[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0170016B1 - Méthode pour compenser l'influence de l'excentricité de rouleaux de laminage - Google Patents

Méthode pour compenser l'influence de l'excentricité de rouleaux de laminage Download PDF

Info

Publication number
EP0170016B1
EP0170016B1 EP85107336A EP85107336A EP0170016B1 EP 0170016 B1 EP0170016 B1 EP 0170016B1 EP 85107336 A EP85107336 A EP 85107336A EP 85107336 A EP85107336 A EP 85107336A EP 0170016 B1 EP0170016 B1 EP 0170016B1
Authority
EP
European Patent Office
Prior art keywords
roll
signal
output signal
sum
eccentricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85107336A
Other languages
German (de)
English (en)
Other versions
EP0170016A1 (fr
Inventor
Georg Dr. Weihrich
Dietrich Wohld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT85107336T priority Critical patent/ATE39069T1/de
Publication of EP0170016A1 publication Critical patent/EP0170016A1/fr
Application granted granted Critical
Publication of EP0170016B1 publication Critical patent/EP0170016B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • B21B37/66Roll eccentricity compensation systems

Definitions

  • the invention relates to a method for determining and compensating for the influence of roll eccentricities during the ongoing rolling operation in the position or thickness control of roll stands, in particular with indirect actual value formation which takes place by determining the roll stand stretch.
  • US-A 3543549 describes a method of the type mentioned at the outset which requires the sine and cosine signals from sensors additionally to be attached to the support rollers.
  • the invention has for its object to provide a method for compensating the roll eccentricities in thickness controls of the type mentioned, which works both more accurately and faster and manages with the sensors usually present on roll stands. According to the invention, this object is achieved by the features specified in the characterizing part of the main claim.
  • a roll stand 1 is shown schematically. It consists of the upper back-up roll with the radius R o , the lower back-up roll with the radius R u , the two smaller-diameter work rolls, a hydraulic piston that adjusts the upper back-up roll, and an associated hydraulic cylinder, which is supported on the scaffold frame.
  • the elastic frame is symbolically represented by a spring with the spring constant C G.
  • the rolling stock to which an equivalent material spring with the spring constant C m is assigned in the roll gap, is rolled down from the inlet thickness h e to the outlet thickness h a by means of the two work rolls.
  • the roll eccentricities of the upper and lower backup rolls are caused by uneven roll wear, deformations due to thermal stresses and by deviations of the geometrical cylinder axes of the rolls from the operationally occurring rotation axes. They are denoted by ⁇ R o and ⁇ R u , that is, as deviations from the ideal supporting roller half-diameters R e and R u . Furthermore, there are provided sensors for the support roller speed n, usually in the form of a tachodynamo coupled to the drive motor, for the rolling force F w exerted by the hydraulic piston and for the roller position, which corresponds to the relative position s of the piston in the hydraulic cylinder that adjusts the upper support roller.
  • a control element is designated, by means of which the hydraulic piston is acted upon by a valve with pressure oil.
  • the control signal for the control element 2 consists in the output signal of a controller 3, which has the task of bringing the thickness h a of the rolling stock to be brought out in accordance with the thickness target value h * a supplied to it.
  • the actual value of the controlled variable h a is not measured directly at the point of its creation, ie in the roll gap, but is determined from the roll stand expansion and the roll position.
  • the device designated by GM in FIG. 1 which essentially contains a multiplier, which multiplies the rolling force F w by the reciprocal of the frame spring constant C G and adds the measured value signal s of the relative hydraulic piston position to this product.
  • the relationship between the input signals and the output signal of the device GM also known as a gauge, is therefore: with ⁇ R the overlapping influences of the two support roller eccentricities ⁇ R o and ⁇ R u are summarized.
  • the arrangement described so far essentially corresponds to the known strip thickness control with the gage meter principle determining the actual value of the strip thickness h a . If roll eccentricities ⁇ R are present, however, the gauge GM does not supply the strip thickness h a alone but the sum of the strip thickness and roll eccentricity.
  • a strip thickness control built up with the gauge meter signal (h a + ⁇ R) as the actual value would compensate for changes in the strip inlet thickness into the roll stand, but would behave incorrectly with respect to roll eccentricities, because a thickness regulation with the output signal h a + ⁇ R of the gauge meter GM as the actual value behaves exactly like a thickness control with h a as the actual value and a setpoint h - ⁇ R, so the thick rain would incorrectly cause the strip with the outlet thickness h a to have the eccentricity ⁇ R rolled out of phase by 180 °.
  • the maximum values of the eccentricities can be several tens of micrometers, which is not compatible with today's tolerance requirements for cold-rolled strip.
  • a compensation device called RECO Roll Eccentricity Compensator
  • RECO Roll Eccentricity Compensator
  • the framework spring constant C G is determined once by a test before the start of rolling and C m by running online calculations. It was essential for the RECO device, which works according to the compensation method according to the invention, to recognize that, in order to accurately reproduce the roll eccentricities, not only the mill stretch, but also the elastic deformation of the material during the rolling process should be taken into account.
  • the compensation device according to the invention can also be used for pure position control with the same advantages.
  • the gage meter GM is eliminated and the output signal of the compensation device RECO is subtracted from the measured value signal s and the result is used as the actual position value.
  • the setpoint h * a of the outlet thickness a position setpoint is then fed to the controller 3.
  • Figure 2 shows the basic structure of the roll eccentricity compensator RECO. It contains a multiplier 4 to which the rolling force measurement signal F w and the sum of the reciprocal values of the frame spring constant C G and the material spring constant C m are fed on the input side. This reciprocal value corresponds to the reciprocal of a spring constant, which results from the series arrangement of the spring of the roll stand and the spring of the rolling stock.
  • the DC component h e of the inlet thickness h e is extracted from the output signal of the mixing element 5 by means of a high-pass filter HF, so that the signal ⁇ R + h e results at the output of the high-pass filter HF, which has its corner frequency with the speed measurement value n. From this signal, a signal ⁇ R corresponding to the roll eccentricity is then modeled in an arrangement 6 designed according to the observer principle.
  • the arrangement 6, which represents a feedback model for the eccentricity disturbances ⁇ R contains at least two oscillators for the paired fundamental vibrations of the eccentricities ⁇ R o and ⁇ R u of the upper and the lower backup roller and is used in the event that relevant harmonic pairs occur, appropriately supplemented by appropriate pairs of oscillators.
  • the frequencies of the oscillators are tuned by entering the support roller radius R e and R u and the average support roller speed n.
  • the outputs of the individual oscillators are combined to form a sum signal ⁇ R and are compared with the output signal of the high-pass filter HF in a mixer 8, the resulting deviation e adjusting the oscillations in their phase positions and amplitudes generated by the oscillators until the signal ⁇ R is an image of the eccentricity vibration ⁇ R, which is the case when the deviation e becomes a minimum and only corresponds to the statistically fluctuating portion h e of the inlet thickness h e .
  • the frequency is adjusted as a function of the backup roller speed n continuously during the rolling operation, and the corner frequency of the high-pass filter HF is also carried accordingly.
  • FIG. 3 shows an implementation example for a model 6 emulating the roll eccentricity ⁇ R with an oscillator pair for emulating the basic eccentricity oscillation.
  • Each oscillator consists of two integrators 9, 10 and 11, 12 arranged one behind the other, the output signal of the integrators 10 and 12 being fed back to the input of the integrators 9 and 11.
  • Multipliers 13 to 16 are arranged in the input circuit of each of the integrators and are used to determine the frequencies of the oscillators. The second inputs of these multipliers are acted upon by a signal n corresponding to the average backup roller speed.
  • the components which determine the time behavior of the integrators are designed to be adjustable, for example as rotary potentiometers or rotary capacitors, and are adjusted in accordance with the determined values of the radius R e or R u of the support rollers.
  • the frequency of the oscillators is preset as a function of the radii R o or R u of the support rollers and is adjusted as a function of the support roller speed n.
  • the outputs of the integrators 10 and 12 are added in a mixer 17 and its output signal is subtracted from the output signal ⁇ R + h e of the high-pass filter in a further mixer 18.
  • the oscillations generated by the oscillators 9, 10 and 11, 12, respectively are made via proportional elements a to d conditions in their phase positions and amplitudes until the sum signal AR of the integrators 10 and 12 coincides with the portion ⁇ R of the input signal fed to the interference model 6 ( ⁇ R + h e ) resulting from the roll eccentricity.
  • the parallel arrangement of two oscillator pairs shown in FIG. 3 can be converted into a functionally equivalent series circuit using known transformation rules. Such a 4th order filter can be recommended for some applications.
  • FIG. 4 shows the structure of the disturbance model 6 in the roller eccentricity compensator RECO in the event that in addition to the fundamental vibration of the roller eccentricity, three further harmonics have to be considered as relevant.
  • the parts of this model which are designated by 60, 61, 62 and 63 and have the same structure are designed in accordance with FIG. 3 and contain oscillator pairs for the basic oscillation pair and for the 1st, 2nd and 3rd harmonic pair, their individual eccentricity replicas overlay the simulation of the total eccentricity ⁇ R.
  • the phase and amplitude are adjusted depending on the individual errors e o , e 1 , e2, e3.
  • Two adjustment amplifications a o , b o and c o , d o are required for each oscillator, as shown for the basic oscillation pair of the model part 60.
  • FIG. 5 shows the structure of the roller eccentricity compensator RECO using a digitally operating microcomputer 19, in which the signal processing takes place by supplying the input signals via two analog / digital converters 20 and 21 and the signal removal via a digital / analog converter 22.
  • the microcomputer 19 is divided into three function blocks 191 to 193.
  • block 191 the presetting of the two backup roll radii R e and R u and assuming a nominal average backup roll speed takes place offline the calculation of the oscillator frequencies to be preset.
  • block 192 which contains a signal processor, the signal processing for emulating the roll eccentricity ⁇ R takes place by means of oscillators in accordance with the arrangements according to FIGS. 3 and 4, but implemented in functionally equivalent digital technology.
  • the signal processing takes place in a known manner in each case with the values of the input signals sampled at discrete points in time, and a result is output in each case at sampling points in time, a reconstruction filter downstream of the digital-to-analog converter being provided in a manner known per se in order to obtain the analog result sequence obtained in a discrete-time manner to convert a continuous-time signal.
  • block 192 practically represents a digital filter, a so-called anti-aliasing filter AF is arranged after high-pass filter HF in order to suppress the occurrence of interfering external frequencies caused by the scanning process.
  • Antialiasing filters as described, for example, in the “2920 Analog Signal Processor Design Handbook” published by the Intel Corporation in 1980, pp.
  • Block 193 contains a timer which adjusts the frequency of the oscillators implemented in block 192 in digital technology as a function of the current backup roller speed n.
  • the timer can consist, for example, of a counter which can be preset to the output value of the analog-digital converter 20 and which is continuously counted down at a constant clock rate, in each case emits a pulse to the signal processor 192 when the counter reading reaches zero.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Machines For Manufacturing Corrugated Board In Mechanical Paper-Making Processes (AREA)
  • Polarising Elements (AREA)
  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)

Claims (3)

1. Procédé pour déterminer et compenser l'influence d'excentricités de cylindres pendant l'opération continue de laminage, lors de la régulation de la position de cages de laminoirs ou lors de la régulation de l'épaisseur dans des cages de laminoirs, notamment moyennant une formation indirecte de la valeur réelle, exécutée avec détermination de la dilatation de la cage de laminoir, caractérisé par les phases opératoires suivantes:
a) un signal somme est formé à partir du signal de mesure de la force de laminage (Fw) multiplié par la somme des inverses de la constante d'élasticité (CG) de la cage et de la constante d'élasticité (CM) du matériau, et du signal de valeur de mesure de la position (s) de serrage des cylindres;
b) le signal somme est transmis à un filtre passe-haut (HF), dont la fréquence limite est proportionnelle à la vitesse de rotation (n) des cylindres d'appui;
c) le signal de sortie du filtre passe-haut est comparé au signal de sortie somme d'au moins un couple d'oscillateurs qui est utilisé en tant que modèle de perturbation de l'excentricité et dont la fréquence est préréglée en fonction du rayon du cylindre d'appui supérieur ou du cylindre d'appui inférieur et est réglé ultérieurement en fonction de la vitesse de rotation des cylindres d'appui;
d) les oscillateurs sont asservis du point de vue de l'amplitude et de la position de phase, conformément au principe de l'observateur, sur la base de l'écart (e) présent entre le signal de sortie du filtre passe-haut et le signal de sortie somme du couple d'oscillateurs, de manière que cet écart devienne minimum;
e) le signal de sortie somme (ΔR) des oscillateurs est soustrait du signal de valeur réelle.
2. Procédé suivant la revendication 1, caractérisé par le fait que pour la simulation essentiellement des oscillations harmoniques, il est prévu en supplément des couples d'oscillateurs correspondants, couplés par réaction et dont les signaux de sortie sommes sont soustraits du signal de valeur réelle.
3. Procédé suivant la revendication 1 ou 2, caractérisé par le fait que pour la modélisation de l'excentricité, on utilise un processeur (192) de traitement des signaux, qui opère à la manière d'un filtre numérique, est disposé entre un convertisseur analogique/numérique (21) et un convertisseur numérique/analogique (22) et est chargé par le signal de sortie du filtre passe-haut et auquel est associée une horloge (193) influencée par l'intermédiaire d'un convertisseur analogique/numérique, par la vitesse de rotation moyenne (n) des cylindres d'appui.
EP85107336A 1984-07-05 1985-06-13 Méthode pour compenser l'influence de l'excentricité de rouleaux de laminage Expired EP0170016B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85107336T ATE39069T1 (de) 1984-07-05 1985-06-13 Verfahren zur kompensation des einflusses von walzenexzentrizitaeten.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3424693 1984-07-05
DE3424693 1984-07-05

Publications (2)

Publication Number Publication Date
EP0170016A1 EP0170016A1 (fr) 1986-02-05
EP0170016B1 true EP0170016B1 (fr) 1988-12-07

Family

ID=6239865

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85107336A Expired EP0170016B1 (fr) 1984-07-05 1985-06-13 Méthode pour compenser l'influence de l'excentricité de rouleaux de laminage

Country Status (7)

Country Link
US (1) US4685063A (fr)
EP (1) EP0170016B1 (fr)
JP (1) JPH0722768B2 (fr)
AT (1) ATE39069T1 (fr)
CA (1) CA1234613A (fr)
DE (1) DE3566627D1 (fr)
ZA (1) ZA855052B (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0407628A1 (fr) * 1989-07-10 1991-01-16 Siemens Aktiengesellschaft Procédé et installation pour l'élimination de grandeurs périodiques perturbatrices ayant des fréquences connues et variables
EP0424709A2 (fr) * 1989-10-25 1991-05-02 Sms Schloemann-Siemag Aktiengesellschaft Procédé pour compenser des défauts causés par des excentricités de cylindres
DE4411313A1 (de) * 1993-05-08 1994-11-10 Daimler Benz Ag Verfahren zur Ausfilterung des Exzentrizitätseinflusses beim Walzen
DE4410960A1 (de) * 1994-03-29 1995-11-02 Siemens Ag Verfahren zur Unterdrückung des Einflusses von Walzenexzentrizitäten
EP0698427A1 (fr) 1994-07-28 1996-02-28 Siemens Aktiengesellschaft Procédé pour supprimer l'influence des excentricités de rouleaux de laminage
US5647238A (en) * 1994-03-29 1997-07-15 Siemens Aktiengesellschaft Method for suppressing the influence of roll eccentricities on a control for a rolling-stock thickness in a roll stand
DE102006008574A1 (de) * 2006-02-22 2007-08-30 Siemens Ag Verfahren zur Unterdrückung des Einflusses von Walzenexzentrizitäten
EP2602676A1 (fr) 2011-12-08 2013-06-12 Siemens Aktiengesellschaft Détermination de composants de friction d'un système d'entraînement

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1284681C (fr) * 1986-07-09 1991-06-04 Alcan International Limited Methode et dispositif pour detecter et corriger le desaxement des cylindres de laminoirs
NL8700776A (nl) * 1987-04-02 1988-11-01 Hoogovens Groep Bv Werkwijze voor het voorinstellen van een walserij en een besturingsinrichting geschikt daarvoor.
US4823552A (en) * 1987-04-29 1989-04-25 Vickers, Incorporated Failsafe electrohydraulic control system for variable displacement pump
FI104207B1 (fi) * 1998-07-24 1999-11-30 Valmet Corp Menetelmä ja laite paperi- tai kartonkikoneen nippitelarakenteen ominaistaajuuden muuttamiseksi
AT408035B (de) * 1998-10-08 2001-08-27 Voest Alpine Ind Anlagen Verfahren zur aktiven kompensation periodischer störungen
JP2000288614A (ja) * 1999-04-09 2000-10-17 Toshiba Corp 圧延機の板厚制御装置
WO2007148864A1 (fr) * 2007-01-17 2007-12-27 Taegutec Ltd. Laminoir et rouleau associé
DE102007003243A1 (de) 2007-01-23 2008-07-31 Siemens Ag Regelanordnung für ein Walzgerüst und hiermit korrespondierende Gegenstände
DE102007050892A1 (de) * 2007-10-24 2009-04-30 Siemens Ag Reglerstruktur für eine Hydraulikzylindereinheit mit unterlagertem Zustandsregler
JP5765663B2 (ja) 2010-12-27 2015-08-19 スズキ株式会社 内装材の取り付け構造
JP6197620B2 (ja) * 2013-12-10 2017-09-20 Jfeスチール株式会社 板厚制御装置および板厚制御方法
DE102014226346A1 (de) 2014-12-18 2016-06-23 Bayerische Motoren Werke Aktiengesellschaft Wärmesystem für ein Elektro- oder Hybridfahrzeug
CN113083907B (zh) * 2021-03-29 2022-07-19 广西北港不锈钢有限公司 一种不锈钢板材偏心轧制线计算方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3460365A (en) * 1966-02-21 1969-08-12 Davy & United Eng Co Ltd Rolling mills
US3543549A (en) * 1967-11-21 1970-12-01 Davy & United Eng Co Ltd Rolling mill control for compensating for the eccentricity of the rolls
JPS5581014A (en) * 1978-12-14 1980-06-18 Toshiba Corp Plate thickness control unit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345793B2 (fr) * 1973-10-17 1978-12-08
US3881335A (en) * 1974-03-07 1975-05-06 Westinghouse Electric Corp Roll eccentricity correction system and method
US3882705A (en) * 1974-03-07 1975-05-13 Westinghouse Electric Corp Roll eccentricity correction system and method
US4126027A (en) * 1977-06-03 1978-11-21 Westinghouse Electric Corp. Method and apparatus for eccentricity correction in a rolling mill
JPS6054802B2 (ja) * 1979-02-28 1985-12-02 三菱重工業株式会社 圧延機のロ−ル偏芯制御方法
JPS5691918A (en) * 1979-12-27 1981-07-25 Mitsubishi Electric Corp Load redistribution controller for continuous rolling mill
US4521859A (en) * 1982-10-27 1985-06-04 General Electric Company Method of improved gage control in metal rolling mills
US4580224A (en) * 1983-08-10 1986-04-01 E. W. Bliss Company, Inc. Method and system for generating an eccentricity compensation signal for gauge control of position control of a rolling mill
US4531392A (en) * 1984-03-19 1985-07-30 Aluminum Company Of America Phase compensator for gauge control using estimate of roll eccentricity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3460365A (en) * 1966-02-21 1969-08-12 Davy & United Eng Co Ltd Rolling mills
US3543549A (en) * 1967-11-21 1970-12-01 Davy & United Eng Co Ltd Rolling mill control for compensating for the eccentricity of the rolls
JPS5581014A (en) * 1978-12-14 1980-06-18 Toshiba Corp Plate thickness control unit

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0407628A1 (fr) * 1989-07-10 1991-01-16 Siemens Aktiengesellschaft Procédé et installation pour l'élimination de grandeurs périodiques perturbatrices ayant des fréquences connues et variables
EP0424709A2 (fr) * 1989-10-25 1991-05-02 Sms Schloemann-Siemag Aktiengesellschaft Procédé pour compenser des défauts causés par des excentricités de cylindres
EP0424709A3 (en) * 1989-10-25 1992-12-02 Sms Schloemann-Siemag Aktiengesellschaft Method for compensating failures due to roll eccentricity
DE4411313C2 (de) * 1993-05-08 1998-01-15 Daimler Benz Ag Verfahren zur Ausfilterung des Exzentrizitätseinflusses beim Walzen
DE4411313A1 (de) * 1993-05-08 1994-11-10 Daimler Benz Ag Verfahren zur Ausfilterung des Exzentrizitätseinflusses beim Walzen
DE4410960B4 (de) * 1994-03-29 2005-03-03 Siemens Ag Verfahren zur Unterdrückung des Einflusses von Walzenexzentrizitäten
US5647238A (en) * 1994-03-29 1997-07-15 Siemens Aktiengesellschaft Method for suppressing the influence of roll eccentricities on a control for a rolling-stock thickness in a roll stand
DE4410960A1 (de) * 1994-03-29 1995-11-02 Siemens Ag Verfahren zur Unterdrückung des Einflusses von Walzenexzentrizitäten
US5647237A (en) * 1994-07-28 1997-07-15 Siemens Aktiengesellschaft Process for suppressing the influence of roll eccentricities
EP0698427A1 (fr) 1994-07-28 1996-02-28 Siemens Aktiengesellschaft Procédé pour supprimer l'influence des excentricités de rouleaux de laminage
DE102006008574A1 (de) * 2006-02-22 2007-08-30 Siemens Ag Verfahren zur Unterdrückung des Einflusses von Walzenexzentrizitäten
US8386066B2 (en) 2006-02-22 2013-02-26 Siemens Aktiengesellschaft Method for suppressing the influence of roll eccentricities
EP2602676A1 (fr) 2011-12-08 2013-06-12 Siemens Aktiengesellschaft Détermination de composants de friction d'un système d'entraînement
WO2013083344A1 (fr) 2011-12-08 2013-06-13 Siemens Aktiengesellschaft Détermination de composantes de friction d'un système d'entraînement

Also Published As

Publication number Publication date
ZA855052B (en) 1986-02-26
ATE39069T1 (de) 1988-12-15
US4685063A (en) 1987-08-04
DE3566627D1 (en) 1989-01-12
JPS6127114A (ja) 1986-02-06
JPH0722768B2 (ja) 1995-03-15
CA1234613A (fr) 1988-03-29
EP0170016A1 (fr) 1986-02-05

Similar Documents

Publication Publication Date Title
EP0170016B1 (fr) Méthode pour compenser l'influence de l'excentricité de rouleaux de laminage
DE2710811C2 (de) Verfahren zum Beurteilen des Verdichtungsgrads beim Verdichten einer Unterlage mittels einer Rüttelwalze und/oder zum Steuern von Verdichtungsparametern der bzw. einer Rüttelwalze
DE3423656A1 (de) Verfahren und vorrichtung zum erzeugen eines signals zur exzentrizitaetskompensation zur mass- oder lagesteuerung in einem walzgeruest einer walzstrasse o. dgl.
DE2221964A1 (de) Vibrationstestgeraet
DE102016116076B4 (de) Anlagensteuerungsvorrichtung, Walzsteuerungsvorrichtung, Anlagensteuerungsverfahren und Anlagensteuerungsprogramm
EP0407628B1 (fr) Procédé et installation pour l'élimination de grandeurs périodiques perturbatrices ayant des fréquences connues et variables
EP0424709B1 (fr) Procédé pour compenser des défauts causés par des excentricités de cylindres
DE3001807A1 (de) Verfahren zur kontinuierlichen messung der groesse oder steilheit des flachheitsfehlers eines metallbands beim auswalzen desselben
DE3341213A1 (de) Walzenexzentrizitaets-steuersystem fuer ein walzwerk
DE1602046B2 (de) Einrichtung zum automatischen Ausregeln des Einflusses unrunder Walzen in Walzgerüsten
EP0684090B1 (fr) Procédé pour la suppression d'influence d'excentricité de cylindre sur le réglage d'épaisseur de matières à laminer dans une cage de laminoir
AT500766A1 (de) Verfahren und vorrichtung zur vermeidung von schwingungen
DE2605183C2 (de) Vorrichtung zur Unterdrückung des Einflusses der Walzenexzentrizität in einer Dickenregelungseinrichtung eines Walzgerüstes
EP0662017B1 (fr) Procede visant a supprimer l'influence qu'exercent les excentricites des rouleaux sur le reglage de l'epaisseur des produits a laminer passes dans une cage de laminoir
EP0698427B1 (fr) Procédé pour supprimer l'influence des excentricités de rouleaux de laminage
DE2322292A1 (de) Walzwerk zur herstellung von masshaltigem walzgut
DE4410960B4 (de) Verfahren zur Unterdrückung des Einflusses von Walzenexzentrizitäten
DE69917169T2 (de) Verfahren und Vorrichtung zur aktiven Kompensation periodischer Störungen beim Warm- oder Kaltwalzen
AT407015B (de) Verfahren zur kompensation der exzentrizität der stütz- und/oder arbeitswalzen in einem duo- oder quarto-walzgerüst
AT410904B (de) Verfahren und vorrichtung zur berechnung der walzspaltkontur
DE19915968A1 (de) Anordnung zum Offsetabgleich zweier orthogonaler Sensorsignale
DE102021207390A1 (de) Anlagensteuervorrichtung, walzsteuervorrichtung, anlagensteuerverfahren und anlagensteuerprogramm
DE4411313C2 (de) Verfahren zur Ausfilterung des Exzentrizitätseinflusses beim Walzen
EP0576661B1 (fr) Agencement de reglage
DE102018201586A1 (de) Walzenregelungsvorrichtung und walzregelungsverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860226

17Q First examination report despatched

Effective date: 19870625

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 39069

Country of ref document: AT

Date of ref document: 19881215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3566627

Country of ref document: DE

Date of ref document: 19890112

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19930616

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930622

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930630

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930819

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930916

Year of fee payment: 9

EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940520

Year of fee payment: 10

Ref country code: AT

Payment date: 19940520

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940615

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940624

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940630

Ref country code: CH

Effective date: 19940630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950101

EUG Se: european patent has lapsed

Ref document number: 85107336.1

Effective date: 19950110

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950301

EUG Se: european patent has lapsed

Ref document number: 85107336.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950613

Ref country code: AT

Effective date: 19950613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950630

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19950630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST