[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0158935A1 - Machine electrodynamique vernier - Google Patents

Machine electrodynamique vernier Download PDF

Info

Publication number
EP0158935A1
EP0158935A1 EP85104113A EP85104113A EP0158935A1 EP 0158935 A1 EP0158935 A1 EP 0158935A1 EP 85104113 A EP85104113 A EP 85104113A EP 85104113 A EP85104113 A EP 85104113A EP 0158935 A1 EP0158935 A1 EP 0158935A1
Authority
EP
European Patent Office
Prior art keywords
teeth
air gap
notches
vernier
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85104113A
Other languages
German (de)
English (en)
Other versions
EP0158935B1 (fr
Inventor
Jean Pouillange
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kleber Giraudoux kleber Mozart
Parvex Sa gec Alsthom Parvex Sa gec Alsthom SA
Original Assignee
Alstom SA
Alsthom Atlantique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom SA, Alsthom Atlantique SA filed Critical Alstom SA
Publication of EP0158935A1 publication Critical patent/EP0158935A1/fr
Application granted granted Critical
Publication of EP0158935B1 publication Critical patent/EP0158935B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/18Synchronous generators having windings each turn of which co-operates only with poles of one polarity, e.g. homopolar generators

Definitions

  • the present invention relates to an electrodynamic vernier machine.
  • the vernier motor represented in FIG. 1 comprises a stator 1 provided with a winding 2.
  • the stator 1 is formed by an assembly of toothed magnetic sheets and the winding 2, of the polyphase type with 2 poles, is housed in the notches located between the stator teeth.
  • the stator 1 is cylindrical in revolution around an axis 3 and of annular section.
  • a toothed rotor 4 also formed from an assembly of magnetic sheets and mounted for rotation about the axis 3, is disposed in the internal cylindrical volume of the stator 1 and separated from the latter by a cylindrical air gap 5.
  • a cylindrical magnet 6 is fixed coaxially in the rotor 4.
  • the magnet 6 is fixed in the rotor 4 so that a flat face 7 of the magnet is located in the volume of the rotor 4 while its other flat face 8 is located outside this volume.
  • the magnet 6 is magnetized in the direction 9 going from the face 8 to the face 7, so as to create in the rotor 4 a magnetic flux passing through the air gap 5 to penetrate into the stator 1.
  • the latter is fixed to the inside a cylindrical magnetic carcass 10.
  • the rotor 4 and the magnet 6 are fixed on a shaft 11 capable of turning around the axis 3 in two bearings resting on the carcass 10.
  • the flange 12 shown in section in Figure 1 has a bearing 13 mounted on the shaft 11.
  • the flange 12 is made of magnetic steel and has a surface 14 disposed near and facing the face 8 of the magnet 6 so as to close the circuit of the magnetic flux created by the magnet 6.
  • the teeth of the stator 1 are uniformly distributed around the axis of the machine.
  • the stator has n equal dental not between them, by pair of poles defined by the winding 2.
  • the teeth of the rotor are uniformly distributed around the axis, but the number of these teeth is more Student ; the rotor 4 comprises for example n + 1 teeth per pair of poles.
  • the position of the rotor relative to the stator in the figure is such that one side of a tooth 15 of the rotor is aligned with one side of a tooth 16 of the stator in a radial direction 17. It can then be seen that the following teeth 18 , 19, 20 of the rotor are offset with respect to the homologous teeth 21, 22, 23 of the stator. These offsets have a magnetic effect in the air gap 5 through which the magnetic flux created by the magnet 6 passes.
  • the winding 2 When the winding 2 is supplied with a polyphase electric current, this winding creates a field rotating around the axis 3.
  • the motor represented in FIGS. 1 and 2 is of the synchronous zero sequence type and the magnetic flux created by the magnet 6 must rotate at a speed equal to the speed of rotation of the rotating field.
  • the rotor rotates at a lower speed which is equal to the quotient of the speed of the rotating field by a coefficient K.
  • the coefficient K is equal to n + 1. This reduction in speed is accompanied, compared to a synchronous machine classical whose armature is crossed by the same continuous field, of an increase in the couple, this one being multiplied by the factor K.
  • FIG. 3 shows a first stator group comprising the teeth 26, 27 and 28 and a second stator group comprising the teeth 29, 30 and 31. These two groups are separated from each other by an interval 32 in which a bundle of the winding can be housed 33 of the stator.
  • the teeth 26, 27 and 28 are right-.in - face of the teeth 34, 35 and 36 of the rotor.
  • the interval 32 is determined to obtain an offset such as 37 between the teeth 29, 30 and 31 of the stator and the teeth 38, 39 and 40 of the rotor.
  • FIG. 4 represents the law of variation 41 of the offsets along the air gap in a machine of the type illustrated in FIG. 3.
  • the position along the air gap is marked on the abscissa by an angle A relative to a axial reference plane, the offsets D being plotted on the ordinate.
  • the curve 41 comprises successive stages 42, 43, 44 and 45. It is possible, from this law of variation by stages, to define a linear average law 46.
  • vernier type electrodynamic machines also applies to vernier generators.
  • the rotor of the machines shown in FIGS. 2 and 3 is turned and the electric current produced in the stator windings of these machines is collected.
  • This principle also applies to vernier type linear machines in which the air gap is not arranged along a cylindrical surface, but along a flat surface separating the two parts in relative motion; the moving part then moves relative to the fixed part along a straight line parallel to the surface of the air gap.
  • the known type of reduction gear shown in FIG. 5 comprises a first rotor 47 of annular shape. This rotor is not toothed but carries a continuous winding 48 with 2 poles.
  • the reduction unit further comprises a second coaxial cylindrical rotor 49. This rotor has teeth not shown, similar to those of the rotor of the motor of FIG. 2.
  • a stator 50 coaxial of annular shape and comprising n radial teeth 51 by pair of poles, these teeth being separated one from the other by spacers 52 of non-magnetic material.
  • the stator 51 is separated from the rotors 47 and 49 by cylindrical air gaps 53 and 54.
  • FIG. 6 represents another vernier reducer of known type comprising a stator 55 and a rotor 56 coaxial and toothed.
  • the rotating field is here produced by another coaxial rotor 57 disposed in the air gap located between the stator 55 and the rotor 56.
  • the rotor 57 comprises 2 p magnets such as 58 juxtaposed along the air gap and whose directions of radial magnetization 59 and 60 are alternated so as to create a rotating field with 2 poles. If the stator 55 has n notches per pair of poles and if the rotor 56 has n + 1 notches per pair of poles, the rotation of the rotor 57 at a speed v causes the rotor 56 to rotate at a speed .from the prior art.
  • the known vernier electrodynamic machines are machines of the homopolar synchronous type, the two parts of which in relative movement have respectively two rows of teeth facing one another, the number of teeth in a row. being different from the number of teeth in the other row.
  • the present invention aims to overcome these drawbacks.
  • FIG. 7 represents an electric vernier machine according to the invention. It includes a stator 161 formed from a sheet metal assembly magnetic cut so as to constitute notches such as 162 and 163.
  • the notches 163, which define teeth 165, are provided with permanent magnets such as 166, arranged so as to create a radial induction, in any direction, here directed towards the center of the motor (arrow).
  • the notches 173 are lined with permanent magnets 176 arranged so as to create a radial induction directed in the same direction as that of the inductions created by the stator magnets.
  • the stator and the rotor are separated by an air gap 180.
  • Permanent magnets are intended to create radial excitation fluxes.
  • these fluxes are created by windings such as 166B (stator) and 176B (rotor) placed inside each of the teeth.
  • FIGS. 7 to 11 operate both as an engine and as a generator.
  • the windings 164 are supplied with polyphase current and mechanical torque is collected from the rotor.
  • the rotor is driven and a polyphase current is collected from the stator.
  • FIGS 12 to 14 illustrate the operation of the machine.
  • Figure 12 shows the notches 163 and 173 of the stator and the rotor, in various configurations which exist at all times in various rotor and stator points.
  • the notches are offset by the width of a tooth (position V).
  • FIG. 13 schematically shows the path of the lines of force emitted by the magnets.
  • the machines of the invention make it possible to achieve the objectives defined above (better torque / weight ratio).
  • the machines of the invention which have just been described show regular toothing on the stator and on the rotor, with two pitch values respectively.
  • the machine can be produced according to the invention, by associating with regular toothing, a discontinuous toothing composed of P groups of Q teeth having steps equal to the previous ones, the groups being suitably offset in space as indicated in l prior art with reference to Figure 3, to obtain the vernier effect.
  • the machine described above can be modified simply to operate as a torque reducer.
  • Figure 15 shows an example.
  • the rotor 271 comprises a plurality of groups of teeth (two groups 272 and 273 of five teeth 274 and four notches 275 are shown each) separated by air gaps such as 300, much greater than the other air gaps described below.
  • the air gap 300 is slightly greater than a multiple of a step so as to create the vernier effect.
  • the stator 281 has teeth 284 and notches 285, at the same pace as the teeth of the rotor groups 271.
  • the stator and the rotor are separated by a very thin air gap 290.
  • the slots 275 of the rotor and 285 of the stator are provided with flow generators oriented radially and in the same direction, as indicated by the arrows.
  • magnets 276 have been shown on the rotor and 286 on the stator.
  • a second rotor, 310 separated from the rotor 271 by a very thin air gap 311, carries coils 312 to create a multipolar field.
  • the number and arrangement of the coils is chosen so that the multipolar field has the same number of poles as that created by the magnets of the stator.
  • This reducer has an operation similar to that of known type of reducers, but it has all the advantages of the invention which have been mentioned in connection with motors and generators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Synchronous Machinery (AREA)

Abstract

La machine comporte: - deux pièces (161,171) séparées l'une de l'autre par un entrefer (180) disposé suivant une surface, ces pièces (161,171) pouvant se déplacer l'une par rapport à l'autre suivant une direction de cette surface de manière que l'épaisseur de l'entrefer (180) reste constante . une première de ces pièces (161) étant constituée par une armature magnétique comportant N dents (165) formant N encoches (163), les encoches (163) debouchant dans l'entrefer (180) et étant uniformément réparties le long de ladite direction. . la second pièce (171) comprenant, disposés le long de ladite direction, soit M dents (175) formant M encoches (173) avec un pas différent du pas des dents (165) de la première pièce (161) soit P groupes deQ dents au même pas que celui des dents de la première pièce (161) les groupes étant décalés pour obtenir l'effet vernier, et des moyens (166, 176) pour créer dans l'entrefer (180) un champ magnétique glissant par rapport à la première pièce (161) le long de ladite direction, caractérisée en ce que chacune des dents (165, 175) de la première (161) et de la seconde pièce (171) comporte des générateurs d'induction magnétique (166, 176) créant des flux d'induction normaux à l'entrefer (180) et orientés dans le même sens.

Description

  • La présente invention concerne une machine électrodynamique vernier.
  • On connaît une machine électrodynamique vernier, du type comportant :
    • - deux pièces séparées l'une de l'autre par un entrefer disposé suivant une surface, ces pièces pouvant se déplacer l'une par rapport à l'autre suivant une direction de cette surface de manière que l'épaisseur de l'entrefer reste constante
    • . une première de ces pièces étant constituée par une armature magnétique comportant N dents formant N encoches, les encoches débouchant dans l'entrefer et étant uniformément réparties le long de ladite direction,
    • . la seconde pièce comportant + M éléments disposés le long de ladite direction, M étant un nombre entier différent de N, ces éléments étant aptes à créer dans l'entrefer, par suite de l'écart entre M et N, des décalages par rapport aux dents de l'armature, les décalages successifs variant le long de ladite direction selon une loi moyenne linéaire + et des moyens pour créer dans l'entrefer un champ magnétique multipolaire,
    • - et des moyens coopérant magnétiquement avec l'armature pour créer dans ledit entrefer un champ magnétique de même polarité que le précédent, glissant par rapport à l'armature le long de ladite direction, lesdits décalages entrainant une différence entre la vitesse de glissement du champ glissant et la vitesse d'une pièce par rapport à l'autre lorsque les champs précités se déplacent de manière synchrone.
  • Plusieurs formes particulières de machines électrodynamiques vernier connues sont décrites ci-dessous, à titre d'exemple, en référence aux dessins annexés dans lesquels
    • - la figure 1 représente schématiquement, en coupe partielle longitudinale, un moteur vernier de type connu,
    • - la figure 2 est une vue montrant partiellement, en coupe transversale le profil dentaire du stator et du rotor du moteur illustré par la figure 1,
    • - la figure 3 représente partiellement, en coupe transversale, un autre moteur vernier de type connu,
    • - la figure 4 est un graphique illustrant le fonctionnement du moteur représenté sur la figure 3,
    • - la figure 5 est une vue partielle en coupe transversale d'un réducteur vernier de type connu,
    • - la figure 6 est une vue partielle en coupe transversale d'un autre réducteur vernier de type connu
  • Le moteur vernier représenté sur la figure 1 comporte un stator 1 muni d'un bobinage 2. Le stator 1 est formé d'un assemblage de tôles magnétiques dentées et le bobinage 2, du type polyphasé à 2 p pôles, est logé dans les encoches situées entre les dents du stator. Le stator 1 est cylindrique de révolution autour d'un axe 3 et de section annulaire. Un rotor denté 4, formé aussi d'un assemblage de tôles magnétiques et monté en rotation autour de l'axe 3, est disposé dans le volume cylindrique intérieur du stator 1 et séparé de celui-ci par un entrefer cylindrique 5. Un aimant cylindrique 6 est fixé coaxialement dans le rotor 4. La fixation de l'aimant 6 dans le rotor 4 est réalisée de façon qu'une face plane 7 de l'aimant soit située dans le volume du rotor 4 alors que son autre face plane 8 est située en dehors de ce volume. L'aimant 6 est aimanté dans le sens 9 allant de la face 8 à la face 7, de manière à créer dans le rotor 4 un flux magnétique traversant l'entrefer 5 pour pénétrer dans le stator 1. Celui-ci est fixé à l'intérieur d'une carcasse magnétique cylindrique 10. Le rotor 4 et l'aimant 6 sont fixés sur un arbre 11 capable de tourner autour de l'axe 3 dans deux paliers s'appuyant sur la carcasse 10. Le flasque 12 représenté en coupe sur la figure 1 comporte un roulement 13 monté sur l'arbre 11. Le flasque 12 est réalisé en acier magnétique et comporte une surface 14 disposée à proximité et en regard de la face 8 de l'aimant 6 de façon à refermer le circuit du flux magnétique créé par l'aimant 6.
  • En référence à la figure 2, les dents du stator 1 sont uniformément réparties autour de l'axe de la machine. Le stator comporte n pas dentaires égaux entre eux, par paire de pôles définis par le bobinage 2. Comme il est visible sur la figure 2, les dents du rotor sont uniformément réparties autour de l'axe, mais le nombre de ces dents est plus élevé ; le rotor 4 comprend par exemple n + 1 dents par paire de pôles. La position du rotor par rapport au stator sur la figure est telle qu'un côté d'une dent 15 du rotor est aligné avec un côté d'une dent 16 du stator suivant une direction radiale 17. On voit alors que les dents suivantes 18, 19, 20 du rotor sont décalées par rapport aux dents homologues 21, 22, 23 du stator. Ces décalages ont un effet magnétique dans l'entrefer 5 traversé par le flux magnétique créé par l'aimant 6.
  • Lorsqu'on alimente le bobinage 2 par un courant électrique polyphasé, ce bobinage crée un champ tournant autour de l'axe 3. Le moteur représenté sur les figures 1 et 2 est du type synchrone homopolaire et le flux magnétique créé par l'aimant 6 doit tourner à une vitesse égale à la vitesse de rotation du champ tournant. Par suite des décalages mentionnés ci-dessus, le rotor tourne à une vitesse plus faible qui est égale au quotient de la vitesse du champ tournant par un coefficient K.
  • Dans le cas où le stator comporte n dents par paire de pôles et le rotor n + 1 dents par paire de pôles stator, le coefficient K est égal à n + 1. Cette réduction de vitesse s'accompagne, par rapport à une machine synchrone classique dont l'induit est traversé par le même champ continu, d'une augmentation du couple, celui-ci étant multiplié par le facteur K.
  • Cependant il est possible de réaliser des machines vernier connues dans lesquels les paliers de décalage successifs correspondent chacun à plusieurs pas dentaires. Par exemple, dans le moteur illustré par la figure 3, le rotor 24 comporte des pas dentaires régulièrement répartis, tandis que le stator 25 comporte des groupes de pas dentaires séparés entre eux par des intervalles. Chaque groupe comporte plusieurs pas dentaires égaux entre eux et au pas dentaire rotor. La figure 3 montre un premier groupe stator comportant les dents 26, 27 et 28 et un deuxième groupe stator comportant les dents 29, 30 et 31. Ces deux groupes sont séparés entre eux par un intervalle 32 dans lequel peut être logé un faisceau du bobinage 33 du stator.
  • Dans la position représentée sur la figure, les dents 26, 27 et 28 sont juste-.en-face des dents 34, 35 et 36 du rotor. L'intervalle 32 est déterminé pour obtenir un décalage tel que 37 entre les dents 29, 30 et 31 du stator et les dents 38, 39 et 40 du rotor.
  • La figure 4 représente la loi de variation 41 des décalages le long de l'entrefer dans une machine du type de celle illustrée sur la figure 3. La position le long de l'entrefer est repérée en abscisse par un angle A par rapport à un plan axial de référence, les décalages D étant portés en ordonnée. On voit que la courbe 41 comporte des paliers successifs 42, 43, 44 et 45. On peut définir à partir de cette loi de variation par paliers une loi moyenne linéaire 46.
  • En pratique les deux modes de réalisation de moteurs vernier représentés sur les figures 2 et 3 ont un fonctionnement tout à fait comparable.
  • Le principe de fonctionnement des machines électrodynamiques de type vernier s'applique aussi aux génératrices vernier. Dans ce cas, par exemple, on fait tourner le rotor des machines représentées sur les figures 2 et 3 et on recueille le courant électrique produit dans les bobinages stator de ces machines.
  • Ce principe s'applique aussi aux machines vernier de type linéaire dans lesquelles l'entrefer n'est pas disposé suivant une surface cylindrique, mais suivant une surface plane séparant les deux pièces en mouvement relatif ; la pièce mobile se déplace alors par rapport à la pièce fixe suivant une ligne droite parallèle à la surface de l'entrefer.
  • Il est possible de réaliser aussi des machines électrodynamiques de type vernier fonctionnant en réducteur rotatif.
  • Le réducteur de type connu représenté sur la figure 5 comporte un premier rotor 47 de forme annulaire. Ce rotor n'est pas denté mais porte un bobinage continu 48 à 2 p pôles. Le réducteur comporte en outre un deuxième rotor 49 cylindrique coaxial. Ce rotor comporte des dents non représentées, analogues à celles du rotor du moteur de la figure 2. Entre les rotors 47 et 49 est disposé un stator 50 coaxial de forme annulaire et comprenant n dents radiales 51 par paire de pôles, ces dents étant séparées l'une de l'autre par des entretoises 52 en matériau amagné- tique. Bien entendu le stator 51 est séparé des rotors 47 et 49 par des entrefers cylindriques 53 et 54.
  • Lorsqu'on entraîne en rotation le rotor 47 à une vitesse v et qu'on alimente le bobinage 48 par un courant électrique continu, on crée un champ tournant qui traverse radialement le stator 50 et pénètre dans le deuxième rotor 49. Il apparait donc que l'ensemble 47-53-50 est équivalent au stator des moteurs représentés sur les figures 2 et 3. Dans ces conditions, si le rotor 49 comporte n + 1 dents par paire de pôles du bobinage 48, le rotor 49 tourne à une vitesse
    Figure imgb0001
    .
  • La figure 6 représente un autre réducteur vernier de type connu comportant un stator 55 et un rotor 56 coaxiaux et dentés. Le champ tournant est ici produit par un autre rotor coaxial 57 disposé dans l'entrefer situé entre le stator 55 et le rotor 56. Le rotor 57 comporte 2 p aimants tels que 58 juxtaposés le long de l'entrefer et dont les directions d'aimantation radiales 59 et 60 sont alternées de façon à créer un champ tournant à 2 p pôles. Si le stator 55 possède n encoches par paires de pôles et si le rotor 56 possède n + 1 encoches par paires de pôles, l'entraînement en rotation du rotor 57 à une vitesse v provoque une rotation du rotor 56 à une vitesse
    Figure imgb0002
    .de l'art antérieur.
  • Par conséquent d'une manière générale les machines électrodynamiques vernier connues sont des machines de type synchrone homopolaire dont les deux pièces en mouvement relatif comportent respectivement deux rangées de dents en regard l'une de l'autre, le nombre des dents d'une rangée étant différent du nombre de dents de l'autre rangée.
  • Ces machines présentent des inconvénients. En effet elles doivent avoir un entrefer de faible épaisseur pour accentuer l'effet magnétique entrainé par le décalage des dents. Cette réduction d'entrefer entraîne par suite de la saturation du circuit magnétique une diminution des ampères-tours et par conséquent du couple de la machine. Par ailleurs, le flux magnétique de ces machines présente une composante homopolaire qui ne produit pas de couple tout en contribuant à la saturation du circuit magnétique. Il en résulte un encombrement qui peut être prohibitif dans certaines applications.
  • La présente invention a pour but de pallier ces inconvénients.
  • Elle a pour objet une machine électrodynamique vernier, du type comportant :
    • - deux pièces séparées l'une de l'autre par un entrefer disposé suivant une surface, ces pièces pouvant se déplacer l'une par rapport à l'autre suivant une direction de cette surface de manière que l'épaisseur de l'entrefer reste constante
    • . une première de ces pièces étant constituée par une armature magnétique comportant N dents formant N encoches, les encoches débouchant dans l'entrefer et étant uniformément réparties le long de ladite direction,
    • . la seconde pièce comprenant, disposés le long de ladite direction, soit M dents formant M encoches avec un pas différent du pas des dents de la première pièce, soit P groupes de Q dents au même pas que celui des dents de la première pièce, les groupes étant décalés pour obtenir l'effet vernier,
    • . et des moyens pour créer dans l'entrefer un champ magnétique glissant par rapport à la première pièce le long de ladite direction, caractérisée en ce que chacune des dents de la première et de la seconde pièce comporte des générateurs d'induction magnétique créant des flux d'induction normaux à l'entrefer et orientés dans le même sens.
  • Divers modes de réalisation de l'invention sont décrits ci-après en référence au dessin dans lequel :
    • La figure 7 est une vue partielle en coupe transversale d'une machine selon un premier mode de réalisation.
    • La figure 8 est une vue partielle en coupe transversale d'une machine selon un second mode de réalisation.
    • la figure 9 est un détail de la figure 8.
    • La figure 10 est une vue partielle en coupe transversale d'une machine selon un troisième mode de réalisation.
    • La figure 11 est un détail de la figure 10.
    • Les figures 12, 13 et 14 sont des schémas expliquant le fonctionnement de la machine.
    • La figure 15 est une vue partielle en coupe transversale d'un réducteur selon un mode préféré de réalisation de l'invention.
    • Les figures 7 à 11 concernent des machines selon l'invention.
  • Bien que les exemples donnés soient relatifs à des machines rotatives, il est clair que l'invention s'applique également à des machines linéaires, l'homme du métier n'ayant aucun mal à effectuer les modifications nécessaires.
  • La figure 7 représente une machine électrique vernier selon l'invention. Elle comprend un stator 161 formé d'un assemblage de tôle magnétiques découpées de manière à constituer des encoches telles que 162 et 163. Les encoches 162, au nombre de N = np, sont munies d'un bobinage 164 polyphasé, créant un champ alternatif à 2 p pôles.
  • Les encoches 163, qui définissent des dents 165, sont munies d'aimants permanents tels que 166, agencés de manière à créer une induction radiale, dans un sens quelconque, ici dirigée vers le centre du moteur (flèche).
  • La machine comprend un stator 171, également formé de tôles magnétiques, découpées de manière à définir des encoches 173 et des dents 175 en nombre M = mp, avec m différent de n, par exemple m = n + 1.
  • Les encoches 173 sont garnies d'aimants permanents 176 agencés de manière à créer une induction radiale dirigée dans le même sens que celui des inductions créées par les aimants statoriques. Le stator et le rotor sont séparés par un entrefer 180.
  • Les aimants permanents sont destinés à créer des flux d'excitation radiaux.
  • Dans les figures 8 et 9, ces flux sont créés par des bobinages 166A (stator) et 176A (rotor) entourant les dents, et parcourus par des courants continus.
  • Dans les figures 10 et 11, ces flux sont créés par des bobinages tels que 166B (stator) et 176B (rotor) placés à l'intérieur de chacune des dents.
  • On notera que dans les trois exemples des figures 7 à 11, les encoches 162 et les bobinages 164, destinés à créer le champ tournant peuvent être supprimés, ce champ étant créé par des bobinages placés dans un certain nombre d'encoches 163 à la place des aimants correspondants.
  • Les machines des figures 7 à 11 fonctionnent aussi bien en moteur qu'en génératrice.
  • Dans le premier cas, on alimente les bobinages 164 en courant polyphasé et on recueille un couple mécanique au rotor.
  • Dans le second cas, on entraine le rotor et on recueille un courant polyphasé au stator.
  • Les figures 12 à 14 illustrent le fonctionnement de la machine.
  • La figure 12 montre les encoches 163 et 173 du stator et du rotor, dans diverses configurations qui existent à tout instant en divers points du rotor et du stator.
  • A gauche de la figure, les encoches du stator et du rotor sont en vis-à-vis (position I).
  • A droite de la figure, les encoches sont décalées de la largeur d'une dent (position V).
  • Au centre, les encoches sont décalées d'une demi-dent (position III).
  • Entre les positions extrêmes et la position centrale, on trouve deux positions intermédiaires (II et IV).
  • La figure 13 montre schématiquement le trajet des lignes de forces émises par les aimants.
  • En position III les flux des aimants se referment pratiquement sur place. On voit le flux principal 301 se refermer par les boucles 302 et 303 qui ne s'éloignent pas plus de la distance d'une demi-dent. Les références 304 à 307 désignent les petites boucles de champ dues à l'entrefer.
  • En position I, le flux 121 se referme sur place en 122 et 123. En position V le flux 134 se ferme en position I, et le flux 135 se ferme symétriquement où il trouve la plus faible réluctance.
  • En position II intermédiaire le flux 221 se ferme sur place en 222 et 223 et en position IV une part du flux 401 se referme en position II.
  • Globalement, l'induction dans l'entrefer varie en fonction de l'espace, entre deux configurations de dents en vis-à-vis et en opposition, entre deux valeurs Bo et - Bo comme illustré dans la figure 11.
  • L'effet vernier existe bien. Si le stator à np dents et le rotor (n + 1) p et si le champ statorique tourne à une vitesse V, le rotor tourne à une vitesse V/n + 1.
  • Par rapport aux machines connues et décrites au début du présent mémoire, les machines de l'invention permettent d'atteindre les objectifs définis plus haut (meilleur rapport couple/poids).
  • Par ailleurs, elles fournissent, toutes choses égales par ailleurs, un meilleur facteur de puissance (cosj).
  • Le machines de l'invention qui viennent d'être décrites montrent des dentures régulières au stator et au rotor, avec respectivement deux valeurs de pas.
  • En variante, la machine peut être réalisée selon l'invention, en associant à une denture régulière, une denture discontinue composée de P groupes de Q dents ayant des pas égaux aux précédents, les groupes étant convenablement décalés dans l'espace comme indiqué dans l'art antérieur en référence à la figure 3, pour obtenir l'effet vernier.
  • La machine décrite précédemment peut être modifiée simplement pour fonctionner en réducteur de couple.
  • La figure 15 en montre un exemple.
  • Le rotor 271, comporte une pluralité de groupes de dents (on a représenté deux groupes 272 et 273 de cinq dents 274 et quatre encoches 275 chacun) séparés par des entrefers tels que 300, très supérieur aux autres entrefers décrits plus loin. On n'a pas représenté les liaisons mécaniques des différents groupes entre eux qui sont constituées de pièces amagnétiques. L'entrefer 300 est un peu supérieur à un multiple d'un pas de manière à créer l'effet vernier.
  • Le stator 281 comporte des dents 284 et des encoches 285, au même pas que les dents des groupes du rotor 271. Le stator et le rotor sont séparés par un entrefer très mince 290.
  • Les encoches 275 du rotor et 285 du stator sont munis de générateurs de flux orientés radialement et dans le même sens, comme l'indique les flèches. Ici, on a représenté des aimants 276 au rotor et 286 au stator.
  • Un second rotor, 310, séparés du rotor 271 par un entrefer 311 très mince, porte des bobines 312 pour créer un champ multipolaire.
  • Le nombre et la disposition des bobines est choisi pour que le champ multipolaire ait même nombre de pôles que celui créé par les aimants du stator.
  • Ce réducteur a un fonctionnement analogue à celui des réducteurs de type connu, mais il possède tous les avantages de l'invention qui ont été cités à propos des moteurs et génératrices.

Claims (7)

1/ Machine électrodynamique vernier, du type comportant :
- deux pièces séparées l'une de l'autre par un entrefer (180) disposé suivant une surface, ces pièces pouvant se déplacer l'une par rapport à l'autre suivant une direction de cette surface de manière que l'épaisseur de l'entrefer reste constante
. une première de ces pièces (161) étant constituée par une armature magnétique comportant N dents formant N encoches, les encoches débouchant dans l'entrefer et étant uniformément réparties le long de ladite direction.
. la seconde pièce comprenant, disposés le long de ladite direction, soit M dents formant M encoches avec un pas différent du pas des dents de la première pièce soit P groupes deQ dents au même pas que celui des dents de la première pièce, les groupes étant décalés pour obtenir l'effet vernier, et des moyens pour créer dans l'entrefer un champ magnétique glissant par rapport à la première pièce le long de ladite direction, caractérisée en ce que chacune des dents (165, 175) de la première (161) et de la seconde pièce (171) comporte des générateurs d'induction magnétique (166, 176) créant des flux d'induction normaux à l'entrefer et orientés dans le même sens.
2/ Machine électrodynamique vernier selon la revendication 1, caractérisée en ce que les générateurs d'induction magnétique sont des aimants (166) disposés dans les encoches.
3/ Machine électrodynamique vernier selon la revendication 1, caractérisée en ce que les générateurs de flux sont des bobines (166A) entourant les dents et parcourues par un courant continu.
4/ Machine électrodynamique vernier selon la revendication 1, caractérisée en ce que les générateurs de flux sont des bobines (166B) enserrées dans les encoches et parcourues par un courant continu.
5/ Machine électrodynamique selon l'une des revendications 1 à 4, caractérisée en ce que les moyens pour créer un champ glissant comprennent un bobinage polyphasé (164) placé de manière solidaire à l'armature.
6/ Machine selon l'une des revendications 1 à 4, caractérisée en ce que les moyens pour créer un champ magnétique glissant comprennent des bobinages (312) alimentés en courant continu et placés sur une troisième pièce (310), mobile, séparée de la première pièce par un second entrefer (311).
7/ Machine selon l'une des revendications 1 à 6, caractérisée en ce que la machine est tournante.
EP85104113A 1984-04-13 1985-04-09 Machine electrodynamique vernier Expired EP0158935B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8405888 1984-04-13
FR8405888A FR2563059B1 (fr) 1984-04-13 1984-04-13 Machine electrodynamique vernier

Publications (2)

Publication Number Publication Date
EP0158935A1 true EP0158935A1 (fr) 1985-10-23
EP0158935B1 EP0158935B1 (fr) 1988-11-09

Family

ID=9303152

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85104113A Expired EP0158935B1 (fr) 1984-04-13 1985-04-09 Machine electrodynamique vernier

Country Status (6)

Country Link
US (1) US4758756A (fr)
EP (1) EP0158935B1 (fr)
JP (1) JPS60234447A (fr)
DE (1) DE3566202D1 (fr)
ES (1) ES8607640A1 (fr)
FR (1) FR2563059B1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0183792A1 (fr) * 1984-05-21 1986-06-11 Sigma Instruments Inc Moteur pas a pas a assistance magnetique.
US4712028A (en) * 1984-05-21 1987-12-08 Sigma Instruments, Inc. Magnetically assisted stepping motor
US4713570A (en) * 1986-06-04 1987-12-15 Pacific Scientific Co. Magnetically enhanced variable reluctance motor systems
FR2945683A1 (fr) * 2009-05-18 2010-11-19 Erneo Machine vernier a aimants insires.
WO2011135062A3 (fr) * 2010-04-30 2012-08-02 Alstom Hydro France Machine tournante électrique, notamment machine synchrone à aimants permanents
US8847464B2 (en) 2008-06-12 2014-09-30 General Electric Company Electrical machine with improved stator flux pattern across a rotor that permits higher torque density

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE120053T1 (de) * 1990-11-23 1995-04-15 Voith Gmbh J M Elektrische maschine.
US5455474A (en) * 1992-06-23 1995-10-03 Magnetic Revolutions Limited L.L.C. Magnetic motor construction
US5440247A (en) * 1993-05-26 1995-08-08 Kaplinsky; Cecil H. Fast CMOS logic with programmable logic control
US5608279A (en) * 1993-12-13 1997-03-04 Murray; David E. DC generator
US6100620A (en) * 1996-08-05 2000-08-08 S.H.R. Ltd. Bvi High frequency synchronous rotary electrical machine
EP0838891A1 (fr) * 1996-10-24 1998-04-29 Sanshiro Ogino Dispositif de conversion d'énergie avec aimants permanents
DE19743380C1 (de) * 1997-09-30 1999-03-25 Emf 97 Gmbh Reluktanzmotor
US6700272B1 (en) * 1997-09-30 2004-03-02 Emf 97 Elektro-Maschinen-Vertrieb-Magnettechnik- Und Forschungs Gmbh Reluctance motor with gearless step-down without electronic control of rotating field
JP3442636B2 (ja) * 1998-01-06 2003-09-02 オークマ株式会社 永久磁石電動機
KR100549039B1 (ko) 1998-01-27 2006-02-02 가부시키가이샤 게네시스 하이브리드형 자석 및 이를 포함하는 스테핑 모터
JP2000060091A (ja) * 1998-08-06 2000-02-25 Ebara Corp 回転電機
DE19838378A1 (de) * 1998-08-24 2000-03-02 Magnet Motor Gmbh Elektrische Maschine mit Dauermagneten
US6359366B1 (en) * 2000-05-09 2002-03-19 Ford Global Technologies, Inc. Hybrid permanent magnet/synchronous machines
US7863784B2 (en) * 2005-08-15 2011-01-04 Apex Drive Laboratories, Inc Axial flux permanent magnet machines
US6930433B2 (en) * 2003-04-16 2005-08-16 Apex Drives Laboratories, Inc. Brushless electro-mechanical device
US6954019B2 (en) * 2001-11-13 2005-10-11 M International, Llc Apparatus and process for generating energy
US6864614B2 (en) * 2003-05-16 2005-03-08 David Murray Permanent magnet electric generator
DE102005016257B4 (de) * 2005-04-08 2008-03-13 Siemens Ag Reluktanzmotor
US8497606B2 (en) * 2010-03-24 2013-07-30 Uri Rapoport Electromagnetic generator with free moving inner magnetic core
TW201328136A (zh) * 2011-12-23 2013-07-01 Univ Nat Cheng Kung 永磁裝置
JP6093592B2 (ja) * 2013-02-22 2017-03-08 株式会社Ihi 磁気波動歯車装置
JP6257114B2 (ja) * 2014-05-20 2018-01-10 株式会社Ihi 磁気波動歯車装置
KR102399590B1 (ko) 2015-02-04 2022-05-19 삼성전자주식회사 렌즈 구동 모듈
US9985483B2 (en) 2016-05-24 2018-05-29 Abb Schweiz Ag Electro-dynamic machine, system and method
JP6834064B1 (ja) * 2020-01-21 2021-02-24 三菱電機株式会社 固定子およびこれを用いた回転電機
JP7384678B2 (ja) * 2020-01-24 2023-11-21 三菱重工業株式会社 磁気ギアード回転電機
WO2022049750A1 (fr) * 2020-09-07 2022-03-10 三菱電機株式会社 Machine électrique tournante et procédé de fabrication de rotor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1491441A (en) * 1921-12-05 1924-04-22 Gen Electric High-speed alternating-current dynamo-electric machine
FR1556113A (fr) * 1967-03-09 1969-01-31
US4306164A (en) * 1977-12-19 1981-12-15 Oki Electric Industry Co. Ltd. Pulse motor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1894979A (en) * 1931-08-26 1933-01-24 Westinghouse Electric & Mfg Co Vernier motor
US3025420A (en) * 1958-09-22 1962-03-13 Arthur R Mccourt Electromagnetic speed control coupling
US3268747A (en) * 1964-02-28 1966-08-23 Superior Electric Co Linear electric motor
JPS4946004U (fr) * 1972-07-31 1974-04-23
US3984711A (en) * 1975-04-07 1976-10-05 Warner Electric Brake & Clutch Company Variable reluctance step motor with permanent magnets
US4190779A (en) * 1976-05-04 1980-02-26 Ernest Schaeffer Step motors
US4315171A (en) * 1977-05-23 1982-02-09 Ernest Schaeffer Step motors
US4246504A (en) * 1978-06-21 1981-01-20 Horstmann Clifford Magnetics Limited Electric motors
JPS598145B2 (ja) * 1980-08-27 1984-02-23 ブラザー工業株式会社 Vr形リニアステップモ−タ
JPS5795174A (en) * 1980-12-02 1982-06-12 Toshiba Corp Stepped motor
JPS57126264A (en) * 1981-01-26 1982-08-05 Kiju Iizuka Generator
US4501980A (en) * 1982-06-04 1985-02-26 Motornetics Corporation High torque robot motor
DE3476497D1 (en) * 1983-05-02 1989-03-02 Weh Herbert Electric drive
US4712028A (en) * 1984-05-21 1987-12-08 Sigma Instruments, Inc. Magnetically assisted stepping motor
US4675582A (en) * 1985-12-24 1987-06-23 E. I. Du Pont De Nemours And Company System useful for controlling multiple synchronous secondaries of a linear motor along an elongated path

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1491441A (en) * 1921-12-05 1924-04-22 Gen Electric High-speed alternating-current dynamo-electric machine
FR1556113A (fr) * 1967-03-09 1969-01-31
US4306164A (en) * 1977-12-19 1981-12-15 Oki Electric Industry Co. Ltd. Pulse motor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENTS ABSTRACTS OF JAPAN, vol. 6, no. 182 (E-131) [1060], 18 septembre 1982; & JP - A - 57 95 174 (TOKYO SHIBAURA DENKI K.K.) 12-06-1982 *
PATENTS ABSTRACTS OF JAPAN, vol. 6, no. 222 (E-140)[1100], 6 novembre 1982; & JP - A - 57 126 264 (KIJIYUU IIZUKA) 05-08-1982 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0183792A1 (fr) * 1984-05-21 1986-06-11 Sigma Instruments Inc Moteur pas a pas a assistance magnetique.
EP0183792A4 (fr) * 1984-05-21 1986-11-07 Sigma Instruments Inc Moteur pas a pas a assistance magnetique.
US4712028A (en) * 1984-05-21 1987-12-08 Sigma Instruments, Inc. Magnetically assisted stepping motor
US4713570A (en) * 1986-06-04 1987-12-15 Pacific Scientific Co. Magnetically enhanced variable reluctance motor systems
US8847464B2 (en) 2008-06-12 2014-09-30 General Electric Company Electrical machine with improved stator flux pattern across a rotor that permits higher torque density
US9537362B2 (en) 2008-06-12 2017-01-03 General Electric Company Electrical machine with improved stator flux pattern across a rotor for providing high torque density
FR2945683A1 (fr) * 2009-05-18 2010-11-19 Erneo Machine vernier a aimants insires.
WO2010133796A1 (fr) * 2009-05-18 2010-11-25 Erneo Machine vernier a aimants insérés
WO2011135062A3 (fr) * 2010-04-30 2012-08-02 Alstom Hydro France Machine tournante électrique, notamment machine synchrone à aimants permanents
US8749104B2 (en) 2010-04-30 2014-06-10 Alstom Renewable Technologies Rotating electric machine, especially synchronous permanent magnet machine

Also Published As

Publication number Publication date
ES542205A0 (es) 1986-05-16
FR2563059A1 (fr) 1985-10-18
FR2563059B1 (fr) 1988-04-15
ES8607640A1 (es) 1986-05-16
US4758756A (en) 1988-07-19
EP0158935B1 (fr) 1988-11-09
JPS60234447A (ja) 1985-11-21
DE3566202D1 (en) 1988-12-15

Similar Documents

Publication Publication Date Title
EP0158935B1 (fr) Machine electrodynamique vernier
EP0155877B1 (fr) Machine électrodynamique vernier
EP0909010B1 (fr) Machine électrique à commutation de flux, et notamment alternateur de véhicule automobile
WO1983002042A1 (fr) Moteur pas a pas electrique
EP2880742A1 (fr) Moteur electrique optimise a dents etroites
WO1998047216A1 (fr) Machine polyphasee sans balais, notamment alternateur de vehicule automobile
CH653189A5 (fr) Moteur pas a pas electrique.
FR2604833A1 (fr) Machine tournante electrique du type moteur pas a pas
CH659744A5 (fr) Transducteur electromecanique.
EP3811505B1 (fr) Machine électrique tournante ayant une configuration de rotor réduisant les ondulations de couple
EP0312464B1 (fr) Machine électrique notamment à entrefers radiaux
EP2201662A1 (fr) Moteur electrique de manoeuvre d'un element d'occultation ou de protection solaire dans un batiment
EP0321332B1 (fr) Moteur électrique à haut rendement et à faible ondulation de couple
WO2008096062A2 (fr) Machine électrique motrice ou génératrice polyphasée
EP0268619A1 (fr) Dispositif d'actionnement electromagnetique.
WO2021028760A1 (fr) Système de vis-écrou magnétiques
FR3001841A1 (fr) Moteur ou generatrice electromagnetique polyentrefers a aimants permanents et elements a bobinage sans fer
EP0197849A1 (fr) Réducteur de vitesse de type vernier
FR3086118A1 (fr) Machine electrique tournante munie d'un rotor a masse reduite
WO2022128550A1 (fr) Moteur electrique a flux axial
FR2716046A1 (fr) Machine électrique tournante à bobinage global.
FR2743217A1 (fr) Accelarateur ou actionneur lineaire
EP0718960B1 (fr) Moteur pas à pas multipolaire polyphasé
FR2606225A1 (fr) Actionneur electromagnetique a deux entrefers
EP0096044A1 (fr) Moteur pas a pas electrique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTHOM

17P Request for examination filed

Effective date: 19860417

17Q First examination report despatched

Effective date: 19870714

D17Q First examination report despatched (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3566202

Country of ref document: DE

Date of ref document: 19881215

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85104113.7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960129

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960205

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19970430

BERE Be: lapsed

Owner name: ALSTHOM

Effective date: 19970430

EUG Se: european patent has lapsed

Ref document number: 85104113.7

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

Ref country code: CH

Ref legal event code: PFA

Free format text: GEC ALSTHOM PARVEX SA TRANSFER- PARVEX * KLEBER MOZART TRANSFER- GEC ALSTHOM SA * KLEBER GIRAUDOUX -DANN IN- GEC ALSTHOM PARVEX SA

Ref country code: CH

Ref legal event code: PUE

Owner name: ALSTHOM TRANSFER- KLEBER MOZART * GEC ALSTHOM SA -

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

NLS Nl: assignments of ep-patents

Owner name: KLEBER GIRAUDOUX;KLEBER MOZART

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: PARVEX SA;GEC ALSTHOM PARVEX SA;GEC ALSTHOM SA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010202

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010409

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010425

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010430

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010601

Year of fee payment: 17

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020409

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20021101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST