[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0135646A2 - Gummikupplung - Google Patents

Gummikupplung Download PDF

Info

Publication number
EP0135646A2
EP0135646A2 EP84100603A EP84100603A EP0135646A2 EP 0135646 A2 EP0135646 A2 EP 0135646A2 EP 84100603 A EP84100603 A EP 84100603A EP 84100603 A EP84100603 A EP 84100603A EP 0135646 A2 EP0135646 A2 EP 0135646A2
Authority
EP
European Patent Office
Prior art keywords
rubber coupling
spring body
coupling according
gap
machine parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84100603A
Other languages
English (en)
French (fr)
Other versions
EP0135646A3 (en
EP0135646B1 (de
Inventor
Benno Michael Jörg
Klaus Dr. Kurr
Heinz Seifert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Freudenberg KG
Original Assignee
Carl Freudenberg KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Freudenberg KG filed Critical Carl Freudenberg KG
Publication of EP0135646A2 publication Critical patent/EP0135646A2/de
Publication of EP0135646A3 publication Critical patent/EP0135646A3/de
Application granted granted Critical
Publication of EP0135646B1 publication Critical patent/EP0135646B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/371Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by inserts or auxiliary extension or exterior elements, e.g. for rigidification
    • F16F1/3713Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by inserts or auxiliary extension or exterior elements, e.g. for rigidification with external elements passively influencing spring stiffness, e.g. rings or hoops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/50Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members
    • F16D3/76Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members shaped as an elastic ring centered on the axis, surrounding a portion of one coupling part and surrounded by a sleeve of the other coupling part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/373Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/124Elastomeric springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/1414Masses driven by elastic elements
    • F16F15/1435Elastomeric springs, i.e. made of plastic or rubber
    • F16F15/1442Elastomeric springs, i.e. made of plastic or rubber with a single mass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/32Friction members
    • F16H55/36Pulleys
    • F16H2055/366Pulleys with means providing resilience or vibration damping

Definitions

  • the invention relates to a rubber coupling, consisting of two machine parts delimiting a gap, which are movable relative to one another and parallel to the gap, and of at least one spring body made of rubber-elastic material arranged in the gap, which has a profile adapted to the gap and which connects the machine parts.
  • a rubber coupling of this type is contained in the torsional vibration damper according to US-PS 38 23 619.
  • the machine parts which are movable relative to one another are arranged one inside the other and the spring bodies connect the mutually facing circumferential surfaces in the radial direction. When one of the two machine parts is rotated relative to one another, they are subjected to tensile stress and deformed accordingly. Particularly when using soft spring materials, this can result in a radial displacement of the connected machine part, which is extremely undesirable.
  • the two machine parts in the rubber coupling according to DL-PS 72 945 are supported on one another by a secondary guide.
  • This consists of metallic material. This results in undamped transmission of structure-borne noise.
  • the production of the secondary guide is also relatively complex, which is not justifiable from an economic point of view.
  • the invention has for its object to show a simple to produce rubber coupling that ensures good guidance of the relatively moving machine parts and largely prevents the transmission of structure-borne noise between the two machine parts.
  • a rubber coupling of the type mentioned is proposed according to the invention, which is characterized in that the spring body has at least one integrally molded projection, that the projection projects transversely to the direction of movement from the profile of the spring body, that the projection has a contact surface, that the adjacent machine part and the spring body are connected by the adhesive surface of the approach and that the other opposing surfaces of both parts are formed by guide surfaces.
  • the flexibility of the rubber coupling is based essentially on the deformability of the approach, ie on the flexibility of the material used, the shape and the assignment of the approach to the direction of movement. Leadership purposes are not in the foreground of his training and the approach can thus be made completely neutral, for example with a view to achieving a particularly high degree of compliance, which is very desirable in many applications.
  • the cross-sectional load of the approach under operating conditions should be as uniform as possible.
  • the shape is therefore not preferred.
  • the mutually facing guide surfaces of the proposed rubber coupling can be in contact with one another, which requires a particularly good guiding effect, but at the same time requires the initial overcoming of static friction when a relative displacement of the connected machine parts is initiated.
  • the process can have a disadvantageous effect in certain applications, and it has proven to be expedient for these cases to give the guide surfaces which are assigned to one another a distance from one another.
  • the dimensioning of the distance results from the necessary precision of guidance in the direction of movement. In most cases, it allows the formation of an intermediate space a few tenths of a millimeter wide.
  • the gap can be filled with a lubricating substance to reduce the frictional resistance when the guide surfaces touch each other. It is also possible to introduce a viscous liquid. It requires good damping of the relative mobility of the connected machine parts, which is of great advantage, for example, with regard to the use of the proposed rubber coupling in a vibration damper.
  • more of an absorber can be selected according to the particular application by choosing a liquid with a low viscosity property or by choosing a liquid with high viscosity more a damping property can be set.
  • Capillary-active media can also be used as a lubricating substance or viscous liquid, which in most cases makes it unnecessary to close the gap-like space on all sides. Capillary-active media are then held with sufficient security by the capillary forces present in such a narrow space, so that their remaining in the space is always ensured, regardless of the position of the rubber coupling.
  • the space between the guide surfaces can also be closed on all sides in the proposed rubber coupling, for example by attaching lugs on opposite sides of the spring body.
  • pressurization is possible, which allows the depth of the space to be changed subsequently.
  • This possibility is of considerable importance, for example in relation to the setting of the damping effect of a vibration damper. If necessary, it can take place under operating conditions and can be adapted to the current operating situation.
  • the neck and spring body of the proposed rubber coupling generally consist of a uniform, homogeneous block of material.
  • the different flexibility of the spring body and the approach are therefore largely determined by the outer shape. If necessary, this can be changed subsequently by using machining processes, for example to adapt to certain requirements of the individual case.
  • the target Dimensional relationships are easy to calculate. They should be chosen so that the ratio of the shear or torsional or bending elasticity of the spring body and that of the approach, or, if there are several lugs and / or spring bodies, the sum of the shear or torsional or bending elasticity of all approaches and / or spring body, greater than 0.5, measured in each case in the direction of movement. The preferred range is 2 to 4.
  • the approaches themselves can have any shape. However, an embodiment is preferred in which the lugs are formed by ledge-like projections which extend parallel to the direction of movement. In the case of a shape that is relatively easy to manufacture, relatively large forces can be transmitted in the direction of movement via the attachments.
  • the guide surfaces can be provided with interlocking guide strips that extend parallel to the direction of movement. This effectively prevents undesired transverse movements of the connected machine parts.
  • there is a relative increase in the surface area which, for example when using a viscous medium in the space between the guide surfaces, leads to improved damping properties.
  • the proposed rubber coupling can have almost any shape depending on the direction of the relative movements initiated.
  • a flat design allows their use in a vibration damper for straight-line movements, one rotationally symmetrical design their use in a torsional vibration damper, for example in one in which the connected machine part is connected to a seismic mass.
  • the rubber coupling shown in Figure 1 in half section has a rotationally symmetrical shape. It consists of two cup-shaped machine parts 1, 2 made of sheet steel, which are arranged one inside the other.
  • the spring body 3 is arranged with the projection 4, which is formed in one piece from its material body and extends in the axial direction.
  • the remaining opposite surfaces of the outer machine part 1, the spring body 3 and the shoulder 4 are designed as guide surfaces and are movable against each other without mutual connection.
  • the torsional stiffness of the spring body 3 is greater than that of the extension 4.
  • the deformations resulting from a relative rotation of the machine parts 1 and 2 thus primarily affect the extension 4. They leave the spring body 3 largely untouched, which ensures good radial support between the two machine parts 1 and 2 even when a relative rotation is initiated.
  • the spring body 3 is vulcanized continuously to the inner machine part 2 in the area of the surface 7.
  • Figure 2 illustrates the use of the proposed rubber coupling in a longitudinal vibration damper. This has a rotationally symmetrical shape and consists of the outer machine part 1, which encloses the inner machine part 2 in the radial direction.
  • the spring body 3 is arranged between the two machine parts and is vulcanized continuously onto the inner wall of the outer machine part. It has two lugs 4 projecting inwards in a ring shape, which are fixed with their end faces 5 to the inner machine part 2. A gap of small width is present between the mutually facing guide surfaces 6, which ensures good relative mobility of the two machine parts 1 and 2 and at the same time a sufficiently precise guidance.
  • the embodiment according to FIG. 3 shows the use of the proposed rubber coupling in a torsional vibration damper provided for high speeds.
  • This consists of the outer machine part 1, which is formed by a seismic mass, and the inner machine part 2, which is formed by a support flange.
  • the outer and the inner machine part are provided with annular guide strips 8, which have a triangular profile. and that mesh.
  • the outer machine part also encloses the entirety of the guide strips of the inner machine part projecting in the axial direction with the U-shaped profile of the absorber mass.
  • This is provided on the inside of the profile with a continuously vulcanized layer of rubber, which forms the spring body 3.
  • the layer is at a short distance from the guide strips 8 of the inner ring, as a result of which guide surfaces which are easily movable relative to one another are formed on both sides in the circumferential direction. It is in the area of the outer boundary of the
  • the rubber coupling shown in FIG. 4 in a half-section also has a rotationally symmetrical shape. It is arranged between two machine parts 2 and 2 that enclose each other in the radial direction. The outside of the two machine parts is formed by a pulley, the inside by the associated hub.
  • the spring body 3 is vulcanized onto the inner machine part as a continuous coating.
  • the coating has a small radial distance from the inside of the outer machine part 1.
  • the thickness of the coating is thickened on the opposite sides to form the lugs 4. These are connected to the outer machine part in the area of the adhesive surfaces 5.
  • the remaining opposing surfaces of the outer machine part 1, the right shoulder 4 and the spring body 3 are designed as guide surfaces 6 and serve to ensure a constant radial assignment of the outer machine part 1 to the inner machine part 2.
  • Figure 5 shows the use of the proposed Kunststoffkupp- lu ng in a torsional vibration damper in half-cut view.
  • the outer machine part 1 encloses the inner machine part 2 in the radial direction.
  • the spring body 3 is vulcanized onto the latter. It has, on opposite sides, flange-like projections 4 which are vulcanized with their surfaces 5 to the outer machine part 1.
  • the design ensures a certain amount axial guidance.
  • the torsional mobility of the two parts is not significantly disturbed by this. Nevertheless, there is the possibility of a largely position-independent use with simplified producibility.
  • FIG. 6 refers to the use of the proposed rubber coupling in a vibration damper for straight-line movements.
  • the two machine parts 1 and 2 have mutually open grooves in which the spring body 3 with the lugs 4 is mounted.
  • the lugs 4 are molded in one piece from the material of the spring body 3. They are connected to the machine parts 1, 2 only by the adhesive surfaces 5 of the lugs 4. The remaining opposite surfaces of the spring body 3, the lugs 4 and the two machine parts 1, 2 are formed by guide surfaces 6. These are spaced from one another and the intermediate space thus formed is filled with a damping liquid.
  • Figure 7 shows the use of the proposed rubber coupling in a torsional vibration damper in a half-sectional view.
  • the outer machine part 1 encloses the inner machine part 2 in the radial direction.
  • the spring body 3 is vulcanized onto the latter. It has axially outwardly projecting lugs 4 on opposite sides, which are vulcanized onto the outer machine part 1 with their adhesive surfaces 5.
  • the design ensures a certain axial guidance.
  • the torsional mobility of the two parts is not significantly disturbed by this. Nevertheless, there is the possibility of a largely position-independent use with simplified producibility.
  • the intermediate space 9 between the guide surfaces 6 is filled with a damping liquid.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Sealing Material Composition (AREA)
  • Vibration Dampers (AREA)

Abstract

Gummikupplung, bestehend aus zwei einen Spalt begrenzenden Maschinenteilen, die relativ zueinander und parallel zu dem Spalt bewegbar sind sowie aus wenigstens einem in dem Spalt angeordneten Federkörper aus gummielastischem Werkstoff, der ein dem Spalt angepaßtes Profil aufweist und der die Maschinenteile verbindet, wobei der Federkörper (3) wenigstens einen einstückig angeformten Ansatz (4) aufweist, wobei der Ansatz quer zur Bewegungsrichtung aus dem Profil des Federkörpers vorspringt, wobei der Ansatz eine Haftfläche (5) aufweist, wobei das angrenzende Maschinenteil (1, 2) und der Federkörper (3) nur durch die Haftfläche des Ansatzes verbunden sind und wobei die übrigen einander gegenüberliegenden Flächen beider Teile durch Führungsflächen (6) gebildet werden.

Description

  • Die Erfindung betrifft eine Gummikupplung, bestehend aus zwei einen Spalt begrenzenden Maschinenteilen, die relativ zueinander und parallel zu dem Spalt bewegbar sind sowie aus wenigstens einem in dem Spalt angeordneten Federkörper aus gummielastischem Werkstoff, der ein dem Spalt angepaßtes Profil aufweist und der die Maschinenteile verbindet. Eine Gummikupplung dieser Art ist in dem Drehschwingungsdämpfer nach der US-PS 38 23 619 enthalten. Die relativ zueinander beweglichen Maschinenteile sind dabei ineinanderliegend angeordnet und die Federkörper verbinden die einander zugewandten Umfangsflächen in radialer Richtung. Sie werden bei einer relativen Verdrehung eines der beiden Maschinenteile in ihrer Gesamtheit auf Zug beansprucht und entsprechend deformiert. Insbesondere bei Verwendung weicher Federwerkstoffe kann eine radiale Verlagerung des angeschlossenen Maschinenteiles hiervon die Folge sein, was außerordentlich unerwünscht ist.
  • Um derartigen Schwierigkeiten zu begegnen sind die beiden Maschinenteile bei der Gummikupplupg nach der DL-PS 72 945 durch eine sekundäre Führung aufeinander abgestützt. Diese besteht aus metallischem Werkstoff. Eine ungedämpfte Übertragung von Körperschall ist hiervon die Folge. Die Herstellung der sekundären Führung ist außerdem relativ aufwendig, was unter wirtschaftlichen Gesichtspunkten nicht vertretbar ist.
  • Der Erfindung liegt die Aufgabe zugrunde, eine einfach herzustellende Gummikupplung zu zeigen, die eine gute Führung der relativ bewegten Maschinenteile gewährleistet und die die Übertragung von Körperschall zwischen beiden Maschinenteilen weitgehend unterbindet.
  • Zur Lösung dieser Aufgabe wird erfindungsgemäß eine Gummikupplung der eingangs genannten Art vorgeschlagen, die dadurch gekennzeichnet ist, daß der Federkörper wenigstens einen einstückig angeformten Ansatz aufweist, daß der Ansatz quer zur Bewegungsrichtung aus dem Profil des Federkörpers vorspringt, daß der Ansatz eine liaftfläche aufweist, daß das angrenzende Maschinenteil und der Federkörper durch die Haftfläche des Ansatzes verbunden sind und daß die übrigen einander gegenüberliegenden Flächen beider Teile durch Führungsflächen gebildet werden.
  • S
  • Bei der vorgeschlagenen Gummikupplung werden die relativen Verschiebungen der beiden Maschinenteile vorwiegend durch die elastische Deformierung des Ansatzes aufgefangen, während der Federkörper an sich hiervon weitgehend unberührt ist. Er bleibt dadurch unabhängig von der Größe der relativen Verschiebungen der beiden Maschinenteile stets in seiner ursprünglichen Form erhalten, was eine gleichbleibende Zuordnung der einander zugewandten Führungsflächen gewährleistet. Krafteinleitungsbedingte Ausweichbewegungen der Maschinenteile sind weitgehend ausgeschlossen.
  • Die Nachgiebigkeit der Gummikupplung beruht im wesentlichen auf der Verformbarkeit des Ansatzes, d.h. auf der Nachgiebigkeit des verwendeten Werkstoffes, der Form und der Zuordnung des Ansatzes zur Bewegungsrichtung. Führungszwecke stehen nicht im Vordergrund seiner Ausbildung und der Ansatz kann dadurch vollkommen neutral gestaltet werden, beispielsweise auch im Hinblick auf die Erzielung einer besonders großen Nachgiebigkeit, die in vielen Anwendungsfällen sehr erwünscht ist. Die Querschnittsbelastung des Ansatzes unter Betriebsbedingungen soll möglichst gleichmäßig sein. Diesem Ziel wird eine Ausführung besonders gerecht, bei der sich die Haftfläche parallel und der Ansatz quer zur Bewegungsrichtung erstreckt bzw. die Haftfläche quer und der Ansatz parallel zur Bewegungsrichtung. Im letztgenannten Falle resultiert eine hohe Werkstoffbelastung bei verminderter Beweglichkeit. Die Form wird daher nicht bevorzugt. Darüberhinaus ergibt sich bereits aus der Festlegung des relativ beweglichen Maschinenteils an der Haftfläche des Ansatzes eine Beeinträchtigung der Relativbeweglichkeit und damit ein weiteres Führungsmoment, das durch sich parallel zur Bewegungsrichtung erstreckende Begrenzungsflächen noch verstärkt werden kann.
  • Die einander zugewandten Führungsflächen der vorgeschlagenen Gummikupplung können aneinander anliegen, was einen besonders guten Führungseffekt bedingt, zugleich aber die anfängliche Überwindung der Haftreibung bei Einleitung einer relativen Verlagerung der angeschlossenen Maschinenteile erfordert. Der Vorgang kann sich in bestimmten Anwendungen nachteilig auswirken, und es hat sich für diese Fälle als zweckmäßig erwiesen, den einander zugeordneten Führungsflächen einen Abstand voneinander zu geben. Die Dimensionierung des Abstandes ergibt sich dabei aus der notwendigen Führungspräzision in Bewegungsrichtung. Sie läßt in den meisten Fällen die Bildung eines.Zwischenraumes von wenigen Zehntel Millimeter Breite ohne weiteres zu.
  • Der Zwischenraum kann zur Verminderung des Reibungswiderstandes bei einer gegenseitigen Berührung der Führungsflächen mit einem schmierend wirkenden Stoff gefüllt werden. Auch die Einbringung einer viskosen Flüssigkeit ist möglich. Sie bedingt eine gute Dämpfung der relativen Beweglichkeit der angeschlossenen Maschinenteile, was beispielsweise in bezug auf eine Verwendung der vorgeschlagenen Gummikupplung in einem Schwingungsdämpfer von großem Vorteil ist.
  • Unter Verwendung eines näherungsweise dämpfungsfreien elastomeren Werkstoffes für den Federkörper kann entsprechend dem besonderen Anwendungsfall durch die Wahl einer Flüssigkeit mit niedriger Viskosität mehr eine Tilgereigenschaft oder durch die Wahl einer Flüssigkeit mit hoher Viskosität mehr eine Dämpfereigenschaft eingestellt werden.
  • Als schmierend wirkender Stoff oder viskose Flüssigkeit können auch kapillaraktive Medien zur Anwendung kommen, was es in den meisten Fällen erübrigt, den spaltenartig ausge- ' bildeten Zwischenraum allseitig zu schließen. Kapillaraktive Medien werden dann von den in einem so engen Zwischenraum vorhandenen Kapillarkräften mit ausreichender Sicherheit gehalten, so daß ihr Verbleiben in dem Zwischenraum sogar unabhängig von der Lage der Gummikupplung stets gesichert ist.
  • Der Zwischenraum zwischen den Führungsflächen kann bei der vorgeschlagenen Gummikupplung auch allseits geschlossen werden, beispielsweise durch Anbringung von Ansätzen auf einander gegenüberliegenden Seiten des Federkörpers. In diesen Fällen ist eine Druckbeaufschlagung möglich, was es erlaubt, die Tiefe des Zwischenraumes nachträglich zu verändern. Beispielsweise in bezug auf die Einstellung der Dämpfungswirkung eines Schwingungsdämpfers ist diese Möglichkeit von erheblicher Bedeutung. Sie kann gegebenenfalls unter Betriebsbedingungen erfolgen und an die momentan gegebene Betriebssituation angepaßt sein.
  • Ansatz und Federkörper der vorgeschlagenen Gummikupplung bestehen im Regelfalle aus einem einheitlichen, homogenen Werkstoffblock. Die unterschiedliche Nachgiebigkeit des Federkörpers und des Ansatzes werden deshalb maßgeblich durch die äußere Gestalt bestimmt. Diese läßt sich gegebenenfalls durch Anwendung spanabhebender Bearbeitungsverfahren nachträglich verändern, beispielsweise zur Anpassung an bestimmte Erfordernisse des Einzelfalles. Die anzustrebenden Dimensionsverhältnisse sind leicht zu errechnen. Sie sollen so gewählt werden, daß das Verhältnis aus der Schub- oder Torsions- oder Biegeelastizität des Federkörpers und derjenigen des Ansatzes, oder, falls mehrere Ansätze und/oder Federkörper vorhanden sind, der Summe aus der Schub- oder Torsions- oder Biegeelastizität aller Ansätze und/oder Federkörper, größer ist als 0,5, gemessen jeweils in Bewegungsrichtung. Der bevorzugte Bereich liegt zwischen 2 und 4.
  • Die Ansätze an sich können jede beliebige Gestalt haben. Bevorzugt wird jedoch eine Ausführung, bei der die Ansätze durch leistenähnlich ausgebildete Vorsprünge gebildet werden, die sich parallel zur BewegungsricHtung erstrecken. Bei einer relativ einfach herzustellenden Gestalt lassen sich hierdurch relativ große Kräfte in Bewegungsrichtung über die Ansätze übertragen.
  • Die Führungsflächen können mit sich parallel zur Bewegungsrichtung erstreckenden, ineinandergreifenden Führungsleisten versehen sein. Unerwünschte Querbewegungen der angeschlossenen Maschinenteile können hierdurch wirksam verhindert werden. Zugleich ergibt sich, verglichen mit einer ebenen Ausführung, eine relative Vergrößerung der Oberfläche, was beispielsweise bei Verwendung eines viskosen Mediums im Zwischenraum zwischen den Führungsflächen zu verbesserten Dämpfungseigenschaften führt.
  • Die vorgeschlagene Gummikupplung kann je nach Richtung der eingeleiteten Relativbewegungen nahezu jede beliebige Gestalt haben. Eine ebene Ausführung erlaubt ihre Verwendung in einem Schwingungsdämpfer für geradlinige Bewegungen, eine rotationssymmetrische Ausführung ihre Verwendung in einem Drehschwingungsdämpfer, beispielsweise in einem solchen, in dem das angeschlossene Maschinenteil mit einer seismischen Masse verbunden ist.
  • Der Gegenstand der vorliegenden Erfindung wird nachfolgend anhand der in der Anlage beigefügten Zeichnungen weiter erläutert. Es zeigen:
    • Figur 1 eine Gummikupplung in halbgeschnittener Darstellung.
    • Figur 2 die Verwendung der vorgeschlagenen Gummikupplung in einem Längsschwingungsdämpfer in rotationssymmetrischer Ausführung. 1
    • Figur 3 die Verwendung der vorgeschlagenen Gummikupplung in einem Drehschwingungstilger.
    • Figur 4 die Verwendung der vorgeschlagenen Gummikupplung als Verbindungsglied zwischen einer Nabe und einer Riemenscheibe.
    • Figur 5 die Verwendung der vorgeschlagenen Gummikupplung in einem Drehschwingungsdämpfer.
    • Figur 6 die Verwendung der vorgeschlagenen Gummikupplung in einem Längsschwingungsdämpfer.
    • Figur 7 die Verwendung der vorgeschlagenen Gummikupplung in einem Drehschwingungsdämpfer.
  • Die in Figur 1 in halbgeschnittener Darstellung gezeigte Gummikupplung hat eine rotationssymmetrische Gestalt. Sie besteht aus zwei tassenförmig ausgebildeten Maschinenteilen 1, 2 aus Stahlblech, die ineinanderliegend angeordnet sind.
  • Zwischen den beiden Maschinenteilen 1 und 2 ist der Federkörper 3 angeordnet mit dem einstückig aus seinem Werkstoffkörper herausgeformten, sich in axialer Richtung erstreckenden Ansatz 4. Der Ansatz 4 ist im Bereich seiner stirnseitigen Haftfläche 5 mit dem äußeren Maschinenteil 1 durch Vulkanisation verbunden. Die übrigen einander gegenüber- liegenden Flächen des äußeren Maschinenteiles l, des Federkörpers 3 und des Ansatzes 4 sind als Führungsflächen ausgebildet und liegen ohne gegenseitige Verbindung beweglich aneinander an.
  • Die Drehsteifigkeit des Federkörpers 3 ist größer als diejenige des Ansatzes 4. Die aus einer relativen Verdrehung der Maschinenteile 1 und 2 resultierenden Verformungen wirken sich dadurch primär auf den Ansatz 4 aus. Sie lassen den Federkörper 3 weitgehend unberührt, wodurch auch bei Einleitung einer relativen Verdrehung eine gute radiale Abstützung zwischen den beiden Maschinenteilen 1 und 2 gewährleistet ist. Der Federkörper 3 ist im Bereich der Fläche 7 durchgehend an das innere Maschinenteil 2 anvulkanisiert.
  • Figur 2 verdeutlicht die Verwendung der vorgeschlagenen Gummikupplung in einem Längsschwingungsdämpfer. Dieser hat eine rotationssymmetrische Gestalt und besteht aus dem äußeren Maschinenteil 1, das den inneren Maschinenteil 2 in radialer Richtung umschließt.
  • Zwischen beiden Maschinenteilen ist der Federkörper 3 angeordnet, der durchgehend an die Innenwandung des äußeren Maschinenteiles anvulkanisiert ist. Er weist zwei kreisringförmig nach innen vorspringende Ansätze 4 auf, die mit ihrer Stirnfläche 5 an dem inneren Maschinenteil 2 festgelegt sind. Zwischen den einander zugewandten Führungsflächen 6 ist ein Spalt von geringer Breite vorhanden, der eine gute Relativbeweglichkeit der beiden Maschinenteile 1 und 2 gewährleistet und zugleich eine ausreichend präzise Führung.
  • Die Ausführung nach Figur 3 zeigt eine Verwendung der vorgeschlagenen Gummikupplung in einem für hohe Drehzahlen vorgesehenen Drehschwingungstilger. Dieser besteht aus dem äußeren Maschinenteil l, das durch eine seismische Masse gebildet wird, und aus dem inneren Maschinenteil 2, das durch einen Trägerflansch gebildet wird. Das äußere und das innere Maschinenteil sind mit ringförmigen Führungsleisten 8 versehen, die ein dreieckiges Profil haben,. und die ineinandergreifen. Das äußere Maschinenteil umschließt zugleich die Gesamtheit der in axialer Richtung vorspringenden Führungsleisten des inneren Maschinenteiles mit dem U-förmigen Profil der Tilgermasse. Diese ist auf der Innenseite des Profils mit einer durchgehend anvulkanisierten Schicht aus Gummi versehen, die den Federkörper 3 bildet. Die Schicht hat von den Führungsleisten 8 des Innenringes einen geringen Abstand, wodurch beiderseits in Umfangsrichtung leicht relativ zueinander bewegliche Führungsflächen gebildet werden. Sie ist im Bereich der äußeren Begrenzung des
  • Profils beiderseits in Richtung des Innenringes verdickt und unter Bildung der Ansätze 4 über die Haftfläche 5 an diesem festgelegt. Der Zwischenraum zwischen den Führungsflächen 6 enthält ein Schmiermittel zur Verminderung der Reibung bei gegenseitiger Berührung.
  • Die in Figur 4 in halbgeschnittener Darstellung gezeigte Gummikupplung hat ebenfalls eine rotationssymmetrische Gestalt. Sie ist zwischen zwei sich in radialer Richtung umschließenden Maschinenteilen und 2 angeordnet. Das Äußere der beiden Maschinenteile wird durch eine Riemenscheibe gebildet, das Innere durch die zugehörige Nabe.
  • An das innere Maschinenteil ist der Federkörper 3 als durchgehende Beschichtung anvulkanisiert. Die Beschichtung hat einen geringen radialen Abstand von der Innenseite des äußeren Maschinenteiles 1.
  • Die Dicke der Beschichtung ist auf den einander gegenüberliegenden Seiten unter Bildung der Ansätze 4 verdickt. Diese sind im Bereich der Haftflächen 5 mit dem äußeren Maschinenteil verbunden. Die übrigen einander gegenüberliegenden Flächen des äußeren Maschinenteiles l, des rechten Ansatzes 4 und des Federkörpers 3 sind als Führungsflächen 6 ausgebildet und dienen der Gewährleistung einer gleichbleibenden radialen Zuordnung des äußeren Maschinenteiles 1 zu dem inneren Maschinenteil 2.
  • Figur 5 zeigt die Verwendung der vorgeschlagenen Gummikupp- lung in einem Drehschwingungsdämpfer in halbgeschnittener Darstellung. Das äußere Maschinenteil 1 umschließt das innere Maschinenteil 2 in radialer Richtung. An Letzteres ist der Federkörper 3 anvulkanisiert. Er weist auf einander gegenüberliegenden Seiten flanschartig nach außen vorspringende Ansätze 4 auf, die mit ihren Flächen 5 an das äußere Maschinenteil 1 anvulkanisiert sind. Die Ausführung gewährleistet zusätzlich zu der guten radialen Führung des äußeren Maschinenteiles über die Führungsflächen 6 eine gewisse axiale Führung. Die Verdrehbeweglichkeit der beiden Teile wird hierdurch nicht nennenswert gestört. Dennoch ergibt sich bei vereinfachter Herstellbarkeit die Möglichkeit einer weitgehend lageunabhängigen Verwendung.
  • Figur 6 nimmt Bezug auf eine Verwendung der vorgeschlagenen Gummikupplung in einem Schwingungsdämpfer für geradlinige Bewegungen. Die beiden Maschinenteile 1 und 2 weisen dabei gegeneinander geöffnete Nuten auf, in denen der Federkörper 3 mit den Ansätzen 4 gelagert ist.
  • Die Ansätze 4 sind einstückig aus dem Werkstoff des Federkörpers 3 herausgeformt. Sie sind mit den Maschinenteilen 1, 2 lediglich durch die Haftflächen 5 der Ansätze 4 verbunden. Die übrigen einander gegenüberliegenden Flächen des Federkörpers 3, der Ansätze 4 und der beiden Maschinenteile 1, 2 werden durch Führungsflächen 6 gebildet. Diese haben einen Abstand voneinander, und der so gebildete Zwischenraum ist mit einer Dämpfungsflüssigkeit gefüllt.
  • Figur 7 zeigt die Verwendung der vorgeschlagenen Gummikupplung in einem Drehschwingungsdämpfer in halbgeschnittener Darstellung. Das äußere Maschinenteil 1 umschließt das innere Maschinenteil 2 in radialer Richtung. An letzteres ist der Federkörper 3 anvulkanisiert. Er weist auf einander gegenüberliegenden Seiten axial nach außen vorspringende Ansätze 4 auf, die mit ihren Haftflächen 5 an das äußere Maschinenteil 1 anvulkanisiert sind. Die Ausführung gewährleistet zusätzlich zu der guten radialen Führung des äußeren Maschinenteiles über die Führungsflächen 6 eine gewisse axiale Führung. Die Verdrehbeweglichkeit der beiden Teile wird hierdurch nicht nennenswert gestört. Dennoch ergibt sich bei vereinfachter Herstellbarkeit die Möglichkeit einer weitgehend lageunabhängigen Verwendung. Der Zwischenraum 9 zwischen den Führungsflächcn 6 ist mit einer Dämpfungsflüssigkeit gefüllt.

Claims (12)

1. Gummikupplung, bestehend aus zwei einen Spalt begrenzenden Maschinenteilen, die relativ zueinander und parallel zu dem Spalt bewegbar sind sowie aus wenigstens einem in dem Spalt angeordneten Federkörper aus gummielastischem Werkstoff, der ein dem Spalt angepaßtes Profil aufweist und der die Maschinenteile verbindet, dadurch gekennzeichnet, daß der Federkörper (3) wenigstens einen einstückig angeformten Ansatz (4) aufweist, daß das angrenzende Maschinenteil (l, 2) und der Federkörper durch die Haftfläche (5) des Ansatzesiverbunden sind und daß die übrigen einander gegenüberliegenden Flächen bei dem Teile durch Führungsflächen (6) gebildet werden.
2. Gummikupplung nach Anspruch 1, dadurch gekennzeichnet, daß sich der Ansatz (4) quer und die Haftfläche (5) parallel zur Bewegungsrichtung erstreckt.
3. Gummikupplung nach Anspruch 1 bis 2, dadurch gekennzeichnet, daß die Führungsflächen (6) einen Abstand haben.
4. Gummikupplung nach Anspruch 3, dadurch gekennzeichnet, daß der durch den Abstand gebildete Zwischenraum mit einem schmierend wirkenden Stoff gefüllt ist.
5. Gummikupplung nach Anspruch 3, dadurch gekennzeichnet, daß der durch den Abstand gebildete Zwischenraum mit einer viskosen Flüssigkeit gefüllt ist.
6. Gummikupplung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß der Zwischenraum geschlossen und druckbeaufschlagbar ist.
7. Gummikupplung nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß das Verhältnis aus der Schub- oder Torsions- oder Biegeelastizität des Federkörpers und derjenigen des Ansatzes oder, falls mehrere Ansätze und/oder Federkörper vorhanden sind, der Summe aus der Schub-oder Torsions- oder Biegeelastizität aller Ansätze und/ oder Federkörper, größer ist als 0,5, gemessen jeweils in Bewegungsrichtung.
8. Gummikupplung nach Anspruch 7,"dadurch gekennzeichnet, daß das Verhältnis 2 bis 4 beträgt.
9. Gummikupplung nach Anspruch 1 bis 8, dadurch gekennzeichnet, daß die Ansätze (4) durch leis.tenähnlich ausgebildete Vorsprünge gebildet werden, die sich parallel zur Bewegungsrichtung erstrecken.
10. Gummikupplung nach Anspruch 1 bis 9, dadurch gekennzeichnet, daß die Führungsflächen (6) mit sich parallel zur Bewegungsrichtung erstreckenden, ineinandergreifenden Führungsleisten (8) versehen sind.
11. Gummikupplung nach Anspruch 1 bis 10, dadurch gekennzeichnet, daß der Federkörper (3) und die angrenzenden Maschinenteile (1, 2) rotationssymmetrisch ausgebildet sind.
12. Gummikupplung nach Anspruch 1 bis 11, dadurch gekennzeichnet, daß eines der beiden Maschinenteile (1, 2) mit einer seismischen Masse verbunden sind.
EP84100603A 1983-09-27 1984-01-20 Gummikupplung Expired EP0135646B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3334881 1983-09-27
DE19833334881 DE3334881A1 (de) 1983-09-27 1983-09-27 Gummikupplung

Publications (3)

Publication Number Publication Date
EP0135646A2 true EP0135646A2 (de) 1985-04-03
EP0135646A3 EP0135646A3 (en) 1986-11-05
EP0135646B1 EP0135646B1 (de) 1989-03-08

Family

ID=6210163

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84100603A Expired EP0135646B1 (de) 1983-09-27 1984-01-20 Gummikupplung

Country Status (4)

Country Link
US (1) US4764152A (de)
EP (1) EP0135646B1 (de)
JP (1) JPS6073153A (de)
DE (2) DE3334881A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0219341A2 (de) * 1985-10-15 1987-04-22 Tokai Rubber Industries, Ltd. Vorrichtung mit zwei Dämpfern
EP0220871A2 (de) * 1985-10-15 1987-05-06 Tokai Rubber Industries, Ltd. Vorrichtung mit zwei Dämpfern
GB2187262A (en) * 1986-02-25 1987-09-03 Mitsubishi Electric Corp Power transmission device
EP0290580A1 (de) * 1986-12-01 1988-11-17 WITHERS, Graham Rex Vorrichtung zum harmonischen ausbalancieren
US5058267A (en) * 1986-11-07 1991-10-22 Firma Carl Freudenberg Process of producing a torsional vibration damper with a loosely embedded guiding ring
EP0620379A1 (de) * 1993-04-10 1994-10-19 Firma Carl Freudenberg Drehschwingungsdämpfer
EP3252329A1 (de) * 2016-06-03 2017-12-06 Yamaha Hatsudoki Kabushiki Kaisha Grätschsitzfahrzeug

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269648U (de) * 1985-10-23 1987-05-01
US4914949A (en) * 1986-10-01 1990-04-10 Firma Carl Freudenberg Torsional vibration damper
DE3639190A1 (de) * 1986-11-15 1988-05-26 Freudenberg Carl Fa Drehschwingungsdaempfer
DE3716441C1 (de) * 1987-05-16 1988-04-28 Freudenberg Carl Fa Drehschwingungsdaempfer
DE3925678A1 (de) * 1989-08-03 1991-02-14 Helmut Hartz Drehmoment uebertragende kupplung
US5517375A (en) * 1992-11-12 1996-05-14 Maxtor Corporation Apparatus for coupling a spindle shaft to a cover plate of a hard disk drive
US5653144A (en) 1993-02-09 1997-08-05 Fenelon; Paul J. Stress dissipation apparatus
US5452622A (en) 1993-02-09 1995-09-26 Magi, L.P. Stress dissipation gear
DE4312577C1 (de) * 1993-04-17 1994-08-18 Freudenberg Carl Fa Drehelastische Kupplung
DE4339218C2 (de) * 1993-11-18 1996-07-18 Freudenberg Carl Fa Planetengetriebe für den Antrieb von Nebenaggregaten
US5405296A (en) * 1993-12-28 1995-04-11 Tesma International Inc. Torsional vibration damper
DE4408474C1 (de) * 1994-03-12 1995-04-20 Freudenberg Carl Fa Drehelastische Kupplung
DE19539232C2 (de) * 1995-10-21 2003-02-27 Freudenberg Carl Kg Torsionsschwingungsdämpfer
WO1997030294A1 (en) * 1996-02-15 1997-08-21 Kelsey Hayes Company Electrical disc brake actuation mechanism
US5956998A (en) 1996-06-06 1999-09-28 Fenelon; Paul J. Stress reduction gear and apparatus using same
DE19825131C1 (de) * 1998-06-05 1999-07-22 Freudenberg Carl Fa Schwingungstilger
JP3603651B2 (ja) * 1999-03-09 2004-12-22 東海ゴム工業株式会社 流体封入式防振装置の製造方法
US20050016001A1 (en) 2003-06-24 2005-01-27 Milwaukee Electric Tool Corporation Drive mechanism and power tool
JP4446794B2 (ja) * 2004-05-10 2010-04-07 ダイキョーニシカワ株式会社 部材の結合構造
DE102007030557B3 (de) * 2007-06-30 2008-11-27 IDZ ingenieurbüro Dirk Zimmermann GmbH Drehschwingungstilger für Drehschwingungen einer Welle, insbesondere im Antriebsstrang von Dieselkraftfahrzeugen
FR3036153B1 (fr) * 2015-05-12 2017-06-09 Messier Bugatti Dowty Galet d'entrainement.
US10233992B2 (en) * 2017-07-31 2019-03-19 Aktiebolaget Skf Elastomeric bearing component with wedge-shaped shims
JP6585147B2 (ja) * 2017-12-01 2019-10-02 浜松ホトニクス株式会社 アクチュエータ装置
US11394284B2 (en) * 2017-12-01 2022-07-19 Hamamatsu Photonics K.K. Actuator device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB566381A (en) * 1943-01-28 1944-12-28 Rubber Bonders Ltd Improvements in resilient mountings
US2524405A (en) * 1947-09-22 1950-10-03 Ernest N Storrs Mount support
US2636399A (en) * 1950-06-17 1953-04-28 Houdailie Hershey Corp Tuned inertia mass viscous damper
FR2090092A1 (de) * 1970-05-16 1972-01-14 Dunlop Holdings Ltd
US3756551A (en) * 1971-10-27 1973-09-04 Lord Corp Anti-vibration support
DE2353891A1 (de) * 1972-10-27 1974-05-02 Caterpillar Tractor Co Schwingungsdaempfer
DE2317855A1 (de) * 1973-04-10 1974-10-31 Metzeler Gummitechnik Elastischer lagerkoerper fuer paarweise anordnung
US4172369A (en) * 1978-03-13 1979-10-30 Hayes Charles J Flexible coupling
EP0135648A2 (de) * 1983-09-24 1985-04-03 Firma Carl Freudenberg Verfahren zur Herstellung einer Federkupplung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US973005A (en) * 1909-10-28 1910-10-18 Edmund T Craige Necktie-holder.
DE725651C (de) * 1938-06-07 1942-09-26 Getefo Ges Fuer Tech Fortschri Elastische Wellenkupplung
US2492029A (en) * 1946-07-13 1949-12-20 Schwitzer Cummins Company Fan assembly
GB869216A (en) * 1958-05-24 1961-05-31 Riv Officine Di Villar Perosa Resilient mounting
DE2036160A1 (de) * 1969-08-04 1971-02-25 Riv Officine Di Villar Perosa Elastisches Gelenk
DE1944919A1 (de) * 1969-09-04 1971-03-11 Gelenkwellenbau Gmbh Zwischenlager fuer die Abstuetzung eines unterteilten Gelenkwellenstrangs eines Kraftfahrzeugs
SU734458A1 (ru) * 1978-02-23 1980-05-15 За витель Упруга центробежна муфта
DE2831076A1 (de) * 1978-07-14 1980-01-24 Metzeler Kautschuk Schwingungstilger zur schwingungsdaempfung einer antriebswelle
US4168216A (en) * 1978-09-27 1979-09-18 Diamond Shamrock Corporation Heat-treated fluorocarbon sulfonamide cation exchange membrane and process therefor
US4327562A (en) * 1978-10-06 1982-05-04 Panavision, Incorporated Flexible coupling
US4200004A (en) * 1979-03-15 1980-04-29 Wallace Murray Corporation Zero slip torsional vibration damper
JPS5814568A (ja) * 1981-07-17 1983-01-27 Fujitsu Ltd 薄膜トランジスタマトリツクスアレイの製造方法
JPS5827144U (ja) * 1981-08-17 1983-02-21 株式会社吉野工業所 チユ−ブ容器としごき体との組合せ物
US4496332A (en) * 1982-02-25 1985-01-29 Cascade Engineering, Inc. Rotary vibration isolator bushing

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB566381A (en) * 1943-01-28 1944-12-28 Rubber Bonders Ltd Improvements in resilient mountings
US2524405A (en) * 1947-09-22 1950-10-03 Ernest N Storrs Mount support
US2636399A (en) * 1950-06-17 1953-04-28 Houdailie Hershey Corp Tuned inertia mass viscous damper
FR2090092A1 (de) * 1970-05-16 1972-01-14 Dunlop Holdings Ltd
US3756551A (en) * 1971-10-27 1973-09-04 Lord Corp Anti-vibration support
DE2353891A1 (de) * 1972-10-27 1974-05-02 Caterpillar Tractor Co Schwingungsdaempfer
DE2317855A1 (de) * 1973-04-10 1974-10-31 Metzeler Gummitechnik Elastischer lagerkoerper fuer paarweise anordnung
US4172369A (en) * 1978-03-13 1979-10-30 Hayes Charles J Flexible coupling
EP0135648A2 (de) * 1983-09-24 1985-04-03 Firma Carl Freudenberg Verfahren zur Herstellung einer Federkupplung

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794816A (en) * 1985-10-15 1989-01-03 Tokai Rubber Industries, Ltd. Dual-type damper device
EP0381248A2 (de) 1985-10-15 1990-08-08 Tokai Rubber Industries, Ltd. Vorrichtung mit zwei Dämpfern
EP0381248A3 (de) * 1985-10-15 1990-09-19 Tokai Rubber Industries, Ltd. Vorrichtung mit zwei Dämpfern
EP0220871A3 (en) * 1985-10-15 1988-01-20 Tokai Rubber Industries, Ltd. Dual-type damper device
EP0219341A3 (en) * 1985-10-15 1988-01-20 Tokai Rubber Industries, Ltd. Dual-type damper device
US4881426A (en) * 1985-10-15 1989-11-21 Tokai Rubber Industries, Ltd. Dual-type damper device
EP0220871A2 (de) * 1985-10-15 1987-05-06 Tokai Rubber Industries, Ltd. Vorrichtung mit zwei Dämpfern
EP0219341A2 (de) * 1985-10-15 1987-04-22 Tokai Rubber Industries, Ltd. Vorrichtung mit zwei Dämpfern
GB2187262B (en) * 1986-02-25 1990-01-04 Mitsubishi Electric Corp Power transmission device
GB2187262A (en) * 1986-02-25 1987-09-03 Mitsubishi Electric Corp Power transmission device
US5058267A (en) * 1986-11-07 1991-10-22 Firma Carl Freudenberg Process of producing a torsional vibration damper with a loosely embedded guiding ring
EP0290580A4 (de) * 1986-12-01 1990-01-08 Graham Rex Withers Vorrichtung zum harmonischen ausbalancieren.
EP0290580A1 (de) * 1986-12-01 1988-11-17 WITHERS, Graham Rex Vorrichtung zum harmonischen ausbalancieren
EP0620379A1 (de) * 1993-04-10 1994-10-19 Firma Carl Freudenberg Drehschwingungsdämpfer
EP3252329A1 (de) * 2016-06-03 2017-12-06 Yamaha Hatsudoki Kabushiki Kaisha Grätschsitzfahrzeug

Also Published As

Publication number Publication date
JPH0315056B2 (de) 1991-02-28
DE3334881A1 (de) 1985-04-11
EP0135646A3 (en) 1986-11-05
EP0135646B1 (de) 1989-03-08
JPS6073153A (ja) 1985-04-25
DE3477040D1 (en) 1989-04-13
US4764152A (en) 1988-08-16

Similar Documents

Publication Publication Date Title
EP0135646B1 (de) Gummikupplung
DE69023627T2 (de) Flüssigkeitslose befestigung mit bewegungsdämpfung in mehreren richtungen.
DE69427446T2 (de) Kunstharz Lager mit einem scheibenförmigen axialen Lagerelement und einem radialen Lagerelement in der Form einer geschlitzte Hülse
EP0134839B1 (de) Hydraulisch bedämpftes Motorlager
EP0431325B1 (de) Kolben- oder Stangendichtung
EP0266479B1 (de) Torsionsschwingungsdämpfer mit integriertem Schrumpfring
EP0485696B1 (de) Elastisches Gleitlager
DE112013004246B4 (de) Zylindrische Schwingungsdämpfungsvorrichtung
DE3940004C2 (de)
EP0485697A2 (de) Elastisches Gleitlager
EP0621413B1 (de) Drehelastische Kupplung
DE2018310A1 (de) Drehschwmgungsdämpfer
DE3882824T2 (de) Elastische Buchse mit Fluiddämpfung.
DE3640316A1 (de) Hydraulisch gedaempftes elastisches lager
DE10035024A1 (de) Hydraulisch dämpfendes Elastomerlager
DE202010017747U1 (de) Gleithülse
DE4117129C2 (de)
DE2600820A1 (de) Tellerfederventil fuer stossdaempfer
DE3126766C2 (de) Rollkörpergelagerte Gelenkkupplung
EP2469107B1 (de) Gleithülse
EP0042909A2 (de) Hydraulisch dämpfendes Einkammerlager
EP0052689B1 (de) Stangen- oder Kolbendichtung
EP0253086A2 (de) Einrichtung zum Abdichten zweier relativ gegeneinander bewegbarer Maschinenteile, insbesondere zum Abdichten des Kolbens eines Arbeitszylinders
DE2910350C2 (de) Kolbenstangenführung und -abdichtung, insbesondere für Stoßdämpfer von Kraftfahrzeugen
DE4430036C1 (de) Drehschwingungstilger, insbesondere für den Antriebsstrang von Kraftfahrzeugen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT SE

RTI1 Title (correction)
PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19860929

17Q First examination report despatched

Effective date: 19880127

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3477040

Country of ref document: DE

Date of ref document: 19890413

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 84100603.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951219

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970107

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970108

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970121

EUG Se: european patent has lapsed

Ref document number: 84100603.4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980120

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030130

Year of fee payment: 20