EP0142178B2 - Ultrasonic transducer - Google Patents
Ultrasonic transducer Download PDFInfo
- Publication number
- EP0142178B2 EP0142178B2 EP84201200A EP84201200A EP0142178B2 EP 0142178 B2 EP0142178 B2 EP 0142178B2 EP 84201200 A EP84201200 A EP 84201200A EP 84201200 A EP84201200 A EP 84201200A EP 0142178 B2 EP0142178 B2 EP 0142178B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- piezoelectric material
- layer
- layers
- acoustic impedance
- medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims description 34
- 239000000758 substrate Substances 0.000 claims description 4
- 230000006978 adaptation Effects 0.000 description 14
- 230000035945 sensitivity Effects 0.000 description 8
- 238000013016 damping Methods 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 3
- 238000012550 audit Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- -1 vinylidène Chemical class 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/02—Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators
Definitions
- the present invention relates to an ultrasonic transducer comprising a substrate constituting a rear medium, a layer of piezoelectric material and one or more adaptation layers, the values of the impedances of the layer of piezoelectric material, acoustic impedance adaptation layers and of the medium before propagation forming, considered in this order, a decreasing sequence.
- An ultrasonic transducer essentially consists, in a conventional manner, of a substrate constituting a rear absorption or reflection medium, a layer of piezoelectric material equipped with electrodes on its front and rear faces and at least one layer. acoustic impedance matching, placed in front of the piezoelectric material, between it and the propagation medium. Transducers of this type are notably described in the article "The effects of backing and matching on the performance of piezoelectric ceramic transducers" by G. Kossoff, published in the journal IEEE Transactions on sonics and ultrasonics, volume SU-13, March 1966 , pages 20 to 30. The implementation of one or more of these adaptation layers has the main effect of improving the sensitivity of the transducers and also contributes to increasing their bandwidth.
- the ultrasonic transducers used in ultrasound must combine two main qualities at the level of transduction: not only good sensitivity (because the increase in signal-to-noise ratio facilitates the processing of received signals) but also sufficient damping (because the brevity of the impulse response conditions the axial resolution).
- the object of the invention is to propose an ultrasonic transducer which easily reconciles the requirements of sensitivity and damping.
- the invention relates to an ultrasonic transducer as defined in the preamble to the description and further characterized in that the adaptation layers are placed in identical number on either side of the piezoelectric material, the layers located symmetrically two by two having the same acoustic impedance value and the same thickness, in that the rear medium has an acoustic impedance value substantially equal to that of the medium before propagation, and in that the thickness of the layer of piezoelectric material is equal to half the wavelength associated with the resonant frequency of the transducer, so that the structure is symmetrical with respect to the median plane of the layer of piezoelectric material.
- FIG. 1 shows an embodiment of a transducer according to the invention.
- the embodiment represented in FIG. 1 consists of an ultrasonic transducer with vibration in thickness mode, totally symmetrical, composed of a substrate 10 constituting the rear medium of the transducer, of a layer 20 of piezoelectric material of thickness equal to the half the wavelength associated with the resonant frequency of the transducer and covered on its front and rear faces with metal sheets 21 and 22 constituting first and second electrodes (connected in a known manner to a polarization circuit not shown which provides the excitation potential), and of two acoustic impedance adaptation layers 30, 40 known as quarter-wave interference layers and situated on the one hand between the rear medium and the piezoelectric material and on the other hand between this material and the medium before propagation 50.
- the values of the acoustic impedances form a decreasing sequence from that of the piezoelectric material and these impedance values as well as the thicknesses of the adaptation layers 30, 40 are symmetrical on either side of this material. From this symmetry of the structure, it follows that the deformations on the two faces of the piezoelectric material are identical (since these two faces are acoustically charged identically) and that, consequently, the deformation is zero in the median plane of this material. The part of the structure which is located on only one side of this median plane is therefore equivalent to an infinitely rigid rear medium, that is to say with zero deformation.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
La présente invention concerne un transducteur ultrasonore comprenant un substrat constituant un milieu arrière, une couche de matériau piézoélectrique et une ou plusieurs couches d'adaptation, les valeurs des impédances de la couche de matériau piézoélectrique, des couches d'adaptation d'impédance acoustique et du milieu avant de propagation formant, considérées dans cet ordre, une suite décroissante.The present invention relates to an ultrasonic transducer comprising a substrate constituting a rear medium, a layer of piezoelectric material and one or more adaptation layers, the values of the impedances of the layer of piezoelectric material, acoustic impedance adaptation layers and of the medium before propagation forming, considered in this order, a decreasing sequence.
