[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0124720B1 - Marine propeller driven by an electric motor, comprising a permanent magnet rotor shaped in the ring connecting the propeller blad tips - Google Patents

Marine propeller driven by an electric motor, comprising a permanent magnet rotor shaped in the ring connecting the propeller blad tips Download PDF

Info

Publication number
EP0124720B1
EP0124720B1 EP84102623A EP84102623A EP0124720B1 EP 0124720 B1 EP0124720 B1 EP 0124720B1 EP 84102623 A EP84102623 A EP 84102623A EP 84102623 A EP84102623 A EP 84102623A EP 0124720 B1 EP0124720 B1 EP 0124720B1
Authority
EP
European Patent Office
Prior art keywords
electrically driven
propeller
driven propeller
propeller according
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84102623A
Other languages
German (de)
French (fr)
Other versions
EP0124720A1 (en
Inventor
Klaus Dr.-Ing. Kranert
Klaus Dipl.-Ing. Billerbeck
Wolfgang Dr.-Ing. Hars
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Licentia Patent Verwaltungs GmbH
Original Assignee
Licentia Patent Verwaltungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Licentia Patent Verwaltungs GmbH filed Critical Licentia Patent Verwaltungs GmbH
Publication of EP0124720A1 publication Critical patent/EP0124720A1/en
Application granted granted Critical
Publication of EP0124720B1 publication Critical patent/EP0124720B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/14Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in non-rotating ducts or rings, e.g. adjustable for steering purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/22Transmitting power from propulsion power plant to propulsive elements with non-mechanical gearing
    • B63H23/24Transmitting power from propulsion power plant to propulsive elements with non-mechanical gearing electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H2023/005Transmitting power from propulsion power plant to propulsive elements using a drive acting on the periphery of a rotating propulsive element, e.g. on a dented circumferential ring on a propeller, or a propeller acting as rotor of an electric motor

Definitions

  • the invention relates to an electrically driven propeller for watercraft with the features of the preamble of claim 1.
  • Motor propellers are known in which the propeller runs in a nozzle which receives the stator winding distributed around the circumference. The wing ends of the propeller are connected to each other by a strap. Permanent magnets to excite the motor are inserted in the belt, also distributed over the circumference.
  • Such a motor propeller is described in DE application P 32 46 730.3 and brings with it a significant improvement in efficiency compared to drives which are driven by the propeller hub (cf. DE-C-688114 and DE-C-690 233, which the preamble of Claim 1 corresponds).
  • the object underlying the invention is therefore to be seen in creating an arrangement of the type described at the outset with which an optimal degree of propulsion quality is achieved with maximum propeller dimensions. This object is achieved by the features specified in the characterizing part of claim 1.
  • the arrangement according to the invention has significant advantages. If the stator winding is placed in the stern ship, which is adapted to the motor propeller, there is maximum utilization of the diameter of the propeller. A further improvement in effectiveness can be achieved if the outer shell of the ship, which surrounds the propeller motor in a two-screw ship, is made into a tunnel. This partial tunnel can be closed by a nozzle ring. By eliminating the wave trousers and the wave line and appropriate design of the stern, a uniform flow is achieved. This increases the overall degree of propulsion.
  • Fig. 1 From Fig. 1 it can be seen that the two propellers 1 and 2 are inserted into the stern 3 so that they run in a tunnel-like recess 4.
  • the special design of the stern ship 3 in the form of a fin-like extension 5 of the keel leads to a more than 50% tunneling of the propellers 1, 2.
  • a partial nozzle ring 6 can be inserted into the partial tunnel to completely surround the propellers.
  • This structurally simpler form of the stern ship 3 leads to a more uniform flow against the propellers 1, 2 and, in the favorable case, can lead to an approximately 20% increase in the overall degree of propulsion quality.
  • Fig. 2 From Fig. 2 it can be seen more clearly that the propellers 1, 2 are integrated into the stern 3.
  • the tunnel-shaped recesses 4 are supplemented by the nozzle rings 6, so that the stator windings can be distributed evenly over the circumference of the propellers.
  • the shaft brackets 8 which are used to hold the propeller shafts 7 and are firmly connected to the ship's hull are indicated. With this design of the stern, the draft of the ship is not exceeded, even with optimal propeller diameters.
  • FIGS. 4 and 4 show the stern of a screw-in ship. Due to its construction, the propeller 10 runs only about 1/3 of its circumference in a tunnel 12 integrated into the stern 11, while about 2/3 are formed by a nozzle ring 13.
  • the bearing of the propeller shaft 14 and the absorption of the thrust forces can take place in the fixed part 15 of a semi-floating rudder 16, alternatively also in a bridge to the rudder hoe 17. Radial forces can be absorbed by articulated arms 18.
  • stator winding 19 is distributed over the tunnel 12 and the nozzle ring 13.
  • the excitation of the motor is generated by permanent magnets 20, which are also distributed over the circumference of the propeller in a belt 21.
  • the stator winding 19 is expediently fed by a separate generator and designed with a voltage corresponding to the vehicle electrical system voltage. This means that if the main machine fails, takehome operation is possible via the vehicle electrical system generators and converters.
  • the ship's outer skin can be designed as a tear-off edge or drainage bead 24, also removable (FIG. 5b). This embodiment is dealt with in more detail using the following description of the figures.
  • FIG. 6 shows a variant in which the wing ends of the propeller 25 are connected to an annular disk 26.
  • Permanent magnets 27, 28 are embedded in the opposing ring surfaces distributed over the circumference.
  • the annular disc 26 runs in an annular groove 29 of the partial tunnel and the nozzle ring, which are made correspondingly stronger in the wall.
  • the rotor is designed like an axial field double rotor.
  • the stator windings 30, 31 are arranged on both sides of the annular groove 29.
  • the propeller shaft 32 is mounted both on the fixed part 33 of the rudder and on the ship's outer skin by means of articulated arms 34 in order to absorb the thrust and transverse forces.
  • the gap between the annular disc 26 and the annular groove 29 is flooded and provided with a coarse seal 35 at the entrance in order to keep foreign objects away.
  • FIG. 7 which shows the part circled in a circular manner in FIG. 6, it can be seen that the rear stator winding 31 is arranged in an annular bead 36 which ends at the end 37 in a streamlined manner in order to reduce the water resistance.
  • the annular bead 36 can be removed aft.
  • the parting line can run in the middle of the web ring 38.
  • Peripheral openings 39 can be provided in the web ring on the water side in order to ensure flushing of the flooded annular gap and cooling of the motor.
  • annular disk and the annular groove according to FIG. 6 are L-shaped by lugs parallel to the propeller axis, the electrically active components being placed in the horizontal parts.
  • An annular disk 41 is in turn connected to the wing ends of the propeller 40, but is provided with a horizontal shoulder 42 parallel to the propeller axis. This has opposite surfaces and distributes permanent magnets 43, 44 over the circumference.
  • the annular groove 45 receiving the L-shaped rotor, which acts here as a radial field double rotor, in the partial tunnel of the stern and in the nozzle ring has stator windings 46, 47 in the surfaces opposite the rotor magnets.
  • the wing ends can be brought close to the inner wall of the tunnel or nozzle ring.
  • the annular groove receiving the radial part 41 of the rotor can be made relatively wide and in turn receives a coarse seal 48 at the entrance.
  • stator windings 46, 47 are placed in an annular bead 50 connected to the stern, for example via bolts 49. This facilitates maintenance and repair of the propeller 40. Openings 51 to the water side in the annular bead can also be provided here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

Die Erfindung betrifft einen elektrisch angetriebenen Propeller für Wasserfahrzeuge mit dem Merkmalen des Oberbegriffes des Anspruchs 1. Es sind Motorpropeller bekannt, bei denen der Propeller in einer Düse läuft, die um den Umfang verteilt die Statorwicklung aufnimmt. Die Flügelenden des Propellers sind über eine Gurtung miteinander verbunden. In die Gurtung sind, ebenfalls über dem Umfang verteilt, Permanentmagnete zur Erregung des Motors eingesetzt. Ein derartiger Motorpropeller ist in der DE-Anmeldung P 32 46 730.3 beschrieben und bringt eine wesentliche Wirkungsgradverbesserung gegenüber Antrieben mit sich, die von der Propellernabe angetrieben werden (vergl. DE-C-688114 und DE-C-690 233, welche dem Oberbegriff des Anspruchs 1 entspricht).The invention relates to an electrically driven propeller for watercraft with the features of the preamble of claim 1. Motor propellers are known in which the propeller runs in a nozzle which receives the stator winding distributed around the circumference. The wing ends of the propeller are connected to each other by a strap. Permanent magnets to excite the motor are inserted in the belt, also distributed over the circumference. Such a motor propeller is described in DE application P 32 46 730.3 and brings with it a significant improvement in efficiency compared to drives which are driven by the propeller hub (cf. DE-C-688114 and DE-C-690 233, which the preamble of Claim 1 corresponds).

Es ist weiterhin bekannt, daß eine Verminderung der Drehzahl eines Propellers auf beispielsweise 58 U/min bei einer Durchmesservergrößerung auf 9 m zu einer Wirkungsgradverbesserung von ca. 15 % führt (vergl. STG-Jahrbuch 1980, Seiten 130 ff). Wegen des bei Schiffen herkömmlicher Bauart gegebenen Konstruktionstiefganges ist eine Vergrößerung des Propellerdurchmessers auf optimale Werte meistens nicht möglich. Insbesondere sind dann Grenzen zu beachten, wenn das Schiff bestimmte Fahrtrouten mit vorgegebenen Wassertiefen befährt.It is also known that a reduction in the speed of a propeller to, for example, 58 rpm with a diameter increase to 9 m leads to an efficiency improvement of approximately 15% (cf. STG yearbook 1980, pages 130 ff). Because of the draft that exists in ships of conventional design, it is usually not possible to increase the propeller diameter to optimum values. Limits must be observed in particular if the ship travels certain travel routes with specified water depths.

Die der Erfindung zugrunde liegende Aufgabe ist daher darin zu sehen, eine Anordnung der eingangs beschriebenen Art zu schaffen, mit der ein optimaler Propulsionsgütegrad bei maximalen Propellerabmessungen erreicht wird. Diese Aufgabe wird erfindungsgemäß durch die im Kennzeichen des Anspruchs 1 angegebenen Merkmale gelöst.The object underlying the invention is therefore to be seen in creating an arrangement of the type described at the outset with which an optimal degree of propulsion quality is achieved with maximum propeller dimensions. This object is achieved by the features specified in the characterizing part of claim 1.

Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.Further developments of the invention are characterized in the subclaims.

Die Anordnung nach der Erfindung bringt wesentliche Vorteile mit sich. Wird die Statorwicklung in das an den Motorpropeller angepaßte Hinterschiff gelegt, so ist eine maximale Durchmesserausnutzung des Propellers gegeben. Eine weitere Verbesserung der Effektivität kann erreicht werden, wenn die Schiffsaußenhaut, die bei einem Zwei-Schrauberschiff den Propellermotor mehr als 50 % umgibt, zu einem Tunnel ausgebildet wird. Dieser Teiltunnel kann durch einen Düsenring geschlossen werden. Durch Wegfall der Wellenhose und der Wellenleitung und entsprechende Ausgestaltung des Hinterschiffes wird eine gleichmässige Anströmung erzielt. Dadurch wird der Gesamtpropulsionsgütegrad gesteigert.The arrangement according to the invention has significant advantages. If the stator winding is placed in the stern ship, which is adapted to the motor propeller, there is maximum utilization of the diameter of the propeller. A further improvement in effectiveness can be achieved if the outer shell of the ship, which surrounds the propeller motor in a two-screw ship, is made into a tunnel. This partial tunnel can be closed by a nozzle ring. By eliminating the wave trousers and the wave line and appropriate design of the stern, a uniform flow is achieved. This increases the overall degree of propulsion.

In der Zeichnung sind Ausführungsbeispiele nach der Erfindung dargestellt. Es zeigen

  • Figur 1 eine perspektivische Darstellung des Hecks eines Zweischraubenschiffes,
  • Figur 2 Ansicht der in das Heck integrierten Doppelschrauben,
  • Figur 3 Heckansicht bei einem Einschraubenschiff,
  • Figur 4 Seitenansicht des Motorpropellers als Radialfeld-Maschine,
  • Figur 5 Rotor- und Statorausführungen,
  • Figur 6 Seitenansicht des Propellers als Achsialfeld-Maschine mit Doppelrotor,
  • Figur 7 eine vergrößerte Darstellung des Doppelrotors aus Fig. 6 und
  • Figur 8 eine Variante für einen Radialfeld-Doppelrotor.
Exemplary embodiments according to the invention are shown in the drawing. Show it
  • FIG. 1 shows a perspective illustration of the stern of a two-screw ship,
  • FIG. 2 view of the double screws integrated in the rear,
  • FIG. 3 stern view of a screw-in ship,
  • FIG. 4 side view of the motor propeller as a radial field machine,
  • FIG. 5 rotor and stator designs,
  • FIG. 6 side view of the propeller as an axial field machine with a double rotor,
  • Figure 7 is an enlarged view of the double rotor of Fig. 6 and
  • Figure 8 shows a variant for a radial field double rotor.

Aus Fig. 1 ist zu ersehen, daß die beiden Propeller 1 und 2 so in das Hinterschiff 3 eingesetzt sind, daß sie in einer tunnelartigen Ausnehmung 4 laufen. Die besondere Ausbildung des Hinterschiffes 3 in der Form eines flossenartigen Fortsatzes 5 des Kieles führt zu einer mehr als 50 % Eintunnelung der Propeller 1, 2. Zur vollständigen Umfassung der Propeller kann ein Teildüsenring 6 an die Teiltunnel eingefügt werden. Diese konstruktiv einfachere Form des Hinterschiffes 3 führt zu einer vergleichmäßigten Anströmung der Propeller 1, 2 und kann im günstigen Fall zu einer ca. 20 % Steigerung des Gesamtpropulsionsgütegrades führen.From Fig. 1 it can be seen that the two propellers 1 and 2 are inserted into the stern 3 so that they run in a tunnel-like recess 4. The special design of the stern ship 3 in the form of a fin-like extension 5 of the keel leads to a more than 50% tunneling of the propellers 1, 2. A partial nozzle ring 6 can be inserted into the partial tunnel to completely surround the propellers. This structurally simpler form of the stern ship 3 leads to a more uniform flow against the propellers 1, 2 and, in the favorable case, can lead to an approximately 20% increase in the overall degree of propulsion quality.

Aus Fig. 2 ist noch deutlicher zu erkennen, daß die Propeller 1, 2 in das Hinterschiff 3 integriert sind. Die tunnelförmigen Ausnehmungen 4 werden durch die Düsenringe 6 ergänzt, so daß die Statorwicklungen gleichmäßig über den Umfang der Propeller verteilt werden können. Angedeutet sind die zur Halterung der Propellerwellen 7 dienenden Wellenböcke 8, die mit der Schiffshaut fest verbunden sind. Durch diese Ausbildung des Hinterschiffes wird selbst bei optimalen Propellerdurchmessern der Konstruktionstiefgang des Schiffes nicht überschritten.From Fig. 2 it can be seen more clearly that the propellers 1, 2 are integrated into the stern 3. The tunnel-shaped recesses 4 are supplemented by the nozzle rings 6, so that the stator windings can be distributed evenly over the circumference of the propellers. The shaft brackets 8 which are used to hold the propeller shafts 7 and are firmly connected to the ship's hull are indicated. With this design of the stern, the draft of the ship is not exceeded, even with optimal propeller diameters.

Die Fig. und 4 zeigen das Heck eines Einschraubenschiffes. Der Propeller 10 läuft konstruktionsbedingt nur zu etwa 1/3 seines Umfangs in einem in das Hinterschiff 11 integrierten Tunnel 12, während ca. 2/3 von einem Düsenring 13 gebildet werden.FIGS. 4 and 4 show the stern of a screw-in ship. Due to its construction, the propeller 10 runs only about 1/3 of its circumference in a tunnel 12 integrated into the stern 11, while about 2/3 are formed by a nozzle ring 13.

Die Lagerung der Propellerwelle 14 und die Aufnahme der Schubkräfte kann im feststehenden Teil 15 eines Halbschweberuders 16 erfolgen, alternativ auch in einem Steg zur Ruderhacke 17. Radialkräfte können durch Gelenkarme 18 aufgenommen werden.The bearing of the propeller shaft 14 and the absorption of the thrust forces can take place in the fixed part 15 of a semi-floating rudder 16, alternatively also in a bridge to the rudder hoe 17. Radial forces can be absorbed by articulated arms 18.

Die Statorwicklung 19 ist, wie in Fig. 4 angedeutet, über den Tunnel 12 und den Düsenring 13 verteilt angeordnet. Die Erregung des Motors wird durch Permanentmagnete 20 erzeugt, die ebenfalls über den Umfang des Propellers in einer Gurtung 21 verteilt sind. Die Statorwicklung 19 wird zweckmässig von einem separaten Generator gespeist und mit einer Spannung entsprechend der Bordnetzspannung ausgelegt. Dadurch ist bei Ausfall der Hauptmaschine ein takehome-Betrieb über die Bordnetzgeneratoren und Umrichter möglich.As indicated in FIG. 4, the stator winding 19 is distributed over the tunnel 12 and the nozzle ring 13. The excitation of the motor is generated by permanent magnets 20, which are also distributed over the circumference of the propeller in a belt 21. The stator winding 19 is expediently fed by a separate generator and designed with a voltage corresponding to the vehicle electrical system voltage. This means that if the main machine fails, takehome operation is possible via the vehicle electrical system generators and converters.

Um den Vorteil einer wirbelstromfreien Ablösung des Propellerstrahles hinter dem Propeller-Düsering 22 zu erhalten, wie Fig. 5a und 5b zeigen, wird die Schiffsaußenhaut örtlich hinter der Statorwicklung 23, aber vor dem Ende der stromlinienförmig ausgebildeten Propellergurtung 22 enden (Fig.5a).To take advantage of eddy current-free detachment To obtain the solution of the propeller jet behind the propeller nozzle ring 22, as shown in FIGS. 5a and 5b, the ship's outer skin will end locally behind the stator winding 23, but before the end of the streamlined propeller belt 22 (FIG. 5a).

Die Schiffsaußenhaut kann als Abrißkante oder Ablaufwulst 24, auch abnehmbar, gestaltet sein (Fig. 5b). Anhand der nachfolgenden Figurenbeschreibung wird diese Ausführung näher behandelt.The ship's outer skin can be designed as a tear-off edge or drainage bead 24, also removable (FIG. 5b). This embodiment is dealt with in more detail using the following description of the figures.

In Fig. 6 ist eine Variante gezeigt, bei der die Flügelenden des Propellers 25 mit einer Ringscheibe 26 verbunden sind. In die einander gegenüberliegenden Ringflächen sind Permanentmagnete 27, 28 über den Umfang verteilt eingelassen. Die Ringscheibe 26 läuft in einer Ringnut 29 des Teiltunnels und des Düsenringes, die entsprechend stärker in der Wandung ausgeführt sind. Der Rotor ist hier nach Art eines Achsialfeld-Doppelrotors ausgeführt. Zu beiden Seiten der Ringnut 29 sind die Statorwicklungen 30, 31 angeordnet.6 shows a variant in which the wing ends of the propeller 25 are connected to an annular disk 26. Permanent magnets 27, 28 are embedded in the opposing ring surfaces distributed over the circumference. The annular disc 26 runs in an annular groove 29 of the partial tunnel and the nozzle ring, which are made correspondingly stronger in the wall. The rotor is designed like an axial field double rotor. The stator windings 30, 31 are arranged on both sides of the annular groove 29.

Die Propellerwelle 32 ist sowohl am festen Teil 33 des Ruders als auch mittels Gelenkarmen 34 an der Schiffsaußenhaut gelagert, um die Schub-und Querkräfte aufzunehmen. Der Spalt zwischen Ringscheibe 26 und Ringnut 29 ist geflutet und am Eingang mit einer Grobdichtung 35 versehen, um Fremdkörper fernzuhalten.The propeller shaft 32 is mounted both on the fixed part 33 of the rudder and on the ship's outer skin by means of articulated arms 34 in order to absorb the thrust and transverse forces. The gap between the annular disc 26 and the annular groove 29 is flooded and provided with a coarse seal 35 at the entrance in order to keep foreign objects away.

Aus Fig. 7, die den in Fig. 6 kreisförmig umrandeten Teil vergrößert darstellt, geht hervor, daß die hintere Statorwicklung 31 in einem Ringwulst 36 angeordnet ist, der zur Herabsetzung des Wasserwiderstandes am Ende 37 stromlinienförmig ausläuft. Um die Wartung und Reparatur des Propellers zu erleichtern, ist der Ringwulst 36 nach achtern abnehmbar. Die Trennfuge kann dabei in der Mitte des Stegringes 38 verlaufen. In den Stegring können zur Wasserseite periphere Öffnungen 39 vorgesehen sein, um eine Spülung des gefluteten Ringspaltes sowie eine Kühlung des Motors zu gewährleisten.From FIG. 7, which shows the part circled in a circular manner in FIG. 6, it can be seen that the rear stator winding 31 is arranged in an annular bead 36 which ends at the end 37 in a streamlined manner in order to reduce the water resistance. In order to facilitate the maintenance and repair of the propeller, the annular bead 36 can be removed aft. The parting line can run in the middle of the web ring 38. Peripheral openings 39 can be provided in the web ring on the water side in order to ensure flushing of the flooded annular gap and cooling of the motor.

Schließlich sind in einer weiteren Variante gemäß Fig. 8 Ringscheibe und Ringnut nach Fig. 6 durch zur Propellerachse parallele Ansätze L-förmig ausgebildet, wobei die elektrisch wirksamen Komponenten in die horizontalen Teile gelegt sind. Mit den Flügelenden des Propellers 40 ist wiederum eine Ringscheibe 41 verbunden, die allerdings einen horizontalen, zur Propellerachse parallelen Ansatz 42 erhält. Dieser weist auf einander gegenüberliegenden Flächen und verteilt über den Umfang Permanentmagnete 43, 44 auf. Die den L-förmigen Rotor, der hier als Radialfeld-Doppelrotor wirkt, aufnehmende Ringnut 45 im Teiltunnel des Hinterschiffes und im Düsenring weist in den den Rotormagneten gegenüberliegenden Flächen Statorwicklungen 46, 47 auf.Finally, in a further variant according to FIG. 8, the annular disk and the annular groove according to FIG. 6 are L-shaped by lugs parallel to the propeller axis, the electrically active components being placed in the horizontal parts. An annular disk 41 is in turn connected to the wing ends of the propeller 40, but is provided with a horizontal shoulder 42 parallel to the propeller axis. This has opposite surfaces and distributes permanent magnets 43, 44 over the circumference. The annular groove 45 receiving the L-shaped rotor, which acts here as a radial field double rotor, in the partial tunnel of the stern and in the nozzle ring has stator windings 46, 47 in the surfaces opposite the rotor magnets.

Die Flügelenden können dicht an die Innenwand des Tunnels bzw. Düsenringes herangeführt werden. Die den radialen Teil 41 des Rotors aufnehmende Ringnut kann dagegen relativ breit ausgeführt werden und erhält am Eingang wiederum eine Grobdichtung 48.The wing ends can be brought close to the inner wall of the tunnel or nozzle ring. In contrast, the annular groove receiving the radial part 41 of the rotor can be made relatively wide and in turn receives a coarse seal 48 at the entrance.

Die Statorwicklungen 46, 47 sind in einem mit dem Hinterschiff beispielsweise über Schraubenbolzen 49 verbundenen Ringwulst 50 gelegt. Dadurch wird Wartung und Reparatur des Propellers 40 erleichtert. Auch hier können Öffnungen 51 zur Wasserseite im Ringwulst vorgesehen werden.The stator windings 46, 47 are placed in an annular bead 50 connected to the stern, for example via bolts 49. This facilitates maintenance and repair of the propeller 40. Openings 51 to the water side in the annular bead can also be provided here.

Claims (12)

1. Electrically driven propeller for watercraft with permanent excitation in a flange connecting the propeller blade ends and a stationarily mounted stator winding, in which the annular gap between stator and rotor is flooded, characterized thereby, that the propeller (1, 10) is at least in part arranged in a tunnel (4, 12), which is integrated into the stern of the ship and closed by a nozzle ring (6, 13) around the remaining circumference of the propeller, wherein shaft struts (8, 18) to the outer skin of the ship and to the rudder heel (17) and/or a shaft receptacle in the fixed part (15) of the rudder blade (16) serve to bear the propeller shaft (7, 14).
2. Electrically driven propeller according to claim 1, characterized thereby, that in the case of the use of a radial field machine, the stator winding and the permanent magnets in the propeller flange are recessed into the wall of the tunnel and nozzle ring.
3. Electrically driven propeller according to claim 2, characterized thereby, that the nozzle ring (6, 13) is constructed as partial chord nozzle.
4. Electrically driven propeller according to claim 2, characterized thereby, that the astern end of tunnel (4, 12) and nozzle ring (6, 13) ends in front of the astern edge of the rotor flange (22) and is constructed as sharp edge or bead (24).
5. Electrically driven propeller according to claim 2, characterized thereby, that the rotor flange is constructed in streamline shape.
6. Electrically driven propeller according to claim 1, characterized thereby, that the inside wall of the tunnel and nozzle ring displays a radial annular groove (29), into the lateral boundary surfaces of which the stator windings (30, 31) are inserted, and that the rotor connected with the blade ends engages as radial annular disc (26) into the annular groove and is provided with the excitation magnets (27, 28) lying opposite the stator windings.
7. Electrically driven propeller according to claim 6, characterized thereby, that a coarse seal (35) is arranged between annular groove (29) and annular disc (26).
8. Electrically driven propeller according to claim 6, characterized thereby, that the annular groove (45) in the wall of the tunnel and nozzle ring and the annular disc (41) co-operating with it are constructed in L-shape by an axial projection (42), wherein stator windings (46, 47) and excitation magnets (43, 44) are arranged to lie one opposite the other in the axial part.
9. Electrically driven propeller according to claim 8, characterized thereby, that the axial projection (42) of the annular groove with the stator windings (46, 47) lying one opposite the other are provided in a component constructed as bead ring (50), which is mountable from astern at the stern of the ship.
10. Electrically driven propeller according to claim 9, characterized thereby, that the bead ring (50) is constructed in streamline shape to lower the water resistance.
11. Electrically driven propeller according to claim 6 and 8, characterized thereby, that the annular groove (45) or its axial projection (42) are connected through peripheral openings (51) with the surrounding water.
12. Electrically driven propeller according to claim 6, characterized thereby, that the rearward stator winding (31) is housed in a bead-shaped component (36), which is removably connected with the stern of the ship.
EP84102623A 1983-04-02 1984-03-10 Marine propeller driven by an electric motor, comprising a permanent magnet rotor shaped in the ring connecting the propeller blad tips Expired EP0124720B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833312063 DE3312063A1 (en) 1983-04-02 1983-04-02 SHIP INTEGRATED ENGINE PROPELLER
DE3312063 1983-04-02

Publications (2)

Publication Number Publication Date
EP0124720A1 EP0124720A1 (en) 1984-11-14
EP0124720B1 true EP0124720B1 (en) 1986-07-30

Family

ID=6195378

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84102623A Expired EP0124720B1 (en) 1983-04-02 1984-03-10 Marine propeller driven by an electric motor, comprising a permanent magnet rotor shaped in the ring connecting the propeller blad tips

Country Status (6)

Country Link
EP (1) EP0124720B1 (en)
JP (1) JPS59223598A (en)
KR (1) KR840008629A (en)
DE (2) DE3312063A1 (en)
FI (1) FI76748C (en)
NO (1) NO156891C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8630436D0 (en) * 1986-12-19 1987-01-28 Subsea Offshore Ltd Motors
FR2768119B1 (en) * 1997-09-08 1999-11-12 Technicatome NAVAL PROPELLER WITH CENTRAL PROPELLER AND DISCOID ASYNCHRONOUS MOTOR
EP1876094A3 (en) * 2006-07-06 2008-03-19 Neta N.V. Retractable thruster for vessels
JP7281911B2 (en) 2019-01-30 2023-05-26 三菱重工業株式会社 Motor-integrated fluid machine and vertical take-off and landing aircraft

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE690233C (en) * 1938-01-27 1940-04-19 Ludwig Kort Dipl Ing Electrically powered propeller
US2153055A (en) * 1938-04-06 1939-04-04 Weissmann Henry Propeller
US2756713A (en) * 1952-12-10 1956-07-31 Kort Ludwig Methods of and means for reducing noises and vibrations produced by screw propellers of ships
US3487805A (en) * 1966-12-22 1970-01-06 Satterthwaite James G Peripheral journal propeller drive
DE1781332A1 (en) * 1968-09-28 1970-12-03 Carl Liebau Propulsion device for ships
FR2334852A1 (en) * 1975-12-12 1977-07-08 Ceria Hydraulic motor mounted in cowling - drives screw blades of rotor and spring vaned outer ring (NL 14.6.77)
DE2744913C3 (en) * 1977-10-06 1980-05-14 Hatlapa Uetersener Maschinenfabrik Gmbh & Co, 2082 Uetersen Hydraulic control device for controllable pitch propellers
DE3208521A1 (en) * 1981-10-17 1983-10-06 Licentia Gmbh Electric propulsion for vessels, in particular for underwater vessels
DE3141339C2 (en) * 1981-10-17 1984-10-31 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Electric drive for water vehicles, in particular for underwater vehicles
DE3246730C2 (en) * 1982-12-17 1987-03-05 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Electrically powered ship propeller

Also Published As

Publication number Publication date
FI76748B (en) 1988-08-31
KR840008629A (en) 1984-12-17
FI76748C (en) 1988-12-12
JPS59223598A (en) 1984-12-15
FI841303A0 (en) 1984-04-02
DE3312063A1 (en) 1984-10-04
FI841303A (en) 1984-10-03
NO156891B (en) 1987-09-07
DE3460374D1 (en) 1986-09-04
NO841293L (en) 1984-10-03
NO156891C (en) 1987-12-16
EP0124720A1 (en) 1984-11-14

Similar Documents

Publication Publication Date Title
DE69411862T2 (en) Water jet propulsion
DE3840958C2 (en) Propeller shroud
EP0117881A1 (en) Ship propulsion unit with a main and an auxiliary propeller
EP0935553A1 (en) Dual propeller propulsion system for a water craft
EP0111908B1 (en) Electrically driven ship's propeller and its use
EP2279111A2 (en) Submarine with a propulsive derive comprising an annular electric motor
DE69921432T2 (en) Azimuth propeller device
DE3300380A1 (en) UNDERWATER PROPELLER DRIVE
DE19514878C2 (en) Propeller drive for watercraft
EP2420443B1 (en) Electric nacelle drive for a floating device with internal stator cooling
EP2445783B1 (en) Ship having two propellers arranged one behind the other
EP0124720B1 (en) Marine propeller driven by an electric motor, comprising a permanent magnet rotor shaped in the ring connecting the propeller blad tips
DE19648417A1 (en) Double-propeller drive for water vessel
EP0786402A2 (en) Propeller unit in a gondola
DE19647948A1 (en) Gondola propelling system for ship or windmill
KR101127484B1 (en) Arrangement in a counter rotating propulsion system
DE3141339C2 (en) Electric drive for water vehicles, in particular for underwater vehicles
WO2012052155A1 (en) Ship having a drive
DE29707028U1 (en) Ship propulsion with a rudder propeller
DE102006020241A1 (en) Tugboat e.g. for pulling ships, has hull which contains fore and aft and drive units are arranged on foredeck and fin arranged in rear area
DE900788C (en) Propulsion device for ships
DE2356508A1 (en) SHIP DRIVE
DE4440791A1 (en) Underwater water-jet drive device for driving all types of underwater and surface vessels
DE10158320A1 (en) Drive system for ship has pod outside hull with central body held on flow straightening vanes and containing electric motor driving ducted propeller to produce water jet
DE102021100135B4 (en) Marine propulsion and ship equipped therewith

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19850424

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL SE

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3460374

Country of ref document: DE

Date of ref document: 19860904

ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900704

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900717

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19901025

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19901113

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19901214

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910331

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920331

BERE Be: lapsed

Owner name: LICENTIA PATENT-VERWALTUNGS-G.M.B.H.

Effective date: 19920331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19921001

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84102623.0

Effective date: 19921005