and steam employed is such that the weight ratio of the amount of hydrocarbons to the amount of steam is in the range of 1 to 10.
7. The process according to claim 1, characterized in that the hydrocarbons employed are liquid hydrocarbons selected among naphta, the light petrols, the gas oil as well as among their mixtures with the saturated hydrocarbons having 3 to 6 carbon atoms, or also are gaseous hydrocarbons consisting of alkanes having 2 to 4 carbon atoms or of the mixtures thereof, which alkanes optionally are employed as a mixture with alkenes having 2 to 6 carbon atoms and/or methane and/or alkanes having 5 to 6 carbon atoms.
8. An apparatus composed of a furnace for the cracking of hydrocarbons in the presence of steam, which furnace comprises a thermal radiation container equipped with heating means, through which container at least one cracking tube extends in which the mixture of steam and hydrocarbons to be cracked is circulating, characterized in that
(a) the ratio between the length and the mean inner diameter of the cracking tube extending through the thermal radiation container ranges from 200 to 600, and
(b) the inner diameter of the cracking tube decreases in a continuous or non-continuous manner from the inlet to the outlet of the thermal radiation container such that the ratio between the inner diameters of the tube at the inlet and at the outlet of said container is in the range of 1.2 to 3.
9. The apparatus according to claim 8, characterized in that the heating means consist of burners the thermal capacity of which alongside the cracking tube from the inlet to the outlet of the thermal radiation container increases such that the ratio between the thermal capacity effective on the first half of the cracking tube length closer to the inlet of the thermal radiation container and that effective on the second half of the tube length closer to the outlet of said container ranges from 40/60 to 15/85.
10. The apparatus according to claim 8, characterized in that the cracking tube is composed of a sequence of tubes having inner diameters which are decreasing from the inlet towards the outlet of the thermal radiation container.
EP87108911A 1986-06-25 1987-06-22 Process and furnace for the steam cracking of hydrocarbons for the preparation of olefins and diolefins Expired - Lifetime EP0252355B1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
FR8609217A FR2600665B1 (en) 1986-06-25 1986-06-25 PROCESS AND OVEN FOR VAPOCRACKING LIQUID HYDROCARBONS FOR THE MANUFACTURE OF OLEFINS AND DIOLEFINS
FR8609220 1986-06-25
FR8609220A FR2600641B1 (en) 1986-06-25 1986-06-25 PROCESS AND OVEN FOR VAPOCRACKING GASEOUS HYDROCARBONS FOR THE MANUFACTURE OF OLEFINS AND DIOLEFINS
FR8609218 1986-06-25
FR8609218A FR2600666B1 (en) 1986-06-25 1986-06-25 PROCESS AND OVEN FOR VAPOCRACKING LIQUID HYDROCARBONS FOR THE MANUFACTURE OF OLEFINS AND DIOLEFINS
FR8609217 1986-06-25

Publications (2)

Publication Number Publication Date
EP0252355A1 EP0252355A1 (en) 1988-01-13
EP0252355B1 true EP0252355B1 (en) 1990-10-03

Family

ID=27251375

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87108911A Expired - Lifetime EP0252355B1 (en) 1986-06-25 1987-06-22 Process and furnace for the steam cracking of hydrocarbons for the preparation of olefins and diolefins

Country Status (6)

Country Link
US (1) US5124003A (en)
EP (1) EP0252355B1 (en)
JP (1) JPH0813972B2 (en)
CA (1) CA1256456A (en)
DE (1) DE3765324D1 (en)
ES (1) ES2018664B3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10000889A1 (en) * 2000-01-12 2001-07-26 Mg Technologies Ag Process for producing C2 and C3 olefins from hydrocarbons

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0519230A1 (en) * 1991-06-17 1992-12-23 Abb Lummus Crest Inc. Pyrolysis heater
FR2794469B1 (en) * 1999-05-11 2001-08-17 Inst Francais Du Petrole PROCESS AND OVEN FOR STEAMING A FILLER CONTAINING ETHANE AND / OR PROPANE
FR2796078B1 (en) 1999-07-07 2002-06-14 Bp Chemicals Snc PROCESS AND DEVICE FOR VAPOCRACKING HYDROCARBONS
FR2834515B1 (en) * 2002-01-10 2006-03-10 Atofina VAPOCRAQUAGE OF MODIFIED NAPHTA
EP1561796A1 (en) * 2004-02-05 2005-08-10 Technip France Cracking furnace
US20090022635A1 (en) * 2007-07-20 2009-01-22 Selas Fluid Processing Corporation High-performance cracker
CA2738273C (en) * 2011-04-28 2018-01-23 Nova Chemicals Corporation Furnace coil with protuberances on the external surface
JPWO2013179786A1 (en) * 2012-06-01 2016-01-18 株式会社クレハ Pyrolysis furnace and method for producing pyrolysis products

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2994724A (en) * 1958-08-14 1961-08-01 Exxon Research Engineering Co Cyclodiene dimer vapor phase cracking method and furnace
US2917564A (en) * 1959-01-05 1959-12-15 Phillips Petroleum Co Hydrocarbon cracking furnace and its operation
NL267568A (en) * 1960-12-22
US3112880A (en) * 1962-11-21 1963-12-03 Phillips Petroleum Co Furnace control
US3306844A (en) * 1964-07-27 1967-02-28 Monsanto Co Hydrocarbon thermal cracking in a tubular reactor
NL134444C (en) * 1965-07-09
US3348923A (en) * 1965-10-01 1967-10-24 Foster Wheeler Corp Tube design for terrace wall furnace
DE1568113A1 (en) * 1966-05-14 1970-04-30 Basf Ag Process for the production of olefins, in particular ethylene, by thermal cracking of hydrocarbons
US3487121A (en) * 1966-06-13 1969-12-30 Stone & Webster Eng Corp Hydrocarbon process
NL6817224A (en) * 1968-12-02 1969-11-25
US3671198A (en) * 1970-06-15 1972-06-20 Pullman Inc Cracking furnace having thin straight single pass reaction tubes
JPS5530037B2 (en) * 1972-06-16 1980-08-07
JPS5346803A (en) * 1976-12-24 1978-04-26 Daicel Ltd Printing plate
GB2021632B (en) * 1978-05-30 1982-10-20 Lummus Co Pyrolysis of hydrocarbons
US4342642A (en) * 1978-05-30 1982-08-03 The Lummus Company Steam pyrolysis of hydrocarbons
JPS5815587A (en) * 1981-07-20 1983-01-28 Mitsui Eng & Shipbuild Co Ltd Reaction tube arrangement in pyrolysis furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10000889A1 (en) * 2000-01-12 2001-07-26 Mg Technologies Ag Process for producing C2 and C3 olefins from hydrocarbons
DE10000889C2 (en) * 2000-01-12 2002-12-19 Mg Technologies Ag Process for the production of C¶2¶ and C¶3¶ olefins from hydrocarbons

Also Published As

Publication number Publication date
EP0252355A1 (en) 1988-01-13
US5124003A (en) 1992-06-23
JPH0813972B2 (en) 1996-02-14
DE3765324D1 (en) 1990-11-08
CA1256456A (en) 1989-06-27
ES2018664B3 (en) 1991-05-01
JPS6366289A (en) 1988-03-24

Similar Documents

Publication Publication Date Title
EP0252356B1 (en) Process and furnace for the steam cracking of hydrocarbons for the preparation of olefins and diolefins
EP0229093B1 (en) Process for the vapocracking of hydrocarbons
EP0323297B1 (en) Fluidised bed hydrocarbon conversion process
FR2710070A1 (en) Method and device for steam cracking a light load and a heavy load.
EP0226487B1 (en) Process for the thermal conversion of methane into hydrocarbons with a higher molecular weight
CA2204541C (en) Hydrocarbon thermal conversion process and device including hydrocrakingand pyrolysis steps
EP0252355B1 (en) Process and furnace for the steam cracking of hydrocarbons for the preparation of olefins and diolefins
FR2956666A1 (en) PROCESS FOR PRODUCING CARBON BLACK USING A HEATED FEED LOAD AND CORRESPONDING DEVICE
FR2600665A1 (en) LIQUID HYDROCARBON VAPOCRACKING PROCESS AND FURNACE FOR THE PRODUCTION OF OLEFINS AND DIOLEFINS
EP0489726B1 (en) Method and device for vapor-cracking of hydrocarbons in fluidized phase
EP0781828A1 (en) Continuous pyrolysis and decoking process, paticularly applicable to the production of acetylene
CA2077083C (en) Method of fabricating chemicals
FR2750138A1 (en) VAPOCRAQUAGE PROCESS AND DEVICE INCLUDING THE INJECTION OF PARTICLES UPSTREAM OF A SECONDARY SOAKING EXCHANGER
FR2641543A1 (en) METHOD AND DEVICE FOR VAPOCRAQUING A HYDROCARBON WITH TWO ATOMS OF CARBON AT LEAST IN A CONVECTION-HEATED TUBULAR REACTION ZONE
FR2600666A1 (en) Process and furnace for steam-cracking of liquid hydrocarbons, intended for the manufacture of olefins and diolefins
FR2600641A1 (en) Process and furnace for steam cracking of gaseous hydrocarbons intended for the manufacture of olefins and diolefins
FR2600642A1 (en) Process and furnace for steam cracking of gaseous hydrocarbons for the manufacture of olefins and diolefins
FR2600667A1 (en) Process and furnace for steam-cracking of liquid hydrocarbons, intended for the manufacture of olefins and diolefins
EP0127519A1 (en) Hydrocarbon steam-cracking process
FR2768154A1 (en) Installation for hydrocarbon vapocracking with flexible charge
FR2732014A1 (en) PROCESS FOR THERMAL CONVERSION OF SATURATED OR UNSATURATED ALIPHATIC HYDROCARBONS IN ACETYLENIC HYDROCARBONS
FR2496705A1 (en) PROTECTIVE METHOD MAINSTALLY AGAINST THE COKEFACTION OF REFRACTORY ALLOY SURFACES IN CONTACT WITH REAGENTS IN PYROLYSIS FURNACES AND OVENS OBTAINED THEREBY
FR2528443A1 (en) PROCESS FOR THERMAL CRACKING OF HYDROCARBON OILS
WO2024116116A1 (en) Gentle decoking of a cracking furnace coil
FR2651004A1 (en) Steam cracking process and device containing a stage of pyrolysis by a plasma torch effluent

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19880225

17Q First examination report despatched

Effective date: 19890426

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL SE

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3765324

Country of ref document: DE

Date of ref document: 19901108

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 87108911.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980511

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19980608

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980619

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980630

Year of fee payment: 12

Ref country code: FR

Payment date: 19980630

Year of fee payment: 12

Ref country code: BE

Payment date: 19980630

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980828

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

BERE Be: lapsed

Owner name: S.A. NAPHTACHIMIE

Effective date: 19990630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990622

EUG Se: european patent has lapsed

Ref document number: 87108911.6

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050622