Un transducteur ultrasonore est constitué essentiellement, de façon classique, d'un substrat constituant un milieu arrière d'absorption ou de réflexion, d'une couche de matériau piézoélectrique équipée d'électrodes sur ses faces avant et arrière et d'au moins une couche d'adaptation d'impédance acoustique, placée devant le matériau piézoélectrique, entre celui-ci et le milieu de propagation. Des transducteurs de ce type sont notamment décrits dans l'article "The effects of backing and matching on the performance of piezoelectric ceramic transducers" de G. Kossoff, paru dans la revue IEEE Transactions on sonics and ultrasonics, volume SU-13, mars 1966, pages 20 à 30. La mise en place d'une ou de plusieurs de ces couches d'adaptation a pour effet principal d'améliorer la sensibilité des transducteurs et contribue également à augmenter leur largeur de bande.An ultrasonic transducer essentially consists, in a conventional manner, of a substrate constituting a rear absorption or reflection medium, a layer of piezoelectric material equipped with electrodes on its front and rear faces and at least one layer. acoustic impedance matching, placed in front of the piezoelectric material, between it and the propagation medium. Transducers of this type are notably described in the article "The effects of backing and matching on the performance of piezoelectric ceramic transducers" by G. Kossoff, published in the journal IEEE Transactions on sonics and ultrasonics, volume SU-13, March 1966 ,
On rappellera ici que les transducteurs ultrasonores utilisés en échographie doivent réunir deux qualités principales au niveau de la transduction : non seulement une bonne sensibilité (car l'augmentation du rapport signal-sur-bruit facilite le traitement des signaux reçus) mais aussi un amortissement suffisant (car la brièveté de la réponse impulsionnelle conditionne la résolution axiale).It will be recalled here that the ultrasonic transducers used in ultrasound must combine two main qualities at the level of transduction: not only good sensitivity (because the increase in signal-to-noise ratio facilitates the processing of received signals) but also sufficient damping (because the brevity of the impulse response conditions the axial resolution).
Le but de l'invention est de proposer un transducteur ultrasonore conciliant de façon simple les exigences de sensibilité et d'amortissement.The object of the invention is to propose an ultrasonic transducer which easily reconciles the requirements of sensitivity and damping.
L'invention concerne à cet effet un transducteur ultrasonore tel que défini dans le préambule de la description et en outre caractérisé en ce que les couches d'adaptation sont placées en nombre identique de part et d'autre du matériau piézoélectrique, les couches situées symétriquement deux à deux ayant la même valeur d'impédance acoustique et la même épaisseur, en ce que le milieu arrière a une valeur d'impédance acoustique sensiblement égale à celle du milieu avant de propagation, et en ce que l'épaisseur de la couche de matériau piézoélectrique est égale à la moitié de la longueur d'onde associée à la fréquence de résonance du transducteur, de façon que la structure soit symétrique par rapport au plan médian de la couche de matériau piézoélectrique.To this end, the invention relates to an ultrasonic transducer as defined in the preamble to the description and further characterized in that the adaptation layers are placed in identical number on either side of the piezoelectric material, the layers located symmetrically two by two having the same acoustic impedance value and the same thickness, in that the rear medium has an acoustic impedance value substantially equal to that of the medium before propagation, and in that the thickness of the layer of piezoelectric material is equal to half the wavelength associated with the resonant frequency of the transducer, so that the structure is symmetrical with respect to the median plane of the layer of piezoelectric material.
La demande de brevet européen publiée N° EP-A-0015886 décrit diverses réalisations de transducteurs ultrasonores qui, toutes, comprennent d'une part une couche de matériau piézoélectrique et d'autre part une ou plusieurs couches dites additionnelles, placées juste en avant et/ou en arrière dudit matériau piézoélectrique et qui ont une impédance acoustique égale à ou très voisine de celle de ce matériau. La modélisation dite de Cook-Redwood, exposée pour la première fois par E.G. COOK, en 1956, dans la communication "Transient and steady-state response of ultrasonic piezoelectric transducers", IRE Conv. Record, 4, 1956, pages 61-69, et généralisée par M. Redwood, permet cependant d'effectuer l'analyse mathématique des structures proposées dans ce document cité et de montrer que ces couches additionnelles jouent un rôle piézoélectrique. Cette analyse montre en effet que le régime des vibrations ultrasonores s'établit non pas dans le seul matériau piézoélectrique, mais dans la cavité globale constituée par ce matériau et la ou les couches additionnelles. Ces couches augmentent artificiellement l'épaisseur du matériau piézoélectrique, et abaissent donc la fréquence de travail de celui-ci, pour rendre cette fréquence compatible avec la gamme des fréquences dans laquelle se situent les applications médicales. Elles jouent donc un rôle sans rapport avec le rôle d'amortissement tenu par les couches d'adaptation d'impédance acoustique prévues dans le cas de la présente invention.The published European patent application No. EP-A-0015886 describes various embodiments of ultrasonic transducers which all comprise on the one hand a layer of piezoelectric material and on the other hand one or more so-called additional layers, placed just in front and / or behind said piezoelectric material and which have an acoustic impedance equal to or very close to that of this material. The so-called Cook-Redwood modeling, exposed for the first time by EG COOK, in 1956, in the communication "Transient and steady-state response of ultrasonic piezoelectric transducers", IRE Conv. Record, 4, 1956, pages 61-69, and generalized by M. Redwood, allows however to carry out the mathematical analysis of the structures proposed in this cited document and to show that these additional layers play a piezoelectric role. This analysis indeed shows that the regime of ultrasonic vibrations is established not only in the piezoelectric material, but in the overall cavity formed by this material and the additional layer or layers. These layers artificially increase the thickness of the piezoelectric material, and therefore lower the working frequency thereof, to make this frequency compatible with the range of frequencies within which locate medical applications. They therefore play a role unrelated to the damping role held by the acoustic impedance matching layers provided in the case of the present invention.
Les particularités et avantages de cette invention vont être maintenant décrits ci-dessous plus en détail en se référant à la figure 1, donnée à titre d'exemple non limitatif et qui montre une réalisation de transducteur conforme à l'invention.The features and advantages of this invention will now be described below in more detail with reference to FIG. 1, given by way of nonlimiting example and which shows an embodiment of a transducer according to the invention.
La réalisation représentée sur la figure 1 consiste en un transducteur ultrasonore à vibration en mode d'épaisseur, totalement symétrique, composé d'un substrat 10 constituant le milieu arrière de transducteur, d'une couche 20 de matériau piézoélectrique d'épaisseur égale à la moitié de la longueur d'onde associée à la fréquence de résonance du transducteur et recouverte sur ses faces avant et arrière de feuilles métalliques 21 et 22 constituant des première et deuxième électrodes (reliées de façon connue à un circuit de polarisation non représenté qui fournit le potentiel d'excitation), et de deux couches 30, 40 d'adaptation d'impédance acoustique dites couches interférentielles quart d'onde et situées d'une part entre le milieu arrière et le matériau piézoélectrique et d'autre part entre ce matériau et le milieu avant de propagation 50. Dans cette structure, les valeurs des impédances acoustiques forment une suite décroissante à partir de celle du matériau piézoélectrique et ces valeurs d'impédance ainsi que les épaisseurs des couches 30, 40 d'adaptation sont symétriques de part et d'autre de ce matériau. De cette symétrie de la structure, il résulte que les déformations sur les deux faces du matériau piézoélectrique sont identiques (puisque ces deux faces sont, acoustiquement, chargées de façon identique) et que, par suite, la déformation est nulle dans le plan médian de ce matériau. La partie de la structure qui se trouve située d'un seul côté de ce plan médian est donc équivalente à un milieu arrière infiniment rigide, c'est-à-dire à déformation nulle.The embodiment represented in FIG. 1 consists of an ultrasonic transducer with vibration in thickness mode, totally symmetrical, composed of a
Les test et simulations effectués avec une structure ainsi constituée montrent que le spectre (ou module de la transformée de Fourier) de la réponse électrique en mode échographique à une excitation électrique de type impulsionnel et de durée effective égale au temps de vol dans le matériau piézoélectrique (le temps de vol est la durée du parcours des ondes ultrasonores d'une face à l'autre du matériau piézoélectrique) vibrant suivant son épaisseur égale à la moitié de la longueur d'onde ultrasonore à la fréquence d'émission du transducteur est de forme gaussienne ; par suite, l'enveloppe de la réponse électrique est également gaussienne et cette réponse s'amortit rapidement. Les essais réalisés (dans d'égales conditions électriques d'émission et de réception) ont montré la possibilité d'obtenir effectivement diverses structures répondant aux objectifs de l'invention (sensibilité et amortissement simultanément satisfaisants). Dans le cas où le matériau piézoélectrique est une céramique ferroélectrique de type PZT-5 (matériau piézoélectrique à base de zirconate titanate de plomb : voir l'ouvrage "Physical Acoustics, Principles and Methods", de Warren P. Mason, Vol.1, partie A, page 202), on peut citer l'exemple suivant (à deux couches d'adaptation d'impédance acoustique) d'une telle structure dite à symétrie totale :
- (a) impédances (en kg/cm².sec x 10⁶) :
- milieu arrière : 1,5
- couches d'adaptation : 1,8 et 4
- matériau piézoélectrique : 30
- couches d'adaptation : 4 et 1,8
- milieu avant de propagation : 1,5
- (b) résultats obtenus :
- indice de sensibilité : -13 dB
- largeur de bande relative à -6 dB = 53 %
- durée de réponse à -20 dB = 7,79 τ
- durée de réponse à -40 dB = 9,8 τ
On rappellera ici que la sensibilité est caractérisée par un indice de sensibilité dont l'expression en dB est du
- (a) impédances :
- milieu arrière et avant : 1,5
- couches d'adaptation arrière et avant : 1,8
- matériau piézoélectrique : 4,6
- (b) résultats obtenus :
- indice de sensibilité : -23,8 dB
- largeur de bande relative à -6 dB = 75 %
- durée de réponse à -20 dB = 5,63 τ
- durée de réponse à -40 dB = 8 τ
- (a) impedances (in kg / cm².sec x 10⁶):
- mid back: 1.5
- adaptation layers: 1.8 and 4
- piezoelectric material: 30
- adaptation layers: 4 and 1.8
- medium before propagation: 1.5
- (b) results obtained:
- sensitivity index: -13 dB
- relative bandwidth at -6 dB = 53%
- response time at -20 dB = 7.79 τ
- response time at -40 dB = 9.8 τ
It will be recalled here that the sensitivity is characterized by a sensitivity index whose expression in dB is of the
- (a) impedances:
- mid back and front: 1.5
- rear and front adaptation layers: 1.8
- piezoelectric material: 4.6
- (b) results obtained:
- sensitivity index: -23.8 dB
- relative bandwidth at -6 dB = 75%
- response time at -20 dB = 5.63 τ
- response time at -40 dB = 8 τ
Bien entendu la présente invention n'est pas limitée aux exemples de réalisation décrits, à partir desquels des variantes peuvent être proposées sans pour cela sortir du cadre de l'invention, en particulier celles dans lesquelles on aurait choisi un nombre différent de couches d'adaptation d'impédance acoustique entre le matériau piézoélectrique et les milieux extrêmes.Of course the present invention is not limited to the embodiments described, from which variants can be proposed without departing from the scope of the invention, in particular those in which a different number of layers of material would have been chosen. adaptation of acoustic impedance between the piezoelectric material and the extreme environments.
Claims (1)
- An ultrasonic transducer, comprising a substrate (10) which forms a backing medium, a layer (20) of piezoelectric material, and one or more matching layers (30, 40), the impedance values of the layer (20) of piezoelectric material, of the acoustic impedance matching layers, and of the propagation medium (50) in front forming a descending progression in this order, characterized in that an equal number of matching layers (30, 40) is provided on both sided of the piezoelectric material (20), the pair-wise symmetrical situated layers having the same acoustic impedance value and the same thickness, in that the backing medium has an acoustic impedance value which is substantially equal to that of the propagation medium (50) in front, and in that the thickness of the layer (20) of piezoelectric material is equal to one half of the wavelength associated with the resonant frequency of the transducer, so that the structure is symmetrical with respect to the central plane of the layer of piezoelectric material.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8313986 | 1983-08-31 | ||
FR8313986A FR2551611B1 (en) | 1983-08-31 | 1983-08-31 | NOVEL ULTRASONIC TRANSDUCER STRUCTURE AND ULTRASONIC ECHOGRAPHY MEDIA EXAMINATION APPARATUS COMPRISING SUCH A STRUCTURE |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0142178A1 EP0142178A1 (en) | 1985-05-22 |
EP0142178B1 EP0142178B1 (en) | 1990-01-03 |
EP0142178B2 true EP0142178B2 (en) | 1994-01-12 |
Family
ID=9291921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP84201200A Expired - Lifetime EP0142178B2 (en) | 1983-08-31 | 1984-08-20 | Ultrasonic transducer |
Country Status (7)
Country | Link |
---|---|
US (1) | US4771205A (en) |
EP (1) | EP0142178B2 (en) |
JP (1) | JPH0640676B2 (en) |
CA (1) | CA1260603A (en) |
DE (1) | DE3480968D1 (en) |
FR (1) | FR2551611B1 (en) |
IL (1) | IL72791A (en) |
Families Citing this family (117)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60100950A (en) * | 1983-11-09 | 1985-06-04 | 松下電器産業株式会社 | Ultrasonic probe |
NL8501908A (en) * | 1985-07-03 | 1987-02-02 | Tno | PROBE SENSOR. |
US5119840A (en) * | 1986-04-07 | 1992-06-09 | Kaijo Kenki Co., Ltd. | Ultrasonic oscillating device and ultrasonic washing apparatus using the same |
EP0369127A3 (en) * | 1988-09-29 | 1991-11-06 | Siemens Aktiengesellschaft | Compound ultrasonar sonar transducer |
US5212671A (en) * | 1989-06-22 | 1993-05-18 | Terumo Kabushiki Kaisha | Ultrasonic probe having backing material layer of uneven thickness |
DE3920663A1 (en) * | 1989-06-23 | 1991-01-10 | Siemens Ag | WIDE-RADIATION ULTRASONIC transducer |
EP0451306B1 (en) * | 1990-04-09 | 1997-07-16 | Siemens Aktiengesellschaft | Frequency-selective laminated ultrasound transducer |
US5187403A (en) * | 1990-05-08 | 1993-02-16 | Hewlett-Packard Company | Acoustic image signal receiver providing for selectively activatable amounts of electrical signal delay |
US5268610A (en) * | 1991-12-30 | 1993-12-07 | Xerox Corporation | Acoustic ink printer |
US5355048A (en) * | 1993-07-21 | 1994-10-11 | Fsi International, Inc. | Megasonic transducer for cleaning substrate surfaces |
US5777230A (en) * | 1995-02-23 | 1998-07-07 | Defelsko Corporation | Delay line for an ultrasonic probe and method of using same |
ES2183757T5 (en) † | 1995-06-19 | 2009-07-06 | Denso Corporation | ELECTROMAGNETIC COIL. |
US5706564A (en) * | 1995-07-27 | 1998-01-13 | General Electric Company | Method for designing ultrasonic transducers using constraints on feasibility and transitional Butterworth-Thompson spectrum |
US5648941A (en) * | 1995-09-29 | 1997-07-15 | Hewlett-Packard Company | Transducer backing material |
US6087198A (en) * | 1998-02-12 | 2000-07-11 | Texas Instruments Incorporated | Low cost packaging for thin-film resonators and thin-film resonator-based filters |
US6049159A (en) * | 1997-10-06 | 2000-04-11 | Albatros Technologies, Inc. | Wideband acoustic transducer |
US6050943A (en) | 1997-10-14 | 2000-04-18 | Guided Therapy Systems, Inc. | Imaging, therapy, and temperature monitoring ultrasonic system |
US5936150A (en) * | 1998-04-13 | 1999-08-10 | Rockwell Science Center, Llc | Thin film resonant chemical sensor with resonant acoustic isolator |
US6051913A (en) * | 1998-10-28 | 2000-04-18 | Hewlett-Packard Company | Electroacoustic transducer and acoustic isolator for use therein |
US6307302B1 (en) * | 1999-07-23 | 2001-10-23 | Measurement Specialities, Inc. | Ultrasonic transducer having impedance matching layer |
US6452310B1 (en) * | 2000-01-18 | 2002-09-17 | Texas Instruments Incorporated | Thin film resonator and method |
CN1322670C (en) * | 2000-11-27 | 2007-06-20 | 株式会社村田制作所 | Combined vibrator |
US7914453B2 (en) | 2000-12-28 | 2011-03-29 | Ardent Sound, Inc. | Visual imaging system for ultrasonic probe |
US6936009B2 (en) * | 2001-02-27 | 2005-08-30 | General Electric Company | Matching layer having gradient in impedance for ultrasound transducers |
DE10124349A1 (en) * | 2001-05-18 | 2002-12-05 | Infineon Technologies Ag | Piezoelectric resonator device with detuning layer sequence |
DE10321701B4 (en) * | 2002-05-24 | 2009-06-10 | Murata Manufacturing Co., Ltd., Nagaokakyo | Longitudinally coupled multi-mode piezoelectric bulk wave filter device, longitudinally coupled piezoelectric multi-mode bulk wave filter and electronic component |
GB2391625A (en) | 2002-08-09 | 2004-02-11 | Diagnostic Ultrasound Europ B | Instantaneous ultrasonic echo measurement of bladder urine volume with a limited number of ultrasound beams |
US7819806B2 (en) | 2002-06-07 | 2010-10-26 | Verathon Inc. | System and method to identify and measure organ wall boundaries |
US20060006765A1 (en) * | 2004-07-09 | 2006-01-12 | Jongtae Yuk | Apparatus and method to transmit and receive acoustic wave energy |
US7520857B2 (en) * | 2002-06-07 | 2009-04-21 | Verathon Inc. | 3D ultrasound-based instrument for non-invasive measurement of amniotic fluid volume |
US8221322B2 (en) | 2002-06-07 | 2012-07-17 | Verathon Inc. | Systems and methods to improve clarity in ultrasound images |
US8221321B2 (en) | 2002-06-07 | 2012-07-17 | Verathon Inc. | Systems and methods for quantification and classification of fluids in human cavities in ultrasound images |
US20060197409A1 (en) * | 2003-04-15 | 2006-09-07 | Koninklijke Philips Electonics, N.V. | Two-dimensional (2d) array capable of harmonic generation for ultrasound imaging |
US7824348B2 (en) | 2004-09-16 | 2010-11-02 | Guided Therapy Systems, L.L.C. | System and method for variable depth ultrasound treatment |
US9011336B2 (en) * | 2004-09-16 | 2015-04-21 | Guided Therapy Systems, Llc | Method and system for combined energy therapy profile |
US7393325B2 (en) | 2004-09-16 | 2008-07-01 | Guided Therapy Systems, L.L.C. | Method and system for ultrasound treatment with a multi-directional transducer |
US8535228B2 (en) | 2004-10-06 | 2013-09-17 | Guided Therapy Systems, Llc | Method and system for noninvasive face lifts and deep tissue tightening |
US8444562B2 (en) | 2004-10-06 | 2013-05-21 | Guided Therapy Systems, Llc | System and method for treating muscle, tendon, ligament and cartilage tissue |
US7530958B2 (en) * | 2004-09-24 | 2009-05-12 | Guided Therapy Systems, Inc. | Method and system for combined ultrasound treatment |
US10864385B2 (en) | 2004-09-24 | 2020-12-15 | Guided Therapy Systems, Llc | Rejuvenating skin by heating tissue for cosmetic treatment of the face and body |
US11883688B2 (en) | 2004-10-06 | 2024-01-30 | Guided Therapy Systems, Llc | Energy based fat reduction |
US9827449B2 (en) | 2004-10-06 | 2017-11-28 | Guided Therapy Systems, L.L.C. | Systems for treating skin laxity |
US8133180B2 (en) | 2004-10-06 | 2012-03-13 | Guided Therapy Systems, L.L.C. | Method and system for treating cellulite |
EP2409728B1 (en) | 2004-10-06 | 2017-09-27 | Guided Therapy Systems, L.L.C. | System for ultrasound tissue treatment |
US7530356B2 (en) * | 2004-10-06 | 2009-05-12 | Guided Therapy Systems, Inc. | Method and system for noninvasive mastopexy |
US7758524B2 (en) | 2004-10-06 | 2010-07-20 | Guided Therapy Systems, L.L.C. | Method and system for ultra-high frequency ultrasound treatment |
US9694212B2 (en) | 2004-10-06 | 2017-07-04 | Guided Therapy Systems, Llc | Method and system for ultrasound treatment of skin |
EP2279697A3 (en) | 2004-10-06 | 2014-02-19 | Guided Therapy Systems, L.L.C. | Method and system for non-invasive cosmetic enhancement of blood vessel disorders |
US11235179B2 (en) | 2004-10-06 | 2022-02-01 | Guided Therapy Systems, Llc | Energy based skin gland treatment |
US20060111744A1 (en) | 2004-10-13 | 2006-05-25 | Guided Therapy Systems, L.L.C. | Method and system for treatment of sweat glands |
US8690779B2 (en) | 2004-10-06 | 2014-04-08 | Guided Therapy Systems, Llc | Noninvasive aesthetic treatment for tightening tissue |
US11207548B2 (en) | 2004-10-07 | 2021-12-28 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US11724133B2 (en) | 2004-10-07 | 2023-08-15 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
EP1875327A2 (en) | 2005-04-25 | 2008-01-09 | Guided Therapy Systems, L.L.C. | Method and system for enhancing computer peripheral saftey |
US9566454B2 (en) * | 2006-09-18 | 2017-02-14 | Guided Therapy Systems, Llc | Method and sysem for non-ablative acne treatment and prevention |
EP2152351B1 (en) | 2007-05-07 | 2016-09-21 | Guided Therapy Systems, L.L.C. | Methods and systems for modulating medicants using acoustic energy |
US20150174388A1 (en) | 2007-05-07 | 2015-06-25 | Guided Therapy Systems, Llc | Methods and Systems for Ultrasound Assisted Delivery of a Medicant to Tissue |
US8167803B2 (en) | 2007-05-16 | 2012-05-01 | Verathon Inc. | System and method for bladder detection using harmonic imaging |
US8133181B2 (en) | 2007-05-16 | 2012-03-13 | Verathon Inc. | Device, system and method to measure abdominal aortic aneurysm diameter |
US8456957B2 (en) * | 2008-01-29 | 2013-06-04 | Schneider Electric USA, Inc. | Ultrasonic transducer for a proximity sensor |
US7804742B2 (en) * | 2008-01-29 | 2010-09-28 | Hyde Park Electronics Llc | Ultrasonic transducer for a proximity sensor |
US8129886B2 (en) * | 2008-02-29 | 2012-03-06 | General Electric Company | Apparatus and method for increasing sensitivity of ultrasound transducers |
US12102473B2 (en) | 2008-06-06 | 2024-10-01 | Ulthera, Inc. | Systems for ultrasound treatment |
PT3058875T (en) | 2008-06-06 | 2022-09-20 | Ulthera Inc | A system and method for cosmetic treatment and imaging |
WO2010075547A2 (en) | 2008-12-24 | 2010-07-01 | Guided Therapy Systems, Llc | Methods and systems for fat reduction and/or cellulite treatment |
US9068775B2 (en) | 2009-02-09 | 2015-06-30 | Heat Technologies, Inc. | Ultrasonic drying system and method |
US8264126B2 (en) * | 2009-09-01 | 2012-09-11 | Measurement Specialties, Inc. | Multilayer acoustic impedance converter for ultrasonic transducers |
US8715186B2 (en) | 2009-11-24 | 2014-05-06 | Guided Therapy Systems, Llc | Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy |
KR101173277B1 (en) * | 2010-03-15 | 2012-08-13 | 주식회사 휴먼스캔 | Ultrasound probe using rear acoustic matching layer |
US9504446B2 (en) | 2010-08-02 | 2016-11-29 | Guided Therapy Systems, Llc | Systems and methods for coupling an ultrasound source to tissue |
WO2012018386A2 (en) | 2010-08-02 | 2012-02-09 | Guided Therapy Systems, Llc | Systems and methods for ultrasound treatment |
US8857438B2 (en) | 2010-11-08 | 2014-10-14 | Ulthera, Inc. | Devices and methods for acoustic shielding |
WO2013009784A2 (en) | 2011-07-10 | 2013-01-17 | Guided Therapy Systems, Llc | Systems and method for accelerating healing of implanted material and/or native tissue |
KR20140047709A (en) | 2011-07-11 | 2014-04-22 | 가이디드 테라피 시스템스, 엘.엘.씨. | Systems and methods for coupling an ultrasound source to tissue |
US9263663B2 (en) | 2012-04-13 | 2016-02-16 | Ardent Sound, Inc. | Method of making thick film transducer arrays |
US9510802B2 (en) | 2012-09-21 | 2016-12-06 | Guided Therapy Systems, Llc | Reflective ultrasound technology for dermatological treatments |
EP2775730A1 (en) | 2013-03-05 | 2014-09-10 | British Telecommunications public limited company | Video data provision |
EP2775731A1 (en) | 2013-03-05 | 2014-09-10 | British Telecommunications public limited company | Provision of video data |
CN113648551A (en) | 2013-03-08 | 2021-11-16 | 奥赛拉公司 | Apparatus and method for multi-focal ultrasound therapy |
WO2014146022A2 (en) | 2013-03-15 | 2014-09-18 | Guided Therapy Systems Llc | Ultrasound treatment device and methods of use |
GB2513884B (en) | 2013-05-08 | 2015-06-17 | Univ Bristol | Method and apparatus for producing an acoustic field |
EP2819418A1 (en) | 2013-06-27 | 2014-12-31 | British Telecommunications public limited company | Provision of video data |
US9612658B2 (en) | 2014-01-07 | 2017-04-04 | Ultrahaptics Ip Ltd | Method and apparatus for providing tactile sensations |
CA3177417A1 (en) | 2014-04-18 | 2015-10-22 | Ulthera, Inc. | Band transducer ultrasound therapy |
GB2530036A (en) | 2014-09-09 | 2016-03-16 | Ultrahaptics Ltd | Method and apparatus for modulating haptic feedback |
JP2016086956A (en) * | 2014-10-31 | 2016-05-23 | セイコーエプソン株式会社 | Ultrasonic probe, electronic apparatus, and ultrasonogram device |
JP6771473B2 (en) | 2015-02-20 | 2020-10-21 | ウルトラハプティクス アイピー リミテッドUltrahaptics Ip Ltd | Improved algorithm in the tactile system |
EP3916525B1 (en) | 2015-02-20 | 2024-09-18 | Ultrahaptics IP Limited | Perceptions in a haptic system |
US10134973B2 (en) * | 2015-03-02 | 2018-11-20 | Edan Instruments, Inc. | Ultrasonic transducer and manufacture method thereof |
JP6552644B2 (en) | 2015-05-11 | 2019-07-31 | メジャメント スペシャリティーズ, インコーポレイテッド | Impedance matching layer for ultrasonic transducers with metallic protective structure |
US10818162B2 (en) | 2015-07-16 | 2020-10-27 | Ultrahaptics Ip Ltd | Calibration techniques in haptic systems |
US11189140B2 (en) | 2016-01-05 | 2021-11-30 | Ultrahaptics Ip Ltd | Calibration and detection techniques in haptic systems |
KR102615327B1 (en) | 2016-01-18 | 2023-12-18 | 얼테라, 인크 | Compact ultrasonic device with annular ultrasonic array locally electrically connected to a flexible printed circuit board and method of assembling the same |
US10531212B2 (en) | 2016-06-17 | 2020-01-07 | Ultrahaptics Ip Ltd. | Acoustic transducers in haptic systems |
US10268275B2 (en) | 2016-08-03 | 2019-04-23 | Ultrahaptics Ip Ltd | Three-dimensional perceptions in haptic systems |
US10755538B2 (en) | 2016-08-09 | 2020-08-25 | Ultrahaptics ilP LTD | Metamaterials and acoustic lenses in haptic systems |
ES2907588T3 (en) | 2016-08-16 | 2022-04-25 | Ulthera Inc | Systems and methods for the cosmetic treatment of the skin with ultrasound |
US10943578B2 (en) | 2016-12-13 | 2021-03-09 | Ultrahaptics Ip Ltd | Driving techniques for phased-array systems |
US10497358B2 (en) | 2016-12-23 | 2019-12-03 | Ultrahaptics Ip Ltd | Transducer driver |
EP3384849B1 (en) * | 2017-04-07 | 2022-06-08 | Esaote S.p.A. | Ultrasound probe with acoustic amplifier |
US11531395B2 (en) | 2017-11-26 | 2022-12-20 | Ultrahaptics Ip Ltd | Haptic effects from focused acoustic fields |
JP7029588B2 (en) * | 2017-12-06 | 2022-03-04 | パナソニックIpマネジメント株式会社 | Ultrasonic sensor |
US11360546B2 (en) | 2017-12-22 | 2022-06-14 | Ultrahaptics Ip Ltd | Tracking in haptic systems |
EP3729418A1 (en) | 2017-12-22 | 2020-10-28 | Ultrahaptics Ip Ltd | Minimizing unwanted responses in haptic systems |
TWI797235B (en) | 2018-01-26 | 2023-04-01 | 美商奧賽拉公司 | Systems and methods for simultaneous multi-focus ultrasound therapy in multiple dimensions |
US11944849B2 (en) | 2018-02-20 | 2024-04-02 | Ulthera, Inc. | Systems and methods for combined cosmetic treatment of cellulite with ultrasound |
EP4414556A3 (en) | 2018-05-02 | 2024-10-23 | Ultrahaptics IP Limited | Blocking plate structure for improved acoustic transmission efficiency |
US11098951B2 (en) | 2018-09-09 | 2021-08-24 | Ultrahaptics Ip Ltd | Ultrasonic-assisted liquid manipulation |
US11378997B2 (en) | 2018-10-12 | 2022-07-05 | Ultrahaptics Ip Ltd | Variable phase and frequency pulse-width modulation technique |
WO2020141330A2 (en) | 2019-01-04 | 2020-07-09 | Ultrahaptics Ip Ltd | Mid-air haptic textures |
US11842517B2 (en) | 2019-04-12 | 2023-12-12 | Ultrahaptics Ip Ltd | Using iterative 3D-model fitting for domain adaptation of a hand-pose-estimation neural network |
US11374586B2 (en) | 2019-10-13 | 2022-06-28 | Ultraleap Limited | Reducing harmonic distortion by dithering |
US11553295B2 (en) | 2019-10-13 | 2023-01-10 | Ultraleap Limited | Dynamic capping with virtual microphones |
WO2021090028A1 (en) | 2019-11-08 | 2021-05-14 | Ultraleap Limited | Tracking techniques in haptics systems |
US11715453B2 (en) | 2019-12-25 | 2023-08-01 | Ultraleap Limited | Acoustic transducer structures |
US11816267B2 (en) | 2020-06-23 | 2023-11-14 | Ultraleap Limited | Features of airborne ultrasonic fields |
US11886639B2 (en) | 2020-09-17 | 2024-01-30 | Ultraleap Limited | Ultrahapticons |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2427348A (en) * | 1941-08-19 | 1947-09-16 | Bell Telephone Labor Inc | Piezoelectric vibrator |
US3946149A (en) * | 1974-10-24 | 1976-03-23 | Cbs Inc. | Apparatus for embossing information on a disc |
AT353506B (en) * | 1976-10-19 | 1979-11-26 | List Hans | PIEZOELECTRIC RESONATOR |
US4096756A (en) * | 1977-07-05 | 1978-06-27 | Rca Corporation | Variable acoustic wave energy transfer-characteristic control device |
JPS54131380A (en) * | 1978-03-31 | 1979-10-12 | Hitachi Medical Corp | Dumbbell type ultrasonic wave detecting contacting piece |
US4211948A (en) * | 1978-11-08 | 1980-07-08 | General Electric Company | Front surface matched piezoelectric ultrasonic transducer array with wide field of view |
AU5637080A (en) * | 1979-03-13 | 1980-09-18 | Toray Industries, Inc. | Electro-acoustic transducer element |
US4383194A (en) * | 1979-05-01 | 1983-05-10 | Toray Industries, Inc. | Electro-acoustic transducer element |
US4297607A (en) * | 1980-04-25 | 1981-10-27 | Panametrics, Inc. | Sealed, matched piezoelectric transducer |
US4434384A (en) * | 1980-12-08 | 1984-02-28 | Raytheon Company | Ultrasonic transducer and its method of manufacture |
JPS57170708U (en) * | 1981-04-20 | 1982-10-27 | ||
JPS5817358A (en) * | 1981-07-23 | 1983-02-01 | Toshiba Corp | Ultrasonic probe |
US4507582A (en) * | 1982-09-29 | 1985-03-26 | New York Institute Of Technology | Matching region for damped piezoelectric ultrasonic apparatus |
JPS59166139A (en) * | 1983-03-10 | 1984-09-19 | 富士通株式会社 | Ultrasonic transducer |
-
1983
- 1983-08-31 FR FR8313986A patent/FR2551611B1/en not_active Expired
-
1984
- 1984-08-20 EP EP84201200A patent/EP0142178B2/en not_active Expired - Lifetime
- 1984-08-20 DE DE8484201200T patent/DE3480968D1/en not_active Expired - Lifetime
- 1984-08-24 US US06/644,161 patent/US4771205A/en not_active Expired - Fee Related
- 1984-08-28 IL IL72791A patent/IL72791A/en not_active IP Right Cessation
- 1984-08-30 CA CA000462119A patent/CA1260603A/en not_active Expired
- 1984-08-31 JP JP59182519A patent/JPH0640676B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
FR2551611A1 (en) | 1985-03-08 |
IL72791A0 (en) | 1984-11-30 |
JPS6084099A (en) | 1985-05-13 |
JPH0640676B2 (en) | 1994-05-25 |
CA1260603A (en) | 1989-09-26 |
EP0142178A1 (en) | 1985-05-22 |
DE3480968D1 (en) | 1990-02-08 |
US4771205A (en) | 1988-09-13 |
IL72791A (en) | 1988-08-31 |
EP0142178B1 (en) | 1990-01-03 |
FR2551611B1 (en) | 1986-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0142178B2 (en) | Ultrasonic transducer | |
US6049159A (en) | Wideband acoustic transducer | |
EP0769988B1 (en) | Wide-band multifrequency acoustic transducer | |
US4353046A (en) | Surface acoustic wave device with reflectors | |
EP3230770B1 (en) | Perforated piezoelectric hydrophone, antenna comprising a plurality of hydrophones and method for making said hydrophone | |
EP0513085B2 (en) | Surface acoustic wave filter | |
FR2612722A1 (en) | MULTIFREQUENCY ACOUSTIC TRANSDUCER, IN PARTICULAR FOR MEDICAL IMAGING | |
EP0354117A1 (en) | Piezoelectric transducer for volume wave generation | |
EP2367640B1 (en) | Acoustic wave transducer and sonar antenna with improved directivity | |
FR2556165A1 (en) | MULTI-LAYER POLYMER HYDROPHONE NETWORK | |
WO1994007307A1 (en) | Unidirectional wave transducer | |
FR2466164A1 (en) | ULTRASONIC TRANSDUCER WITH VARIABLE SENSITIVITY AND ULTRASONIC TRANSCEIVER DEVICE EQUIPPED WITH SAID TRANSDUCER | |
US20070182290A1 (en) | Fabrication of Broadband Graded Transducer Using Piezoelectric Partial Composites | |
CA2280422C (en) | Two-channel acoustic filter with rejection compensation | |
EP0498793B1 (en) | Process for manufacturing an acoustic sensor with an essentially non-detachable protective layer, and acoustic sensor so obtained | |
EP0424240B1 (en) | Unidirectional surface wave transducer | |
FR2546703A1 (en) | Novel ultrasound transducer structure | |
FR2570915A1 (en) | MULTIFREQUENCY ELECTRO-ACOUSTIC TRANSDUCER AND CONSTRUCTION METHOD | |
WO2023247639A1 (en) | Ultrasonic transducer for high-temperature application | |
FR2479608A1 (en) | SURFACE ACOUSTIC WAVE DEVICE AND PRODUCTION METHOD | |
FR2581819A1 (en) | Piezoelectric transducers of tonpilz type, wideband receivers and transmitters and sonar antenna made up of these transducers. | |
JP2853094B2 (en) | Surface acoustic wave device | |
FR2476360A1 (en) | ||
Masson et al. | Imaginary branches of SAW slowness curves | |
FR2706601A1 (en) | Noise-reducing device suitable for submarine torpedoes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB SE |
|
17P | Request for examination filed |
Effective date: 19851121 |
|
17Q | First examination report despatched |
Effective date: 19870305 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB SE |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN Owner name: LABORATOIRES D'ELECTRONIQUE PHILIPS |
|
REF | Corresponds to: |
Ref document number: 3480968 Country of ref document: DE Date of ref document: 19900208 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN Effective date: 19901002 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 19940112 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): DE FR GB SE |
|
GBTA | Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977) |
Effective date: 19940323 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19940728 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19940825 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19940826 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19941026 Year of fee payment: 11 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 84201200.7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19950820 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19950821 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19950820 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19960430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19960501 |
|
EUG | Se: european patent has lapsed |
Ref document number: 84201200.7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |