EP0174307A1 - Vorrichtung und verfahren zur konditionierung einer resonanz-magnet-flüssigkeit - Google Patents
Vorrichtung und verfahren zur konditionierung einer resonanz-magnet-flüssigkeitInfo
- Publication number
- EP0174307A1 EP0174307A1 EP19840901461 EP84901461A EP0174307A1 EP 0174307 A1 EP0174307 A1 EP 0174307A1 EP 19840901461 EP19840901461 EP 19840901461 EP 84901461 A EP84901461 A EP 84901461A EP 0174307 A1 EP0174307 A1 EP 0174307A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fluid
- magnetic
- velocities
- maximize
- over
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/48—Treatment of water, waste water, or sewage with magnetic or electric fields
- C02F1/481—Treatment of water, waste water, or sewage with magnetic or electric fields using permanent magnets
- C02F1/482—Treatment of water, waste water, or sewage with magnetic or electric fields using permanent magnets located on the outer wall of the treatment device, i.e. not in contact with the liquid to be treated, e.g. detachable
Definitions
- This invention relates generally to apparatus and methods of conditioning fluid flow in a conduit so as to prevent and reduce the build up of mineral deposits on the inner walls of the conduit. More particularly, the invention improves upon those devices which condition by impression of alternating magnetic fields upon the fluid.
- scale reduction effic ⁇ iency can drop significantly, typically by more than 50%, when the flow rate increases or decreases by half from the narrow optimum treatment range. Some drop is also observed when mineral content and structure of the liquid changes. In cer ⁇ tain Metropolitan water districts, for instance, water mineral characteristics change due to seasons. Mineral content also changes with man-made blending of available water, from well, river and reservoir sources, each of which can change with seasonal rain water content. Thus magnetic treatment range, even when optimized for onevelocity can be too narrow to ac- comodate normal variations of flow velocities within the fluid conduit and to changes in fluid structure and mineral content. In addition, early devices were physically constructed such that magnetic field spacing could not be readily varied to accomodate these changes once a system had been installed.
- the invention disclosed here overcomes the above limita ⁇ tions by combining a. series of individual magnetic treatment sections, called frequency modules, each of which has been separately optimized in accordance with the above principles.
- frequency modules each of which has been separately optimized in accordance with the above principles.
- indi-vidual sections which have had their magnetic ele ⁇ ments spaced so as to optimize conditioning at a particular
- My invention is arranged so that the group of individual frequency modules are physically combined axially into a unit, which for convenience, is referred to as a generator pack.
- a generator pack will contain an even number of frequency modules, each set for maximum efficiency at a particular spacial frequency or fluid velocity. The number of modules cascaded will depend upon the broadness of the range of fre ⁇ quencies or fluid velocities expected to be treated.
- the genera ⁇ tor pack will be covered and supported adjacent the outside of a fluid conduit by means of an attachment chassis.
- This ar- rangment provides the advantages of minimum fluid flow obstruc ⁇ tion and maximum ease of installation and replacement.
- the vel ⁇ ocity range may be quickly tailored by insertion of a new generator pack.
- my device Although my device is not designed to be a magnetic par ⁇ ticle separator, it will attract such particles over a period of time. The particles will collect on the inside of the con ⁇ duit wall and will tend to shunt the magnets. With my portable outside attachment means, the device may be easily and rapidly loosened and slid upstream on the conduit.
- the magnetic treatment sections of the generator pack may be arranged co- axially about the fluid conduit. Since such configurations can result in increased flux density with given volumn constraints,
- Figure 1 is an isometric view of the cover used to protect the generator pack.
- Figure 2 is an isometric view of the generator pack re ⁇ moved from the cover of Figure 1.
- Figure 3 is an isometric view of the mounting chassis structure with attached strap type fasteners, positioned over the enclosed generator pack.
- Figure 4 is an end cross section of our assembled inven ⁇ tion in working engagement with a fluid conduit work piece.
- Figure 5 is an end cross section of one unit attached to a cluster of three pipes by means of a strap-type fastener.
- Figure 6 presents graphical data showing the variation in magnetic field strength under a set of variable spaced poles.
- Figure 7 presents graphical data showing the variation in water conditioning efficiency with velocity in the conduit.
- Figure 8 shows a seri.es of partial side cross-sectioned views of alternate generator pack embodiments. Best Mode for Carrying Out the Invention
- each individual module contains a bar magnet 1, side face magnetized and made preferrably of a true permanent magnet material such as strontium ferrite.
- Adjacent to each side face of magnet 1 are flux collector plates 2. These plates make close contact with each pole face, and can typically be made of milled steel.
- the edges of each plate 2 are partial ⁇ ly beveled to reduce the edge thickness by approximately two- thirds so as to better concentrate the magnetic flux lines into increased flux density for communicating across the fluid conduit.
- the magnets are spaced .apart by a series of non-magnetic
- OMPI flux separators shown as 3, 4, 5, 6, and 7 in Figure 2. These are depicted as increasing in width from 3 to 7. When so spaced, lower velocity fluid will be more effectively treated at the smaller spaced end of the device.
- each magnet 1 is shown in Figure 2 as being of equal width, they may also be arranged in staggered thickness or field strength fashion as a further aid to obtaining the desired spacial frequencies.
- the above set of frequency modules are assembled into a thin walled non-ferrous case 10, shown in Figure 1.
- the as ⁇ sembly may be rigidly sealed with end cap 9, into a permanent unit, or fitted with a removable seal for field replacement or cleaning .
- FIG 3 shows chassis structure 11 which is used to support the case 10 of the generator pack firmly against the fluid conduit. Attachment means, such as the strap 12, is used to wrap around and secure both the case and the conduit.
- Figure 4 shows generator pack 10, so held in place within chassis 11.
- a hook and eye attachment 12, such as Velcro, is used to hold the chasis and the generator firmly against the conduit 13 containing fluid 14.
- Figure 5 presents an alternate arrangement in which a plurality of conduits can be serviced by one magnetic conditio ⁇ ner.
- Three conduits 13 are maintained in direct contact with case 10 without the chassis by attachment strap 12. The number of conduits so serviced is thus limited only by the number sides placed on the magnetic modules and the case.
- the conditioning efficiency of the device is indicated by measurement of the percent reduction in calcite crystals re ⁇ maining in a drop sample of water.
- the independent variable in Figure 7 is the velocity of water flow through the conduit. It will be noted that the efficiency curve tends to follow the broadened composite curve of the individual units in keeping with the flux-distance variation of Figure 6. Pro ⁇ per selection of spacing between the magnetic modules therefore has improved the efficiency of mineral removal over a broad range of fluid velocities.
- Figure 8 A through F present a series of cross-sections of alternate coaxial embodiments arranged for comparison con ⁇ venience with a top half cross-section of the external embodi ⁇ ment, 8G.
- Figure 8A shows a basic harmonic treatment device composed of six magnetic circuit elements (1,2) separated by five sep ⁇ arators (3), all placed concentrically around a cylindrical tube which contains in its center a coaxial concentrator core (15). All magnetic units have similar dimensions, and all separators are of approximate equal length. The unit is maxi ⁇ mally effective at one specific flow rate, but its effectivity can be improved by changing the length and number of magnetic units.
- Figure 8B shows a combination of two of the basic devices of figure 8A separated by a spacing element called a harmonic bridge, 16.
- a plurality of such frequency or impact sections can be arranged to maintain high treatment effectively over a wide range of variable flow rates.
- the embodiment utilizes similar sized magne ⁇ tic units but with different sized spacers.
- the variable flow range can thus be covered with fewer magnets where space con ⁇ servation is important.
- Figure 8D shows a device with equally sized separators but differenly dimensioned magnetic circuit elements. This pro ⁇ vides for a variation of magnetic flux densities which can be useful in cases where the specific mineral content of the liquid presents unusual conditions.
- figure 8F is especially useful with smaller flow rates through more narrow conduits.
- the smaller diameters involved permit sufficient magnetic field strength without the aid of the concentrator core, 15 of Figure 8A.
- This invention has utility in any liquid consuming indus ⁇ try, and has special application to those industries that use water as a motive power.
- older plants with internal water line corrosion often find that replacement of pipe sections is impossible since wrenching of the pipe produces further deterioration.
- the externally placed device in accordance with the best mode of our invention can thus be used to reduce the internal scale build-up without physical pipe line disturbance.
- water chamber devices such as boilers and heat exchangers will benefit from less frequent fouling .
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1984/000255 WO1985003649A1 (en) | 1984-02-21 | 1984-02-21 | Resonating magnetic fluid conditioning apparatus and method |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0174307A1 true EP0174307A1 (de) | 1986-03-19 |
Family
ID=22182056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19840901461 Withdrawn EP0174307A1 (de) | 1984-02-21 | 1984-02-21 | Vorrichtung und verfahren zur konditionierung einer resonanz-magnet-flüssigkeit |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0174307A1 (de) |
WO (1) | WO1985003649A1 (de) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4883591A (en) * | 1985-10-03 | 1989-11-28 | David Belasco | Multi-pass fluid treating device |
US4904391A (en) * | 1985-10-09 | 1990-02-27 | Freeman Richard B | Method and apparatus for removal of cells from bone marrow |
US4888113A (en) * | 1986-11-21 | 1989-12-19 | Holcomb Robert R | Magnetic water treatment device |
GB8714516D0 (en) * | 1987-06-20 | 1987-07-22 | Garth Stocking Enterprises Ltd | Eliminating scale & corrosion in water systems |
DE9103875U1 (de) * | 1991-03-28 | 1992-07-30 | Bossert, Gerdi, 7730 Villingen-Schwenningen | Gerät zur magnetischen Behandlung von Flüssigkeiten, insbesondere Wasser |
US5238558A (en) * | 1991-04-11 | 1993-08-24 | Rare Earth Technologies | Magneto-hydrodynamic fluid treatment system |
AU653560B2 (en) * | 1991-11-28 | 1994-10-06 | T.L.H. Brothers Sdn. Bhd. | Device for magnetically treating fluids, gases or solids |
US6123843A (en) * | 1992-09-30 | 2000-09-26 | Fluidmaster, Inc. | Water treatment system |
US5378362A (en) * | 1992-09-30 | 1995-01-03 | Fluidmaster, Inc. | Apparatus for magnetically treating water |
DE9315673U1 (de) * | 1993-10-04 | 1994-02-17 | Kämpf, Roland, Amriswil | Magnetisches Fluid-Aufbereitungsgerät |
US5589065A (en) * | 1994-02-04 | 1996-12-31 | Ybm Magnetics, Inc. | Magnetohydrodynamic device |
CA2173315C (en) * | 1996-04-02 | 2000-01-04 | W. John Mcdonald | Method and apparatus for magnetic treatment of liquids |
WO2004074190A1 (en) * | 2003-02-18 | 2004-09-02 | Hvarre, Laila | Magnetic fluid treatment device and uses thereof |
EP2349935B1 (de) * | 2008-09-22 | 2013-09-25 | William Steven Lopes | Magnetfeldprozessor zur konditionierung von fluiden |
RU2635591C1 (ru) * | 2017-01-09 | 2017-11-14 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный аграрный университет имени И.Т. Трубилина" | Устройство для защиты от образования отложений на поверхностях трубопроводов систем теплоснабжения |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1830740A (en) * | 1929-03-19 | 1931-11-03 | Leech Carrier Corp | Freight handling device |
US2004095A (en) * | 1933-08-17 | 1935-06-11 | Frederick W Hankins | Container transfer apparatus |
US2512798A (en) * | 1948-03-29 | 1950-06-27 | Hodges Res & Dev Co | Transfer mechanism |
-
1984
- 1984-02-21 EP EP19840901461 patent/EP0174307A1/de not_active Withdrawn
- 1984-02-21 WO PCT/US1984/000255 patent/WO1985003649A1/en unknown
Non-Patent Citations (1)
Title |
---|
See references of WO8503649A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO1985003649A1 (en) | 1985-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0174307A1 (de) | Vorrichtung und verfahren zur konditionierung einer resonanz-magnet-flüssigkeit | |
US5356534A (en) | Magnetic-field amplifier | |
US4289621A (en) | Device for treating fluids with magnetic lines of force | |
US4946590A (en) | Clamp-on magnetic water treatment device | |
US4265754A (en) | Water treating apparatus and methods | |
US5378362A (en) | Apparatus for magnetically treating water | |
EP0047773A1 (de) | Magnetische wasserbehandlungsvorrichtung | |
WO1992006042A1 (en) | Fluid treatment apparatus | |
US10370261B2 (en) | System and method for transportation and desalination of a liquid | |
WO1992018223A1 (en) | Magneto-hydrodynamic fluid treatment system | |
US5200071A (en) | Translating magnetic field treatment device | |
DE3874226D1 (de) | Vorrichtung zur magnetischen wasserbehandlung. | |
US6123843A (en) | Water treatment system | |
Okada et al. | High gradient magnetic separation for weakly magnetized fine particles [for geothermal water treatment] | |
KR100735812B1 (ko) | 다단 자석봉 내장형 자화 정화장치 | |
US20020056666A1 (en) | Magnet structures for treating liquids and gases | |
WO1990010598A1 (en) | An improved magnetic-field amplifier | |
KR100821721B1 (ko) | 대용량 자화수 발생장치 | |
KR100704421B1 (ko) | 3차원 파울링 저감장치 및 방법 | |
JPH0966285A (ja) | 水処理装置 | |
CN207632573U (zh) | 电磁水处理装置 | |
RU2002705C1 (ru) | Магнитный активатор дл обработки жидкостей | |
CN2890035Y (zh) | 一种交变电场水质处理装置 | |
RU69512U1 (ru) | Устройство магнитной обработки жидкости | |
KR101746142B1 (ko) | 자화수 생성장치 및 이를 이용한 자화 냉온수기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB LI LU NL SE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19860122 |