EP0167102A1 - Process for the production of a protective oxide layer on a moulded article made from high-temperature material - Google Patents
Process for the production of a protective oxide layer on a moulded article made from high-temperature material Download PDFInfo
- Publication number
- EP0167102A1 EP0167102A1 EP85107906A EP85107906A EP0167102A1 EP 0167102 A1 EP0167102 A1 EP 0167102A1 EP 85107906 A EP85107906 A EP 85107906A EP 85107906 A EP85107906 A EP 85107906A EP 0167102 A1 EP0167102 A1 EP 0167102A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- hydrogen
- temperature
- hours
- aluminum
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 12
- 238000000034 method Methods 0.000 title claims abstract description 12
- 230000001681 protective effect Effects 0.000 title abstract description 3
- 238000004519 manufacturing process Methods 0.000 title description 2
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 34
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000001257 hydrogen Substances 0.000 claims abstract description 24
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 24
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 9
- 239000000956 alloy Substances 0.000 claims abstract description 9
- 238000009792 diffusion process Methods 0.000 claims abstract description 9
- 239000011261 inert gas Substances 0.000 claims abstract description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000001301 oxygen Substances 0.000 claims abstract description 8
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 8
- 238000000137 annealing Methods 0.000 claims abstract description 6
- 238000001816 cooling Methods 0.000 claims abstract description 4
- 239000010410 layer Substances 0.000 claims description 25
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 16
- 230000003647 oxidation Effects 0.000 claims description 13
- 238000007254 oxidation reaction Methods 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 239000011241 protective layer Substances 0.000 claims description 9
- 229910052786 argon Inorganic materials 0.000 claims description 8
- 229920006395 saturated elastomer Polymers 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 abstract description 3
- 239000004411 aluminium Substances 0.000 abstract 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000007654 immersion Methods 0.000 description 5
- 239000011651 chromium Substances 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910000856 hastalloy Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910001651 emery Inorganic materials 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000009189 diving Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/10—Oxidising
- C23C8/16—Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C12/00—Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/261—After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
Definitions
- the invention relates to a method for producing an oxidic protective layer on a molded body made of high-temperature material, which contains little or no aluminum, in which a thin aluminum-containing alloy layer is produced in the metallic bare surface and the surface treated in this way is subjected to a diffusion annealing and oxidation process.
- oxide layers which are either formed by oxidation of the base material itself or - as stated in US Pat. No. 3,129,069 - by alloying the surface with an oxide layer former how especially aluminum and then oxidation are generated.
- the workpiece to be protected is briefly melted Dipped aluminum and then freed of any aluminum residues, after which the thin aluminum-containing alloy layer of the surface forms an oxide protective layer on the nickel-based alloy when the workpiece is heated in an oxygen-containing environment.
- the protective layer formation described above was developed in particular for turbine blades which are used in an oxidizing environment.
- the aim of the invention is therefore a surface protection which better protects the base material against the access of permeating hydrogen.
- the basic materials used are, in particular, aluminum alloys with low-temperature high-temperature materials as defined in DIN standard 17006, sheet 3.
- an oxide protective layer of the type mentioned at the outset which is characterized in that the aluminum-containing surface is initially at least ten hours at a temperature of at least 900 ° C. in which the material of the shaped body has not yet changed, glows in hydrogen and, after cooling to a temperature below 700 ° C., is treated for at least 5 to 10 hours in a mixture of inert gas containing steam and with a few vpm of oxygen and finally at 900-950 ° C. a mixture of water vapor-containing inert gas with hydrogen with an H 2 : H 2 0 ratio of about 1: 1 glows for at least one day.
- the formation of the oxide layer in the manner mentioned surprisingly results in a significantly increased barrier effect of the layer against hydrogen permeation.
- argon in particular serves as the inert gas.
- the temperature is at least 900 ° C, but the alloy should not change, which means that the temperature is limited upwards.
- Hastelloy X ( R ) the temperature of the workpiece should be below 1000 ° C. stay. The usual temperatures are between 900 and 950 ° C.
- the desired removal of residual oxides and enrichment of chromium in the surface requires a certain reaction time, which should in particular be at least 10 hours.
- the workpieces provided with an aluminum-containing surface layer are preferably annealed in hydrogen for about 30 hours.
- the temperature is below 700 ° C down to temperatures of about 300 ° C, below which the reaction and diffusion rates are greatly reduced.
- the water vapor content of the gas corresponds approximately to the vapor pressure of warm water with temperatures around 50 ° C.
- the oxygen content is low and is around 10–6 bar at a few vpm 0 2 or on the order of magnitude.
- This "nucleating treatment” takes place - depending on the temperature - for at least 5 hours, the time period being "unlimited” and only being controlled by practicality considerations.
- an approximately 0.1 ⁇ m “seed layer” is formed.
- the "high temperature oxidation" in stage 3 takes place at the highest possible temperature, which with the Structural stability of the base material is compatible. Temperatures between 900 and 950 ° C. are expediently used.
- the cations diffuse through the oxide layer, the growth of which can be described by a parabolic time law, with the formation of protective layers about 1 - 2 ⁇ m thick in a hydrogen / water vapor mixture in the region of 1: 1, some of which Percentages are present in inert gas.
- Mixtures of argon with about 5% hydrogen, which are saturated with water vapor at ambient temperature, are useful, for example.
- the treatment time is about 30-70 hours and gives layer thicknesses in the range of 1-2 ⁇ m.
- the hydrogen content in this mixture determines the oxidation potential of the gas, which is in the range of 10 -16 . Under these conditions, iron and nickel are not oxidized and only Cr 2 0 3 and Al 2 0 3 are formed.
- Hastelloy X (R) sample was provided with an oxide layer which offers considerable resistance to the permeation of hydrogen.
- the aluminum alloy layer to be subjected to the three-stage oxide layer formation is obtained in the following way: An aluminum bath is used for the immersion treatment, the temperature of which is only slightly above the melting point lies. The cleaned, not preheated workpiece is briefly immersed in this bath, on average for about 30 to 40 seconds. During this time, only the areas close to the surface are accessible to the aluminum, since the diffusion rate of the aluminum in the solid material is so slow at about 700 ° C that it does not penetrate deeper. The diffusion layer thickness achieved will generally be about 5 to 10 microns.
- the workpiece is cleaned before diving.
- pretreatment of the surface with medium-fine emery paper in particular 220 grit; grain size of about 100 ⁇ m
- medium-fine emery paper in particular 220 grit; grain size of about 100 ⁇ m
- the surface is freed of all impurities and, in particular, degreased, for which a treatment in an ultrasonic bath, which consists of a fat-dissolving solvent or solvent mixture, has proven useful.
- the immersion treatment in the molten aluminum bath creates an aluminum coating in addition to the aluminum-containing diffusion layer adjacent to the surface.
- the oxidation of this aluminum coating would generally result in an aluminum oxide surface layer.
- a protective layer is formed in this way, but this protective layer prevents complete oxidation of "foreign aluminum" so that adjacent to the protective layer there are areas of the workpiece which are near the surface and which may or may show undesired changes, in particular embrittlement.
- the aluminum layer produced is removed again by etching treatment, which is only intended to remove the surface application of aluminum.
- Dipping into warm 20 to 25% sodium hydroxide solution (depending on the thickness of the aluminum coating for about 10 to 15 minutes) with subsequent treatment in approximately half-concentrated nitric acid with intermediate rinsing and subsequent thorough removal of the etching agents has proven effective.
- a time limitation of the etching process largely prevents the etching agents from penetrating into the workpiece surface and removing the diffused aluminum.
- Hastelloy X ( R ) Disc-shaped alloy samples of Hastelloy X ( R ) with a diameter of 45 mm and a thickness of 2.5 mm were cleaned and treated with emery paper (220 grit) to achieve a smooth sanded surface. These disks were then placed in an ultrasonic bath with an acetone / methanol mixture (1: 1) and cleaned for approximately 60 seconds. These samples were immersed in a molten aluminum bath of pure aluminum (99.8%) at approximately 700 ° C. for approximately 40 seconds.
- This immersion treatment leads, as metallographic follow-up examinations have shown, to a sample surface with a two-layer layer, the outer zone of which consists almost exclusively of aluminum, while a second zone in the form of an aluminum diffusion layer is formed adjacent to the sample surface, the thickness of which is approximately 1 to 5 ⁇ m .
- the cooled samples were chemically etched to remove the aluminum coating and expose the aluminum diffusion layer.
- the samples were first immersed in warm (80 ° C) 20% sodium hydroxide solution for 10 minutes, which removes the aluminum layer.
- the intermediate rinsed samples were then immersed in a nitric acid bath made of 1: 1 65% nitric acid diluted with water. This aftertreatment is used to remove a dark coating that remains in sodium hydroxide solution after the immersion treatment.
- the samples treated in this way were heated to 950 ° C. in a hydrogen atmosphere in 10 hours and left there for 30 hours. After cooling to 650 ° C within 13 hours, the hydrogen was replaced by a water vapor-containing argon / oxygen mixture, which 2.5 vpm 0 2 and 180 mbar H 2 0 contained. The samples were left in this atmosphere for 29 hours, after which the oxygen content of the argon was replaced by 5% hydrogen and the water vapor content was reduced to 30 mbar. In this atmosphere, the samples were heated to 950 ° C. within 10 hours and kept at this temperature for 72 hours. The samples in the argon / hydrogen / water vapor mixture were then cooled to room temperature in about 12 hours.
- the hydrogen inhibition factors of the samples treated in this way were between 1800 and 2200, while untreated comparative samples usually give values between 400 and 600.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- ing And Chemical Polishing (AREA)
- Chemical Treatment Of Metals (AREA)
Abstract
Description
Die Erfindung bezieht sich auf ein Verfahren zur Erzeugung einer oxidischen Schutzschicht auf einem Formkörper aus Hochtemperaturwerkstoff, der kein oder wenig Aluminium enthält, bei dem in der metallisch blanken Oberfläche eine dünne aluminiumhaltige Legierungsschicht erzeugt und die so behandelte Oberfläche einem Diffusionsglühen und Oxidationsprozeß unterworfen wird.The invention relates to a method for producing an oxidic protective layer on a molded body made of high-temperature material, which contains little or no aluminum, in which a thin aluminum-containing alloy layer is produced in the metallic bare surface and the surface treated in this way is subjected to a diffusion annealing and oxidation process.
Es ist bekannt, metallische Werkstoffe gegen Korrosion und insbesondere Oxidation speziell bei hohen Temperaturen durch deckende Oxidschichten zu schützen, die entweder durch Oxidation des Basismaterials selbst gebildet werden oder - wie in der US-PS 3 129 069 angegeben - durch Legieren der Oberfläche mit einem Oxidschichtbildner wie insbesondere Aluminium und anschließend Oxidation erzeugt werden.It is known to protect metallic materials against corrosion and in particular oxidation, especially at high temperatures, by covering oxide layers, which are either formed by oxidation of the base material itself or - as stated in US Pat. No. 3,129,069 - by alloying the surface with an oxide layer former how especially aluminum and then oxidation are generated.
Letzteres Verfahren wurde insbesondere für Nickelbasislegierungen entwickelt, die selbst zu wenig Aluminium für die Bildung einer dichten deckenden Aluminiumoxidschicht enthalten.The latter process was developed especially for nickel-based alloys, which themselves contain too little aluminum to form a dense covering aluminum oxide layer.
Gemäß der oben genannten US-PS wird das zu schützende Werkstück kurzzeitig in geschmolzenes Aluminium getaucht und dann von anhängenden Aluminiumresten befreit, wonach die dünne aluminiumhaltige Legierungsschicht der Oberfläche bei zyklischer Aufheizung des Werkstücks in sauerstoffhaltigem Milieu eine Oxidschutzschicht auf der Nickelbasislegierung bildet.According to the above-mentioned US patent, the workpiece to be protected is briefly melted Dipped aluminum and then freed of any aluminum residues, after which the thin aluminum-containing alloy layer of the surface forms an oxide protective layer on the nickel-based alloy when the workpiece is heated in an oxygen-containing environment.
Die vorstehend beschriebene Schutzschichtbildung wurde insbesondere für Turbinenschaufeln entwickelt, die in oxidierendem Milieu eingesetzt werden.The protective layer formation described above was developed in particular for turbine blades which are used in an oxidizing environment.
Es wurde nun festgestellt, daß derart geschützte Werkstücke in nichtoxidierender Atmosphäre, insbesondere in wasserstoffhaltigen Gasen Veränderungen erleiden, da die gebildeten Oxidschutzfilme eine gewisse Durchlässigkeit für Wasserstoff haben.It has now been found that workpieces protected in this way undergo changes in a non-oxidizing atmosphere, in particular in gases containing hydrogen, since the oxide protective films formed have a certain permeability to hydrogen.
Ziel der Erfindung ist daher ein Oberflächenschutz, der das Basismaterial besser gegen den Zugriff von permeierendem Wasserstoff schützt. Als Basismateralien kommen dabei insbesondere mit Aluminium niedrig legierte Hochtemperaturwerkstoffe in Betracht, wie sie in der DIN-Norm 17006, Blatt 3, definiert sind.The aim of the invention is therefore a surface protection which better protects the base material against the access of permeating hydrogen. The basic materials used are, in particular, aluminum alloys with low-temperature high-temperature materials as defined in DIN standard 17006, sheet 3.
Dieses Ziel wird gemäß der Erfindung durch eine Oxidschutzschichtbildung der eingangs genannten Art erreicht, die dadurch gekennzeichnet ist, daß man die aluminiumhaltige Oberfläche zunächst zumindest zehn Stunden lang bei einer Temperatur von zumindest 900 °C, bei der sich das Material des Formkörpers jedoch noch nicht verändert, in Wasserstoff glüht und nach Abkühlung auf eine Temperatur unter 700 °C wenigstens 5 bis 10 Stunden in einer Mischung von wasserdampfhaltigem Inertgas mit einigen vpm Sauerstoff behandelt und schließlich bei 900 - 950 °C in einer Mischung von wasserdampfhaltigem Inertgas mit Wasserstoff mit einem H2 : H20-Verhältnis von etwa 1 : 1 zumindest einen Tag lang glüht.This object is achieved according to the invention by forming an oxide protective layer of the type mentioned at the outset, which is characterized in that the aluminum-containing surface is initially at least ten hours at a temperature of at least 900 ° C. in which the material of the shaped body has not yet changed, glows in hydrogen and, after cooling to a temperature below 700 ° C., is treated for at least 5 to 10 hours in a mixture of inert gas containing steam and with a few vpm of oxygen and finally at 900-950 ° C. a mixture of water vapor-containing inert gas with hydrogen with an H 2 : H 2 0 ratio of about 1: 1 glows for at least one day.
Durch die Oxidschichtbildung in der genannten Art wird überraschenderweise eine deutlich erhöhte Barrierenwirkung der Schicht gegenüber einer Wasserstoffpermeation erreicht. Bei der genannten Oxidschichtbildung dient insbesondere Argon als Inertgas.The formation of the oxide layer in the manner mentioned surprisingly results in a significantly increased barrier effect of the layer against hydrogen permeation. In the case of the oxide layer formation mentioned, argon in particular serves as the inert gas.
Die erfindungsgemäße Oxidschichtbildung umfaßt im wesentlichen drei Abschnitte:
- 1) ein Glühen in Wasserstoff;
- 2) eine sog. "Tieftemperaturoxidation" und
- 3) eine "Hochtemperaturoxidation".
- 1) a glow in hydrogen;
- 2) a so-called "low temperature oxidation" and
- 3) "high temperature oxidation".
In der ersten Stufe erfolgt (bei chromhaltigen Legierungen) eine gewisse Chromanreicherung in der Oberfläche und gleichzeitig eine Entfernung restlicher Zunderschichten und Oxide. Zu diesem Zweck beträgt die Temperatur zumindest 900 °C, wobei sich jedoch die Legierung nicht ändern soll, was eine Begrenzung der Temperatur nach oben bedingt. Bei Hastelloy X(R) soll die Temperatur des Werkstücks dabei unter 1000 °C . bleiben. übliche Temperaturen liegen mithin zwischen 900 und 950 °C.In the first stage (with chromium-containing alloys) there is a certain amount of chromium in the surface and at the same time a removal of remaining scale layers and oxides. For this purpose, the temperature is at least 900 ° C, but the alloy should not change, which means that the temperature is limited upwards. With Hastelloy X ( R ) the temperature of the workpiece should be below 1000 ° C. stay. The usual temperatures are between 900 and 950 ° C.
Die gewünschte Entfernung von Restoxiden und Anreicherung von Chrom in der Oberfläche erfordert eine gewisse Reaktionsdauer, die insbesondere zumindest 10 Stunden betragen soll. Vorzugsweise werden die mit aluminiumhaltiger Oberflächenschicht versehenen Werkstücke etwa 30 Stunden in Wasserstoff geglüht.The desired removal of residual oxides and enrichment of chromium in the surface requires a certain reaction time, which should in particular be at least 10 hours. The workpieces provided with an aluminum-containing surface layer are preferably annealed in hydrogen for about 30 hours.
In der zweiten Phase erfolgt bei relativ niedriger Temperatur ein oberflächennaher Angriff durch Sauerstoff. In dieser zweiten Phase liegt die Temperatur unter 700 °C bis herab zu Temperaturen von etwa 300 °C, unterhalb derer die Reaktions- und Diffusionsgeschwindigkeit stark vermindert sind. Der Wasserdampfanteil des Gases entspricht etwa dem Dampfdruck von warmem Wasser mit Temperaturen um 50 °C. Der Sauerstoffanteil ist gering und liegt bei einigen vpm 02 bzw. größenordnungsmäßig bei etwa 10-6 bar. Diese "keimbildende Behandlung" erfolgt - je nach Temperatur - mindestens 5 Stunden lang, wobei die Zeitdauer "nach oben unbegrenzt" ist und lediglich von Praktikabilitätsüberlegungen beherrscht wird. Es bildet sich in dieser zweiten Verfahrensstufe eine etwa 0,1 µm "Keimschicht".In the second phase, oxygen attacks the surface at a relatively low temperature. In this second phase, the temperature is below 700 ° C down to temperatures of about 300 ° C, below which the reaction and diffusion rates are greatly reduced. The water vapor content of the gas corresponds approximately to the vapor pressure of warm water with temperatures around 50 ° C. The oxygen content is low and is around 10–6 bar at a few vpm 0 2 or on the order of magnitude. This "nucleating treatment" takes place - depending on the temperature - for at least 5 hours, the time period being "unlimited" and only being controlled by practicality considerations. In this second stage of the process, an approximately 0.1 μm “seed layer” is formed.
Die "Hochtemperaturoxidation" in Stufe 3 erfolgt bei möglichst hoher Temperatur, die mit der Gefügestabilität des Basiswerkstoffs vereinbar ist. Zweckmäßigerweise werden Temperaturen zwischen 900 und 950 °C angewandt. In dieser Phase erfolgt eine Diffusion der Kationen durch die Oxidschicht, deren Wachstum durch ein parabolisches Zeitgesetz zu beschreiben ist, unter Bildung von etwa 1 - 2 µm dicken Schutzschichten in einer Wasserstoff/Wasserdampf-Mischung in der Gegend von 1 : 1, die zu einigen Prozenten in Inertgas vorliegen. Zweckmäßig sind beispielsweise Mischungen von Argon mit etwa 5 % Wasserstoff, die bei Umgebungstemperatur mit Wasserdampf aufgesättigt werden. Die Behandlungsdauer beträgt etwa 30 - 70 Stunden und ergibt Schichtdicken im Bereich von 1 - 2 µm. Der Wasserstoffanteil in dieser Mischung bestimmt das Oxidationspotential des Gases, das in der Gegend von 10-16 liegt. Unter diesen Bedingungen werden Eisen und Nickel nicht oxidiert und nur Cr203 und Al203 gebildet.The "high temperature oxidation" in stage 3 takes place at the highest possible temperature, which with the Structural stability of the base material is compatible. Temperatures between 900 and 950 ° C. are expediently used. In this phase, the cations diffuse through the oxide layer, the growth of which can be described by a parabolic time law, with the formation of protective layers about 1 - 2 µm thick in a hydrogen / water vapor mixture in the region of 1: 1, some of which Percentages are present in inert gas. Mixtures of argon with about 5% hydrogen, which are saturated with water vapor at ambient temperature, are useful, for example. The treatment time is about 30-70 hours and gives layer thicknesses in the range of 1-2 µm. The hydrogen content in this mixture determines the oxidation potential of the gas, which is in the range of 10 -16 . Under these conditions, iron and nickel are not oxidized and only Cr 2 0 3 and Al 2 0 3 are formed.
Nachfolgend wird die Erfindung anhand eines Beispiels beschrieben, und zwar wurde eine Hastelloy X(R) Probe mit einer Oxidschicht versehen, die der Permeation von Wasserstoff einen beachtlichen Widerstand entgegensetzt.The invention is described below using an example, namely a Hastelloy X (R) sample was provided with an oxide layer which offers considerable resistance to the permeation of hydrogen.
Die der dreistufigen Oxidschichtbildung zu unterwerfende Aluminiumlegierungsschicht wird auf folgende Weise erhalten: Für die Tauchbehandlung wird ein Aluminiumbad verwendet, dessen Temperatur nur wenig über dem Schmelzpunkt liegt. In dieses Bad wird das gereinigte, nicht vorgewärmte Werkstück kurzzeitig getaucht, und zwar im Mittel für etwa 30 bis 40 Sekunden. In dieser Zeit werden nur die oberflächennahen Bereiche für das Aluminium zugänglich, da die Diffusionsgeschwindigkeit des Aluminiums im festen Material bei etwa 700 °C so langsam verläuft, daß ein tieferes Eindringen nicht erfolgt. Die erreichte Diffusionsschichtdicke wird dabei im allgemeinen bei etwa 5 bis 10 µm liegen.The aluminum alloy layer to be subjected to the three-stage oxide layer formation is obtained in the following way: An aluminum bath is used for the immersion treatment, the temperature of which is only slightly above the melting point lies. The cleaned, not preheated workpiece is briefly immersed in this bath, on average for about 30 to 40 seconds. During this time, only the areas close to the surface are accessible to the aluminum, since the diffusion rate of the aluminum in the solid material is so slow at about 700 ° C that it does not penetrate deeper. The diffusion layer thickness achieved will generally be about 5 to 10 microns.
Vor dem Tauchen wird das Werkstück gereinigt. Insbesondere wird durch Vorbehandlung der Oberfläche mit mittelfeinem Schmirgelpapier (insbesondere 220 grit; Körnung von etwa 100 µm) für eine "gestörte" Oberflächenschicht gesorgt, die rasch Aluminium aufnehmen kann. Die Oberfläche wird vor der Tauchbehandlung von allen Verunreinigungen befreit und insbesondere entfettet, wofür sich eine Behandlung im Ultraschallbad bewährt hat, das aus einem fettlösenden Lösungsmittel oder Lösungsmittelgemisch besteht.The workpiece is cleaned before diving. In particular, pretreatment of the surface with medium-fine emery paper (in particular 220 grit; grain size of about 100 μm) ensures a "disturbed" surface layer which can quickly absorb aluminum. Before the immersion treatment, the surface is freed of all impurities and, in particular, degreased, for which a treatment in an ultrasonic bath, which consists of a fat-dissolving solvent or solvent mixture, has proven useful.
Durch die Tauchbehandlung im Aluminiumschmelzbad wird neben der an die Oberfläche angrenzenden aluminiumhaltigen Diffusionsschicht ein Aluminium- überzug gebildet. Die Oxidation dieses Aluminiumüberzuges würde generell zu einer Aluminiumoxidoberflächenschicht führen. Es hat sich jedoch gezeigt, daß auf diese Weise zwar eine Schutzschicht gebildet wird, jedoch verhindert diese Schutzschicht eine vollständige Oxidation des "Fremdaluminiums", so daß angrenzend an die Schutzschicht oberflächennahe Bereiche des Werkstückes vorliegen, die unerwünschte Veränderungen, insbesondere Versprödungen, zeigen oder zeigen können.The immersion treatment in the molten aluminum bath creates an aluminum coating in addition to the aluminum-containing diffusion layer adjacent to the surface. The oxidation of this aluminum coating would generally result in an aluminum oxide surface layer. However, it has been shown that a protective layer is formed in this way, but this protective layer prevents complete oxidation of "foreign aluminum" so that adjacent to the protective layer there are areas of the workpiece which are near the surface and which may or may show undesired changes, in particular embrittlement.
Aus diesem Grunde wird die erzeugte Aluminiumschicht durch Ätzbehandlung wieder entfernt, die lediglich den Oberflächenauftrag von Aluminium entfernen soll. Bewährt hat sich ein Tauchen in warme etwa 20- bis 25%ige Natronlauge (je nach Dicke des Aluminiumüberzuges etwa 10 bis 15 Minuten lang) mit nachfolgender Behandlung in etwa halbkonzentrierter Salpetersäure mit Zwischenspülung und abschließender gründlicher Entfernung der Ätzmittel. Durch eine zeitliche Begrenzung des Ätzvorgangs wird das Eindrigen der Ätzmittel in die Werkstückoberfläche und das Herauslösen des eindiffundierten Aluminiums weitestgehend vermieden.For this reason, the aluminum layer produced is removed again by etching treatment, which is only intended to remove the surface application of aluminum. Dipping into warm 20 to 25% sodium hydroxide solution (depending on the thickness of the aluminum coating for about 10 to 15 minutes) with subsequent treatment in approximately half-concentrated nitric acid with intermediate rinsing and subsequent thorough removal of the etching agents has proven effective. A time limitation of the etching process largely prevents the etching agents from penetrating into the workpiece surface and removing the diffused aluminum.
Nachfolgend wird die Erfindung anhand eines Beispiels beschrieben.The invention is described below using an example.
Scheibenförmige Legierungsproben von Hastelloy X(R) mit einem Durchmesser von 45 mm und einer Dicke von 2,5 mm wurden gesäubert und mit Schmirgelpapier (220 grit) behandelt zur Erzielung einer glatten geschmirgelten Oberfläche. Diese Scheiben wurden dann in ein Ultraschallbad mit einem Aceton/Methanol-Gemisch (1 : 1) gebracht und ca. 60 Sekunden lang gereinigt. Diese Proben wurden in ein Aluminiumschmelzbad von Reinaluminium (99,8 %) von etwa 700 °C für ca. 40 sec getaucht. Diese Tauchbehandlung führt, wie metallographische Nachuntersuchungen zeigten, zu einer Probenoberfläche mit einer zweilagigen Schicht, deren äußere Zone fast ausschließlich aus Aluminium besteht, während angrenzend an die Probenoberfläche eine zweite Zone in Form einer Aluminiumdiffusionsschicht ausgebildet ist, deren Dicke etwa bei 1 bis 5 µm liegt.Disc-shaped alloy samples of Hastelloy X ( R ) with a diameter of 45 mm and a thickness of 2.5 mm were cleaned and treated with emery paper (220 grit) to achieve a smooth sanded surface. These disks were then placed in an ultrasonic bath with an acetone / methanol mixture (1: 1) and cleaned for approximately 60 seconds. These samples were immersed in a molten aluminum bath of pure aluminum (99.8%) at approximately 700 ° C. for approximately 40 seconds. This immersion treatment leads, as metallographic follow-up examinations have shown, to a sample surface with a two-layer layer, the outer zone of which consists almost exclusively of aluminum, while a second zone in the form of an aluminum diffusion layer is formed adjacent to the sample surface, the thickness of which is approximately 1 to 5 μm .
Die erkalteten Proben wurden zur Entfernung des Aluminiumüberzuges und Freilegung der Aluminiumdiffusionsschicht chemisch abgeätzt.The cooled samples were chemically etched to remove the aluminum coating and expose the aluminum diffusion layer.
Dazu wurden die Proben zunächst 10 Minuten in warme (80 °C) 20%ige Natronlauge getaucht, wodurch die Aluminiumschicht entfernt wird. Die zwischengespülten Proben wurden dann in ein Salpetersäurebad aus 1 : 1 mit Wasser verdünnter 65%iger Salpetersäure getaucht. Diese Nachbehandlung dient zur Entfernung eines dunklen Belages, der nach der Tauchbehandlung in Natronlauge verbleibt.For this purpose, the samples were first immersed in warm (80 ° C) 20% sodium hydroxide solution for 10 minutes, which removes the aluminum layer. The intermediate rinsed samples were then immersed in a nitric acid bath made of 1: 1 65% nitric acid diluted with water. This aftertreatment is used to remove a dark coating that remains in sodium hydroxide solution after the immersion treatment.
Die so behandelten Proben wurden in 10 Stunden in Wasserstoffatmosphäre auf 950 °C aufgeheizt und dort 30 Stunden lang belassen. Nach Abkühlung auf 650 °C innerhalb von 13 Stunden wurde der Wasserstoff gegen eine wasserdampfhaltige Argon/Sauerstoffmischung ausgetauscht, die 2,5 vpm 02 und 180 mbar H20 enthielt. In dieser Atmosphäre wurden die Proben 29 Stunden lang belassen, wonach der Sauerstoffanteil des Argons gegen 5 % Wasserstoff ausgetauscht und der Wasserdampfanteil auf 30 mbar abgesenkt wurde. In dieser Atmosphäre wurden die Proben innerhalb von 10 Stunden auf 950 °C aufgeheizt und 72 Stunden lang bei dieser Temperatur gehalten. Danach wurden die Proben in der Argon/Wasserstoff/Wasserdampfmischung innerhalb von etwa 12 Stunden auf Zimmertemperatur abgekühlt.The samples treated in this way were heated to 950 ° C. in a hydrogen atmosphere in 10 hours and left there for 30 hours. After cooling to 650 ° C within 13 hours, the hydrogen was replaced by a water vapor-containing argon / oxygen mixture, which 2.5 vpm 0 2 and 180 mbar H 2 0 contained. The samples were left in this atmosphere for 29 hours, after which the oxygen content of the argon was replaced by 5% hydrogen and the water vapor content was reduced to 30 mbar. In this atmosphere, the samples were heated to 950 ° C. within 10 hours and kept at this temperature for 72 hours. The samples in the argon / hydrogen / water vapor mixture were then cooled to room temperature in about 12 hours.
Die Wasserstoffhemmfaktoren der so behandelten Proben lagen zwischen 1800 und 2200, während unbehandelte Vergleichsproben üblicherweise Werte zwischen 400 und 600 ergeben.The hydrogen inhibition factors of the samples treated in this way were between 1800 and 2200, while untreated comparative samples usually give values between 400 and 600.
Claims (5)
dadurch gekennzeichnet, daß man die aluminiumhaltige Oberfläche (a) zunächst zumindest zehn Stunden lang bei einer Temperatur von zumindest 900 °C, bei der sich das Material des Formkörpers jedoch noch nicht verändert, in Wasserstoff glüht und nach Abkühlung (b) auf eine Temperatur unter 700 °C wenigstens 5 bis 10 Stunden in einer Mischung von wasserdampfhaltigem Inertgas mit einigen vpm Sauerstoff behandelt und schließlich (c) bei 900 - 950 °C in einer Mischung von wasserdampfhaltigem Inertgas mit Wasserstoff mit einem H2 : H20-Verhältnis von etwa 1 : 1 zumindest einen Tag lang glüht.1. A process for producing an oxidic protective layer on a molded body made of high-temperature material, which contains little or no aluminum, in which a thin aluminum-containing alloy layer is produced in the bare metal surface and the surface treated in this way is subjected to a diffusion annealing and oxidation process,
characterized in that the aluminum-containing surface (a) is initially annealed in hydrogen for at least ten hours at a temperature of at least 900 ° C, at which the material of the shaped body does not change, however, and after cooling (b) to a temperature below 700 ° C for at least 5 to 10 hours in a mixture of water vapor-containing inert gas with some vpm oxygen and finally (c) at 900 - 950 ° C in a mixture of water vapor-containing inert gas with hydrogen with an H 2 : H 2 0 ratio of about 1: 1 glows for at least a day.
dadurch gekennzeichnet, daß man als Inertgas Argon verwendet.2. The method according to claim 1,
characterized in that argon is used as the inert gas.
dadurch gekennzeichnet, daß man die Wasserstoff-Glühbehandlung (a) 30 Stunden lang bei 900 - 950 °C durchführt.3. The method according to claim 1 or 2,
characterized, that the hydrogen annealing treatment (a) is carried out at 900-950 ° C. for 30 hours.
dadurch gekennzeichnet, daß man die Hochtemperaturoxidation (c) 30 bis 70 Stunden lang in einer bei Zimmertemperatur mit Wasserdampf gesättigten Mischung von Argon mit 5 % Wasserstoff durchführt.5. The method according to at least one of the preceding claims,
characterized in that the high-temperature oxidation (c) is carried out for 30 to 70 hours in a mixture of argon with 5% hydrogen saturated with water vapor at room temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT85107906T ATE31558T1 (en) | 1984-06-30 | 1985-06-26 | PROCESS FOR CREATING AN OXIDE PROTECTIVE LAYER ON A MOLDED BODY MADE FROM HIGH TEMPERATURE MATERIAL. |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3424164 | 1984-06-30 | ||
DE3424164 | 1984-06-30 | ||
DE19843447228 DE3447228A1 (en) | 1984-12-22 | 1984-12-22 | Process for generating an oxidic protective layer on a high-temperature material moulding |
DE3447228 | 1984-12-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0167102A1 true EP0167102A1 (en) | 1986-01-08 |
EP0167102B1 EP0167102B1 (en) | 1987-12-23 |
Family
ID=25822526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85107906A Expired EP0167102B1 (en) | 1984-06-30 | 1985-06-26 | Process for the production of a protective oxide layer on a moulded article made from high-temperature material |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0167102B1 (en) |
DE (1) | DE3561250D1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0576067A1 (en) * | 1992-06-25 | 1993-12-29 | General Motors Corporation | Hydrogen-water vapour pre-treatment of Fe-Cr-Al alloys |
DE10065924A1 (en) * | 2000-11-27 | 2002-09-26 | Alstom Switzerland Ltd | Metallic component used for a steam power plant comprises a protective layer containing aluminum and further elements and/or an aluminum alloy |
EP1318206A1 (en) * | 2001-12-06 | 2003-06-11 | Wieland-Werke AG | Use of a copper-aluminium alloy with defined coatings as bearings material for the fabrication of wear resistant sliding bearings |
US20100183254A1 (en) * | 2007-09-05 | 2010-07-22 | Siemens Aktiengesellschaft | Component for the sliding support of another component, and process for producing it |
DE102021118766A1 (en) | 2021-07-20 | 2023-01-26 | Kamax Holding Gmbh & Co. Kg | Component with integrated aluminum diffusion layer and aluminum oxide layer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4150178A (en) * | 1977-04-20 | 1979-04-17 | Toyo Kogyo Co., Ltd. | Aluminum diffusion layer forming method |
US4300956A (en) * | 1980-04-14 | 1981-11-17 | Matthey Bishop, Inc. | Method of preparing a metal substrate for use in a catalytic converter |
DE3029488A1 (en) * | 1980-08-02 | 1982-03-04 | GHT Gesellschaft für Hochtemperaturreaktor-Technik mbH, 5060 Bergisch Gladbach | METHOD FOR PRODUCING A PROTECTIVE LAYER ON METAL WORKPIECES |
-
1985
- 1985-06-26 EP EP85107906A patent/EP0167102B1/en not_active Expired
- 1985-06-26 DE DE8585107906T patent/DE3561250D1/en not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4150178A (en) * | 1977-04-20 | 1979-04-17 | Toyo Kogyo Co., Ltd. | Aluminum diffusion layer forming method |
US4300956A (en) * | 1980-04-14 | 1981-11-17 | Matthey Bishop, Inc. | Method of preparing a metal substrate for use in a catalytic converter |
DE3029488A1 (en) * | 1980-08-02 | 1982-03-04 | GHT Gesellschaft für Hochtemperaturreaktor-Technik mbH, 5060 Bergisch Gladbach | METHOD FOR PRODUCING A PROTECTIVE LAYER ON METAL WORKPIECES |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0576067A1 (en) * | 1992-06-25 | 1993-12-29 | General Motors Corporation | Hydrogen-water vapour pre-treatment of Fe-Cr-Al alloys |
DE10065924A1 (en) * | 2000-11-27 | 2002-09-26 | Alstom Switzerland Ltd | Metallic component used for a steam power plant comprises a protective layer containing aluminum and further elements and/or an aluminum alloy |
EP1318206A1 (en) * | 2001-12-06 | 2003-06-11 | Wieland-Werke AG | Use of a copper-aluminium alloy with defined coatings as bearings material for the fabrication of wear resistant sliding bearings |
US6933054B2 (en) | 2001-12-06 | 2005-08-23 | Weiland-Werke Ag | Bearing material for the manufacture of wear-resistant slide bearings made of a copper-aluminum-alloy with defined cover layers |
US20100183254A1 (en) * | 2007-09-05 | 2010-07-22 | Siemens Aktiengesellschaft | Component for the sliding support of another component, and process for producing it |
US8314053B2 (en) * | 2007-09-05 | 2012-11-20 | Siemens Aktiengesellschaft | Component for the sliding support of another component, and process for producing it |
DE102021118766A1 (en) | 2021-07-20 | 2023-01-26 | Kamax Holding Gmbh & Co. Kg | Component with integrated aluminum diffusion layer and aluminum oxide layer |
Also Published As
Publication number | Publication date |
---|---|
DE3561250D1 (en) | 1988-02-04 |
EP0167102B1 (en) | 1987-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3108160C2 (en) | Process for the production of oxide layers on chrome and / or nickel alloy steels | |
DE3243283C2 (en) | ||
DE3419638C2 (en) | Process for the oxidative production of protective layers on an alloy | |
DE3104112C2 (en) | Process for the production of oxide layers | |
CH654595A5 (en) | METHOD FOR PRODUCING PROTECTIVE OXIDE LAYERS ON A WORKPIECE SURFACE. | |
DE2263858A1 (en) | PROCESS FOR IMPROVING THE COMPRESSIBILITY AND SINTERING PERFORMANCE OF FINISHED SPHAEROLITHIC METAL POWDERS | |
DE3637447C2 (en) | ||
EP0167102B1 (en) | Process for the production of a protective oxide layer on a moulded article made from high-temperature material | |
DE2261877B2 (en) | Process for the manufacture of a superconductor | |
DE1621266A1 (en) | Process for surface treatment of titanium or titanium alloys | |
DE2151127C3 (en) | Process for depositing a metallization pattern and its application | |
EP0327831A2 (en) | Method and device for increasing the thermal fatigue resistance of heat-conducting materials | |
EP1133579B1 (en) | Method for producing of a protective layer on a martensitic steel and utilisation of said steel coated with said protective layer | |
DE3447228A1 (en) | Process for generating an oxidic protective layer on a high-temperature material moulding | |
EP0045416B1 (en) | Process to produce a protective layer on metallic pieces | |
DE3039658C2 (en) | ||
DE3145236C2 (en) | Process for the production of deformation-resistant oxidic protective layers | |
DE3715397C2 (en) | ||
DE3219071A1 (en) | Process for plating titanium with a hard layer | |
DE4204447A1 (en) | COATING PROCESS | |
DE68923826T2 (en) | Process for refining the magnetic areas of electrical steels. | |
DE19546614C2 (en) | Oxidation-resistant, chromium oxide-forming alloy | |
DE946060C (en) | Containers and other apparatus parts that come into contact with iodine and iodides | |
DE1521394A1 (en) | Nickel alloy article and process for its manufacture | |
DE1458558C (en) | Process for improving the superconducting properties of superconducting in termetallic compounds of the A deep 3 B type, which are afflicted with strong disturbances in the crystal structure and produced by deposition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT CH DE FR GB LI SE |
|
17P | Request for examination filed |
Effective date: 19860512 |
|
17Q | First examination report despatched |
Effective date: 19870317 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE FR GB LI SE |
|
REF | Corresponds to: |
Ref document number: 31558 Country of ref document: AT Date of ref document: 19880115 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3561250 Country of ref document: DE Date of ref document: 19880204 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19920430 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19920616 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19920617 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19920623 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19920625 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19920720 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19930626 Ref country code: AT Effective date: 19930626 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19930627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19930630 Ref country code: CH Effective date: 19930630 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19930626 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19940228 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19940301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
EUG | Se: european patent has lapsed |
Ref document number: 85107906.1 Effective date: 19940110 |