EP0197339B1 - Interrupteur à haute tension avec résistance de fermeture - Google Patents
Interrupteur à haute tension avec résistance de fermeture Download PDFInfo
- Publication number
- EP0197339B1 EP0197339B1 EP86103192A EP86103192A EP0197339B1 EP 0197339 B1 EP0197339 B1 EP 0197339B1 EP 86103192 A EP86103192 A EP 86103192A EP 86103192 A EP86103192 A EP 86103192A EP 0197339 B1 EP0197339 B1 EP 0197339B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lever
- voltage switch
- spring
- switch point
- switch according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/02—Details
- H01H33/42—Driving mechanisms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/02—Details
- H01H33/04—Means for extinguishing or preventing arc between current-carrying parts
- H01H33/16—Impedances connected with contacts
- H01H33/166—Impedances connected with contacts the impedance being inserted only while closing the switch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H3/00—Mechanisms for operating contacts
- H01H3/32—Driving mechanisms, i.e. for transmitting driving force to the contacts
- H01H3/46—Driving mechanisms, i.e. for transmitting driving force to the contacts using rod or lever linkage, e.g. toggle
Definitions
- the present invention relates to a high-voltage switch with on-resistance according to the preamble of claim 1.
- a high-voltage switch is already known from the published patent application DE-A-3 132 821, in which the series connection of a secondary connection point with an on-resistance is connected in parallel with a main switching point.
- the main switching point is actuated via a lever gear assigned to it, while another lever gear acts on a movable contact of the secondary switching point.
- the lever gear assigned to the secondary switching point is designed such that the secondary switching point always closes before the main switching point when it is switched on and then opens again after the main switching point has been closed.
- the invention seeks to remedy this.
- the invention as characterized in the claims, solves the task of achieving a movement sequence in a generic high-voltage switch, which can be adapted to different network conditions in a simple manner while saving on components of the drive.
- a drive 1 moves via an insulating drive rod 3 which is guided through an insulator column 2 and a shaft 5 via a lever arrangement 4.
- the shaft 5 is mounted in a conductive deflection housing 6, which is only indicated and which is supported on the insulator column 2.
- a rotary lever 7 which is non-positively fastened to the shaft 5 acts on a movable contact 9 of a main switching point 10 via a first thrust crank drive 8.
- the movable contact 9 cooperates with a fixed contact 11 which is connected to a power connection 12.
- a lever 15, which is non-positively fastened to the shaft 5, moves a movable contact 17 of a secondary switching point 18 via a second thrust crank drive 16.
- the secondary switching point 18 is electrically connected in series with an on-resistance 19, and this series connection is parallel to the main switching point 10.
- a flexible, conductive connection 20 between the power connection 12 and a fixed contact 21 of the secondary switching point 18 represents a parallel connection, while the other parallel connection is formed by the deflection housing 6.
- the main switching point 10 and the series connection of secondary switching point 18 and switch-on resistor 19 are surrounded by insulating housings, not shown.
- FIG. 2 shows the drive area of the secondary switching point 18 when the high-voltage switch is definitely switched off.
- the lever 15 forms a push-through joint 23 with a hinged lever 22.
- the end of the lever 22 facing away from the lever 15 comprises a joint bolt 24 and is connected to a first holder 25 of a spring element 26.
- a second holder 27 of the spring element 26 is connected to a pivot point 28 arranged on the lever 15 adjacent to the shaft 5.
- one end of a connecting rod 29 is articulated on the hinge pin 24, the other end of which is articulated to a guide piece 30.
- This guide piece 30 slides in a cylindrical sleeve 32 connected to the deflection housing 6 via ribs 31 and is rigidly connected to the one end of an actuating rod 33 made of rod-shaped or tubular insulating material.
- the other end of the actuating rod 33 penetrates the pierced disks of the on-resistance 19 and is with connected to the movable contact 17 of the secondary switching point 18.
- a first impact ring 34 is seated on the actuating rod 33 and is additionally supported on the guide piece 30.
- a second impact ring 35 is also rigidly attached to the operating rod 33.
- two stops 36, 37 concentrically surround the actuating rod 33.
- the two stops 36, 37 are supported on opposite sides on a common spring assembly 38 which can cushion them in the axial direction and become together with this carried by a bracket 39.
- the bracket 39 is rigidly attached in the sleeve 32.
- FIG. 6 shows a section through the spring element 26.
- Each of the two brackets 25, 27 has an eyelet 45 for attachment and receives one end of a tension spring 46 which acts on the two brackets 25, 27 in the axial direction.
- the bracket 25 partially includes the bracket 27 and guides the tension spring 46.
- the bracket 27 carries a damping device 47 which is fastened by means of a retaining screw 48.
- the retaining screw 48 holds a damper disk 49 so that it can slide in the axial direction along the shaft 48a thereof.
- the damper disk 49 is acted upon on the one hand by a shoulder 50 of the holder 25 with the spring force of the tension spring 46 and on the other hand it is supported on a spring assembly 51 and presses it against a shoulder 52 of the holder 27.
- a cylindrical friction spring assembly is shown schematically, such as e.g. in the arrangements according to FIG. 2 (spring assembly 38) and FIG. 6 (spring assembly 51) between force-transmitting parts, such as the two stops 36, 37, can be installed.
- the friction spring assembly consists of outer spring rings 60 and inner spring rings 64, which are alternately stacked on top of one another.
- Each outer spring ring 60 has conical bevels 61, 62 on the inside, which are designed identically from both sides and which meet in an edge 63.
- Each inner spring ring 64 has conical chamfers 65, 66 on the outside, which are of identical design from both sides and which meet in an edge 67.
- the chamfers 61 and 65 as well as 62 and 66 match each other exactly when the friction spring assembly is stacked.
- End rings 68 which correspond to halved inner spring washers 64, form the ends of the friction spring assembly.
- gaps 69 remain between the shoulders of the outer spring rings 60 and gaps 70 between the shoulders of the inner spring rings 64. The sum of the gap distances represents the maximum spring travel of the friction spring assembly.
- FIG. 1 is considered in more detail.
- the two thrust crank drives 8, 16 are rigidly coupled via the shaft 5, the thrust crank drive 16 being designed such that, when switched on, the auxiliary switching point 18 always switches on first and switches the on resistor 19 into the current path.
- the current path then leads from the power connection 12 via the flexible connection 20, the closed secondary switching point 18 and the on-resistance 19 to the deflection housing 6 and from there usually via a similar arrangement to a current outlet located on the other side of the high-voltage switch.
- the secondary switch 18 opens again immediately, and the current path then leads from the power connection 12 via the closed main switch 10 directly to the deflection housing 6.
- the switch-on movement course of the movable contact 17 of the secondary switching point 18 is to be explained on the basis of FIG. 2 and compared with that of the moving contact 9 of the main switching point 10.
- the effective length for the movement of the movable contact 17 of the secondary switching point 18 in the thrust crank drive 16 is the center distance between the shaft 5 and the pivot pin 24. This length is considerably greater than the effective length of the rotary lever 7 provided for the movement of the main switching point 10. It proves to be advantageous to choose a gear ratio between the effective length of the rotary lever 7 and the effective length in the thrust crank drives 16 in the range of 1: (1.4 to 1.8).
- the movable contact 17 of the secondary switching point 18 runs greater than 1: 1 in a counterclockwise direction in front of the moving contact 9 of the main switching point 10 due to the transmission ratio.
- the spring element 26 initially holds the levers 15 and 25 together in a first stable position so that the push-through joint 23 is certainly not stretched.
- the movable contact 17 of the secondary switching point 18 is first in the "on" position and closes the current path in which the on-resistance 19 is active.
- the ratio 1: 1.5 is preferably selected, since it follows that the secondary switching point 18 switches on approximately 8 to 10 milliseconds before the main switching point 10. This time span is sufficient for most practical operating cases. However, it is easily possible to increase or decrease this time span by lengthening or shortening the lever 15 in the area between the pivot point 28 and the shaft 5, without other parts of the thrust crank drive 16 having to be changed.
- the load duration of the switch-on resistor 19 is increased and this has the consequence that switch-on overvoltages in the network at the place of use of the high-voltage switch are reduced over a longer period of time and thus to smaller values.
- networks which are designed in such a way that a high switch-on overvoltage cannot occur it suffices to dampen them during a shorter time, so that the switch-on resistor 19 must only act during a shorter time. If, in this case, the mechanics ensure that the switch-on resistor 19 is actually only loaded for a comparatively short time, it can be dimensioned to be correspondingly scarcer and cheaper.
- FIG. 3 schematically shows the moment when the secondary switching point 18 is switched on.
- the first impact ring 34 strikes the first sprung stop 36, which dampens the impact energy. Via the connecting rod 29, the further movement of the hinge pin 24 in the switch-on direction is blocked.
- FIG. 4 shows the position of the push crank drive 16 when the high-voltage switch is definitely switched on.
- the distance between the impact ring 34 and the stop 36 shows that the contacts 17, 21 of the secondary switching point 18 are disengaged.
- the high-voltage switch starts to be switched off.
- the lever 15 moves clockwise and the contact distance of the auxiliary switch 18 which has already been open increases. Only now does the main switch 10 open and interrupt the current path.
- the push crank drive 16 reaches the position shown in FIG. 5. Up to this position, the spring element 26 holds the push-through joint 23 in the second stable position. After the second impact ring 35 strikes the sprung second stop 37, the further movement of the pivot pin 24 in the switch-off direction is blocked.
- the lever 15 is moved clockwise by the drive of the high-voltage switch.
- the push-through joint 23 is again stretched to the dead center and, after the dead center position has been exceeded, it tilts back into the first stable position as a result of the force originating from the spring element 26.
- the movable contact 17 of the secondary switching point 18 is moved somewhat in the switch-on direction.
- the lever 15 continues to move clockwise until it reaches the definite switch-off position shown in FIG. 2 and takes the movable contact 17 with it via the push-crank drive 16.
- the second impact ring 35 no longer bears against the second stop 37 here.
- a friction spring assembly as shown in FIG. 7, can advantageously be used where large impact energies have to be damped in the smallest space.
- the outer spring washers 60 and the inner spring washers 64 are pushed onto one another and stretched or compressed, the gaps 69, 70 between the individual spring washers becoming smaller.
- the chamfers 61 and 65 as well as 62 and 66 rub each other intensively, which means that a large part of the impact energy is converted into frictional heat.
- Friction spring assemblies work down to -50 ° C without loss of performance and are therefore particularly well suited for high-voltage switches installed outdoors.
- the area around the push-through joint 23 is particularly advantageously constructed symmetrically, since jamming of the arrangement is thus reliably avoided.
- two levers 15 and two levers 22 are arranged in parallel and the spring element 26 is fastened between them.
- a spring element 26 is attached to each side of a simple lever arrangement consisting of lever 15 and lever 22.
- FIG. 8 shows a further embodiment of the push crank drive 16, in which, in addition to the push-through joint 23, a further push-through joint 80 which interacts with it is provided.
- the push-through joint 23 has the lever 15, which is non-positively connected to the shaft 5, and a two-arm lever 82, which is directed to the connecting rod 29 with an arm 81.
- the push-through joint 80 is formed by an arm 83 of the two-arm lever 82 and one which is articulated on the one hand
- Compression spring element 84 which on the other hand is articulated to the shaft 5.
- the compression spring element 84 has a housing part 86 with a central bore 87, the axis of which runs next to the shaft 5.
- a spring assembly 89 which preferably contains friction springs, is supported against a shoulder 88 of the central bore 87 and is held on the opposite side by a disk 90 sliding in the central bore 87.
- a flange 91 connected to the housing part 86 secures the disk 90 Screw 93, which extends through a bore in the disk 90 and can also be designed as a bolt, is screwed to a housing part 94 which slides telescopically in the central bore 87.
- the housing part 94 has a receptacle 95 for a compression spring 96, the other side of which is supported against the housing part 86.
- a sleeve-like part 97 of the housing part 86 guides the compression spring 96 inside.
- the compression spring 96 can be pretensioned according to the operating requirements by means of the screw 93.
- an eyelet 98 is incorporated on the side facing away from the compression spring 96, which enables the connection to the articulated joint 80 via a bolt.
- the mode of operation of the variant of the thrust crank drive 16 shown in FIG. 8 is similar to that of the variant already described with reference to FIGS. 2 to 5.
- the course of movement of the secondary switching point 18 is identical in both variants in the areas essential for the proper functioning of the high-voltage switch. Differences only exist in the area around the respective dead center of the push crank drive 16, since in the variant according to FIG. 8 the actual dead center is only reached after the pushable joint 23 has been stretched, namely only when the pushable joint 80 is stretched.
- the overturning of the thrust crank drive 16 can therefore only take place after the longitudinal axis of the central bore 87 of the compression spring element 84 and the connecting line between the centers of the two pressable joints 23 and 80 run parallel.
- the last-described variant is characterized in particular by the fact that mechanical vibrations which arise from the respective end position when the thrust crank drive 16 starts to run can be damped quickly. In this way, absolutely reliable operating behavior of the push crank drive 16 can be achieved with a comparatively low-mass compression spring 96. Furthermore, it has an advantageous effect that, due to the low-mass compression spring 96, the reaction forces on the two push-through joints 23 and 80 and the other bearing points are also reduced, which results in an increase in the service life of the arrangement or enables a more economical construction.
Landscapes
- Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
Claims (11)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH133885 | 1985-03-27 | ||
CH1338/85 | 1985-03-27 | ||
CH72486 | 1986-02-24 | ||
CH724/86 | 1986-02-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0197339A1 EP0197339A1 (fr) | 1986-10-15 |
EP0197339B1 true EP0197339B1 (fr) | 1989-06-21 |
Family
ID=25685488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86103192A Expired EP0197339B1 (fr) | 1985-03-27 | 1986-03-10 | Interrupteur à haute tension avec résistance de fermeture |
Country Status (4)
Country | Link |
---|---|
US (1) | US4670632A (fr) |
EP (1) | EP0197339B1 (fr) |
BR (1) | BR8601333A (fr) |
DE (1) | DE3664077D1 (fr) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE9103300L (sv) * | 1991-11-08 | 1993-03-29 | Asea Brown Boveri | Trepolig hoegspaenningsbrytare |
DE19547098A1 (de) * | 1995-12-16 | 1997-06-19 | Asea Brown Boveri | Leistungsschalter mit einem Einschaltwiderstand |
DE19809836C1 (de) | 1998-03-02 | 1999-09-09 | Siemens Ag | Hochspannungsleistungsschalter mit einer Schaltstange aus einem Isolierstoff |
DE102006001241A1 (de) * | 2006-01-06 | 2007-07-12 | Siemens Ag | Schaltstelle eines elektrischen Schaltgerätes sowie Verfahren zum Bewegen eines Schaltstückes einer Schaltstelle |
DE102018205910A1 (de) * | 2018-04-18 | 2019-10-24 | Siemens Aktiengesellschaft | Hochspannungsleistungsschalter mit Einschaltwiderstandsanordnung sowie Koppeleinrichtung |
CN109599293B (zh) * | 2018-12-20 | 2020-10-23 | 河南平高电气股份有限公司 | 一种间歇传动装置及开关电器用操动机构 |
CN111261448B (zh) * | 2020-01-07 | 2022-07-05 | 平高集团有限公司 | 断路器 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR949494A (fr) * | 1947-07-11 | 1949-08-31 | Forges Ateliers Const Electr | Systèmes cinématiques de commande dissymétrique |
US3763340A (en) * | 1971-02-12 | 1973-10-02 | Siemens Ag | High-voltage circuit breaker equipped with means for placing a resistor in parallel with the breaker contact during breaker closing operations |
US4009458A (en) * | 1975-04-15 | 1977-02-22 | Hitachi, Ltd. | Puffer type gas circuit breaker |
DE2949753A1 (de) * | 1979-12-07 | 1981-06-11 | Siemens AG, 1000 Berlin und 8000 München | Hochspannungs-leistungsschalter |
DE3102654A1 (de) * | 1981-01-23 | 1982-08-05 | Ernst Prof. Dr.techn.habil. 1000 Berlin Slamecka | Hochspannungsschalter mit schaltbarem parallelwiderstand |
CH654139A5 (de) * | 1981-04-22 | 1986-01-31 | Sprecher & Schuh Ag | Hochspannungsschalter. |
-
1986
- 1986-03-10 DE DE8686103192T patent/DE3664077D1/de not_active Expired
- 1986-03-10 EP EP86103192A patent/EP0197339B1/fr not_active Expired
- 1986-03-21 US US06/842,474 patent/US4670632A/en not_active Expired - Fee Related
- 1986-03-25 BR BR8601333A patent/BR8601333A/pt unknown
Also Published As
Publication number | Publication date |
---|---|
EP0197339A1 (fr) | 1986-10-15 |
DE3664077D1 (en) | 1989-07-27 |
BR8601333A (pt) | 1986-12-02 |
US4670632A (en) | 1987-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0696040A1 (fr) | Interrupteur à gaz imprimé | |
WO2006097420A1 (fr) | Systeme de contact electrique comprenant un premier et un deuxieme plot de contact | |
EP1310970B1 (fr) | Disjoncteur hybride avec transmission | |
DE2751844A1 (de) | Einrichtung zum wirksamen steuern auf den beweglichen kontakt eines lastschalters vom vakuumtyp ausgeuebten kraefte | |
EP0197339B1 (fr) | Interrupteur à haute tension avec résistance de fermeture | |
DE69708966T2 (de) | Hochspannungs-Blaskolbenschalter | |
EP0779637A2 (fr) | Disjoncteur avec résistance de fermeture | |
DE102014102875B4 (de) | Betätigungsvorrichtung zum Betätigen einer Vakuumschaltröhre, Schaltvorrichtung mit einer solchen Betätigungsvorrichtung sowie Laststufenschalter mit einer solchen Schaltvorrichtung | |
EP0157922A1 (fr) | Interrupteur à haute tension | |
EP0951038B1 (fr) | Agencement de contacts d' arc | |
EP0024252A1 (fr) | Disjoncteur haute tension à résistance et point de coupure auxiliaire | |
EP0606265B1 (fr) | Interrupteur a vide multipolaire avec une unite d'entrainement polaire pour chaque tube commutateur a vide | |
DE3514184A1 (de) | Hochspannungsschalter mit einschaltwiderstand | |
DE3906786C2 (fr) | ||
CH594279A5 (en) | Toggle drive unit for medium voltage switch - has symmetrical double spring which reduces bearing load and gives compact construction | |
EP0398461A2 (fr) | Disjoncteur avec un dispositif de commande et de verrouillage pour un contact mobile | |
DE2935915A1 (de) | Elektrischer vakuumschalter | |
DE10048659A1 (de) | Schaltkontaktanordnung eines Niederspannungs-Leistungsschalter mit Kontaktkraftfedern | |
WO2019154532A1 (fr) | Élément de commutation pour commutateur à gradins et commutateur à gradins | |
DE69516790T2 (de) | Mittelspannungsschalter oder Schutzschalter | |
DE19814398C1 (de) | Elektrisches Schaltgerät, insbesondere elektromagnetisches Schaltgerät mit Vakuumschaltröhre | |
DE3338244C2 (fr) | ||
DE4430579A1 (de) | Hochspannungsschalter mit einem Hauptschaltkontakt und einer Hilfsschalteinrichtung | |
DE2511804A1 (de) | Vorrichtung zur betaetigung elektrischer schaltgeraete | |
DE3114837C2 (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR LI SE |
|
17P | Request for examination filed |
Effective date: 19870129 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BBC BROWN BOVERI AG |
|
17Q | First examination report despatched |
Effective date: 19880928 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR LI SE |
|
REF | Corresponds to: |
Ref document number: 3664077 Country of ref document: DE Date of ref document: 19890727 |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19900215 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19900220 Year of fee payment: 5 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19900523 Year of fee payment: 5 |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19900614 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19910311 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19910331 Ref country code: CH Effective date: 19910331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19911129 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19920101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
EUG | Se: european patent has lapsed |
Ref document number: 86103192.0 Effective date: 19911009 |