[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0161174B1 - Method for the thermal compensation of a magnetic circuit - Google Patents

Method for the thermal compensation of a magnetic circuit Download PDF

Info

Publication number
EP0161174B1
EP0161174B1 EP85400729A EP85400729A EP0161174B1 EP 0161174 B1 EP0161174 B1 EP 0161174B1 EP 85400729 A EP85400729 A EP 85400729A EP 85400729 A EP85400729 A EP 85400729A EP 0161174 B1 EP0161174 B1 EP 0161174B1
Authority
EP
European Patent Office
Prior art keywords
tablet
temperature
thermal compensation
permeability
oscillating circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85400729A
Other languages
German (de)
French (fr)
Other versions
EP0161174A1 (en
Inventor
Jacques Guillaumin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeumont Schneider SA
Original Assignee
Jeumont Schneider SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeumont Schneider SA filed Critical Jeumont Schneider SA
Publication of EP0161174A1 publication Critical patent/EP0161174A1/en
Application granted granted Critical
Publication of EP0161174B1 publication Critical patent/EP0161174B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/008Details of transformers or inductances, in general with temperature compensation

Definitions

  • the present invention relates to a process for thermal compensation of a magnetic circuit, the losses of which increase as a function of the ambient temperature.
  • This device in particular used to detect the passage of the wheels of a wagon, comprises a series oscillating circuit with open air gap to the detection zone constituting a sensor, an oscillator connected to the oscillating circuit and a circuit for exploiting the overvoltage coefficient of the oscillating circuit.
  • This oscillating circuit includes coils of copper wires. The operation of such a device is based on the fact that when a metallic mass is located near the air gap, the overvoltage coefficient of the oscillating circuit decreases. This decrease indicates the presence of the metallic mass.
  • the object of the present invention is to obviate these drawbacks and to do this it relates to a method of thermal compensation of a magnetic circuit.
  • the document FR-A-2 025 984 describes a sweep feedback transformer, in which a temperature-sensitive ferrite plate is inserted in the air gap, this plate losing its ferromagnetism and becoming paramagnetic at a determined temperature, in order to avoid using a transformer with a large number of turns and without operating it near its saturation point, while stabilizing the high voltage well.
  • Document FR-A-2 422 930 describes a distance measuring device with a feedback circuit amplifier, comprising a detection coil inside which are arranged magnetic rods with high permeability, some with a positive temperature characteristic. , the others with a negative temperature characteristic, so that the variations in permeability as a function of temperature are practically zero.
  • the present invention more particularly relates to a method of thermal compensation of a series oscillating circuit formed by an alternating current generator, a capacitor and an inductor, characterized in that the inductor is formed by two windings each of which is wound around of one end of a magnetic core, and in that there is placed near one of the ends of the magnetic core a pellet of a material whose magnetic permeability is a decreasing function of the temperature and the point of Curie substantially equal to the maximum possible value of the ambient temperature, so that the reduction in the eddy current losses due to the variation in the permeability of the pellet compensates for the increase in these losses due to the variation in the temperature of the windings.
  • the material constituting the pellet is chosen from the group comprising soft iron and ferro-nickel and has a Curie point of the order of 40 ° to 50 ° C.
  • the single figure schematically represents a sensor made up of an oscillating circuit with open air gap, to which the thermal compensation process is applied.
  • the oscillating circuit consists of a low-loss capacitor 5 and an inductor 3, 4 connected in series with the capacitor 5.
  • the inductor consists of two identical windings connected in series and wound respectively on the two branches of a U-shaped magnetic core 6 constituting an open air gap.
  • the oscillating circuit closes on an alternating current generator 2 which supplies the circuit.
  • a patch 1 made of a material whose magnetic permeability is a decreasing function of the temperature and the Curie point substantially equal to the maximum possible value of the ambient temperature, is placed in the immediate vicinity of the inductance. It can be made integral, by bonding or molding of the impregnation resin surrounding one of the windings of the inductor, for example of the winding 3. This patch is placed in the magnetic field of the sensor and being conductive, it is therefore the seat of eddy currents.
  • the temperature increases we approach the Curie point of the material constituting the pellet, and the permeability thereof decreases, which causes the reduction of the eddy currents and therefore losses in the pellet. This compensates for the increase in losses due in particular to. increasing the resistance of the copper coils.
  • this thermal compensation method makes it possible to maintain a constant overvoltage coefficient of the oscillating circuit during an increase in the ambient temperature and as a result, the detector can permanently exhibit high stability and great sensitivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measuring Magnetic Variables (AREA)
  • Soft Magnetic Materials (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Description

La présente invention concerne un procédé de compensation thermique d'un circuit magnétique dont les pertes augmentent en fonction de la température ambiante.The present invention relates to a process for thermal compensation of a magnetic circuit, the losses of which increase as a function of the ambient temperature.

Un tel procédé peut être avantageusement utilisé dans le dispositif détecteur de masses métalliques comportant des moyens de sécurité décrit dans le brevet français 2469722. Ce dispositif, notamment utilisé pour détecter le passage des roues d'un wagon, comprend un circuit oscillant série à entrefer ouvert vers la zone de détection constituant un capteur, un oscillateur relié au circuit oscillant et un circuit d'exploitation du coefficient de surtension du circuit oscillant. Ce circuit oscillant comporte des bobines en fils de cuivre. Le fonctionnement d'un tel dispositif repose sur le fait que lorsqu'une masse métallique se trouve à proximité de l'entrefer, le coefficient de surtension du circuit oscillant diminue. Cette diminution indique la présence de la masse métallique. Pour augmenter la sensibilité du détecteur, il est souhaitable, lorsqu'aucune masse métallique n'est proche du circuit, que les pertes dues aux courants de Foucault soient très faibles, donc que le coefficient de surtension du circuit oscillant soit élevé. Or on constate que lorsque la température ambiante augmente, les pertes, dues notamment à l'augmentation de la résistance du cuivre constituant les bobines, augmentent ; ceci entraîne une diminution du coefficient de surtension qui altère le niveau de surtension du détecteur.Such a method can be advantageously used in the metal mass detector device comprising safety means described in French patent 2469722. This device, in particular used to detect the passage of the wheels of a wagon, comprises a series oscillating circuit with open air gap to the detection zone constituting a sensor, an oscillator connected to the oscillating circuit and a circuit for exploiting the overvoltage coefficient of the oscillating circuit. This oscillating circuit includes coils of copper wires. The operation of such a device is based on the fact that when a metallic mass is located near the air gap, the overvoltage coefficient of the oscillating circuit decreases. This decrease indicates the presence of the metallic mass. To increase the sensitivity of the detector, it is desirable, when no metallic mass is close to the circuit, that the losses due to the eddy currents are very low, therefore that the overvoltage coefficient of the oscillating circuit is high. However, it can be seen that when the ambient temperature increases, the losses, due in particular to the increase in the resistance of the copper constituting the coils, increase; this results in a reduction in the overvoltage coefficient which alters the detector overvoltage level.

Le but de la présente invention est d'obvier à ces inconvénients et pour ce faire elle a pour objet un procédé de compensation thermique d'un circuit magnétique.The object of the present invention is to obviate these drawbacks and to do this it relates to a method of thermal compensation of a magnetic circuit.

De l'art antérieur il est déjà connu de compenser thermiquement un circuit magnétique.From the prior art, it is already known to thermally compensate a magnetic circuit.

Le document FR-A-2 025 984 décrit un transformateur de retour de balayage, dans lequel une , plaquette en ferrite sensible à la température est intercalée dans l'entrefer, cette plaquette perdant son ferro-magnétisme et devenant paramagnétique à une température déterminée, dans le but d'éviter de recourir à un transformateur à un grand nombre de spires et sans le faire fonctionner près de son point de saturation, tout en stabilisant bien la haute tension.The document FR-A-2 025 984 describes a sweep feedback transformer, in which a temperature-sensitive ferrite plate is inserted in the air gap, this plate losing its ferromagnetism and becoming paramagnetic at a determined temperature, in order to avoid using a transformer with a large number of turns and without operating it near its saturation point, while stabilizing the high voltage well.

Le document FR-A-2 422 930 décrit un appareil de mesure de distance à amplificateur à circuit de réaction, comprenant une bobine de détection à l'intérieur de laquelle sont disposées des tiges magnétiques à perméabilité élevée, les unes à caractéristique de température positive, les autres à caractéristique de température négative, de façon que les variations de la perméabilité en fonction de la température soient pratiquement nulles.Document FR-A-2 422 930 describes a distance measuring device with a feedback circuit amplifier, comprising a detection coil inside which are arranged magnetic rods with high permeability, some with a positive temperature characteristic. , the others with a negative temperature characteristic, so that the variations in permeability as a function of temperature are practically zero.

La présente invention a plus particulièrement pour objet un procédé de compensation thermique d'un circuit oscillant série formé par un générateur de courant alternatif, un condensateur et une inductance, caractérisé en ce que l'inductance est formée par deux enroulements dont chacun est bobiné autour d'une extrémité d'un noyau magnétique, et en ce que l'on dispose à proximité de l'une des extrémités du noyau magnétique une pastille d'un matériau dont la perméabilité magnétique est une fonction décroissante de la température et le point de Curie sensiblement égal à la valeur maximale éventuelle de la température ambiante, de façon telle que la diminution des pertes par courant de Foucault due à la variation de la perméabilité de la pastille compense l'augmentation de ces pertes due à la variation de la température des enroulements.The present invention more particularly relates to a method of thermal compensation of a series oscillating circuit formed by an alternating current generator, a capacitor and an inductor, characterized in that the inductor is formed by two windings each of which is wound around of one end of a magnetic core, and in that there is placed near one of the ends of the magnetic core a pellet of a material whose magnetic permeability is a decreasing function of the temperature and the point of Curie substantially equal to the maximum possible value of the ambient temperature, so that the reduction in the eddy current losses due to the variation in the permeability of the pellet compensates for the increase in these losses due to the variation in the temperature of the windings.

De préférence, le matériau constituant la pastille est choisi dans le groupe comprenant le fer doux et le ferro-nickel et a un point de Curie de l'ordre de 40° à 50 °C.Preferably, the material constituting the pellet is chosen from the group comprising soft iron and ferro-nickel and has a Curie point of the order of 40 ° to 50 ° C.

La présente invention sera mieux comprise et d'autres buts, avantages et caractéristiques de celle-ci apparaîtront plus clairement à la lecture de la description qui suit d'un mode de réalisation de l'invention, description à laquelle un dessin est annexé.The present invention will be better understood and other objects, advantages and characteristics thereof will appear more clearly on reading the following description of an embodiment of the invention, description to which a drawing is appended.

La figure unique représente schématiquement un capteur constitué d'un circuit oscillant à entrefer ouvert, auquel est appliqué le procédé de compensation thermique.The single figure schematically represents a sensor made up of an oscillating circuit with open air gap, to which the thermal compensation process is applied.

En référence à cette figure, le circuit oscillant est constitué d'un condensateur 5 à faibles pertes et d'une inductance 3, 4 connectée en série avec le condensateur 5. L'inductance est constituée par deux enroulements identiques reliés en série et bobinés respectivement sur les deux branches d'un noyau magnétique en U 6 constituant un entrefer ouvert. Le circuit oscillant se ferme sur un générateur 2 de courant alternatif qui alimente le circuit.With reference to this figure, the oscillating circuit consists of a low-loss capacitor 5 and an inductor 3, 4 connected in series with the capacitor 5. The inductor consists of two identical windings connected in series and wound respectively on the two branches of a U-shaped magnetic core 6 constituting an open air gap. The oscillating circuit closes on an alternating current generator 2 which supplies the circuit.

Une pastille 1, constituée d'un matériau dont la perméabilité magnétique est une fonction décroissante de la température et le point de Curie sensiblement égal à la valeur maximale éventuelle de la température ambiante, est placée à proximité immédiate de l'inductance. Elle peut être rendue solidaire, par collage ou moulage de la résine d'imprégnation entourant l'un des enroulements de l'inductance, par exemple de l'enroulement 3. Cette pastille est placée dans le champ magnétique du capteur et étant conductrice, elle est donc le siège de courants de Foucault. Quand la température augmente, on se rapproche du point de Curie du matériau constituant la pastille, et la perméabilité de celui-ci diminue, ce qui entraîne la diminution des courants de Foucault et donc des pertes dans la pastille. Ceci compense l'augmentation des pertes due notamment à. l'augmentation de la résistance du cuivre des bobines. Il en résulte donc que lors d'une augmentation de la température ambiante, le coefficient de surtension du circuit oscillant ne varie pratiquement pas car la diminution de celui-ci due à la résistance du cuivre constituant les enroulements est compensée par une augmentation due à la diminution de la perméabilité du matériau constituant la pastille.A patch 1, made of a material whose magnetic permeability is a decreasing function of the temperature and the Curie point substantially equal to the maximum possible value of the ambient temperature, is placed in the immediate vicinity of the inductance. It can be made integral, by bonding or molding of the impregnation resin surrounding one of the windings of the inductor, for example of the winding 3. This patch is placed in the magnetic field of the sensor and being conductive, it is therefore the seat of eddy currents. When the temperature increases, we approach the Curie point of the material constituting the pellet, and the permeability thereof decreases, which causes the reduction of the eddy currents and therefore losses in the pellet. This compensates for the increase in losses due in particular to. increasing the resistance of the copper coils. It therefore follows that when the ambient temperature increases, the overvoltage coefficient of the oscillating circuit practically does not vary because the decrease in the latter due to the resistance of the copper constituting the windings is compensated by an increase due to the decrease in the permeability of the material constituting the pellet.

Ainsi ce procédé de compensation thermique permet de conserver un coefficient de surtension du circuit oscillant constant lors d'une augmentation de la température ambiante et par suite, le détecteur peut présenter en permanence une grande stabilité et une grande sensibilité.Thus, this thermal compensation method makes it possible to maintain a constant overvoltage coefficient of the oscillating circuit during an increase in the ambient temperature and as a result, the detector can permanently exhibit high stability and great sensitivity.

D'autre part, ce procédé de compensation thermique est intéressant dans les dispositifs de sécurité car, la pastille pouvant être rendue solidaire du capteur, une élévation accidentelle du coefficient de surtension, due à la disparition de la pastille, ne peut se produire. Bien qu'un seul mode de réalisation de l'invention ait été décrit, il est évident que toute modification apportée par l'Homme de l'Art dans l'esprit de l'invention ne sortirait pas du cadre de la présente invention.On the other hand, this method of thermal compensation is advantageous in safety devices because, since the patch can be made integral with the sensor, an accidental rise in the overvoltage coefficient, due to the disappearance of the patch, cannot occur. Although only one embodiment of the invention has been described, it is obvious that any modification made by a person skilled in the art in the spirit of the invention would not depart from the scope of the present invention.

Claims (3)

1. A thermal compensation method for a series oscillating circuit constituted by an alternating current generator (2), a capacitor (5) and an inductance, characterized in that the inductance is formed by two windings (3, 4), each being wound around an end of a magnetic core (6), and that close to one of the ends of the magnetic core a tablet (1) is placed, made of a material, of which the magnetic permeability is a decreasing function of temperature and of which the Curie point is substantially identical with the possible maximum value of the ambient temperature, so that the decrease of losses caused by eddy currents due to the variation of permeability of the tablet compensates the increase of these losses due to the variation of the temperature of the windings.
2. A method according to claim 1, characterized in that the Curie point of the material of the tablet is comprised between 40 °C and 50 °C.
3. A method according to claim 2, characterized in that the material of the tablet is soft iron or ferro nickel.
EP85400729A 1984-04-20 1985-04-12 Method for the thermal compensation of a magnetic circuit Expired EP0161174B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8406284 1984-04-20
FR8406284A FR2563368B1 (en) 1984-04-20 1984-04-20 METHOD FOR THERMAL COMPENSATION OF A MAGNETIC CIRCUIT

Publications (2)

Publication Number Publication Date
EP0161174A1 EP0161174A1 (en) 1985-11-13
EP0161174B1 true EP0161174B1 (en) 1988-11-09

Family

ID=9303358

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85400729A Expired EP0161174B1 (en) 1984-04-20 1985-04-12 Method for the thermal compensation of a magnetic circuit

Country Status (11)

Country Link
US (1) US4704578A (en)
EP (1) EP0161174B1 (en)
BR (1) BR8501811A (en)
CA (1) CA1226341A (en)
DE (1) DE3566186D1 (en)
ES (1) ES8704665A1 (en)
FR (1) FR2563368B1 (en)
IN (1) IN164640B (en)
MX (1) MX158953A (en)
PT (1) PT80313B (en)
ZA (1) ZA852940B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH674896A5 (en) * 1987-11-20 1990-07-31 Vibro Meter Ag
US6246229B1 (en) * 1999-05-12 2001-06-12 Bently Nevada Corporation Method and apparatus for controlling the temperature stability of an inductor using a magnetically coupled metallic object
US20100147832A1 (en) * 2008-12-16 2010-06-17 Barker Iii Charles R Induction cookware identifying

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3194998A (en) * 1961-12-13 1965-07-13 Gen Electric Magnetic temperature-compensating structure
US3440718A (en) * 1965-07-12 1969-04-29 Physical Sciences Corp Method of temperature compensating an electrical apparatus
US3663913A (en) * 1967-12-22 1972-05-16 Tohoku Metal Ind Ltd Core coil having a improved temperature characteristic
DE1961951B1 (en) * 1968-12-12 1970-10-22 Matsushita Electric Ind Co Ltd Line deflection transformer
CH509573A (en) * 1969-06-06 1971-06-30 Vibro Meter Ag AC current measuring arrangement with a displacement encoder
US3891918A (en) * 1971-03-23 1975-06-24 James F Ellis Linear displacement transducer utilizing an oscillator whose average period varies as a linear function of the displacement
US3848466A (en) * 1974-01-30 1974-11-19 Atomic Energy Commission Magnetic temperature sensor
DE2643413A1 (en) * 1976-09-27 1978-03-30 Siemens Ag Inductive data pick=up on eddy current principle - has HF AC coil placed in metal carrier sleeve end behind end plate
US4270487A (en) * 1977-10-27 1981-06-02 Hitachi, Ltd. Developer regulating device in developing apparatus
SU681365A1 (en) * 1978-03-07 1979-08-25 Московское Ордена Ленина И Ордена Трудового Красного Знамени Высшее Техническое Училище Им.Н.Э.Баумана Inductive and eddy-current transducer with temperature autocompensation
JPS54134462A (en) * 1978-04-11 1979-10-18 Nippon Kokan Kk Eddy flow system range finder
FR2469722A1 (en) * 1979-11-12 1981-05-22 Saxby Railway wagon wheel passage detection circuit - employs open gap detector coil in oscillatory circuit excited by oscillator emitting constant energy pulses
US4449094A (en) * 1981-06-10 1984-05-15 Westinghouse Electric Corp. Temperature compensated magnetic damping assembly for induction meters

Also Published As

Publication number Publication date
FR2563368B1 (en) 1987-06-19
IN164640B (en) 1989-04-22
EP0161174A1 (en) 1985-11-13
PT80313B (en) 1987-05-29
ES542171A0 (en) 1987-04-16
CA1226341A (en) 1987-09-01
US4704578A (en) 1987-11-03
ES8704665A1 (en) 1987-04-16
DE3566186D1 (en) 1988-12-15
BR8501811A (en) 1985-12-17
ZA852940B (en) 1985-11-27
MX158953A (en) 1989-03-31
PT80313A (en) 1985-05-01
FR2563368A1 (en) 1985-10-25

Similar Documents

Publication Publication Date Title
CA2296716C (en) Inductive proximity sensor comprising oscillatory circuit with inductive reaction
EP0692098B1 (en) Electric current measuring device with a magnetic flux sensor, in particular for electric vehicles
US5300836A (en) Flame rod structure, and a compensating circuit and control method thereof
JPH0614604B2 (en) Resonance circuit temperature compensation method
EP0161174B1 (en) Method for the thermal compensation of a magnetic circuit
EP0401136B1 (en) Detection circuit and method for temperature-compensating of the oscillation of a resonating circuit
FR2540303A1 (en) I2T PROTECTION DEVICE FOR AN ELECTRICAL COMPONENT
FR2571845A1 (en) NON-CONTACT INDUCTIVE DISTANCE MEASUREMENT SYSTEM, IN PARTICULAR FOR DETECTING THE LEVEL OF A LIQUID METAL BATH
EP0317497B1 (en) Position detector
RU2007129727A (en) TEMPERATURE REGULATOR, METHOD OF TEMPERATURE REGULATION AND USED HEATING WIRE
CH630726A5 (en) INDUCTIVE PROXIMITY DETECTOR PROVIDING A DISTANCE PROPORTIONAL OUTPUT SIGNAL.
FR2576165A1 (en) PRECISION SWITCH WITH NON-CONTACT TRIP
EP0401067A1 (en) Excitation device for electromagnetic actuator
FR2818433A1 (en) DEVICE FOR DETERMINING THE PRIMARY CURRENT OF A CURRENT TRANSFORMER HAVING SATURATION CORRECTION MEANS
EP0074297B1 (en) Hybrid compensated current transformer
US3727053A (en) Method and apparatus for detecting radiation by means of the pyromagnetic effect
EP3278128B1 (en) Isolated dc current and voltage sensor with low crosstalk
CA2112656A1 (en) Internal stress relaxation method in magnetic field sensor head cores
JPH0311420B2 (en)
EP0783110B1 (en) Current sensor having a wide range of operation
FR2859022A1 (en) Device for measuring a current of high intensity passing through a wire, includes a loop surrounding the magnetic sensor, with the loop being a closed loop and therefore in short-circuit
JPH05108992A (en) Device for detecting abnormal over heat of conductor
BE650557A (en)
FR2586817A1 (en) Current sensor and method of using it
FR2545221A1 (en) Device for data acquisition by eddy currents, and unit for checking resistivity fitted with such a device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI LU NL

17P Request for examination filed

Effective date: 19860410

17Q First examination report despatched

Effective date: 19870529

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI LU NL

REF Corresponds to:

Ref document number: 3566186

Country of ref document: DE

Date of ref document: 19881215

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020319

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020328

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020402

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20020404

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020412

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020416

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020418

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030412

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

BERE Be: lapsed

Owner name: *JEUMONT-SCHNEIDER

Effective date: 20030430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031101

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20031101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030412

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST