[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0109327B1 - Process for the complete recovery of uranium, yttrium, thorium and rare earth metals from a phosphate ore while preparing wet process phosphoric acid - Google Patents

Process for the complete recovery of uranium, yttrium, thorium and rare earth metals from a phosphate ore while preparing wet process phosphoric acid Download PDF

Info

Publication number
EP0109327B1
EP0109327B1 EP83402114A EP83402114A EP0109327B1 EP 0109327 B1 EP0109327 B1 EP 0109327B1 EP 83402114 A EP83402114 A EP 83402114A EP 83402114 A EP83402114 A EP 83402114A EP 0109327 B1 EP0109327 B1 EP 0109327B1
Authority
EP
European Patent Office
Prior art keywords
attack
yttrium
phosphoric acid
silica
uranium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83402114A
Other languages
German (de)
French (fr)
Other versions
EP0109327A1 (en
Inventor
Jean Fava
André Lambert
Jean-Paul Tognet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Chimie SAS
Original Assignee
Rhone Poulenc Chimie SA
Rhone Poulenc Chimie de Base SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Poulenc Chimie SA, Rhone Poulenc Chimie de Base SA filed Critical Rhone Poulenc Chimie SA
Publication of EP0109327A1 publication Critical patent/EP0109327A1/en
Application granted granted Critical
Publication of EP0109327B1 publication Critical patent/EP0109327B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0252Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries
    • C22B60/0278Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries by chemical methods
    • C22B60/0282Solutions containing P ions, e.g. treatment of solutions resulting from the leaching of phosphate ores or recovery of uranium from wet-process phosphoric acid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0291Obtaining thorium, uranium, or other actinides obtaining thorium

Definitions

  • the present invention relates to a process for the overall recovery of uranium, yttrium, thorium and rare earths contained in a phosphate ore during the preparation of phosphoric acid by wet process.
  • phosphate ores used for the manufacture of phosphoric acid contain significant amounts of uranium, yttrium, thorium and rare earths.
  • yttrium represents in quantity approximately half of the whole.
  • silica hinders the filtration of the attack slurry during the separation of the gypsum and the phosphoric acid.
  • silica can prove to be a nuisance in the subsequent stages of a process for manufacturing phosphoric acid, in particular during liquid-liquid extractions.
  • the object of the invention is to further improve the solubilization of rare earths, of yttrium and of thorium on attack without harming the subsequent progress of the process for the manufacture of phosphoric acid.
  • the process according to the invention for the overall recovery of uranium, yttrium, thorium and rare earths contained in a phosphate ore, during the preparation of phosphoric acid by wet process, is characterized in that during the acid attack of the ore, optionally carried out in the presence of silica, aluminum is added to the attack medium in trivalent form and / or a ferric compound in such a way that the amount of aluminum and / or iron present in this attack medium varies between 0.8% and 1.5% by weight expressed as A1 2 0 3 and / or Fe 2 O 3 relative to the ore subjected to attack.
  • the process of the invention makes it possible to reach percentages of solubilization of the above-mentioned elements greater than those of silica while keeping a shorter filtration time.
  • the attack on the phosphate ore which can be carried out more particularly with sulfuric acid takes place under known and usual conditions of temperature and concentration of acids.
  • Aluminum or iron can be introduced either with the attack acid or in the attack slurry.
  • Aluminum is added in the form of a salt of this element, for example in the form of a sulfate, a phosphate, an alumina or any other precursor capable of releasing the aluminum ion under the conditions of 'attack. It is the same for iron which can in particular be added in the form of sulfate, of oxide, such as ferric oxide.
  • aluminum and iron can be added in the form of aluminum-calcium phosphates containing iron such as Thies phosphates and Ta ⁇ ba fines, so that the proportions of aluminum and iron in the attack medium are within the limits indicated in claim 1.
  • the amounts of aluminum, iron and silica used depend on the type of ore processed, the attack conditions that one wishes to observe and the type of acid that one wishes to obtain.
  • the resulting porridge is filtered.
  • a residue or primary gypsum is obtained in the case of a sulfuric attack and a phosphoric acid solution.
  • the whole solid obtained after this filtration is called gypsum here.
  • the phosphoric acid solution notably includes uranium in almost the entire quantity present in the starting ore and a significant proportion of yttrium, thorium and rare earths.
  • the acid is brought into contact with an organic phase comprising a di (alkylphenyl) phosphoric acid, dissolved in an inert organic solvent and in the presence of a trialkylphosphine oxide.
  • organic phase is reextracted using a solution containing hydrofluoric acid and phosphoric acid.
  • a Kouribga phosphate ore of the following composition 31.07% P 2 0 5 ; 344 ppm yttrium; 140 ppm uranium; Ce0 2 : 42 ppm; LaC0 3 : 132 ppm; Tb 4 O 7 : 9 ppm; Yb 2 O 3 : 21 ppm.
  • This mineral is attacked with sulfuric acid without any additives, then in another series of tests in the presence of precipitated silica in variable quantity and in a third series of tests in the presence of aluminum sulphate and d '' a mixture of aluminum sulphate and silica in variable quantity.
  • the amount of aluminum is calculated as AI z 0 3 .
  • the filtration times given were obtained by measuring the filtration time on buchner of the attack slurry and the filtration time of the cake after addition of a representative quantity of washing water. of the quantity of washing water used industrially. The sum of these two times for each test corresponds to the time indicated in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

La présente invention concerne un procédé de récupération globale de l'uranium, de l'yttrium, du thorium et des terres rares contenus dans un minerai phosphaté au cours de la préparation d'acide phosphorique par voie humide.The present invention relates to a process for the overall recovery of uranium, yttrium, thorium and rare earths contained in a phosphate ore during the preparation of phosphoric acid by wet process.

On sait que les minerais phosphatés utilisés pour la fabrication de l'acide phosphorique contiennent des quantités non négligeables d'uranium, d'yttrium, de thorium et de terres rares. Pour ces minerais, dans le groupe thorium, terres rares et yttrium, l'yttrium représente en quantité environ la moitié de l'ensemble.It is known that the phosphate ores used for the manufacture of phosphoric acid contain significant amounts of uranium, yttrium, thorium and rare earths. For these minerals, in the thorium, rare earths and yttrium group, yttrium represents in quantity approximately half of the whole.

On sait par ailleurs que lors de l'attaque d'un minerai de phosphate par l'acide sulfurique la plus grande partie de l'uranium (95% environ) est solubilisée dans l'acide phosphorique formé et des procédés bien connus permettent de récupérer cet élément notamment par extraction liquide-liquide ou par précipitation à partir de l'acide phosphorique d'un gypse secondaire contenant l'uranium.It is also known that during the attack on a phosphate ore with sulfuric acid, most of the uranium (around 95%) is dissolved in the phosphoric acid formed and well-known processes make it possible to recover this element in particular by liquid-liquid extraction or by precipitation from phosphoric acid from a secondary gypsum containing uranium.

Cependant, la plus grande partie des terres rares et de l'yttrium présents dans le minerai n'est pas solubilisée lors de l'attaque et co-précipite avec le gypse. La quantité de ces éléments qui passe en solution dépend de la nature du minerai et constitue généralement 5 à 20 % environ de la quantité totale présente dans le minerai. Pour récupérer ensuite ces éléments on est amené à traiter ce gypse par exemple par lavage à l'aide d'acide sulfurique.However, most of the rare earths and yttrium present in the ore is not dissolved during the attack and co-precipitates with gypsum. The quantity of these elements which goes into solution depends on the nature of the ore and generally constitutes 5 to 20% approximately of the total quantity present in the ore. To then recover these elements, it is necessary to treat this gypsum, for example by washing with sulfuric acid.

La récupération de l'uranium d'une part et des autres éléments cités d'autre part nécessite donc deux traitements distincts l'un sur l'acide phosphorique, l'autre sur le gypse.The recovery of uranium on the one hand and of the other elements mentioned on the other hand therefore requires two separate treatments, one on phosphoric acid, the other on gypsum.

Le problème s'est donc posé d'un procédé permettant en une seule opération la récupération conjointe de l'ensemble de l'uranium et des autres éléments.The problem therefore arose of a process allowing in a single operation the joint recovery of all the uranium and the other elements.

Ce problème a été résolu en partie. On connaît en effet un procédé (brevet britannique 793.801) dans lequel on augmente la solubilisation de l'yttrium et des terres rares au moment de l'attaque par addition de silice. On obtient ainsi une solution d'acide phosphorique contenant de l'uranium et une partie de l'yttrium et des terres rares plus importante que celle obtenue dans les conditions d'attaque habituelles.This problem has been partially resolved. A process is known in fact (British patent 793.801) in which the solubilization of the yttrium and the rare earths is increased at the time of the attack by the addition of silica. This gives a phosphoric acid solution containing uranium and a part of the yttrium and rare earths greater than that obtained under the usual attack conditions.

Cependant l'addition de silice présente plusieurs inconvénients.However, the addition of silica has several drawbacks.

Tout d'abord si la proportion de terres rares, d'yttrium et de thorium solubilisée à l'attaque augmente avec la quantité de silice ajoutée, on arrive cependant rapidement à un palier. C'est ainsi qu'il s'avère difficile de solubiliser à l'attaque plus de 40 % environ de la quantité totale des éléments en question.First of all if the proportion of rare earths, yttrium and thorium solubilized at the attack increases with the quantity of added silica, one however quickly arrives at a stage. This is how it turns out to be difficult to dissolve on attack more than around 40% of the total quantity of the elements in question.

Par ailleurs, l'addition de silice gêne la filtration de la bouillie d'attaque lors de la séparation du gypse et de l'acide phosphorique. Plus la quantité de silice augmente, plus la vitesse de filtration diminue. Il s'agit d'un inconvénient très grave sur le plan industriel.Furthermore, the addition of silica hinders the filtration of the attack slurry during the separation of the gypsum and the phosphoric acid. The more the quantity of silica increases, the more the filtration speed decreases. This is a very serious industrial disadvantage.

Enfin, la silice peut se révéler gênante dans les étapes ultérieures d'un procédé de fabrication d'acide phosphorique, notamment lors des extractions liquide-liquide.Finally, silica can prove to be a nuisance in the subsequent stages of a process for manufacturing phosphoric acid, in particular during liquid-liquid extractions.

L'objet de l'invention est d'améliorer encore la solubilisation des terres rares, de l'yttrium et du thorium à l'attaque sans nuire au déroulement ultérieur du procédé de fabrication de l'acide phosphorique.The object of the invention is to further improve the solubilization of rare earths, of yttrium and of thorium on attack without harming the subsequent progress of the process for the manufacture of phosphoric acid.

Dans ce but, le procédé selon l'invention, de récupération globale de l'uranium, de l'yttrium, du thorium et des terres rares contenus dans un minerai phosphaté, au cours de la préparation d'acide phosphorique par voie humide, est caractérisé en ce que lors de l'attaque acide du minerai, effectuée éventuellement en présence de silice, on ajoute dans le milieu d'attaque de l'aluminium sous forme trivalente et/ou un composé ferrique de telle façon que la quantité d'aluminium et/ou de fer présente dans ce milieu d'attaque varie entre 0,8 % et 1,5 % en poids exprimé en A1203 et/ou Fe2O3 par rapport au minerai soumis à l'attaque.For this purpose, the process according to the invention, for the overall recovery of uranium, yttrium, thorium and rare earths contained in a phosphate ore, during the preparation of phosphoric acid by wet process, is characterized in that during the acid attack of the ore, optionally carried out in the presence of silica, aluminum is added to the attack medium in trivalent form and / or a ferric compound in such a way that the amount of aluminum and / or iron present in this attack medium varies between 0.8% and 1.5% by weight expressed as A1 2 0 3 and / or Fe 2 O 3 relative to the ore subjected to attack.

Le procédé de l'invention permet d'atteindre des pourcentages de solubilisation des éléments précités supérieurs à ceux de la silice tout en gardant un temps de filtration inférieur.The process of the invention makes it possible to reach percentages of solubilization of the above-mentioned elements greater than those of silica while keeping a shorter filtration time.

D'autres caractéristiques de l'invention apparaîtront plus clairement à la lecture de la description qui va suivre et d'exemples concrets mais non limitatifs de mise en oeuvre du procédé.Other characteristics of the invention will appear more clearly on reading the description which follows and concrete but non-limiting examples of implementation of the method.

L'attaque du minerai phosphaté qui peut se faire plus particulièrement à l'acide sulfurique se déroule dans les conditions connues et habituelles de température et de concentration en acides.The attack on the phosphate ore which can be carried out more particularly with sulfuric acid takes place under known and usual conditions of temperature and concentration of acids.

L'aluminium ou le fer peuvent être introduits soit avec l'acide d'attaque soit dans la bouillie d'attaque.Aluminum or iron can be introduced either with the attack acid or in the attack slurry.

L'aluminium est ajouté sous la forme d'un sel de cet élément par exemple sous la forme d'un sulfate, d'un phosphate, d'une alumine ou de tout autre précurseur susceptible de libérer l'ion aluminium dans les conditions d'attaque. Il en est de même pour le fer qui peut notamment être ajouté sous forme de sulfate, d'oxyde, tel que l'oxyde ferrique.Aluminum is added in the form of a salt of this element, for example in the form of a sulfate, a phosphate, an alumina or any other precursor capable of releasing the aluminum ion under the conditions of 'attack. It is the same for iron which can in particular be added in the form of sulfate, of oxide, such as ferric oxide.

Dans un mode particulier de réalisation, l'aluminium et le fer peuvent être ajoutés sous la forme de phosphates aluminocalciques contenant du fer tels que les phosphates de Thies et les fines de Taïba, de manière à ce que les proportions de l'aluminium et du fer dans le milieu d'attaque soient comprises dans les limites indiquées dans la revendication 1.In a particular embodiment, aluminum and iron can be added in the form of aluminum-calcium phosphates containing iron such as Thies phosphates and Taïba fines, so that the proportions of aluminum and iron in the attack medium are within the limits indicated in claim 1.

On a pu aussi constater qu'il était possible d'utiliser un mélange de silice et d'aluminium. On obtient alors un pourcentage de solubilisation de l'yttrium et des terres rares supérieur à celui obtenu par addition de silice seule avec un temps de filtration qui reste acceptable. Dans ce cas on peut utiliser une silice naturelle du type Kieselguhr, une silice globulaire, ou une silice précipitée. L'aluminium peut être utilisé sous les formes décrites précédemment.It has also been found that it is possible to use a mixture of silica and aluminum. A percentage of solubilization of the yttrium and of the rare earths is then obtained which is higher than that obtained by adding silica alone with a filtration time which remains acceptable. In this case, it is possible to use a natural silica of the Kieselguhr type, a globular silica, or a precipitated silica. Aluminum can be used in the forms described above.

Enfin, on peut aussi utiliser un mélange de silice et de fer ou de silice, de fer et d'aluminium.Finally, one can also use a mixture of silica and iron or silica, iron and aluminum.

Les quantités d'aluminium, de fer et de silice utilisées sont fonction du type de minerai traité, des conditions d'attaques que l'on désire observer et du type d'acide que l'on désire obtenir.The amounts of aluminum, iron and silica used depend on the type of ore processed, the attack conditions that one wishes to observe and the type of acid that one wishes to obtain.

Après l'attaque on filtre la bouillie obtenue. On obtient un résidu ou du gypse primaire dans le cas d'une attaque sulfurique et une solution d'acide phosphorique. On appelle ici gypse la totalité du solide obtenu après cette filtration. La solution d'acide phosphorique comprend notamment l'uranium dans la quasi-totalité de la quantité présente dans le minerai de départ et une proportion importante d'yttrium, de thorium et de terres rares.After the attack, the resulting porridge is filtered. A residue or primary gypsum is obtained in the case of a sulfuric attack and a phosphoric acid solution. The whole solid obtained after this filtration is called gypsum here. The phosphoric acid solution notably includes uranium in almost the entire quantity present in the starting ore and a significant proportion of yttrium, thorium and rare earths.

La récupération de l'ensemble de ces éléments peut se faire de la manière décrite dans la demande de brevet européen 26132. Dans ce cas, l'acide est mis en contact avec une phase organique comprenant un acide di (alkylphényl) phosphorique, dissous dans un solvant organique inerte et en présence d'un oxyde de trialkylphosphine. Après séparation des phases la phase organique est réextraite au moyen d'une solution contenant de l'acide fluorhydrique et de l'acide phosphorique.The recovery of all of these elements can be done as described in European patent application 26132. In this case, the acid is brought into contact with an organic phase comprising a di (alkylphenyl) phosphoric acid, dissolved in an inert organic solvent and in the presence of a trialkylphosphine oxide. After separation of the phases, the organic phase is reextracted using a solution containing hydrofluoric acid and phosphoric acid.

Exemple 1Example 1

On part d'un minerai de phosphate Kouribga de composition suivante : 31,07 % en P205 ; 344 ppm en yttrium ; 140 ppm en uranium ; Ce02 : 42 ppm ; LaC03 : 132 ppm ; Tb4O7 : 9 ppm ; Yb2O3 : 21 ppm.We start with a Kouribga phosphate ore of the following composition: 31.07% P 2 0 5 ; 344 ppm yttrium; 140 ppm uranium; Ce0 2 : 42 ppm; LaC0 3 : 132 ppm; Tb 4 O 7 : 9 ppm; Yb 2 O 3 : 21 ppm.

On réalise l'attaque de ce minerai à l'acide sulfurique sans aucun additif, puis dans une autre série d'essais en présence de silice précipitée en quantité variable et dans une troisième série d'essais en présence de sulfate d'aluminium et d'un mélange de sulfate d'aluminium et de silice en quantité variable.This mineral is attacked with sulfuric acid without any additives, then in another series of tests in the presence of precipitated silica in variable quantity and in a third series of tests in the presence of aluminum sulphate and d '' a mixture of aluminum sulphate and silica in variable quantity.

On indique dans le tableau 1 et les résultats obtenus dans le cas de l'yttrium et dans le tableau 2 les pourcentages de solubilisation pour différents éléments.The percentages of solubilization for different elements are given in table 1 and the results obtained in the case of yttrium and in table 2.

La quantité d'aluminium est calculée en AIz03.The amount of aluminum is calculated as AI z 0 3 .

On notera que pour ces exemples et le suivant les temps de filtration donnés ont été obtenus par mesure du temps de filtration sur buchner de la bouillie d'attaque et du temps de filtration du gâteau après addition d'une quantité d'eau de lavage représentative de la quantité d'eau de lavage utilisée industriellement. La somme de ces deux temps pour chaque essai correspond au temps indiqué dans le tableau 1.It will be noted that for these examples and the following, the filtration times given were obtained by measuring the filtration time on buchner of the attack slurry and the filtration time of the cake after addition of a representative quantity of washing water. of the quantity of washing water used industrially. The sum of these two times for each test corresponds to the time indicated in Table 1.

On constate que selon le procédé de l'invention on augmente nettement le pourcentage récupéré de terres rares et d'yttrium et en particulier d'éléments yttriques comme Tb et Yb.It can be seen that, according to the process of the invention, the percentage recovered of rare earths and yttrium, and in particular yttric elements such as Tb and Yb, is markedly increased.

De plus conjointement à cette augmentation on obtient des temps de filtration bien meilleurs que lors de l'emploi de la silice. Ceci est un avantage particulièrement important au plan industriel puisque la productivité d'attaque est fonction du temps de filtration.In addition, together with this increase, much better filtration times are obtained than when using silica. This is a particularly important advantage from an industrial point of view since the attack productivity is a function of the filtration time.

Exemple 2Example 2

On attaque le même minerai que dans l'exemple précédent mais cette fois en présence de sulfate ferrique,We attack the same ore as in the previous example but this time in the presence of ferric sulfate,

Pour une quantité de fer calculée en Fe203 de 0,8 % en poids par rapport au minerai on solubilise 40 % de la quantité d'Y203 présent dans le minerai et le temps de filtration est de 109 s.

Figure imgb0001
Figure imgb0002
Figure imgb0003
For an amount of iron calculated as Fe 2 0 3 of 0.8% by weight relative to the ore, 40% of the amount of Y 2 0 3 present in the ore is solubilized and the filtration time is 109 s.
Figure imgb0001
Figure imgb0002
Figure imgb0003

Claims (6)

1. A process for the overall recovery of uranium, yttrium, thorium and rare earths contained in a phosphate-bearing ore in the course of preparation of phosphoric acid by the wet process characterised in that, in the acid attack on the ore, which is possibly carried out in the presence of silica, there is added to the attack medium aluminium in trivalent form and/or a ferric compound in such a way that the amount of aluminium and/or iron present in said attack medium varies between 0.8 % and 1.5 % by weight expressed as AI203 and/or Fe203 with respect to the ore which is subjected to the attack operation.
2. A process according to claim 1 characterised in that the aluminium is introduced in the form of sulphate, phosphate or alumina.
3. A process according to claim 1 characterised in that the iron is introduced in the form of a ferric sulphate or a ferric oxide.
4. A process according to claim 1 or claim 2 characterised in that the addition of aluminium and/or iron to obtain said quantities of such elements in the attack medium is effected in the form of an aluminium-calcium phosphate containing iron.
5. A process according to claim 1 characterised in that the attack operation is carried out in the further presence of silica.
6. A process according to claim 7 characterised in that the attack operation is carried out in the presence of aluminium and silica.
EP83402114A 1982-11-10 1983-10-28 Process for the complete recovery of uranium, yttrium, thorium and rare earth metals from a phosphate ore while preparing wet process phosphoric acid Expired EP0109327B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8218910 1982-11-10
FR8218910A FR2535702B1 (en) 1982-11-10 1982-11-10 PROCESS FOR GLOBAL RECOVERY OF URANIUM, YTTRIUM, THORIUM AND RARE EARTH CONTAINED IN A PHOSPHATE ORE DURING THE PREPARATION OF PHOSPHORIC ACID BY WET

Publications (2)

Publication Number Publication Date
EP0109327A1 EP0109327A1 (en) 1984-05-23
EP0109327B1 true EP0109327B1 (en) 1986-12-30

Family

ID=9279094

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83402114A Expired EP0109327B1 (en) 1982-11-10 1983-10-28 Process for the complete recovery of uranium, yttrium, thorium and rare earth metals from a phosphate ore while preparing wet process phosphoric acid

Country Status (15)

Country Link
US (1) US4636369A (en)
EP (1) EP0109327B1 (en)
JP (1) JPS6058175B2 (en)
KR (1) KR890004520B1 (en)
AU (1) AU559423B2 (en)
BR (1) BR8306163A (en)
CA (1) CA1222376A (en)
DE (1) DE3368689D1 (en)
ES (1) ES8406374A1 (en)
FI (1) FI74491C (en)
FR (1) FR2535702B1 (en)
GR (1) GR78756B (en)
IL (1) IL70180A (en)
MA (1) MA19949A1 (en)
ZA (1) ZA838268B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8707200A (en) * 1987-12-23 1989-08-15 Pirelli Brasil SUMMARY OF SUPERCONDUCTORS FROM XENOTIMA
JP3731786B2 (en) * 1998-02-19 2006-01-05 三菱電機株式会社 Wire electrical discharge machine
CN100439239C (en) * 2006-10-12 2008-12-03 贵州宏福实业开发有限总公司 Method of reducing rare earth content in phosphoric acid
CN101451200B (en) * 2007-11-29 2011-04-20 北京有色金属研究总院 Rare-earth enrichment recovery method from phosphorite
CN103184356B (en) * 2011-12-28 2014-12-17 有研稀土新材料股份有限公司 Treatment method for rare earth phosphate rock and enrichment method for rare earth
CN113332957A (en) * 2021-06-09 2021-09-03 江西理工大学 Preparation method of modified magnetic doping material and method for recovering rare earth elements from rare earth ore wastewater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0031793A2 (en) * 1979-12-03 1981-07-08 Schweizerische Aluminium AG Process for producing phosphoric acid during which uranium in a recoverable state is obtained

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2425573A (en) * 1940-11-28 1947-08-12 Soddy Frederick Separation of thorium and the rareearth group from minerals
US2761758A (en) * 1950-08-04 1956-09-04 Ray S Long Process for recovery of uranium
US2789879A (en) * 1950-11-15 1957-04-23 Kaufman David Recovery of uranium from phosphoric acid
US2819145A (en) * 1952-10-15 1958-01-07 Robert F Mccullough Metal value recovery from leached zone material
US2859092A (en) * 1953-02-05 1958-11-04 Richard H Bailes Solvent extraction process for the recovery of metals from phosphoric acid
FR1104263A (en) * 1954-05-07 1955-11-17 Comptoir Des Phosphates De L A Process for the separation, by precipitation, of uranium from a strongly acidic liquor
US2743156A (en) * 1954-08-06 1956-04-24 Max C Metziger Uranium recovery process
US2841467A (en) * 1955-01-18 1958-07-01 Robert F Mccullough Method for recovery of mineral values from leached zone material
US2990244A (en) * 1957-12-24 1961-06-27 Keith B Brown Extraction of thorium and uranium values from acid leach liquors
FR1585270A (en) * 1968-09-11 1970-01-16
US3937783A (en) * 1974-02-21 1976-02-10 Allied Chemical Corporation Recovery of fluorine, uranium and rare earth metal values from phosphoric acid by-product brine raffinate
DE2652766A1 (en) * 1976-03-09 1977-09-22 Robert Dr Michel PROCESS FOR THE PRODUCTION OF PHOSPHORIC ACID FROM PHOSPHATE ROCK
US4284614A (en) * 1976-04-13 1981-08-18 Occidental Petroleum Corp. Process for production of high purity phosphoric acid from high alumina phosphate pebble rock
FR2423545A1 (en) * 1977-08-25 1979-11-16 Minemet Rech Sa PROCESS FOR THE RECOVERY OF URANIUM CONTAINED IN PHOSPHATE SOLUTIONS
JPS5855086B2 (en) * 1978-04-18 1983-12-08 三菱マテリアル株式会社 Method for recovering uranium dissolved in phosphoric acid solution
US4374805A (en) * 1978-05-26 1983-02-22 Uranium Recovery Corporation Reductants for reducing metals in acid media
FR2515630B1 (en) * 1981-10-30 1985-10-04 Rhone Poulenc Spec Chim PROCESS FOR EXTRACTING AND SEPARATING URANIUM, THORIUM AND RARE EARTHS BY TREATING AQUEOUS CHLORIDE SOLUTIONS THEREOF

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0031793A2 (en) * 1979-12-03 1981-07-08 Schweizerische Aluminium AG Process for producing phosphoric acid during which uranium in a recoverable state is obtained

Also Published As

Publication number Publication date
MA19949A1 (en) 1984-07-01
AU559423B2 (en) 1987-03-12
ES527101A0 (en) 1984-07-01
US4636369A (en) 1987-01-13
FI74491B (en) 1987-10-30
JPS59116126A (en) 1984-07-04
FI74491C (en) 1988-02-08
IL70180A0 (en) 1984-02-29
KR840006508A (en) 1984-11-30
BR8306163A (en) 1984-06-12
ES8406374A1 (en) 1984-07-01
AU2111383A (en) 1984-05-17
FI834107A (en) 1984-05-11
FR2535702B1 (en) 1986-09-12
FI834107A0 (en) 1983-11-09
FR2535702A1 (en) 1984-05-11
DE3368689D1 (en) 1987-02-05
EP0109327A1 (en) 1984-05-23
KR890004520B1 (en) 1989-11-10
JPS6058175B2 (en) 1985-12-18
CA1222376A (en) 1987-06-02
GR78756B (en) 1984-10-02
ZA838268B (en) 1984-09-26
IL70180A (en) 1987-10-30

Similar Documents

Publication Publication Date Title
EP0079258A1 (en) Process for extracting and separating uranium, thorium and rare earths by treating aqueous solutions of the chlorides of said elements
EP0109327B1 (en) Process for the complete recovery of uranium, yttrium, thorium and rare earth metals from a phosphate ore while preparing wet process phosphoric acid
EP3833789B1 (en) Use of a synergistic mixture of extractants for extracting rare earth elements from an aqueous medium comprising phosphoric acid
BE1006385A3 (en) Method for the extraction of tantalum and niobium.
EP3856940A1 (en) Method for purifying and for concentrating rare earths from phosphogypsum
EP0026132A1 (en) Process for global recovery of uranium, rare earth metals, thorium and yttrium from an acid solution
CA1160459A (en) Enhancement process for uranium derived from a uraniferous mineral containing arsenic
EP0517580B1 (en) Process for the purification and recovery of orthophosphoric acid by liquid-liquid extraction
FR3001465A1 (en) PROCESS FOR SELECTIVELY EXTRACTING SCANDIUM
EP0210934B1 (en) Process for separating and valorizing rare-earth metals and uranium of an uranium tetrafluoride concentrate
EP0433107B1 (en) Process for the recovery of gallium from basic solution
JPH0394028A (en) Separation of rare-earth element
FR2826667A1 (en) Treatment of rare earth mineral with high iron content for recuperation of rare earth metals as an aqueous solution involves reacting the mineral with sulfuric acid, firing, mixing the calcined material with aqueous solution, and separating
FR2678644A1 (en) Process for overall recovery of the thorium and of the rare earths in a nitrate medium
JPS6112010B2 (en)
EP0251399A1 (en) Process for separating or recovering plutonium, and plutonium obtained thereby
FR2669348A1 (en) Compositions containing hydroxydiphosphonic derivatives for the extraction of metal cations
EP0026502B1 (en) Process for treating an organic phase containing ferric chloride, molybdenum chloride and hydrochloric acid
EP0371832B1 (en) Recovery of Gallium contained in aqueous solutions
JPS5943984B2 (en) Treatment method for nickel and cobalt-containing liquids containing zinc
SU408565A1 (en) Method of refining tin from impurities
KR101664625B1 (en) Purification of yellow phosphorus
CA1146763A (en) Process for reducing organic solvant losses during treatment of a suspension resulting from the acid treatment of an ore
FR2485506A2 (en) Extraction of uranium, thorium, yttrium and rare earths from acid soln - using a di-(alkylphenyl)phosphoric acid and hydrocarbon solvent
FR2465687A1 (en) Extraction of uranium, thorium, yttrium and rare earths from acid soln - using a di-(alkylphenyl)phosphoric acid and hydrocarbon solvent

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19840620

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

BECN Be: change of holder's name

Effective date: 19861230

REF Corresponds to:

Ref document number: 3368689

Country of ref document: DE

Date of ref document: 19870205

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: RHONE-POULENC CHIMIE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19871031

Year of fee payment: 5

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: RHONE-POULENC CHIMIE TE COURBEVOIE, FRANKRIJK.

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19891028

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19891130

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19901017

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19901211

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19911031

BERE Be: lapsed

Owner name: RHONE-POULENC CHIMIE

Effective date: 19911031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST