[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0142178B2 - Ultrasonic transducer - Google Patents

Ultrasonic transducer Download PDF

Info

Publication number
EP0142178B2
EP0142178B2 EP84201200A EP84201200A EP0142178B2 EP 0142178 B2 EP0142178 B2 EP 0142178B2 EP 84201200 A EP84201200 A EP 84201200A EP 84201200 A EP84201200 A EP 84201200A EP 0142178 B2 EP0142178 B2 EP 0142178B2
Authority
EP
European Patent Office
Prior art keywords
piezoelectric material
layer
layers
acoustic impedance
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP84201200A
Other languages
German (de)
French (fr)
Other versions
EP0142178A1 (en
EP0142178B1 (en
Inventor
Claude Robert Mequio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laboratoires dElectronique Philips SAS
Koninklijke Philips NV
Original Assignee
Laboratoires dElectronique Philips SAS
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratoires dElectronique Philips SAS, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Laboratoires dElectronique Philips SAS
Publication of EP0142178A1 publication Critical patent/EP0142178A1/en
Application granted granted Critical
Publication of EP0142178B1 publication Critical patent/EP0142178B1/en
Publication of EP0142178B2 publication Critical patent/EP0142178B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/02Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators

Definitions

  • the present invention relates to an ultrasonic transducer comprising a substrate constituting a rear medium, a layer of piezoelectric material and one or more adaptation layers, the values of the impedances of the layer of piezoelectric material, acoustic impedance adaptation layers and of the medium before propagation forming, considered in this order, a decreasing sequence.
  • An ultrasonic transducer essentially consists, in a conventional manner, of a substrate constituting a rear absorption or reflection medium, a layer of piezoelectric material equipped with electrodes on its front and rear faces and at least one layer. acoustic impedance matching, placed in front of the piezoelectric material, between it and the propagation medium. Transducers of this type are notably described in the article "The effects of backing and matching on the performance of piezoelectric ceramic transducers" by G. Kossoff, published in the journal IEEE Transactions on sonics and ultrasonics, volume SU-13, March 1966 , pages 20 to 30. The implementation of one or more of these adaptation layers has the main effect of improving the sensitivity of the transducers and also contributes to increasing their bandwidth.
  • the ultrasonic transducers used in ultrasound must combine two main qualities at the level of transduction: not only good sensitivity (because the increase in signal-to-noise ratio facilitates the processing of received signals) but also sufficient damping (because the brevity of the impulse response conditions the axial resolution).
  • the object of the invention is to propose an ultrasonic transducer which easily reconciles the requirements of sensitivity and damping.
  • the invention relates to an ultrasonic transducer as defined in the preamble to the description and further characterized in that the adaptation layers are placed in identical number on either side of the piezoelectric material, the layers located symmetrically two by two having the same acoustic impedance value and the same thickness, in that the rear medium has an acoustic impedance value substantially equal to that of the medium before propagation, and in that the thickness of the layer of piezoelectric material is equal to half the wavelength associated with the resonant frequency of the transducer, so that the structure is symmetrical with respect to the median plane of the layer of piezoelectric material.
  • FIG. 1 shows an embodiment of a transducer according to the invention.
  • the embodiment represented in FIG. 1 consists of an ultrasonic transducer with vibration in thickness mode, totally symmetrical, composed of a substrate 10 constituting the rear medium of the transducer, of a layer 20 of piezoelectric material of thickness equal to the half the wavelength associated with the resonant frequency of the transducer and covered on its front and rear faces with metal sheets 21 and 22 constituting first and second electrodes (connected in a known manner to a polarization circuit not shown which provides the excitation potential), and of two acoustic impedance adaptation layers 30, 40 known as quarter-wave interference layers and situated on the one hand between the rear medium and the piezoelectric material and on the other hand between this material and the medium before propagation 50.
  • the values of the acoustic impedances form a decreasing sequence from that of the piezoelectric material and these impedance values as well as the thicknesses of the adaptation layers 30, 40 are symmetrical on either side of this material. From this symmetry of the structure, it follows that the deformations on the two faces of the piezoelectric material are identical (since these two faces are acoustically charged identically) and that, consequently, the deformation is zero in the median plane of this material. The part of the structure which is located on only one side of this median plane is therefore equivalent to an infinitely rigid rear medium, that is to say with zero deformation.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

La présente invention concerne un transducteur ultrasonore comprenant un substrat constituant un milieu arrière, une couche de matériau piézoélectrique et une ou plusieurs couches d'adaptation, les valeurs des impédances de la couche de matériau piézoélectrique, des couches d'adaptation d'impédance acoustique et du milieu avant de propagation formant, considérées dans cet ordre, une suite décroissante.The present invention relates to an ultrasonic transducer comprising a substrate constituting a rear medium, a layer of piezoelectric material and one or more adaptation layers, the values of the impedances of the layer of piezoelectric material, acoustic impedance adaptation layers and of the medium before propagation forming, considered in this order, a decreasing sequence.

Un transducteur ultrasonore est constitué essentiellement, de façon classique, d'un substrat constituant un milieu arrière d'absorption ou de réflexion, d'une couche de matériau piézoélectrique équipée d'électrodes sur ses faces avant et arrière et d'au moins une couche d'adaptation d'impédance acoustique, placée devant le matériau piézoélectrique, entre celui-ci et le milieu de propagation. Des transducteurs de ce type sont notamment décrits dans l'article "The effects of backing and matching on the performance of piezoelectric ceramic transducers" de G. Kossoff, paru dans la revue IEEE Transactions on sonics and ultrasonics, volume SU-13, mars 1966, pages 20 à 30. La mise en place d'une ou de plusieurs de ces couches d'adaptation a pour effet principal d'améliorer la sensibilité des transducteurs et contribue également à augmenter leur largeur de bande.An ultrasonic transducer essentially consists, in a conventional manner, of a substrate constituting a rear absorption or reflection medium, a layer of piezoelectric material equipped with electrodes on its front and rear faces and at least one layer. acoustic impedance matching, placed in front of the piezoelectric material, between it and the propagation medium. Transducers of this type are notably described in the article "The effects of backing and matching on the performance of piezoelectric ceramic transducers" by G. Kossoff, published in the journal IEEE Transactions on sonics and ultrasonics, volume SU-13, March 1966 , pages 20 to 30. The implementation of one or more of these adaptation layers has the main effect of improving the sensitivity of the transducers and also contributes to increasing their bandwidth.

On rappellera ici que les transducteurs ultrasonores utilisés en échographie doivent réunir deux qualités principales au niveau de la transduction : non seulement une bonne sensibilité (car l'augmentation du rapport signal-sur-bruit facilite le traitement des signaux reçus) mais aussi un amortissement suffisant (car la brièveté de la réponse impulsionnelle conditionne la résolution axiale).It will be recalled here that the ultrasonic transducers used in ultrasound must combine two main qualities at the level of transduction: not only good sensitivity (because the increase in signal-to-noise ratio facilitates the processing of received signals) but also sufficient damping (because the brevity of the impulse response conditions the axial resolution).

Le but de l'invention est de proposer un transducteur ultrasonore conciliant de façon simple les exigences de sensibilité et d'amortissement.The object of the invention is to propose an ultrasonic transducer which easily reconciles the requirements of sensitivity and damping.

L'invention concerne à cet effet un transducteur ultrasonore tel que défini dans le préambule de la description et en outre caractérisé en ce que les couches d'adaptation sont placées en nombre identique de part et d'autre du matériau piézoélectrique, les couches situées symétriquement deux à deux ayant la même valeur d'impédance acoustique et la même épaisseur, en ce que le milieu arrière a une valeur d'impédance acoustique sensiblement égale à celle du milieu avant de propagation, et en ce que l'épaisseur de la couche de matériau piézoélectrique est égale à la moitié de la longueur d'onde associée à la fréquence de résonance du transducteur, de façon que la structure soit symétrique par rapport au plan médian de la couche de matériau piézoélectrique.To this end, the invention relates to an ultrasonic transducer as defined in the preamble to the description and further characterized in that the adaptation layers are placed in identical number on either side of the piezoelectric material, the layers located symmetrically two by two having the same acoustic impedance value and the same thickness, in that the rear medium has an acoustic impedance value substantially equal to that of the medium before propagation, and in that the thickness of the layer of piezoelectric material is equal to half the wavelength associated with the resonant frequency of the transducer, so that the structure is symmetrical with respect to the median plane of the layer of piezoelectric material.

La demande de brevet européen publiée N° EP-A-0015886 décrit diverses réalisations de transducteurs ultrasonores qui, toutes, comprennent d'une part une couche de matériau piézoélectrique et d'autre part une ou plusieurs couches dites additionnelles, placées juste en avant et/ou en arrière dudit matériau piézoélectrique et qui ont une impédance acoustique égale à ou très voisine de celle de ce matériau. La modélisation dite de Cook-Redwood, exposée pour la première fois par E.G. COOK, en 1956, dans la communication "Transient and steady-state response of ultrasonic piezoelectric transducers", IRE Conv. Record, 4, 1956, pages 61-69, et généralisée par M. Redwood, permet cependant d'effectuer l'analyse mathématique des structures proposées dans ce document cité et de montrer que ces couches additionnelles jouent un rôle piézoélectrique. Cette analyse montre en effet que le régime des vibrations ultrasonores s'établit non pas dans le seul matériau piézoélectrique, mais dans la cavité globale constituée par ce matériau et la ou les couches additionnelles. Ces couches augmentent artificiellement l'épaisseur du matériau piézoélectrique, et abaissent donc la fréquence de travail de celui-ci, pour rendre cette fréquence compatible avec la gamme des fréquences dans laquelle se situent les applications médicales. Elles jouent donc un rôle sans rapport avec le rôle d'amortissement tenu par les couches d'adaptation d'impédance acoustique prévues dans le cas de la présente invention.The published European patent application No. EP-A-0015886 describes various embodiments of ultrasonic transducers which all comprise on the one hand a layer of piezoelectric material and on the other hand one or more so-called additional layers, placed just in front and / or behind said piezoelectric material and which have an acoustic impedance equal to or very close to that of this material. The so-called Cook-Redwood modeling, exposed for the first time by EG COOK, in 1956, in the communication "Transient and steady-state response of ultrasonic piezoelectric transducers", IRE Conv. Record, 4, 1956, pages 61-69, and generalized by M. Redwood, allows however to carry out the mathematical analysis of the structures proposed in this cited document and to show that these additional layers play a piezoelectric role. This analysis indeed shows that the regime of ultrasonic vibrations is established not only in the piezoelectric material, but in the overall cavity formed by this material and the additional layer or layers. These layers artificially increase the thickness of the piezoelectric material, and therefore lower the working frequency thereof, to make this frequency compatible with the range of frequencies within which locate medical applications. They therefore play a role unrelated to the damping role held by the acoustic impedance matching layers provided in the case of the present invention.

Les particularités et avantages de cette invention vont être maintenant décrits ci-dessous plus en détail en se référant à la figure 1, donnée à titre d'exemple non limitatif et qui montre une réalisation de transducteur conforme à l'invention.The features and advantages of this invention will now be described below in more detail with reference to FIG. 1, given by way of nonlimiting example and which shows an embodiment of a transducer according to the invention.

La réalisation représentée sur la figure 1 consiste en un transducteur ultrasonore à vibration en mode d'épaisseur, totalement symétrique, composé d'un substrat 10 constituant le milieu arrière de transducteur, d'une couche 20 de matériau piézoélectrique d'épaisseur égale à la moitié de la longueur d'onde associée à la fréquence de résonance du transducteur et recouverte sur ses faces avant et arrière de feuilles métalliques 21 et 22 constituant des première et deuxième électrodes (reliées de façon connue à un circuit de polarisation non représenté qui fournit le potentiel d'excitation), et de deux couches 30, 40 d'adaptation d'impédance acoustique dites couches interférentielles quart d'onde et situées d'une part entre le milieu arrière et le matériau piézoélectrique et d'autre part entre ce matériau et le milieu avant de propagation 50. Dans cette structure, les valeurs des impédances acoustiques forment une suite décroissante à partir de celle du matériau piézoélectrique et ces valeurs d'impédance ainsi que les épaisseurs des couches 30, 40 d'adaptation sont symétriques de part et d'autre de ce matériau. De cette symétrie de la structure, il résulte que les déformations sur les deux faces du matériau piézoélectrique sont identiques (puisque ces deux faces sont, acoustiquement, chargées de façon identique) et que, par suite, la déformation est nulle dans le plan médian de ce matériau. La partie de la structure qui se trouve située d'un seul côté de ce plan médian est donc équivalente à un milieu arrière infiniment rigide, c'est-à-dire à déformation nulle.The embodiment represented in FIG. 1 consists of an ultrasonic transducer with vibration in thickness mode, totally symmetrical, composed of a substrate 10 constituting the rear medium of the transducer, of a layer 20 of piezoelectric material of thickness equal to the half the wavelength associated with the resonant frequency of the transducer and covered on its front and rear faces with metal sheets 21 and 22 constituting first and second electrodes (connected in a known manner to a polarization circuit not shown which provides the excitation potential), and of two acoustic impedance adaptation layers 30, 40 known as quarter-wave interference layers and situated on the one hand between the rear medium and the piezoelectric material and on the other hand between this material and the medium before propagation 50. In this structure, the values of the acoustic impedances form a decreasing sequence from that of the piezoelectric material and these impedance values as well as the thicknesses of the adaptation layers 30, 40 are symmetrical on either side of this material. From this symmetry of the structure, it follows that the deformations on the two faces of the piezoelectric material are identical (since these two faces are acoustically charged identically) and that, consequently, the deformation is zero in the median plane of this material. The part of the structure which is located on only one side of this median plane is therefore equivalent to an infinitely rigid rear medium, that is to say with zero deformation.

Les test et simulations effectués avec une structure ainsi constituée montrent que le spectre (ou module de la transformée de Fourier) de la réponse électrique en mode échographique à une excitation électrique de type impulsionnel et de durée effective égale au temps de vol dans le matériau piézoélectrique (le temps de vol est la durée du parcours des ondes ultrasonores d'une face à l'autre du matériau piézoélectrique) vibrant suivant son épaisseur égale à la moitié de la longueur d'onde ultrasonore à la fréquence d'émission du transducteur est de forme gaussienne ; par suite, l'enveloppe de la réponse électrique est également gaussienne et cette réponse s'amortit rapidement. Les essais réalisés (dans d'égales conditions électriques d'émission et de réception) ont montré la possibilité d'obtenir effectivement diverses structures répondant aux objectifs de l'invention (sensibilité et amortissement simultanément satisfaisants). Dans le cas où le matériau piézoélectrique est une céramique ferroélectrique de type PZT-5 (matériau piézoélectrique à base de zirconate titanate de plomb : voir l'ouvrage "Physical Acoustics, Principles and Methods", de Warren P. Mason, Vol.1, partie A, page 202), on peut citer l'exemple suivant (à deux couches d'adaptation d'impédance acoustique) d'une telle structure dite à symétrie totale :

  • (a) impédances (en kg/cm².sec x 10⁶) :
    • milieu arrière : 1,5
    • couches d'adaptation : 1,8 et 4
    • matériau piézoélectrique : 30
    • couches d'adaptation : 4 et 1,8
    • milieu avant de propagation : 1,5
  • (b) résultats obtenus :
    • indice de sensibilité : -13 dB
    • largeur de bande relative à -6 dB = 53 %
    • durée de réponse à -20 dB = 7,79 τ
    • durée de réponse à -40 dB = 9,8 τ

On rappellera ici que la sensibilité est caractérisée par un indice de sensibilité dont l'expression en dB est du type 20 log VS/VREF où VREF est, pour un générateur d'impédance interne adaptée à sa charge, la tension permettant l'émission d'une impulsion résonnante rectangulaire et où VS est la tension crête-à-crête de la réponse, et que l'amortissement est généralement caractérisé par la largeur de bande relative à -6 dB dF/F du spectre fondamental, exprimée en % et dans laquelle dF est l'écart entre les points où l'amplitude électrique est à -6 dB sous le maximum et F la fréquence centrale correspondant audit maximum. Cependant, cette dernière information est insuffisante pour caractériser complètement l'amortissement puisqu'elle ne tient compte ni de la forme, qui peut être irrégulière, du spectre fondamental ni de la présence d'harmoniques supérieurs qui perturbent la fin des échos, et elle est complétée par deux autres indicateurs temporels qui sont les durées de la réponse électrique à -20 dB et à -40 dB étant définis par les instants auxquels l'amplitude crête-à-crête est devenue inférieure respectivement aux dixième et au centième de sa valeur initiale) à une impulsion résonnante resctangulaire de durée τ, ces durées étant normées c'est-à-dire exprimées par référence audit temps de vol τ. Dans le cas où le matériau piézoélectrique est du polyfluorure de vinylidène, on peut citer de même l'exemple suivant (à une couche d'adaptation d'impédance acoustique) :
  • (a) impédances :
    • milieu arrière et avant : 1,5
    • couches d'adaptation arrière et avant : 1,8
    • matériau piézoélectrique : 4,6
  • (b) résultats obtenus :
    • indice de sensibilité : -23,8 dB
    • largeur de bande relative à -6 dB = 75 %
    • durée de réponse à -20 dB = 5,63 τ
    • durée de réponse à -40 dB = 8 τ
The tests and simulations carried out with a structure thus constituted show that the spectrum (or module of the Fourier transform) of the electrical response in ultrasound mode to an electrical excitation of impulse type and of effective duration equal to the time of flight in the piezoelectric material (the flight time is the duration of the path of the ultrasonic waves from one face to the other of the piezoelectric material) vibrating according to its thickness equal to half the ultrasonic wavelength at the emission frequency of the transducer is Gaussian form; consequently, the envelope of the electrical response is also Gaussian and this response is quickly amortized. The tests carried out (under equal electrical conditions of emission and reception) showed the possibility of effectively obtaining various structures meeting the objectives of the invention (sensitivity and damping simultaneously satisfactory). In the case where the piezoelectric material is a ferroelectric ceramic of the PZT-5 type (piezoelectric material based on lead zirconate titanate: see the work "Physical Acoustics, Principles and Methods", by Warren P. Mason, Vol.1, part A, page 202), we can cite the following example (with two acoustic impedance matching layers) of such a structure called total symmetry:
  • (a) impedances (in kg / cm².sec x 10⁶):
    • mid back: 1.5
    • adaptation layers: 1.8 and 4
    • piezoelectric material: 30
    • adaptation layers: 4 and 1.8
    • medium before propagation: 1.5
  • (b) results obtained:
    • sensitivity index: -13 dB
    • relative bandwidth at -6 dB = 53%
    • response time at -20 dB = 7.79 τ
    • response time at -40 dB = 9.8 τ

It will be recalled here that the sensitivity is characterized by a sensitivity index whose expression in dB is of the type 20 log V S / V REF where V REF is, for an internal impedance generator adapted to its load, the voltage allowing l emission of a rectangular resonant pulse and where V S is the peak-to-peak voltage of the response, and that the damping is generally characterized by the relative bandwidth at -6 dB dF / F of the fundamental spectrum, expressed in% and in which dF is the difference between the points where the electrical amplitude is at -6 dB below the maximum and F the central frequency corresponding to said maximum. However, this latter information is insufficient to fully characterize the damping since it takes into account neither the shape, which can be irregular, the fundamental spectrum nor the presence of higher harmonics which disturb the end of the echoes, and it is supplemented by two other time indicators which are the durations of the electrical response at -20 dB and at -40 dB being defined by the instants at which the peak-to-peak amplitude has become respectively less than tenth and one hundredth of its initial value ) to a resectangular resonant pulse of duration τ, these durations being normalized, that is to say expressed by reference to said flight time τ. In the case where the piezoelectric material is polyvinylidene fluoride, the following example can also be cited (with an acoustic impedance matching layer):
  • (a) impedances:
    • mid back and front: 1.5
    • rear and front adaptation layers: 1.8
    • piezoelectric material: 4.6
  • (b) results obtained:
    • sensitivity index: -23.8 dB
    • relative bandwidth at -6 dB = 75%
    • response time at -20 dB = 5.63 τ
    • response time at -40 dB = 8 τ

Bien entendu la présente invention n'est pas limitée aux exemples de réalisation décrits, à partir desquels des variantes peuvent être proposées sans pour cela sortir du cadre de l'invention, en particulier celles dans lesquelles on aurait choisi un nombre différent de couches d'adaptation d'impédance acoustique entre le matériau piézoélectrique et les milieux extrêmes.Of course the present invention is not limited to the embodiments described, from which variants can be proposed without departing from the scope of the invention, in particular those in which a different number of layers of material would have been chosen. adaptation of acoustic impedance between the piezoelectric material and the extreme environments.

Claims (1)

  1. An ultrasonic transducer, comprising a substrate (10) which forms a backing medium, a layer (20) of piezoelectric material, and one or more matching layers (30, 40), the impedance values of the layer (20) of piezoelectric material, of the acoustic impedance matching layers, and of the propagation medium (50) in front forming a descending progression in this order, characterized in that an equal number of matching layers (30, 40) is provided on both sided of the piezoelectric material (20), the pair-wise symmetrical situated layers having the same acoustic impedance value and the same thickness, in that the backing medium has an acoustic impedance value which is substantially equal to that of the propagation medium (50) in front, and in that the thickness of the layer (20) of piezoelectric material is equal to one half of the wavelength associated with the resonant frequency of the transducer, so that the structure is symmetrical with respect to the central plane of the layer of piezoelectric material.
EP84201200A 1983-08-31 1984-08-20 Ultrasonic transducer Expired - Lifetime EP0142178B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8313986 1983-08-31
FR8313986A FR2551611B1 (en) 1983-08-31 1983-08-31 NOVEL ULTRASONIC TRANSDUCER STRUCTURE AND ULTRASONIC ECHOGRAPHY MEDIA EXAMINATION APPARATUS COMPRISING SUCH A STRUCTURE

Publications (3)

Publication Number Publication Date
EP0142178A1 EP0142178A1 (en) 1985-05-22
EP0142178B1 EP0142178B1 (en) 1990-01-03
EP0142178B2 true EP0142178B2 (en) 1994-01-12

Family

ID=9291921

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84201200A Expired - Lifetime EP0142178B2 (en) 1983-08-31 1984-08-20 Ultrasonic transducer

Country Status (7)

Country Link
US (1) US4771205A (en)
EP (1) EP0142178B2 (en)
JP (1) JPH0640676B2 (en)
CA (1) CA1260603A (en)
DE (1) DE3480968D1 (en)
FR (1) FR2551611B1 (en)
IL (1) IL72791A (en)

Families Citing this family (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100950A (en) * 1983-11-09 1985-06-04 松下電器産業株式会社 Ultrasonic probe
NL8501908A (en) * 1985-07-03 1987-02-02 Tno PROBE SENSOR.
US5119840A (en) * 1986-04-07 1992-06-09 Kaijo Kenki Co., Ltd. Ultrasonic oscillating device and ultrasonic washing apparatus using the same
EP0369127A3 (en) * 1988-09-29 1991-11-06 Siemens Aktiengesellschaft Compound ultrasonar sonar transducer
US5212671A (en) * 1989-06-22 1993-05-18 Terumo Kabushiki Kaisha Ultrasonic probe having backing material layer of uneven thickness
DE3920663A1 (en) * 1989-06-23 1991-01-10 Siemens Ag WIDE-RADIATION ULTRASONIC transducer
EP0451306B1 (en) * 1990-04-09 1997-07-16 Siemens Aktiengesellschaft Frequency-selective laminated ultrasound transducer
US5187403A (en) * 1990-05-08 1993-02-16 Hewlett-Packard Company Acoustic image signal receiver providing for selectively activatable amounts of electrical signal delay
US5268610A (en) * 1991-12-30 1993-12-07 Xerox Corporation Acoustic ink printer
US5355048A (en) * 1993-07-21 1994-10-11 Fsi International, Inc. Megasonic transducer for cleaning substrate surfaces
US5777230A (en) * 1995-02-23 1998-07-07 Defelsko Corporation Delay line for an ultrasonic probe and method of using same
ES2183757T5 (en) 1995-06-19 2009-07-06 Denso Corporation ELECTROMAGNETIC COIL.
US5706564A (en) * 1995-07-27 1998-01-13 General Electric Company Method for designing ultrasonic transducers using constraints on feasibility and transitional Butterworth-Thompson spectrum
US5648941A (en) * 1995-09-29 1997-07-15 Hewlett-Packard Company Transducer backing material
US6087198A (en) * 1998-02-12 2000-07-11 Texas Instruments Incorporated Low cost packaging for thin-film resonators and thin-film resonator-based filters
US6049159A (en) * 1997-10-06 2000-04-11 Albatros Technologies, Inc. Wideband acoustic transducer
US6050943A (en) 1997-10-14 2000-04-18 Guided Therapy Systems, Inc. Imaging, therapy, and temperature monitoring ultrasonic system
US5936150A (en) * 1998-04-13 1999-08-10 Rockwell Science Center, Llc Thin film resonant chemical sensor with resonant acoustic isolator
US6051913A (en) * 1998-10-28 2000-04-18 Hewlett-Packard Company Electroacoustic transducer and acoustic isolator for use therein
US6307302B1 (en) * 1999-07-23 2001-10-23 Measurement Specialities, Inc. Ultrasonic transducer having impedance matching layer
US6452310B1 (en) * 2000-01-18 2002-09-17 Texas Instruments Incorporated Thin film resonator and method
CN1322670C (en) * 2000-11-27 2007-06-20 株式会社村田制作所 Combined vibrator
US7914453B2 (en) 2000-12-28 2011-03-29 Ardent Sound, Inc. Visual imaging system for ultrasonic probe
US6936009B2 (en) * 2001-02-27 2005-08-30 General Electric Company Matching layer having gradient in impedance for ultrasound transducers
DE10124349A1 (en) * 2001-05-18 2002-12-05 Infineon Technologies Ag Piezoelectric resonator device with detuning layer sequence
DE10321701B4 (en) * 2002-05-24 2009-06-10 Murata Manufacturing Co., Ltd., Nagaokakyo Longitudinally coupled multi-mode piezoelectric bulk wave filter device, longitudinally coupled piezoelectric multi-mode bulk wave filter and electronic component
GB2391625A (en) 2002-08-09 2004-02-11 Diagnostic Ultrasound Europ B Instantaneous ultrasonic echo measurement of bladder urine volume with a limited number of ultrasound beams
US7819806B2 (en) 2002-06-07 2010-10-26 Verathon Inc. System and method to identify and measure organ wall boundaries
US20060006765A1 (en) * 2004-07-09 2006-01-12 Jongtae Yuk Apparatus and method to transmit and receive acoustic wave energy
US7520857B2 (en) * 2002-06-07 2009-04-21 Verathon Inc. 3D ultrasound-based instrument for non-invasive measurement of amniotic fluid volume
US8221322B2 (en) 2002-06-07 2012-07-17 Verathon Inc. Systems and methods to improve clarity in ultrasound images
US8221321B2 (en) 2002-06-07 2012-07-17 Verathon Inc. Systems and methods for quantification and classification of fluids in human cavities in ultrasound images
US20060197409A1 (en) * 2003-04-15 2006-09-07 Koninklijke Philips Electonics, N.V. Two-dimensional (2d) array capable of harmonic generation for ultrasound imaging
US7824348B2 (en) 2004-09-16 2010-11-02 Guided Therapy Systems, L.L.C. System and method for variable depth ultrasound treatment
US9011336B2 (en) * 2004-09-16 2015-04-21 Guided Therapy Systems, Llc Method and system for combined energy therapy profile
US7393325B2 (en) 2004-09-16 2008-07-01 Guided Therapy Systems, L.L.C. Method and system for ultrasound treatment with a multi-directional transducer
US8535228B2 (en) 2004-10-06 2013-09-17 Guided Therapy Systems, Llc Method and system for noninvasive face lifts and deep tissue tightening
US8444562B2 (en) 2004-10-06 2013-05-21 Guided Therapy Systems, Llc System and method for treating muscle, tendon, ligament and cartilage tissue
US7530958B2 (en) * 2004-09-24 2009-05-12 Guided Therapy Systems, Inc. Method and system for combined ultrasound treatment
US10864385B2 (en) 2004-09-24 2020-12-15 Guided Therapy Systems, Llc Rejuvenating skin by heating tissue for cosmetic treatment of the face and body
US11883688B2 (en) 2004-10-06 2024-01-30 Guided Therapy Systems, Llc Energy based fat reduction
US9827449B2 (en) 2004-10-06 2017-11-28 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
US8133180B2 (en) 2004-10-06 2012-03-13 Guided Therapy Systems, L.L.C. Method and system for treating cellulite
EP2409728B1 (en) 2004-10-06 2017-09-27 Guided Therapy Systems, L.L.C. System for ultrasound tissue treatment
US7530356B2 (en) * 2004-10-06 2009-05-12 Guided Therapy Systems, Inc. Method and system for noninvasive mastopexy
US7758524B2 (en) 2004-10-06 2010-07-20 Guided Therapy Systems, L.L.C. Method and system for ultra-high frequency ultrasound treatment
US9694212B2 (en) 2004-10-06 2017-07-04 Guided Therapy Systems, Llc Method and system for ultrasound treatment of skin
EP2279697A3 (en) 2004-10-06 2014-02-19 Guided Therapy Systems, L.L.C. Method and system for non-invasive cosmetic enhancement of blood vessel disorders
US11235179B2 (en) 2004-10-06 2022-02-01 Guided Therapy Systems, Llc Energy based skin gland treatment
US20060111744A1 (en) 2004-10-13 2006-05-25 Guided Therapy Systems, L.L.C. Method and system for treatment of sweat glands
US8690779B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Noninvasive aesthetic treatment for tightening tissue
US11207548B2 (en) 2004-10-07 2021-12-28 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
US11724133B2 (en) 2004-10-07 2023-08-15 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
EP1875327A2 (en) 2005-04-25 2008-01-09 Guided Therapy Systems, L.L.C. Method and system for enhancing computer peripheral saftey
US9566454B2 (en) * 2006-09-18 2017-02-14 Guided Therapy Systems, Llc Method and sysem for non-ablative acne treatment and prevention
EP2152351B1 (en) 2007-05-07 2016-09-21 Guided Therapy Systems, L.L.C. Methods and systems for modulating medicants using acoustic energy
US20150174388A1 (en) 2007-05-07 2015-06-25 Guided Therapy Systems, Llc Methods and Systems for Ultrasound Assisted Delivery of a Medicant to Tissue
US8167803B2 (en) 2007-05-16 2012-05-01 Verathon Inc. System and method for bladder detection using harmonic imaging
US8133181B2 (en) 2007-05-16 2012-03-13 Verathon Inc. Device, system and method to measure abdominal aortic aneurysm diameter
US8456957B2 (en) * 2008-01-29 2013-06-04 Schneider Electric USA, Inc. Ultrasonic transducer for a proximity sensor
US7804742B2 (en) * 2008-01-29 2010-09-28 Hyde Park Electronics Llc Ultrasonic transducer for a proximity sensor
US8129886B2 (en) * 2008-02-29 2012-03-06 General Electric Company Apparatus and method for increasing sensitivity of ultrasound transducers
US12102473B2 (en) 2008-06-06 2024-10-01 Ulthera, Inc. Systems for ultrasound treatment
PT3058875T (en) 2008-06-06 2022-09-20 Ulthera Inc A system and method for cosmetic treatment and imaging
WO2010075547A2 (en) 2008-12-24 2010-07-01 Guided Therapy Systems, Llc Methods and systems for fat reduction and/or cellulite treatment
US9068775B2 (en) 2009-02-09 2015-06-30 Heat Technologies, Inc. Ultrasonic drying system and method
US8264126B2 (en) * 2009-09-01 2012-09-11 Measurement Specialties, Inc. Multilayer acoustic impedance converter for ultrasonic transducers
US8715186B2 (en) 2009-11-24 2014-05-06 Guided Therapy Systems, Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
KR101173277B1 (en) * 2010-03-15 2012-08-13 주식회사 휴먼스캔 Ultrasound probe using rear acoustic matching layer
US9504446B2 (en) 2010-08-02 2016-11-29 Guided Therapy Systems, Llc Systems and methods for coupling an ultrasound source to tissue
WO2012018386A2 (en) 2010-08-02 2012-02-09 Guided Therapy Systems, Llc Systems and methods for ultrasound treatment
US8857438B2 (en) 2010-11-08 2014-10-14 Ulthera, Inc. Devices and methods for acoustic shielding
WO2013009784A2 (en) 2011-07-10 2013-01-17 Guided Therapy Systems, Llc Systems and method for accelerating healing of implanted material and/or native tissue
KR20140047709A (en) 2011-07-11 2014-04-22 가이디드 테라피 시스템스, 엘.엘.씨. Systems and methods for coupling an ultrasound source to tissue
US9263663B2 (en) 2012-04-13 2016-02-16 Ardent Sound, Inc. Method of making thick film transducer arrays
US9510802B2 (en) 2012-09-21 2016-12-06 Guided Therapy Systems, Llc Reflective ultrasound technology for dermatological treatments
EP2775730A1 (en) 2013-03-05 2014-09-10 British Telecommunications public limited company Video data provision
EP2775731A1 (en) 2013-03-05 2014-09-10 British Telecommunications public limited company Provision of video data
CN113648551A (en) 2013-03-08 2021-11-16 奥赛拉公司 Apparatus and method for multi-focal ultrasound therapy
WO2014146022A2 (en) 2013-03-15 2014-09-18 Guided Therapy Systems Llc Ultrasound treatment device and methods of use
GB2513884B (en) 2013-05-08 2015-06-17 Univ Bristol Method and apparatus for producing an acoustic field
EP2819418A1 (en) 2013-06-27 2014-12-31 British Telecommunications public limited company Provision of video data
US9612658B2 (en) 2014-01-07 2017-04-04 Ultrahaptics Ip Ltd Method and apparatus for providing tactile sensations
CA3177417A1 (en) 2014-04-18 2015-10-22 Ulthera, Inc. Band transducer ultrasound therapy
GB2530036A (en) 2014-09-09 2016-03-16 Ultrahaptics Ltd Method and apparatus for modulating haptic feedback
JP2016086956A (en) * 2014-10-31 2016-05-23 セイコーエプソン株式会社 Ultrasonic probe, electronic apparatus, and ultrasonogram device
JP6771473B2 (en) 2015-02-20 2020-10-21 ウルトラハプティクス アイピー リミテッドUltrahaptics Ip Ltd Improved algorithm in the tactile system
EP3916525B1 (en) 2015-02-20 2024-09-18 Ultrahaptics IP Limited Perceptions in a haptic system
US10134973B2 (en) * 2015-03-02 2018-11-20 Edan Instruments, Inc. Ultrasonic transducer and manufacture method thereof
JP6552644B2 (en) 2015-05-11 2019-07-31 メジャメント スペシャリティーズ, インコーポレイテッド Impedance matching layer for ultrasonic transducers with metallic protective structure
US10818162B2 (en) 2015-07-16 2020-10-27 Ultrahaptics Ip Ltd Calibration techniques in haptic systems
US11189140B2 (en) 2016-01-05 2021-11-30 Ultrahaptics Ip Ltd Calibration and detection techniques in haptic systems
KR102615327B1 (en) 2016-01-18 2023-12-18 얼테라, 인크 Compact ultrasonic device with annular ultrasonic array locally electrically connected to a flexible printed circuit board and method of assembling the same
US10531212B2 (en) 2016-06-17 2020-01-07 Ultrahaptics Ip Ltd. Acoustic transducers in haptic systems
US10268275B2 (en) 2016-08-03 2019-04-23 Ultrahaptics Ip Ltd Three-dimensional perceptions in haptic systems
US10755538B2 (en) 2016-08-09 2020-08-25 Ultrahaptics ilP LTD Metamaterials and acoustic lenses in haptic systems
ES2907588T3 (en) 2016-08-16 2022-04-25 Ulthera Inc Systems and methods for the cosmetic treatment of the skin with ultrasound
US10943578B2 (en) 2016-12-13 2021-03-09 Ultrahaptics Ip Ltd Driving techniques for phased-array systems
US10497358B2 (en) 2016-12-23 2019-12-03 Ultrahaptics Ip Ltd Transducer driver
EP3384849B1 (en) * 2017-04-07 2022-06-08 Esaote S.p.A. Ultrasound probe with acoustic amplifier
US11531395B2 (en) 2017-11-26 2022-12-20 Ultrahaptics Ip Ltd Haptic effects from focused acoustic fields
JP7029588B2 (en) * 2017-12-06 2022-03-04 パナソニックIpマネジメント株式会社 Ultrasonic sensor
US11360546B2 (en) 2017-12-22 2022-06-14 Ultrahaptics Ip Ltd Tracking in haptic systems
EP3729418A1 (en) 2017-12-22 2020-10-28 Ultrahaptics Ip Ltd Minimizing unwanted responses in haptic systems
TWI797235B (en) 2018-01-26 2023-04-01 美商奧賽拉公司 Systems and methods for simultaneous multi-focus ultrasound therapy in multiple dimensions
US11944849B2 (en) 2018-02-20 2024-04-02 Ulthera, Inc. Systems and methods for combined cosmetic treatment of cellulite with ultrasound
EP4414556A3 (en) 2018-05-02 2024-10-23 Ultrahaptics IP Limited Blocking plate structure for improved acoustic transmission efficiency
US11098951B2 (en) 2018-09-09 2021-08-24 Ultrahaptics Ip Ltd Ultrasonic-assisted liquid manipulation
US11378997B2 (en) 2018-10-12 2022-07-05 Ultrahaptics Ip Ltd Variable phase and frequency pulse-width modulation technique
WO2020141330A2 (en) 2019-01-04 2020-07-09 Ultrahaptics Ip Ltd Mid-air haptic textures
US11842517B2 (en) 2019-04-12 2023-12-12 Ultrahaptics Ip Ltd Using iterative 3D-model fitting for domain adaptation of a hand-pose-estimation neural network
US11374586B2 (en) 2019-10-13 2022-06-28 Ultraleap Limited Reducing harmonic distortion by dithering
US11553295B2 (en) 2019-10-13 2023-01-10 Ultraleap Limited Dynamic capping with virtual microphones
WO2021090028A1 (en) 2019-11-08 2021-05-14 Ultraleap Limited Tracking techniques in haptics systems
US11715453B2 (en) 2019-12-25 2023-08-01 Ultraleap Limited Acoustic transducer structures
US11816267B2 (en) 2020-06-23 2023-11-14 Ultraleap Limited Features of airborne ultrasonic fields
US11886639B2 (en) 2020-09-17 2024-01-30 Ultraleap Limited Ultrahapticons

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2427348A (en) * 1941-08-19 1947-09-16 Bell Telephone Labor Inc Piezoelectric vibrator
US3946149A (en) * 1974-10-24 1976-03-23 Cbs Inc. Apparatus for embossing information on a disc
AT353506B (en) * 1976-10-19 1979-11-26 List Hans PIEZOELECTRIC RESONATOR
US4096756A (en) * 1977-07-05 1978-06-27 Rca Corporation Variable acoustic wave energy transfer-characteristic control device
JPS54131380A (en) * 1978-03-31 1979-10-12 Hitachi Medical Corp Dumbbell type ultrasonic wave detecting contacting piece
US4211948A (en) * 1978-11-08 1980-07-08 General Electric Company Front surface matched piezoelectric ultrasonic transducer array with wide field of view
AU5637080A (en) * 1979-03-13 1980-09-18 Toray Industries, Inc. Electro-acoustic transducer element
US4383194A (en) * 1979-05-01 1983-05-10 Toray Industries, Inc. Electro-acoustic transducer element
US4297607A (en) * 1980-04-25 1981-10-27 Panametrics, Inc. Sealed, matched piezoelectric transducer
US4434384A (en) * 1980-12-08 1984-02-28 Raytheon Company Ultrasonic transducer and its method of manufacture
JPS57170708U (en) * 1981-04-20 1982-10-27
JPS5817358A (en) * 1981-07-23 1983-02-01 Toshiba Corp Ultrasonic probe
US4507582A (en) * 1982-09-29 1985-03-26 New York Institute Of Technology Matching region for damped piezoelectric ultrasonic apparatus
JPS59166139A (en) * 1983-03-10 1984-09-19 富士通株式会社 Ultrasonic transducer

Also Published As

Publication number Publication date
FR2551611A1 (en) 1985-03-08
IL72791A0 (en) 1984-11-30
JPS6084099A (en) 1985-05-13
JPH0640676B2 (en) 1994-05-25
CA1260603A (en) 1989-09-26
EP0142178A1 (en) 1985-05-22
DE3480968D1 (en) 1990-02-08
US4771205A (en) 1988-09-13
IL72791A (en) 1988-08-31
EP0142178B1 (en) 1990-01-03
FR2551611B1 (en) 1986-10-24

Similar Documents

Publication Publication Date Title
EP0142178B2 (en) Ultrasonic transducer
US6049159A (en) Wideband acoustic transducer
EP0769988B1 (en) Wide-band multifrequency acoustic transducer
US4353046A (en) Surface acoustic wave device with reflectors
EP3230770B1 (en) Perforated piezoelectric hydrophone, antenna comprising a plurality of hydrophones and method for making said hydrophone
EP0513085B2 (en) Surface acoustic wave filter
FR2612722A1 (en) MULTIFREQUENCY ACOUSTIC TRANSDUCER, IN PARTICULAR FOR MEDICAL IMAGING
EP0354117A1 (en) Piezoelectric transducer for volume wave generation
EP2367640B1 (en) Acoustic wave transducer and sonar antenna with improved directivity
FR2556165A1 (en) MULTI-LAYER POLYMER HYDROPHONE NETWORK
WO1994007307A1 (en) Unidirectional wave transducer
FR2466164A1 (en) ULTRASONIC TRANSDUCER WITH VARIABLE SENSITIVITY AND ULTRASONIC TRANSCEIVER DEVICE EQUIPPED WITH SAID TRANSDUCER
US20070182290A1 (en) Fabrication of Broadband Graded Transducer Using Piezoelectric Partial Composites
CA2280422C (en) Two-channel acoustic filter with rejection compensation
EP0498793B1 (en) Process for manufacturing an acoustic sensor with an essentially non-detachable protective layer, and acoustic sensor so obtained
EP0424240B1 (en) Unidirectional surface wave transducer
FR2546703A1 (en) Novel ultrasound transducer structure
FR2570915A1 (en) MULTIFREQUENCY ELECTRO-ACOUSTIC TRANSDUCER AND CONSTRUCTION METHOD
WO2023247639A1 (en) Ultrasonic transducer for high-temperature application
FR2479608A1 (en) SURFACE ACOUSTIC WAVE DEVICE AND PRODUCTION METHOD
FR2581819A1 (en) Piezoelectric transducers of tonpilz type, wideband receivers and transmitters and sonar antenna made up of these transducers.
JP2853094B2 (en) Surface acoustic wave device
FR2476360A1 (en)
Masson et al. Imaginary branches of SAW slowness curves
FR2706601A1 (en) Noise-reducing device suitable for submarine torpedoes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB SE

17P Request for examination filed

Effective date: 19851121

17Q First examination report despatched

Effective date: 19870305

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: LABORATOIRES D'ELECTRONIQUE PHILIPS

REF Corresponds to:

Ref document number: 3480968

Country of ref document: DE

Date of ref document: 19900208

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19901002

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19940112

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR GB SE

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)

Effective date: 19940323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940728

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940825

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940826

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941026

Year of fee payment: 11

EAL Se: european patent in force in sweden

Ref document number: 84201200.7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950821

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960501

EUG Se: european patent has lapsed

Ref document number: 84201200.7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST