EP0033714A2 - Busbar system for electrolysis cells - Google Patents
Busbar system for electrolysis cells Download PDFInfo
- Publication number
- EP0033714A2 EP0033714A2 EP81810016A EP81810016A EP0033714A2 EP 0033714 A2 EP0033714 A2 EP 0033714A2 EP 81810016 A EP81810016 A EP 81810016A EP 81810016 A EP81810016 A EP 81810016A EP 0033714 A2 EP0033714 A2 EP 0033714A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- busbars
- cell
- rail arrangement
- arrangement according
- cathode bar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 16
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 claims abstract description 6
- 230000005291 magnetic effect Effects 0.000 abstract description 11
- 229910052751 metal Inorganic materials 0.000 abstract description 4
- 239000002184 metal Substances 0.000 abstract description 4
- 230000009931 harmful effect Effects 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 63
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 229910001338 liquidmetal Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 229910001610 cryolite Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/06—Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
- C25C3/16—Electric current supply devices, e.g. bus bars
Definitions
- the present invention relates to a rail arrangement for guiding the direct electrical current from the cathode bar ends of a longitudinal electrolysis cell, in particular for the production of aluminum, to the anodes of the subsequent cell.
- the electrolysis cell In normal operation, the electrolysis cell is usually operated periodically, even if there is no anode effect by breaking in the crust and adding alumina.
- K ohleboden the electrolytic cell are embedded the cathode bars, the ends of which pass through the electrolytic bath on both longitudinal sides. These iron bars collect the electrolysis current, which on the outside of the cell arranged busbars, the risers, the anode beam or beams and the anode rod to the K ohleanoden of slave cell flows.
- the ohmic resistance from the cathode bars to the anodes of the subsequent cells causes energy losses that are on the order of up to 1 kWh / kg of aluminum produced.
- the current is conducted from cell to cell as follows:
- the direct electrical current emerges from cathode bars arranged in the carbon bottom of the cell.
- the ends of the cathode bars are connected to the busbars via flexible bands, which run parallel to the row of electrolytic cells. From these busbars running along the long sides of the cells, the current is led via other flexible belts and via risers to the two ends of the traverse of the subsequent cell.
- the current distribution between the nearer and the far end of the traverse based on the general current direction of the cell row, varies from 100-0% to 5Q-50%.
- the vertical anode rods which carry the carbon anodes and feed them with electrical current, are attached to the crossbar by means of locks.
- the electrical direct current must travel a relatively long way from a cathode bar end of a cell to an anode of the subsequent cell.
- part of the electrical current has to be conducted via the busbars to the downstream end of the crossbar, then it flows backwards over the crossbar.
- the electrical current is raised from the level of the cathode bar to the height of the traverse and then flows down to the anodes. This returning and returning the current in two directions means an additional consumption of metal during the manufacture of the furnace series and an additional consumption of energy due to the Joule effect.
- the inventor has therefore set itself the task of creating a rail arrangement for guiding the direct current from the cathode bar ends of a longitudinal electrolysis cell to the anodes of the subsequent cell, in which less metallic rail material has to be used, smaller losses of electrical energy occur and also the harmful magnetic energy Effects are reduced.
- the flexible current strips arranged next to one another which conduct the current from the cathode bar ends to the busbars leading to the subsequent cell or the current from the busbars which are connected to the cathode bar ends of the preceding electrolysis cell, lead to the anodes, that the third type is eliminated from the above-mentioned flow components rotating in the four quadrants.
- This so-called symmetrical solution in which the busbars are equidistant from the two long sides of the cells, may prevent the magnetic influence partially but not completely.
- the aim is to limit or eliminate the magnetic influence of the neighboring cell row.
- This is achieved by an asymmetrical arrangement of the busbars, in that the distance of the busbars from the long sides of the electrolytic cell is shorter on the side facing the row of neighboring cells and longer on the other side.
- the resulting asymmetry has the effect that the magnetic influence of the neighboring cell row is eliminated and the first flow component discussed above along the inner circumference of the cell is also prevented.
- the flexible current bands which connect the cathode bar ends to the busbars are more or less curved.
- these flexible current strips are strongly bent, but when the busbars are at a large distance from the long sides of the cell, they are almost stretched. This does not change the electrical resistance, but only the influence of the magnetic field.
- the busbars facing away from and facing the neighboring cell row are preferably arranged in such a way that the difference in their distance from the corresponding long sides of the cells makes up approximately 50-80 cm.
- the first busbars are electrically connected. Upstream and downstream of the equipotential is the cross section of the first and second power rails so excluded s t altet that the electrical resistance of all the bus bars is approximately equal.
- the short busbars can have a smaller cross section than the longer ones.
- the busbars can also be made of metals of different electrical resistance, the shortest busbars having the greatest, the longest busbars the smallest specific electrical resistance.
- the asymmetry can also be produced by - at opposite with respect to the longitudinal axis of cells first track - is connected ends - a different number of Kathodenbarr s.
- the electrolysis cells 10 and 12 shown in FIG. 1 are picked out from a row of cells in an aluminum smelter.
- the general direction of the direct electrical current is designated I.
- the adjacent row of electrolytic cells, which exerts a magnetic influence on the electrolytic cells 10 and 12, is located on the left in relation to the general current direction I.
- the cathode bars arranged in the carbon bottom of cells 10 and 12 are only hinted at.
- flexible current strips 14, 16 are arranged which, as shown in FIG. 2, are strongly bent at a short distance from the conductor rails 18, 20, 22 and 24, and with a large distance from the conductor rails opposite in relation to the longitudinal axis of the cell Distance, however, are almost stretched.
- the busbars 18, 20, 22 and 24 are briefly closed at 26.
- Three busbars 28, 30 and 32 arranged along the sequence cell 12 are conductively connected to the equipotential connection 26.
- Flexible current bands 34 branch off from each of these current rails, one band each being connected to an anode carrier (not shown).
- the busbar 28 leads the current to the nearest anodes 36, the busbar 30 to the middle anodes 36 and the busbar 32 to the most distant anodes 36 of the follow-up cell 12 in the current direction 1.
- all the busbars have the same electrical resistance, the bars 24 and 28 therefore have the smallest - if all rails are made of the same material Cross section, the rails 18 and 32 the largest.
- electrolysis cell 10 is also equipped with anodes 36 and the corresponding power supply lines, these have been omitted because of a better overview.
- an electrolysis cell has 32 cathode bar ends, but has only 30 anodes. If a regular current distribution is to be ensured, an equipotential connection 26 must be present if the number of cathode bar ends and anodes is not the same.
- Fig. 2 38 means the steel tub, 40 the thermal insulation, 42 the carbon floor and 44 the cathode bar ends; a the large distance between the busbars 18, b the small one.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Optical Measuring Cells (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Bei längsgestellten Elektrolysezellen, insbesondere zur Herstellung von Aluminium, fallen hohe Investitions- und Betriebskosten für Schienenanordnungen ausserhalb der Zelle an. Die erzeugten Magnetfelder bewirken Metallströmungen. Durch die Ausbildung von direkten Anschlüssen (34) von jeder einzelnen Anode an die neben der Zelle verlaufenden, elektrisch verbundenen Stromschienen (28, 30, 32) in einer unmittelbar oberhalb der Anoden liegenden Ebene werden die Kosten gesenkt und die schädlichen Einflüsse der Magnetfelder vermindert. Durch ungleiche Ausbildung der Abstände (a, b) der Stromschienen (18, 20, 22, 24) von den Kathodenbarrenenden oder durch Anschluss einer ungleichen Anzahl von Kathodenbarrenenden an in bezug auf die Zellenlängsachse gegenüberliegende Stromschienen (18, 20, 22, 24) kann eine den magnetischen Einwirkungen zusätzlich entgegenwirkende Asymmetrie erzeugt werden.Longitudinal electrolysis cells, especially for the production of aluminum, incur high investment and operating costs for rail arrangements outside the cell. The magnetic fields generated cause metal flows. By forming direct connections (34) from each individual anode to the electrically connected busbars (28, 30, 32) running next to the cell in a plane immediately above the anodes, the costs are reduced and the harmful effects of the magnetic fields are reduced. By making the distances (a, b) of the busbars (18, 20, 22, 24) from the cathode bar ends unequal or by connecting an unequal number of cathode bar ends to busbars (18, 20, 22, 24) which are opposite in relation to the longitudinal axis of the cell an asymmetry additionally counteracting the magnetic effects are generated.
Description
Die vorliegende Erfindung bezieht sich auf eine Schienenanordnung zum Leiten des elektrischen Gleichstromes von den Kathodenbarrenenden einer längsgestellten Elektrolysezelle, insbesondere zur Herstellung von Aluminium, zu den Anoden der Folgezelle.The present invention relates to a rail arrangement for guiding the direct electrical current from the cathode bar ends of a longitudinal electrolysis cell, in particular for the production of aluminum, to the anodes of the subsequent cell.
Für die Gewinnung von Aluminium durch Elektrolyse von Aluminiumoxid wird dieses in einer Fluoridschmelze gelöst, die zum grössten Teil aus Kryolith besteht. Das kathodisch abgeschiedene Aluminium sammelt sich unter der Fluoridschmelze auf dem Kohleboden der Zelle, wobei die Oberfläche des flüssigen Aluminiums die Kathode bildet. In die Schmelze tauchen von oben an Anodenbalken befestigte Anoden ein, die bei konventionellen Verfahren aus amorphem Kohlenstoff bestehen. An den Kohleanoden entsteht durch die elektrolytische Zersetzung des Aluminiumoxids Sauerstoff, der sich mit dem Kohlenstoff der Anoden zu C02 und CO verbindet. Die Elektrolyse findet im allgemeinen in einem Temperaturbereich von etwa 940 bis 970 C statt. Im Laufe der Elektrolyse verarmt der Elektrolyt an Aluminiumoxid. Bei einer unteren Konzentration von 1 - 2 Gew.-% Aluminiumoxid im Elektrolyten kommt es zum Anodeneffekt, der sich in einer Spannungserhöhung von beispielsweise 4 bis 5 V auf 30 V und darüber auswirkt. Spätestens dann muss die aus erstarrtem Elektrolytmaterial gebildete Kruste eingeschlagen und die Aluminiumoxidkonzentration durch Zugabe von neuem Aluminiumoxid (Tonerde) angehoben werden.For the production of aluminum by electrolysis of aluminum oxide, this is dissolved in a fluoride melt, which largely consists of cryolite. The cathodically deposited aluminum collects under the fluoride melt on the carbon bottom of the cell, the surface of the liquid aluminum forming the cathode. Anodes which are attached to anode bars and which consist of amorphous carbon in conventional processes are immersed in the melt. Oxygen is generated at the carbon anodes by the electrolytic decomposition of the aluminum oxide, which combines with the carbon of the anodes to form CO 2 and CO. The electrolysis generally takes place in a temperature range of approximately 940 to 970 ° C. In the course of electrolysis, the electrolyte becomes poor in aluminum oxide. At a lower concentration of 1-2% by weight aluminum oxide in the electrolyte, there is an anode effect, which results in a voltage increase of, for example, 4 to 5 V to 30 V and above. Then, at the latest, the crust formed from solidified electrolyte material must be hammered in and the aluminum oxide concentration increased by adding new aluminum oxide (alumina).
Im normalen Betrieb wird die Elektrolysezelle üblicherweise periodisch bedient, auch wenn kein Anodeneffekt auftritt, indem die Kruste eingeschlagen und Tonerde zugegeben wird. Im Kohleboden der Elektrolysezelle sind die Kathodenbarren eingebettet, wobei deren Enden die Elektrolysewanne auf beiden Längsseiten durchgreifen. Diese Eisenbarren sammeln den Elektrolysestrom, welcher über die ausserhalb der Zelle angeordneten Stromschienen, die Steigleitungen, die Anodenbalken bzw. Traversen und die Anodenstangen-zu den Kohleanoden der Folgezelle fliesst. Durch den ohmschen Widerstand von den Kathodenbarren bis zu den Anoden der Folgezellen werden Energieverluste verursacht, die in der Grössenordnung von bis zu 1 kWh/kg produziertes Aluminium liegen. Es ist deshalb wiederholt versucht worden, die Anordnung der Stromschienen in bezug auf den ohmschen Widerstand zu optimalisieren. Dabei müssen jedoch auch die gebildeten Vertikalkomponenten der magnetischen Induktion berücksichtigt werden, welche - zusammen mit den horizontalen Stromdichtekomponenten - im durch den Reduktionsprozess gewonnenen flüssigen Metall ein Kraftfeld erzeugen.In normal operation, the electrolysis cell is usually operated periodically, even if there is no anode effect by breaking in the crust and adding alumina. In K ohleboden the electrolytic cell are embedded the cathode bars, the ends of which pass through the electrolytic bath on both longitudinal sides. These iron bars collect the electrolysis current, which on the outside of the cell arranged busbars, the risers, the anode beam or beams and the anode rod to the K ohleanoden of slave cell flows. The ohmic resistance from the cathode bars to the anodes of the subsequent cells causes energy losses that are on the order of up to 1 kWh / kg of aluminum produced. Attempts have therefore repeatedly been made to optimize the arrangement of the busbars with respect to the ohmic resistance. However, the vertical components of magnetic induction formed must also be taken into account, which - together with the horizontal current density components - generate a force field in the liquid metal obtained through the reduction process.
In einer Aluminiumhütte mit längsgestellten Elektrolysezellen erfolgt die Stromführung von Zelle zu Zelle wie folgt: Der elektrische Gleichstrom tritt aus im Kohleboden der Zelle angeordneten Kathodenbarren aus. Die Enden der Kathodenbarren sind über flexible Bänder mit den Sammel- bzw. Stromschienen verbunden, welche parallel zu der Elektrolysezellenreihe verlaufen. Aus diesen entlang der Längsseiten der Zellen verlaufenden Stromschienen wird der Strom, über andere flexible Bänder und über Steigleitungen zu den beiden Enden der Traverse der Folgezelle geführt. Je nach Ofentyp variiert die Stromverteilung zwischen dem näheren und dem entfernteren Ende der Traverse, bezogen auf die allgemeine Stromrichtung der Zellenreihe, von 100-0 % bis 5Q-50 %. Mittels Schlössern sind an der Traverse die vertikalen Anodenstangen befestigt, welche die Kohleanoden tragen und mit elektrischem Strom speisen.In an aluminum smelter with longitudinal electrolysis cells, the current is conducted from cell to cell as follows: The direct electrical current emerges from cathode bars arranged in the carbon bottom of the cell. The ends of the cathode bars are connected to the busbars via flexible bands, which run parallel to the row of electrolytic cells. From these busbars running along the long sides of the cells, the current is led via other flexible belts and via risers to the two ends of the traverse of the subsequent cell. Depending on the type of furnace, the current distribution between the nearer and the far end of the traverse, based on the general current direction of the cell row, varies from 100-0% to 5Q-50%. The vertical anode rods, which carry the carbon anodes and feed them with electrical current, are attached to the crossbar by means of locks.
Diese für Aluminiumhütten charakteristische Schienenführung weist jedoch sowohl elektrische als auch magnetische Unannehmlichkeiten auf.However, this rail guide characteristic of aluminum smelters has both electrical and magnetic inconveniences.
Von einem Kathodenbarrenende einer Zelle bis zu einer Anode der Folgezelle muss der elektrische Gleichstrom einen verhältnismässig langen Weg zurücklegen. In Zellenlängsrichtung betrachtet muss ein Teil des elektrischen Stromes über die Stromschienen bis zum stromab liegenden Ende der Traverse geführt werden, dann fliesst er über die Traverse rückwärts. In vertikaler Richtung betrachtet wird der elektrische Strom von der Ebene der Kathodenbarren auf die Höhe der Traverse gehoben und fliesst dann zu den Anoden hinab. Dieses Hin- und Zurückführen des Stromes in zwei Richtungen bedeutet einen Mehrverbrauch an Metall anlässlich der Herstellung der Ofenreihe sowie einen Mehrverbrauch an Energie infolge des Joule'schen Effekts.The electrical direct current must travel a relatively long way from a cathode bar end of a cell to an anode of the subsequent cell. When viewed in the longitudinal direction of the cell, part of the electrical current has to be conducted via the busbars to the downstream end of the crossbar, then it flows backwards over the crossbar. When viewed in a vertical direction, the electrical current is raised from the level of the cathode bar to the height of the traverse and then flows down to the anodes. This returning and returning the current in two directions means an additional consumption of metal during the manufacture of the furnace series and an additional consumption of energy due to the Joule effect.
Auch in magnetischer Hinsicht ist die gegenwärtig übliche Speisung mit elektrischem Gleichstrom nicht besonders günstig. Durch Ueberlagerung von drei Strömungskomponenten entstehen die Bewegungen im flüssigen Metall:
- - Die erste Strömungskomponente, welche im Prinzip eine Zirkulationsbewegung entlang der inneren Zellenwände ist, hat besonders schädliche Auswirkungen in bezug auf die Stabilität der Elektrolysezelle. Diese erste Komponente entsteht durch den Einfluss der benachbarten Elektrolysezellenreihe, welche den elektrischen Strom zum Gleichrichter zurückführt. Der Drehsinn der Rotation hängt davon ab, ob die benachbarte Zellenreihe links oder rechts, bezogen auf die allgemeine Richtung des Gleichstromes, von der Zelle liegt.
- - Die zweite Strömungskomponente besteht darin, dass in jeder Zellenhälfte (in bezug auf die Längsrichtung) je eine Zirkularströmung entsteht, wobei die Strömungsrichtungen gegenläufig sind. Diese Rotationsart hängt von der Stromverteilung zwischen den Steigleitungen ab.
- - Die dritte Strömungskomponente schliesslich besteht aus vier in den Zellenquadranten ausgebildeten Rotationen, wobei die diagonal gegenüberliegenden Rotationsrichtungen gleich sind. Diese Rotationen entstehen durch die ungleiche Stromverteilung in den Stromschienen und der Traverse von einem Zellenende zum anderen.
- - The first flow component, which is in principle a circulation movement along the inner cell walls, has particularly harmful effects with regard to the stability of the electrolytic cell. This first component is created by the influence of the neighboring row of electrolytic cells, which returns the electrical current to the rectifier. The direction of rotation of the rotation depends on whether the neighboring row of cells is on the left or right of the cell in relation to the general direction of the direct current.
- - The second flow component is that in each cell half (with respect to the longitudinal direction) A circular flow is created, the flow directions being opposite. This type of rotation depends on the current distribution between the risers.
- Finally, the third flow component consists of four rotations formed in the cell quadrants, the diagonally opposite directions of rotation being the same. These rotations result from the uneven distribution of current in the busbars and the crossbar from one end of the cell to the other.
Die Ueberlagerung dieser drei Strömungskomponenten bewirkt, dass die Geschwindigkeit der Metallströmungen innerhalb der Zelle stark unterschiedlich ist. Wo alle drei Strömungskomponenten in gleicher Richtung verlaufen, entsteht eine hohe Metallgeschwindigkeit, wodurch die Kohleauskleidung erodiert wird.The superposition of these three flow components has the effect that the speed of the metal flows within the cell is very different. Where run all three components of flow in the same direction, a high M arises etallgeschwindigkeit, is eroded so that the carbon lining.
Der Erfinder hat sich deshalb die Aufgabe gestellt, eine Schienenanordnung zum Leiten des elektrischen Gleichstromes von den Kathodenbarrenenden einer längsgestellten Elektrolysezelle zu den Anoden der Folgezelle zu schaffen, bei welcher weniger metallisches Schienenmaterial eingesetzt werden muss, kleinere Verluste an elektrischer Energie auftreten und ausserdem die schädlichen magnetischen Effekte vermindert werden.The inventor has therefore set itself the task of creating a rail arrangement for guiding the direct current from the cathode bar ends of a longitudinal electrolysis cell to the anodes of the subsequent cell, in which less metallic rail material has to be used, smaller losses of electrical energy occur and also the harmful magnetic energy Effects are reduced.
Die Aufgabe wird erfindungsgemäss dadurch gelöst, dass
- - mehrere Kathodenbarrenenden mittels flexibler Bänder gruppenweise an einer von mindestens zwei, entlang einer Längsseite der Zelle verlaufenden ersten Stromschienen angeschlossen,
- - diese Stromschienen zwischen dem letzten Kathodenbarren und der ersten Anode der Folgezelle elektrisch verbunden, und - ausgehend von dieser Aequipotentialverbindung - zweite Stromschienen entlang einer Längsseite der Folgezelle verlaufen, und
- - jede Anode der Folgezelle mittels eines flexiblen Bandes mit einer auf derselben Längsseite verlaufenden zweiten Stromschiene verbunden ist.
- several cathode bar ends are connected in groups by means of flexible strips to one of at least two first busbars running along a long side of the cell,
- - These busbars between the last cathode bar and the first anode of the follow-up cell are electrically connected, and - starting from this equipotential connection - second busbars run along a long side of the follow-up cell, and
- - Each anode of the subsequent cell is connected by means of a flexible strip to a second busbar running on the same long side.
Die nahe nebeneinander angeordneten flexiblen Strombänder, welche den Strom von den Kathodenbarrenenden-zu den zur Folgezelle führenden Stromschienen abführen bzw. den Strom von den Stromschienen, die mit den Kathodenbarrenenden der vorhergehenden Elektrolysezelle verbunden sind, zu den Anoden führen, bewirken durch ihre alternative Anordnung, dass die dritte Art von den oben erwähnten Strömungskomponenten, welche in den vier Quadranten rotiert, eliminiert wird. Durch diese sogenannte symmetrische Lösung, bei welcher die Stromschienen den gleichen Abstand von beiden Zellenlängsseiten haben, wird der magnetische Einfluss wohl teilweise, aber nicht vollständig verhindert.Due to their alternative arrangement, the flexible current strips arranged next to one another, which conduct the current from the cathode bar ends to the busbars leading to the subsequent cell or the current from the busbars which are connected to the cathode bar ends of the preceding electrolysis cell, lead to the anodes, that the third type is eliminated from the above-mentioned flow components rotating in the four quadrants. This so-called symmetrical solution, in which the busbars are equidistant from the two long sides of the cells, may prevent the magnetic influence partially but not completely.
Nach einer bevorzugten Ausführungsform der Erfindung wird deshalb angestrebt, den magnetischen Einfluss der Nachbarzellenreihe einzuschränken oder zu eliminieren. Dies wird durch asymmetrische Anordnung der Stromschienen erreicht, indem der Abstand der Stromschienen von den Elektrolysezellenlängsseiten auf der der Nachbarzellenreihe zugewandten Seite kürzer, auf der anderen länger ausgebildet ist. Die dadurch entstehende Asymmetrie bewirkt, dass der magnetische Einfluss der Nachbarzellenreihe aufgehoben und die oben diskutierte erste Strömungskomponente entlang des inneren Umfangs der Zelle auch verhindert wird.According to a preferred embodiment of the invention, the aim is to limit or eliminate the magnetic influence of the neighboring cell row. This is achieved by an asymmetrical arrangement of the busbars, in that the distance of the busbars from the long sides of the electrolytic cell is shorter on the side facing the row of neighboring cells and longer on the other side. The resulting asymmetry has the effect that the magnetic influence of the neighboring cell row is eliminated and the first flow component discussed above along the inner circumference of the cell is also prevented.
Bei verschieden lang ausgebildeten Abständen der Stromschienen von den Zellenlängsseiten sind die flexiblen Strombänder, welche die Kathodenbarrenenden mit den Stromschienen verbinden, mehr oder weniger gebogen. Bei kurzem Abstand der Stromschienen von den Ofenlängsseiten sind diese flexiblen Strombänder stark gebogen, bei grossem Abstand der Stromschienen von den Zellenlängsseiten hingegen nahezu gestreckt. Dabei wird nicht der elektrische Widerstand, sondern lediglich der Einfluss des Magnetfeldes geändert.In the case of distances of the busbars of different lengths from the long sides of the cells, the flexible current bands which connect the cathode bar ends to the busbars are more or less curved. When the busbars are at a short distance from the long sides of the furnace, these flexible current strips are strongly bent, but when the busbars are at a large distance from the long sides of the cell, they are almost stretched. This does not change the electrical resistance, but only the influence of the magnetic field.
Vorzugsweise werden die der Nachbarzellenreihe abgewandten und zugewandten Stromschienen so angeordnet, dass der Unterschied ihres Abstandes von den entsprechenden Zellenlängsseiten ungefähr 50 - 80 cm ausmacht.The busbars facing away from and facing the neighboring cell row are preferably arranged in such a way that the difference in their distance from the corresponding long sides of the cells makes up approximately 50-80 cm.
Da in der Praxis eine Elektrolysezelle nicht notwendigerweise gleich viele Kathodenbarrenenden und Anoden aufweisen muss, werden alle ersten Stromschienen elektrisch verbunden. Stromauf und stromab von der Aequipotentialverbindung ist der Querschnitt der ersten bzw. zweiten Stromschienen so ausge- staltet, dass der elektrische Widerstand aller Stromschienen ungefähr gleich ist. Die kurzen Stromschienen können einen kleineren Querschnitt haben als die längeren. Statt dessen können die Stromschienen auch aus Metallen von verschiedenem elektrischem Widerstand hergestellt sein, wobei die kürzesten Stromschienen den grössten, die längsten Stromschienen den kleinsten spezifischen elektrischen Widerstand haben. Since in practice an electrolysis cell does not necessarily have to have the same number of cathode bar ends and anodes, all the first busbars are electrically connected. Upstream and downstream of the equipotential is the cross section of the first and second power rails so excluded s t altet that the electrical resistance of all the bus bars is approximately equal. The short busbars can have a smaller cross section than the longer ones. Instead, the busbars can also be made of metals of different electrical resistance, the shortest busbars having the greatest, the longest busbars the smallest specific electrical resistance.
Die Asymetrie kann auch erzeugt werden, indem - an in bezug auf die Zellenlängsachse gegenüberliegende erste Stromschienen - eine unterschiedliche Anzahl von Kathodenbarren- enden angeschlossen sind.The asymmetry can also be produced by - at opposite with respect to the longitudinal axis of cells first track - is connected ends - a different number of Kathodenbarr s.
Die Erfindung wird anhand der Zeichnung näher erläutert. Es zeigen:
- - Fig. 1 ein Schema der Stromführung von den Kathodenbarrenenden einer Zelle zu den Anoden der Folgezelle, wobei bei dieser Folgezelle wiederum die Stromführung von den Kathodenbarrenenden gezeigt wird.
- - Fig. 2 einen schematischen, quer zur Zellenlängsrichtung verlaufenden Vertikalschnitt an der Stelle II-II von Fig. 1.
- 1 shows a diagram of the current flow from the cathode bar ends of a cell to the anodes of the subsequent cell, the current flow from the cathode bar ends again being shown in this sequence cell.
- FIG. 2 shows a schematic vertical section running transversely to the longitudinal direction of the cell at the point II-II in FIG. 1.
Die in Fig. l dargestellten Elektrolysezellen 10 und 12 sind aus einer Zellenreihe einer Aluminiumhütte herausgegriffen. Die allgemeine Richtung des elektrischen Gleichstromes ist mit I bezeichnet. Die benachbarte Elektrolysezellenreihe, welche einen magnetischen Einfluss auf die Elektrolysezellen 10 und 12 ausübt, befindet sich, bezogen auf die allgemeine Stromrichtung I, links. Die im Kohleboden der Zellen 10 und 12 angeordneten Kathodenbarren sind nur angedeutet. An beiden Enden der Kathodenbarren sind flexible Strombänder 14, 16 angeordnet, welche, wie in Fig. 2 dargestellt, bei kurzem Abstand der Stromschienen 18, 20, 22 und 24 stark gebogen, bei den von der in bezug auf die Zellenlängsachse gegenüberliegenden Stromschienen mit grossem Abstand hingegen beinahe gestreckt sind. Die Stromschienen 18, 20, 22 und 24 sind bei 26 kurz geschlossen. Mit der Aequipotentialverbindung 26 leitend verbunden sind drei entlang der Folgezelle 12 angeordnete Stromschienen 28, 30 und 32. Von jeder dieser Stromschienen zweigen flexible Strombänder 34 ab, wobei je ein Band mit einem nicht gezeichneten Anodenträger verbunden ist. Die Stromschiene 28 führt den Strom zu den nächstgelegenen Anoden 36, die Stromschiene 30 zu den mittleren Anoden 36 und die Stromschiene 32 zu den in Stromrichtung 1 am weitesten entfernten Anoden 36 der Folgezelle 12. Vorzugsweise haben alle Stromschienen den gleichen elektrischen Widerstand, die Schienen 24 und 28 haben daher - falls alle Schienen aus dem gleichen Material bestehen - den kleinsten Querschnitt, die Schienen 18 und 32 den grössten.The
Selbstverständlich ist die Elektrolysezelle 10 auch mit Anoden 36 und den entsprechenden Stromzuführungen ausgerüstet, diese sind wegen besserer Uebersicht weggelassen worden.Of course, the
Im vorliegenden Fall weist eine Elektrolysezelle 32 Kathodenbarrenenden auf, hat jedoch lediglich 30 Anoden. Wenn eine regelmässige Stromverteilung gewährleistet werden soll, muss bei einer nicht gleichen Anzahl von Kathodenbarrenenden und Anoden eine Aequipotentialverbindung 26 vorhanden sein.In the present case, an electrolysis cell has 32 cathode bar ends, but has only 30 anodes. If a regular current distribution is to be ensured, an
In Fig. 2 bedeuted 38 die Stahlwanne, 40 die thermische Isolation, 42 der Kohleboden und 44 die Kathodenbarrenenden; a der grosse Abstand der Stromschienen 18, b der kleine.In Fig. 2, 38 means the steel tub, 40 the thermal insulation, 42 the carbon floor and 44 the cathode bar ends; a the large distance between the
Die vorliegende Erfindung weist die folgenden Vorteile auf:
- - Der vom elektrischen Gleichstrom von einem Kathodenbarrenende zur Anode der Folgezelle zurückzulegende Weg ist kürzer, es können zirka 2 m pro Stromschiene eingespart werden, was dank des nichtbenötigten Materials verminderte Investitionskosten zur Folge hat und ausserdem wegen geringerem elektrischem Widerstand und daher kleinerem Energieverbrauch die Betriebskosten herabsetzt.
- - Der Ofengang ist stabiler, woraus eine weitere Reduktion der Energieverluste und/oder eine Möglichkeit der Produktionserhöhung resultiert.
- - Die Erosion der Kathodenauskleidung wird vermindert, woraus sich eine Erhöhung der Zellenlebensdauer ergibt.
- - The distance to be covered by the direct current from a cathode bar end to the anode of the subsequent cell is shorter, about 2 m can be saved per busbar, which results in reduced investment costs thanks to the unnecessary material and also reduces operating costs due to lower electrical resistance and therefore lower energy consumption .
- - The furnace run is more stable, which results in a further reduction in energy losses and / or a possibility of increasing production.
- - The erosion of the cathode lining is reduced, which results in an increase in cell life.
Claims (9)
dadurch gekennzeichnet, dass
characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT81810016T ATE4917T1 (en) | 1980-02-01 | 1981-01-23 | RAIL ARRANGEMENT FOR ELECTROLYTIC CELLS. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH81280 | 1980-02-01 | ||
CH812/80 | 1980-02-01 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0033714A2 true EP0033714A2 (en) | 1981-08-12 |
EP0033714A3 EP0033714A3 (en) | 1981-08-26 |
EP0033714B1 EP0033714B1 (en) | 1983-10-05 |
Family
ID=4195757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81810016A Expired EP0033714B1 (en) | 1980-02-01 | 1981-01-23 | Busbar system for electrolysis cells |
Country Status (12)
Country | Link |
---|---|
US (1) | US4359377A (en) |
EP (1) | EP0033714B1 (en) |
AR (1) | AR225488A1 (en) |
AT (1) | ATE4917T1 (en) |
AU (1) | AU6660581A (en) |
BR (1) | BR8100590A (en) |
CA (1) | CA1156971A (en) |
DE (2) | DE3009158A1 (en) |
IS (1) | IS1144B6 (en) |
NO (1) | NO154925C (en) |
YU (1) | YU25681A (en) |
ZA (1) | ZA81288B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2576920B1 (en) * | 1985-02-07 | 1987-05-15 | Pechiney Aluminium | HALL-HEROULT ELECTROLYSIS TANK WITH CATHODIC BARS AND INSULATED SHEATHING |
US5981719A (en) * | 1993-03-09 | 1999-11-09 | Epic Therapeutics, Inc. | Macromolecular microparticles and methods of production and use |
US6090925A (en) * | 1993-03-09 | 2000-07-18 | Epic Therapeutics, Inc. | Macromolecular microparticles and methods of production and use |
US10128486B2 (en) | 2015-03-13 | 2018-11-13 | Purdue Research Foundation | Current interrupt devices, methods thereof, and battery assemblies manufactured therewith |
WO2018019888A1 (en) | 2016-07-26 | 2018-02-01 | Sgl Cfl Ce Gmbh | Cathode current collector/connector for a hall-heroult cell |
US10855040B2 (en) | 2016-07-29 | 2020-12-01 | Hatch Ltd. | Flexible electrical connectors for electrolytic cells |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1185548A (en) * | 1957-10-29 | 1959-07-31 | Elektrokemisk As | Device for supplying current to furnaces for the production of aluminum by electrolytic fusion |
US3821101A (en) * | 1972-09-08 | 1974-06-28 | V Nikiforov | Wiring system of electrolyzers for producing aluminum |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA887250A (en) * | 1971-11-30 | Vsesojuzny Nauchno-Issledovatelsky I Proektny Institut Aljuminievoi, Mag Nievoi I Elektrodnoi Promyshlennosti | Bus bar system for aluminum reduction cells | |
US3650941A (en) * | 1968-09-23 | 1972-03-21 | Kaiser Aluminium Chem Corp | Electrolytic reduction cell |
CH544812A (en) * | 1970-09-01 | 1973-11-30 | Alusuisse | Cell for the production of aluminum by electrolysis of aluminum oxide in a melt flow |
FR2378107A1 (en) * | 1977-01-19 | 1978-08-18 | Pechiney Aluminium | PROCESS FOR IMPROVING THE POWER SUPPLY OF LONG-ALIGNED ELECTROLYSIS TANKS |
FR2423554A1 (en) * | 1978-02-08 | 1979-11-16 | Pechiney Aluminium | METHOD OF REDUCING MAGNETIC INTERRUPTIONS IN SERIES OF HIGH INTENSITY ELECTROLYSIS TANKS |
CH649317A5 (en) * | 1978-08-04 | 1985-05-15 | Alusuisse | ELECTROLYSIS CELL WITH COMPENSATED MAGNETIC FIELD COMPONENTS. |
-
1980
- 1980-03-10 DE DE19803009158 patent/DE3009158A1/en not_active Withdrawn
-
1981
- 1981-01-16 ZA ZA00810288A patent/ZA81288B/en unknown
- 1981-01-19 US US06/226,062 patent/US4359377A/en not_active Expired - Fee Related
- 1981-01-23 DE DE8181810016T patent/DE3161057D1/en not_active Expired
- 1981-01-23 EP EP81810016A patent/EP0033714B1/en not_active Expired
- 1981-01-23 AU AU66605/81A patent/AU6660581A/en not_active Abandoned
- 1981-01-23 AT AT81810016T patent/ATE4917T1/en not_active IP Right Cessation
- 1981-01-28 CA CA000369486A patent/CA1156971A/en not_active Expired
- 1981-01-30 NO NO810327A patent/NO154925C/en unknown
- 1981-01-30 YU YU00256/81A patent/YU25681A/en unknown
- 1981-01-30 IS IS2610A patent/IS1144B6/en unknown
- 1981-02-02 AR AR284177A patent/AR225488A1/en active
- 1981-02-02 BR BR8100590A patent/BR8100590A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1185548A (en) * | 1957-10-29 | 1959-07-31 | Elektrokemisk As | Device for supplying current to furnaces for the production of aluminum by electrolytic fusion |
US3821101A (en) * | 1972-09-08 | 1974-06-28 | V Nikiforov | Wiring system of electrolyzers for producing aluminum |
Also Published As
Publication number | Publication date |
---|---|
NO810327L (en) | 1981-08-03 |
EP0033714B1 (en) | 1983-10-05 |
ATE4917T1 (en) | 1983-10-15 |
CA1156971A (en) | 1983-11-15 |
BR8100590A (en) | 1981-08-18 |
IS2610A7 (en) | 1981-07-02 |
IS1144B6 (en) | 1984-03-05 |
NO154925C (en) | 1987-01-14 |
NO154925B (en) | 1986-10-06 |
ZA81288B (en) | 1982-02-24 |
US4359377A (en) | 1982-11-16 |
AR225488A1 (en) | 1982-03-31 |
AU6660581A (en) | 1981-09-10 |
EP0033714A3 (en) | 1981-08-26 |
DE3161057D1 (en) | 1983-11-10 |
DE3009158A1 (en) | 1981-08-06 |
YU25681A (en) | 1983-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2613867B2 (en) | Device for supplying power to rectangular fused-melt electrolysis cells arranged transversely one behind the other | |
EP0787833B1 (en) | Conductor arrangement for electrolytic cells | |
DE2131473C2 (en) | Conductor arrangement to compensate for harmful magnetic influences from rows of electrolytic cells on neighboring rows of cells | |
DE1083554B (en) | Furnace for fused aluminum electrolysis | |
EP0097613B1 (en) | Bus bars arrangement for electrolytic cells | |
DE3003927C2 (en) | Cathode for the electrolytic refining of copper | |
DE2841205C3 (en) | Electrolysis cell with compensated magnetic field components | |
EP0033714B1 (en) | Busbar system for electrolysis cells | |
EP0072778B1 (en) | Bus bar arrangement for electrolysis cells | |
EP0042815B1 (en) | Bus-bar arrangement for electrolytic cells | |
CH641209A5 (en) | ELECTROLYSIS CELL. | |
DE102004008813B3 (en) | Process and installation for the electrochemical deposition of copper | |
EP0034117A2 (en) | Asymmetrical busbar system for electrolysis cells | |
DE68905242T2 (en) | ARRANGEMENT OF THE RAIL FOR LARGE CROSS-SIDED ELECTROLYSIS CELLS. | |
EP0030212B1 (en) | Anode supporting system for a fusion electrolysis cell | |
DE2143603B2 (en) | Cell for the production of aluminum by electrolysis of aluminum oxide in a melt flow | |
DE3102637C2 (en) | ||
DE3618588C2 (en) | ||
DE3004071A1 (en) | Cathode bus=bars for mfg. aluminium in electrolysis cells - where bus=bars are divided into two lengths to reduce voltage drop between adjacent cells | |
EP0016728A1 (en) | Electrolytic cell for the production of aluminium by fusion electrolysis of aluminium salts | |
WO2013068412A2 (en) | Cathode block having a domed and/or rounded surface | |
DE2916971A1 (en) | Electrolysis cell for mfg. aluminium via molten electrolyte - where parts of cathode bars are insulated from carbon cathode to reduce electric losses and cell wear | |
DE2916953A1 (en) | Electrolysis cell for mfg. aluminium via molten electrolyte - where parts of the cathode bars are insulated from carbon cathode to reduce electric losses and cell wear | |
DE102011078002A1 (en) | Annular electrolytic cell and annular cathode with magnetic field compensation | |
DE2353583A1 (en) | Cathode assembly - for diaphragm-type electrolytic cell with vertical electrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
17P | Request for examination filed |
Effective date: 19810126 |
|
AK | Designated contracting states |
Designated state(s): AT CH DE FR IT LI NL |
|
AK | Designated contracting states |
Designated state(s): AT CH DE FR IT LI NL |
|
ITF | It: translation for a ep patent filed | ||
RBV | Designated contracting states (corrected) |
Designated state(s): AT CH DE FR IT LI NL |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT CH DE FR IT LI NL |
|
REF | Corresponds to: |
Ref document number: 4917 Country of ref document: AT Date of ref document: 19831015 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3161057 Country of ref document: DE Date of ref document: 19831110 |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19831223 Year of fee payment: 4 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19841211 Year of fee payment: 5 Ref country code: DE Payment date: 19841211 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19851213 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19860131 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19870123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19870131 Ref country code: CH Effective date: 19870131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19870801 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19870930 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19871001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |