EP0109327B1 - Process for the complete recovery of uranium, yttrium, thorium and rare earth metals from a phosphate ore while preparing wet process phosphoric acid - Google Patents
Process for the complete recovery of uranium, yttrium, thorium and rare earth metals from a phosphate ore while preparing wet process phosphoric acid Download PDFInfo
- Publication number
- EP0109327B1 EP0109327B1 EP83402114A EP83402114A EP0109327B1 EP 0109327 B1 EP0109327 B1 EP 0109327B1 EP 83402114 A EP83402114 A EP 83402114A EP 83402114 A EP83402114 A EP 83402114A EP 0109327 B1 EP0109327 B1 EP 0109327B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- attack
- yttrium
- phosphoric acid
- silica
- uranium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 title claims description 32
- 238000000034 method Methods 0.000 title claims description 21
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 title claims description 17
- 229910000147 aluminium phosphate Inorganic materials 0.000 title claims description 16
- 229910052727 yttrium Inorganic materials 0.000 title claims description 16
- 229910052770 Uranium Inorganic materials 0.000 title claims description 12
- 229910019142 PO4 Inorganic materials 0.000 title claims description 11
- 239000010452 phosphate Substances 0.000 title claims description 10
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 title claims description 9
- 229910052776 Thorium Inorganic materials 0.000 title claims description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 title claims description 9
- 238000011084 recovery Methods 0.000 title claims description 7
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 title description 11
- 229910052761 rare earth metal Inorganic materials 0.000 title 1
- 150000002910 rare earth metals Chemical class 0.000 title 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 45
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 30
- 239000000377 silicon dioxide Substances 0.000 claims description 22
- 229910052782 aluminium Inorganic materials 0.000 claims description 17
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 16
- 229910052742 iron Inorganic materials 0.000 claims description 14
- 239000002253 acid Substances 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- ZMPZURBYCNDNBN-UHFFFAOYSA-K aluminum;calcium;phosphate Chemical class [Al+3].[Ca+2].[O-]P([O-])([O-])=O ZMPZURBYCNDNBN-UHFFFAOYSA-K 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 2
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims 5
- 229910021653 sulphate ion Inorganic materials 0.000 claims 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims 1
- DNYWZCXLKNTFFI-UHFFFAOYSA-N uranium Chemical compound [U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U] DNYWZCXLKNTFFI-UHFFFAOYSA-N 0.000 claims 1
- 238000001914 filtration Methods 0.000 description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 235000021317 phosphate Nutrition 0.000 description 8
- 239000010440 gypsum Substances 0.000 description 7
- 229910052602 gypsum Inorganic materials 0.000 description 7
- 238000005063 solubilization Methods 0.000 description 5
- 230000007928 solubilization Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- BUACSMWVFUNQET-UHFFFAOYSA-H dialuminum;trisulfate;hydrate Chemical compound O.[Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O BUACSMWVFUNQET-UHFFFAOYSA-H 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- -1 aluminum ion Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- 238000000622 liquid--liquid extraction Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 235000021395 porridge Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B60/00—Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
- C22B60/02—Obtaining thorium, uranium, or other actinides
- C22B60/0204—Obtaining thorium, uranium, or other actinides obtaining uranium
- C22B60/0217—Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
- C22B60/0252—Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries
- C22B60/0278—Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries by chemical methods
- C22B60/0282—Solutions containing P ions, e.g. treatment of solutions resulting from the leaching of phosphate ores or recovery of uranium from wet-process phosphoric acid
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B60/00—Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
- C22B60/02—Obtaining thorium, uranium, or other actinides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B59/00—Obtaining rare earth metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B60/00—Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
- C22B60/02—Obtaining thorium, uranium, or other actinides
- C22B60/0291—Obtaining thorium, uranium, or other actinides obtaining thorium
Definitions
- the present invention relates to a process for the overall recovery of uranium, yttrium, thorium and rare earths contained in a phosphate ore during the preparation of phosphoric acid by wet process.
- phosphate ores used for the manufacture of phosphoric acid contain significant amounts of uranium, yttrium, thorium and rare earths.
- yttrium represents in quantity approximately half of the whole.
- silica hinders the filtration of the attack slurry during the separation of the gypsum and the phosphoric acid.
- silica can prove to be a nuisance in the subsequent stages of a process for manufacturing phosphoric acid, in particular during liquid-liquid extractions.
- the object of the invention is to further improve the solubilization of rare earths, of yttrium and of thorium on attack without harming the subsequent progress of the process for the manufacture of phosphoric acid.
- the process according to the invention for the overall recovery of uranium, yttrium, thorium and rare earths contained in a phosphate ore, during the preparation of phosphoric acid by wet process, is characterized in that during the acid attack of the ore, optionally carried out in the presence of silica, aluminum is added to the attack medium in trivalent form and / or a ferric compound in such a way that the amount of aluminum and / or iron present in this attack medium varies between 0.8% and 1.5% by weight expressed as A1 2 0 3 and / or Fe 2 O 3 relative to the ore subjected to attack.
- the process of the invention makes it possible to reach percentages of solubilization of the above-mentioned elements greater than those of silica while keeping a shorter filtration time.
- the attack on the phosphate ore which can be carried out more particularly with sulfuric acid takes place under known and usual conditions of temperature and concentration of acids.
- Aluminum or iron can be introduced either with the attack acid or in the attack slurry.
- Aluminum is added in the form of a salt of this element, for example in the form of a sulfate, a phosphate, an alumina or any other precursor capable of releasing the aluminum ion under the conditions of 'attack. It is the same for iron which can in particular be added in the form of sulfate, of oxide, such as ferric oxide.
- aluminum and iron can be added in the form of aluminum-calcium phosphates containing iron such as Thies phosphates and Ta ⁇ ba fines, so that the proportions of aluminum and iron in the attack medium are within the limits indicated in claim 1.
- the amounts of aluminum, iron and silica used depend on the type of ore processed, the attack conditions that one wishes to observe and the type of acid that one wishes to obtain.
- the resulting porridge is filtered.
- a residue or primary gypsum is obtained in the case of a sulfuric attack and a phosphoric acid solution.
- the whole solid obtained after this filtration is called gypsum here.
- the phosphoric acid solution notably includes uranium in almost the entire quantity present in the starting ore and a significant proportion of yttrium, thorium and rare earths.
- the acid is brought into contact with an organic phase comprising a di (alkylphenyl) phosphoric acid, dissolved in an inert organic solvent and in the presence of a trialkylphosphine oxide.
- organic phase is reextracted using a solution containing hydrofluoric acid and phosphoric acid.
- a Kouribga phosphate ore of the following composition 31.07% P 2 0 5 ; 344 ppm yttrium; 140 ppm uranium; Ce0 2 : 42 ppm; LaC0 3 : 132 ppm; Tb 4 O 7 : 9 ppm; Yb 2 O 3 : 21 ppm.
- This mineral is attacked with sulfuric acid without any additives, then in another series of tests in the presence of precipitated silica in variable quantity and in a third series of tests in the presence of aluminum sulphate and d '' a mixture of aluminum sulphate and silica in variable quantity.
- the amount of aluminum is calculated as AI z 0 3 .
- the filtration times given were obtained by measuring the filtration time on buchner of the attack slurry and the filtration time of the cake after addition of a representative quantity of washing water. of the quantity of washing water used industrially. The sum of these two times for each test corresponds to the time indicated in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Geology (AREA)
- Materials Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
La présente invention concerne un procédé de récupération globale de l'uranium, de l'yttrium, du thorium et des terres rares contenus dans un minerai phosphaté au cours de la préparation d'acide phosphorique par voie humide.The present invention relates to a process for the overall recovery of uranium, yttrium, thorium and rare earths contained in a phosphate ore during the preparation of phosphoric acid by wet process.
On sait que les minerais phosphatés utilisés pour la fabrication de l'acide phosphorique contiennent des quantités non négligeables d'uranium, d'yttrium, de thorium et de terres rares. Pour ces minerais, dans le groupe thorium, terres rares et yttrium, l'yttrium représente en quantité environ la moitié de l'ensemble.It is known that the phosphate ores used for the manufacture of phosphoric acid contain significant amounts of uranium, yttrium, thorium and rare earths. For these minerals, in the thorium, rare earths and yttrium group, yttrium represents in quantity approximately half of the whole.
On sait par ailleurs que lors de l'attaque d'un minerai de phosphate par l'acide sulfurique la plus grande partie de l'uranium (95% environ) est solubilisée dans l'acide phosphorique formé et des procédés bien connus permettent de récupérer cet élément notamment par extraction liquide-liquide ou par précipitation à partir de l'acide phosphorique d'un gypse secondaire contenant l'uranium.It is also known that during the attack on a phosphate ore with sulfuric acid, most of the uranium (around 95%) is dissolved in the phosphoric acid formed and well-known processes make it possible to recover this element in particular by liquid-liquid extraction or by precipitation from phosphoric acid from a secondary gypsum containing uranium.
Cependant, la plus grande partie des terres rares et de l'yttrium présents dans le minerai n'est pas solubilisée lors de l'attaque et co-précipite avec le gypse. La quantité de ces éléments qui passe en solution dépend de la nature du minerai et constitue généralement 5 à 20 % environ de la quantité totale présente dans le minerai. Pour récupérer ensuite ces éléments on est amené à traiter ce gypse par exemple par lavage à l'aide d'acide sulfurique.However, most of the rare earths and yttrium present in the ore is not dissolved during the attack and co-precipitates with gypsum. The quantity of these elements which goes into solution depends on the nature of the ore and generally constitutes 5 to 20% approximately of the total quantity present in the ore. To then recover these elements, it is necessary to treat this gypsum, for example by washing with sulfuric acid.
La récupération de l'uranium d'une part et des autres éléments cités d'autre part nécessite donc deux traitements distincts l'un sur l'acide phosphorique, l'autre sur le gypse.The recovery of uranium on the one hand and of the other elements mentioned on the other hand therefore requires two separate treatments, one on phosphoric acid, the other on gypsum.
Le problème s'est donc posé d'un procédé permettant en une seule opération la récupération conjointe de l'ensemble de l'uranium et des autres éléments.The problem therefore arose of a process allowing in a single operation the joint recovery of all the uranium and the other elements.
Ce problème a été résolu en partie. On connaît en effet un procédé (brevet britannique 793.801) dans lequel on augmente la solubilisation de l'yttrium et des terres rares au moment de l'attaque par addition de silice. On obtient ainsi une solution d'acide phosphorique contenant de l'uranium et une partie de l'yttrium et des terres rares plus importante que celle obtenue dans les conditions d'attaque habituelles.This problem has been partially resolved. A process is known in fact (British patent 793.801) in which the solubilization of the yttrium and the rare earths is increased at the time of the attack by the addition of silica. This gives a phosphoric acid solution containing uranium and a part of the yttrium and rare earths greater than that obtained under the usual attack conditions.
Cependant l'addition de silice présente plusieurs inconvénients.However, the addition of silica has several drawbacks.
Tout d'abord si la proportion de terres rares, d'yttrium et de thorium solubilisée à l'attaque augmente avec la quantité de silice ajoutée, on arrive cependant rapidement à un palier. C'est ainsi qu'il s'avère difficile de solubiliser à l'attaque plus de 40 % environ de la quantité totale des éléments en question.First of all if the proportion of rare earths, yttrium and thorium solubilized at the attack increases with the quantity of added silica, one however quickly arrives at a stage. This is how it turns out to be difficult to dissolve on attack more than around 40% of the total quantity of the elements in question.
Par ailleurs, l'addition de silice gêne la filtration de la bouillie d'attaque lors de la séparation du gypse et de l'acide phosphorique. Plus la quantité de silice augmente, plus la vitesse de filtration diminue. Il s'agit d'un inconvénient très grave sur le plan industriel.Furthermore, the addition of silica hinders the filtration of the attack slurry during the separation of the gypsum and the phosphoric acid. The more the quantity of silica increases, the more the filtration speed decreases. This is a very serious industrial disadvantage.
Enfin, la silice peut se révéler gênante dans les étapes ultérieures d'un procédé de fabrication d'acide phosphorique, notamment lors des extractions liquide-liquide.Finally, silica can prove to be a nuisance in the subsequent stages of a process for manufacturing phosphoric acid, in particular during liquid-liquid extractions.
L'objet de l'invention est d'améliorer encore la solubilisation des terres rares, de l'yttrium et du thorium à l'attaque sans nuire au déroulement ultérieur du procédé de fabrication de l'acide phosphorique.The object of the invention is to further improve the solubilization of rare earths, of yttrium and of thorium on attack without harming the subsequent progress of the process for the manufacture of phosphoric acid.
Dans ce but, le procédé selon l'invention, de récupération globale de l'uranium, de l'yttrium, du thorium et des terres rares contenus dans un minerai phosphaté, au cours de la préparation d'acide phosphorique par voie humide, est caractérisé en ce que lors de l'attaque acide du minerai, effectuée éventuellement en présence de silice, on ajoute dans le milieu d'attaque de l'aluminium sous forme trivalente et/ou un composé ferrique de telle façon que la quantité d'aluminium et/ou de fer présente dans ce milieu d'attaque varie entre 0,8 % et 1,5 % en poids exprimé en A1203 et/ou Fe2O3 par rapport au minerai soumis à l'attaque.For this purpose, the process according to the invention, for the overall recovery of uranium, yttrium, thorium and rare earths contained in a phosphate ore, during the preparation of phosphoric acid by wet process, is characterized in that during the acid attack of the ore, optionally carried out in the presence of silica, aluminum is added to the attack medium in trivalent form and / or a ferric compound in such a way that the amount of aluminum and / or iron present in this attack medium varies between 0.8% and 1.5% by weight expressed as A1 2 0 3 and / or Fe 2 O 3 relative to the ore subjected to attack.
Le procédé de l'invention permet d'atteindre des pourcentages de solubilisation des éléments précités supérieurs à ceux de la silice tout en gardant un temps de filtration inférieur.The process of the invention makes it possible to reach percentages of solubilization of the above-mentioned elements greater than those of silica while keeping a shorter filtration time.
D'autres caractéristiques de l'invention apparaîtront plus clairement à la lecture de la description qui va suivre et d'exemples concrets mais non limitatifs de mise en oeuvre du procédé.Other characteristics of the invention will appear more clearly on reading the description which follows and concrete but non-limiting examples of implementation of the method.
L'attaque du minerai phosphaté qui peut se faire plus particulièrement à l'acide sulfurique se déroule dans les conditions connues et habituelles de température et de concentration en acides.The attack on the phosphate ore which can be carried out more particularly with sulfuric acid takes place under known and usual conditions of temperature and concentration of acids.
L'aluminium ou le fer peuvent être introduits soit avec l'acide d'attaque soit dans la bouillie d'attaque.Aluminum or iron can be introduced either with the attack acid or in the attack slurry.
L'aluminium est ajouté sous la forme d'un sel de cet élément par exemple sous la forme d'un sulfate, d'un phosphate, d'une alumine ou de tout autre précurseur susceptible de libérer l'ion aluminium dans les conditions d'attaque. Il en est de même pour le fer qui peut notamment être ajouté sous forme de sulfate, d'oxyde, tel que l'oxyde ferrique.Aluminum is added in the form of a salt of this element, for example in the form of a sulfate, a phosphate, an alumina or any other precursor capable of releasing the aluminum ion under the conditions of 'attack. It is the same for iron which can in particular be added in the form of sulfate, of oxide, such as ferric oxide.
Dans un mode particulier de réalisation, l'aluminium et le fer peuvent être ajoutés sous la forme de phosphates aluminocalciques contenant du fer tels que les phosphates de Thies et les fines de Taïba, de manière à ce que les proportions de l'aluminium et du fer dans le milieu d'attaque soient comprises dans les limites indiquées dans la revendication 1.In a particular embodiment, aluminum and iron can be added in the form of aluminum-calcium phosphates containing iron such as Thies phosphates and Taïba fines, so that the proportions of aluminum and iron in the attack medium are within the limits indicated in claim 1.
On a pu aussi constater qu'il était possible d'utiliser un mélange de silice et d'aluminium. On obtient alors un pourcentage de solubilisation de l'yttrium et des terres rares supérieur à celui obtenu par addition de silice seule avec un temps de filtration qui reste acceptable. Dans ce cas on peut utiliser une silice naturelle du type Kieselguhr, une silice globulaire, ou une silice précipitée. L'aluminium peut être utilisé sous les formes décrites précédemment.It has also been found that it is possible to use a mixture of silica and aluminum. A percentage of solubilization of the yttrium and of the rare earths is then obtained which is higher than that obtained by adding silica alone with a filtration time which remains acceptable. In this case, it is possible to use a natural silica of the Kieselguhr type, a globular silica, or a precipitated silica. Aluminum can be used in the forms described above.
Enfin, on peut aussi utiliser un mélange de silice et de fer ou de silice, de fer et d'aluminium.Finally, one can also use a mixture of silica and iron or silica, iron and aluminum.
Les quantités d'aluminium, de fer et de silice utilisées sont fonction du type de minerai traité, des conditions d'attaques que l'on désire observer et du type d'acide que l'on désire obtenir.The amounts of aluminum, iron and silica used depend on the type of ore processed, the attack conditions that one wishes to observe and the type of acid that one wishes to obtain.
Après l'attaque on filtre la bouillie obtenue. On obtient un résidu ou du gypse primaire dans le cas d'une attaque sulfurique et une solution d'acide phosphorique. On appelle ici gypse la totalité du solide obtenu après cette filtration. La solution d'acide phosphorique comprend notamment l'uranium dans la quasi-totalité de la quantité présente dans le minerai de départ et une proportion importante d'yttrium, de thorium et de terres rares.After the attack, the resulting porridge is filtered. A residue or primary gypsum is obtained in the case of a sulfuric attack and a phosphoric acid solution. The whole solid obtained after this filtration is called gypsum here. The phosphoric acid solution notably includes uranium in almost the entire quantity present in the starting ore and a significant proportion of yttrium, thorium and rare earths.
La récupération de l'ensemble de ces éléments peut se faire de la manière décrite dans la demande de brevet européen 26132. Dans ce cas, l'acide est mis en contact avec une phase organique comprenant un acide di (alkylphényl) phosphorique, dissous dans un solvant organique inerte et en présence d'un oxyde de trialkylphosphine. Après séparation des phases la phase organique est réextraite au moyen d'une solution contenant de l'acide fluorhydrique et de l'acide phosphorique.The recovery of all of these elements can be done as described in European patent application 26132. In this case, the acid is brought into contact with an organic phase comprising a di (alkylphenyl) phosphoric acid, dissolved in an inert organic solvent and in the presence of a trialkylphosphine oxide. After separation of the phases, the organic phase is reextracted using a solution containing hydrofluoric acid and phosphoric acid.
On part d'un minerai de phosphate Kouribga de composition suivante : 31,07 % en P205 ; 344 ppm en yttrium ; 140 ppm en uranium ; Ce02 : 42 ppm ; LaC03 : 132 ppm ; Tb4O7 : 9 ppm ; Yb2O3 : 21 ppm.We start with a Kouribga phosphate ore of the following composition: 31.07% P 2 0 5 ; 344 ppm yttrium; 140 ppm uranium; Ce0 2 : 42 ppm; LaC0 3 : 132 ppm; Tb 4 O 7 : 9 ppm; Yb 2 O 3 : 21 ppm.
On réalise l'attaque de ce minerai à l'acide sulfurique sans aucun additif, puis dans une autre série d'essais en présence de silice précipitée en quantité variable et dans une troisième série d'essais en présence de sulfate d'aluminium et d'un mélange de sulfate d'aluminium et de silice en quantité variable.This mineral is attacked with sulfuric acid without any additives, then in another series of tests in the presence of precipitated silica in variable quantity and in a third series of tests in the presence of aluminum sulphate and d '' a mixture of aluminum sulphate and silica in variable quantity.
On indique dans le tableau 1 et les résultats obtenus dans le cas de l'yttrium et dans le tableau 2 les pourcentages de solubilisation pour différents éléments.The percentages of solubilization for different elements are given in table 1 and the results obtained in the case of yttrium and in table 2.
La quantité d'aluminium est calculée en AIz03.The amount of aluminum is calculated as AI z 0 3 .
On notera que pour ces exemples et le suivant les temps de filtration donnés ont été obtenus par mesure du temps de filtration sur buchner de la bouillie d'attaque et du temps de filtration du gâteau après addition d'une quantité d'eau de lavage représentative de la quantité d'eau de lavage utilisée industriellement. La somme de ces deux temps pour chaque essai correspond au temps indiqué dans le tableau 1.It will be noted that for these examples and the following, the filtration times given were obtained by measuring the filtration time on buchner of the attack slurry and the filtration time of the cake after addition of a representative quantity of washing water. of the quantity of washing water used industrially. The sum of these two times for each test corresponds to the time indicated in Table 1.
On constate que selon le procédé de l'invention on augmente nettement le pourcentage récupéré de terres rares et d'yttrium et en particulier d'éléments yttriques comme Tb et Yb.It can be seen that, according to the process of the invention, the percentage recovered of rare earths and yttrium, and in particular yttric elements such as Tb and Yb, is markedly increased.
De plus conjointement à cette augmentation on obtient des temps de filtration bien meilleurs que lors de l'emploi de la silice. Ceci est un avantage particulièrement important au plan industriel puisque la productivité d'attaque est fonction du temps de filtration.In addition, together with this increase, much better filtration times are obtained than when using silica. This is a particularly important advantage from an industrial point of view since the attack productivity is a function of the filtration time.
On attaque le même minerai que dans l'exemple précédent mais cette fois en présence de sulfate ferrique,We attack the same ore as in the previous example but this time in the presence of ferric sulfate,
Pour une quantité de fer calculée en Fe203 de 0,8 % en poids par rapport au minerai on solubilise 40 % de la quantité d'Y203 présent dans le minerai et le temps de filtration est de 109 s.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8218910 | 1982-11-10 | ||
FR8218910A FR2535702B1 (en) | 1982-11-10 | 1982-11-10 | PROCESS FOR GLOBAL RECOVERY OF URANIUM, YTTRIUM, THORIUM AND RARE EARTH CONTAINED IN A PHOSPHATE ORE DURING THE PREPARATION OF PHOSPHORIC ACID BY WET |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0109327A1 EP0109327A1 (en) | 1984-05-23 |
EP0109327B1 true EP0109327B1 (en) | 1986-12-30 |
Family
ID=9279094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83402114A Expired EP0109327B1 (en) | 1982-11-10 | 1983-10-28 | Process for the complete recovery of uranium, yttrium, thorium and rare earth metals from a phosphate ore while preparing wet process phosphoric acid |
Country Status (15)
Country | Link |
---|---|
US (1) | US4636369A (en) |
EP (1) | EP0109327B1 (en) |
JP (1) | JPS6058175B2 (en) |
KR (1) | KR890004520B1 (en) |
AU (1) | AU559423B2 (en) |
BR (1) | BR8306163A (en) |
CA (1) | CA1222376A (en) |
DE (1) | DE3368689D1 (en) |
ES (1) | ES8406374A1 (en) |
FI (1) | FI74491C (en) |
FR (1) | FR2535702B1 (en) |
GR (1) | GR78756B (en) |
IL (1) | IL70180A (en) |
MA (1) | MA19949A1 (en) |
ZA (1) | ZA838268B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR8707200A (en) * | 1987-12-23 | 1989-08-15 | Pirelli Brasil | SUMMARY OF SUPERCONDUCTORS FROM XENOTIMA |
JP3731786B2 (en) * | 1998-02-19 | 2006-01-05 | 三菱電機株式会社 | Wire electrical discharge machine |
CN100439239C (en) * | 2006-10-12 | 2008-12-03 | 贵州宏福实业开发有限总公司 | Method of reducing rare earth content in phosphoric acid |
CN101451200B (en) * | 2007-11-29 | 2011-04-20 | 北京有色金属研究总院 | Rare-earth enrichment recovery method from phosphorite |
CN103184356B (en) * | 2011-12-28 | 2014-12-17 | 有研稀土新材料股份有限公司 | Treatment method for rare earth phosphate rock and enrichment method for rare earth |
CN113332957A (en) * | 2021-06-09 | 2021-09-03 | 江西理工大学 | Preparation method of modified magnetic doping material and method for recovering rare earth elements from rare earth ore wastewater |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0031793A2 (en) * | 1979-12-03 | 1981-07-08 | Schweizerische Aluminium AG | Process for producing phosphoric acid during which uranium in a recoverable state is obtained |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2425573A (en) * | 1940-11-28 | 1947-08-12 | Soddy Frederick | Separation of thorium and the rareearth group from minerals |
US2761758A (en) * | 1950-08-04 | 1956-09-04 | Ray S Long | Process for recovery of uranium |
US2789879A (en) * | 1950-11-15 | 1957-04-23 | Kaufman David | Recovery of uranium from phosphoric acid |
US2819145A (en) * | 1952-10-15 | 1958-01-07 | Robert F Mccullough | Metal value recovery from leached zone material |
US2859092A (en) * | 1953-02-05 | 1958-11-04 | Richard H Bailes | Solvent extraction process for the recovery of metals from phosphoric acid |
FR1104263A (en) * | 1954-05-07 | 1955-11-17 | Comptoir Des Phosphates De L A | Process for the separation, by precipitation, of uranium from a strongly acidic liquor |
US2743156A (en) * | 1954-08-06 | 1956-04-24 | Max C Metziger | Uranium recovery process |
US2841467A (en) * | 1955-01-18 | 1958-07-01 | Robert F Mccullough | Method for recovery of mineral values from leached zone material |
US2990244A (en) * | 1957-12-24 | 1961-06-27 | Keith B Brown | Extraction of thorium and uranium values from acid leach liquors |
FR1585270A (en) * | 1968-09-11 | 1970-01-16 | ||
US3937783A (en) * | 1974-02-21 | 1976-02-10 | Allied Chemical Corporation | Recovery of fluorine, uranium and rare earth metal values from phosphoric acid by-product brine raffinate |
DE2652766A1 (en) * | 1976-03-09 | 1977-09-22 | Robert Dr Michel | PROCESS FOR THE PRODUCTION OF PHOSPHORIC ACID FROM PHOSPHATE ROCK |
US4284614A (en) * | 1976-04-13 | 1981-08-18 | Occidental Petroleum Corp. | Process for production of high purity phosphoric acid from high alumina phosphate pebble rock |
FR2423545A1 (en) * | 1977-08-25 | 1979-11-16 | Minemet Rech Sa | PROCESS FOR THE RECOVERY OF URANIUM CONTAINED IN PHOSPHATE SOLUTIONS |
JPS5855086B2 (en) * | 1978-04-18 | 1983-12-08 | 三菱マテリアル株式会社 | Method for recovering uranium dissolved in phosphoric acid solution |
US4374805A (en) * | 1978-05-26 | 1983-02-22 | Uranium Recovery Corporation | Reductants for reducing metals in acid media |
FR2515630B1 (en) * | 1981-10-30 | 1985-10-04 | Rhone Poulenc Spec Chim | PROCESS FOR EXTRACTING AND SEPARATING URANIUM, THORIUM AND RARE EARTHS BY TREATING AQUEOUS CHLORIDE SOLUTIONS THEREOF |
-
1982
- 1982-11-10 FR FR8218910A patent/FR2535702B1/en not_active Expired
-
1983
- 1983-10-19 KR KR1019830004935A patent/KR890004520B1/en active IP Right Grant
- 1983-10-28 DE DE8383402114T patent/DE3368689D1/en not_active Expired
- 1983-10-28 EP EP83402114A patent/EP0109327B1/en not_active Expired
- 1983-11-07 ZA ZA838268A patent/ZA838268B/en unknown
- 1983-11-07 JP JP58207654A patent/JPS6058175B2/en not_active Expired
- 1983-11-08 ES ES527101A patent/ES8406374A1/en not_active Expired
- 1983-11-08 MA MA20169A patent/MA19949A1/en unknown
- 1983-11-08 GR GR72914A patent/GR78756B/el unknown
- 1983-11-09 AU AU21113/83A patent/AU559423B2/en not_active Ceased
- 1983-11-09 CA CA000440775A patent/CA1222376A/en not_active Expired
- 1983-11-09 FI FI834107A patent/FI74491C/en not_active IP Right Cessation
- 1983-11-09 BR BR8306163A patent/BR8306163A/en unknown
- 1983-11-09 IL IL70180A patent/IL70180A/en unknown
- 1983-11-10 US US06/550,627 patent/US4636369A/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0031793A2 (en) * | 1979-12-03 | 1981-07-08 | Schweizerische Aluminium AG | Process for producing phosphoric acid during which uranium in a recoverable state is obtained |
Also Published As
Publication number | Publication date |
---|---|
MA19949A1 (en) | 1984-07-01 |
AU559423B2 (en) | 1987-03-12 |
ES527101A0 (en) | 1984-07-01 |
US4636369A (en) | 1987-01-13 |
FI74491B (en) | 1987-10-30 |
JPS59116126A (en) | 1984-07-04 |
FI74491C (en) | 1988-02-08 |
IL70180A0 (en) | 1984-02-29 |
KR840006508A (en) | 1984-11-30 |
BR8306163A (en) | 1984-06-12 |
ES8406374A1 (en) | 1984-07-01 |
AU2111383A (en) | 1984-05-17 |
FI834107A (en) | 1984-05-11 |
FR2535702B1 (en) | 1986-09-12 |
FI834107A0 (en) | 1983-11-09 |
FR2535702A1 (en) | 1984-05-11 |
DE3368689D1 (en) | 1987-02-05 |
EP0109327A1 (en) | 1984-05-23 |
KR890004520B1 (en) | 1989-11-10 |
JPS6058175B2 (en) | 1985-12-18 |
CA1222376A (en) | 1987-06-02 |
GR78756B (en) | 1984-10-02 |
ZA838268B (en) | 1984-09-26 |
IL70180A (en) | 1987-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0079258A1 (en) | Process for extracting and separating uranium, thorium and rare earths by treating aqueous solutions of the chlorides of said elements | |
EP0109327B1 (en) | Process for the complete recovery of uranium, yttrium, thorium and rare earth metals from a phosphate ore while preparing wet process phosphoric acid | |
EP3833789B1 (en) | Use of a synergistic mixture of extractants for extracting rare earth elements from an aqueous medium comprising phosphoric acid | |
BE1006385A3 (en) | Method for the extraction of tantalum and niobium. | |
EP3856940A1 (en) | Method for purifying and for concentrating rare earths from phosphogypsum | |
EP0026132A1 (en) | Process for global recovery of uranium, rare earth metals, thorium and yttrium from an acid solution | |
CA1160459A (en) | Enhancement process for uranium derived from a uraniferous mineral containing arsenic | |
EP0517580B1 (en) | Process for the purification and recovery of orthophosphoric acid by liquid-liquid extraction | |
FR3001465A1 (en) | PROCESS FOR SELECTIVELY EXTRACTING SCANDIUM | |
EP0210934B1 (en) | Process for separating and valorizing rare-earth metals and uranium of an uranium tetrafluoride concentrate | |
EP0433107B1 (en) | Process for the recovery of gallium from basic solution | |
JPH0394028A (en) | Separation of rare-earth element | |
FR2826667A1 (en) | Treatment of rare earth mineral with high iron content for recuperation of rare earth metals as an aqueous solution involves reacting the mineral with sulfuric acid, firing, mixing the calcined material with aqueous solution, and separating | |
FR2678644A1 (en) | Process for overall recovery of the thorium and of the rare earths in a nitrate medium | |
JPS6112010B2 (en) | ||
EP0251399A1 (en) | Process for separating or recovering plutonium, and plutonium obtained thereby | |
FR2669348A1 (en) | Compositions containing hydroxydiphosphonic derivatives for the extraction of metal cations | |
EP0026502B1 (en) | Process for treating an organic phase containing ferric chloride, molybdenum chloride and hydrochloric acid | |
EP0371832B1 (en) | Recovery of Gallium contained in aqueous solutions | |
JPS5943984B2 (en) | Treatment method for nickel and cobalt-containing liquids containing zinc | |
SU408565A1 (en) | Method of refining tin from impurities | |
KR101664625B1 (en) | Purification of yellow phosphorus | |
CA1146763A (en) | Process for reducing organic solvant losses during treatment of a suspension resulting from the acid treatment of an ore | |
FR2485506A2 (en) | Extraction of uranium, thorium, yttrium and rare earths from acid soln - using a di-(alkylphenyl)phosphoric acid and hydrocarbon solvent | |
FR2465687A1 (en) | Extraction of uranium, thorium, yttrium and rare earths from acid soln - using a di-(alkylphenyl)phosphoric acid and hydrocarbon solvent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19840620 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB IT NL |
|
BECN | Be: change of holder's name |
Effective date: 19861230 |
|
REF | Corresponds to: |
Ref document number: 3368689 Country of ref document: DE Date of ref document: 19870205 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: RHONE-POULENC CHIMIE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19871031 Year of fee payment: 5 |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: RHONE-POULENC CHIMIE TE COURBEVOIE, FRANKRIJK. |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19891028 |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19891130 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19900501 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19901017 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19901211 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19910702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19911031 |
|
BERE | Be: lapsed |
Owner name: RHONE-POULENC CHIMIE Effective date: 19911031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19920630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |