EP0019226B1 - Verfahren zur Herstellung von N-alpha-Alkoxy-ethyl-carbonsäureamiden - Google Patents
Verfahren zur Herstellung von N-alpha-Alkoxy-ethyl-carbonsäureamiden Download PDFInfo
- Publication number
- EP0019226B1 EP0019226B1 EP80102539A EP80102539A EP0019226B1 EP 0019226 B1 EP0019226 B1 EP 0019226B1 EP 80102539 A EP80102539 A EP 80102539A EP 80102539 A EP80102539 A EP 80102539A EP 0019226 B1 EP0019226 B1 EP 0019226B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alkyl
- acid amides
- electrolysis
- alpha
- ammonium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 15
- KERBAAIBDHEFDD-UHFFFAOYSA-N n-ethylformamide Chemical class CCNC=O KERBAAIBDHEFDD-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910021397 glassy carbon Inorganic materials 0.000 claims abstract description 10
- 239000010405 anode material Substances 0.000 claims abstract description 7
- 125000005207 tetraalkylammonium group Chemical group 0.000 claims abstract description 7
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 4
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 4
- 239000003115 supporting electrolyte Substances 0.000 claims abstract 3
- 238000000034 method Methods 0.000 claims description 38
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 15
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 9
- QLAJNZSPVITUCQ-UHFFFAOYSA-N 1,3,2-dioxathietane 2,2-dioxide Chemical compound O=S1(=O)OCO1 QLAJNZSPVITUCQ-UHFFFAOYSA-N 0.000 claims description 7
- 125000000041 C6-C10 aryl group Chemical group 0.000 claims description 4
- 150000001408 amides Chemical class 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 4
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- ZPFAVCIQZKRBGF-UHFFFAOYSA-N 1,3,2-dioxathiolane 2,2-dioxide Chemical compound O=S1(=O)OCCO1 ZPFAVCIQZKRBGF-UHFFFAOYSA-N 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- 125000005210 alkyl ammonium group Chemical group 0.000 claims 1
- 150000002431 hydrogen Chemical group 0.000 claims 1
- 238000005868 electrolysis reaction Methods 0.000 description 30
- 150000003839 salts Chemical class 0.000 description 30
- -1 tetraalkylammonium ion Chemical class 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 229910002804 graphite Inorganic materials 0.000 description 8
- 239000010439 graphite Substances 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 6
- 239000003513 alkali Substances 0.000 description 6
- 150000003857 carboxamides Chemical class 0.000 description 6
- 239000007772 electrode material Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910000510 noble metal Inorganic materials 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 230000005611 electricity Effects 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 4
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- PMDCZENCAXMSOU-UHFFFAOYSA-N N-ethylacetamide Chemical compound CCNC(C)=O PMDCZENCAXMSOU-UHFFFAOYSA-N 0.000 description 4
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 4
- 125000002947 alkylene group Chemical group 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 230000001476 alcoholic effect Effects 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 239000010953 base metal Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 150000002823 nitrates Chemical class 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 125000006528 (C2-C6) alkyl group Chemical group 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 0 *C(N(C(O*)S)[C@](*)N)O Chemical compound *C(N(C(O*)S)[C@](*)N)O 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910014585 C2-Ce Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- FZRKAZHKEDOPNN-UHFFFAOYSA-N Nitric oxide anion Chemical compound O=[N-] FZRKAZHKEDOPNN-UHFFFAOYSA-N 0.000 description 1
- 238000006887 Ullmann reaction Methods 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910001963 alkali metal nitrate Inorganic materials 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000002993 cycloalkylene group Chemical group 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- ZQXSMRAEXCEDJD-UHFFFAOYSA-N n-ethenylformamide Chemical class C=CNC=O ZQXSMRAEXCEDJD-UHFFFAOYSA-N 0.000 description 1
- SDIDYFBTIZOPLA-UHFFFAOYSA-N n-ethylbenzamide Chemical compound CCNC(=O)C1=CC=CC=C1 SDIDYFBTIZOPLA-UHFFFAOYSA-N 0.000 description 1
- DHCJWWQFOMHARO-UHFFFAOYSA-N n-ethylbutanamide Chemical compound CCCC(=O)NCC DHCJWWQFOMHARO-UHFFFAOYSA-N 0.000 description 1
- ABMDIECEEGFXNC-UHFFFAOYSA-N n-ethylpropanamide Chemical compound CCNC(=O)CC ABMDIECEEGFXNC-UHFFFAOYSA-N 0.000 description 1
- 125000005245 nitryl group Chemical group [N+](=O)([O-])* 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- PNGLEYLFMHGIQO-UHFFFAOYSA-M sodium;3-(n-ethyl-3-methoxyanilino)-2-hydroxypropane-1-sulfonate;dihydrate Chemical compound O.O.[Na+].[O-]S(=O)(=O)CC(O)CN(CC)C1=CC=CC(OC)=C1 PNGLEYLFMHGIQO-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 150000005621 tetraalkylammonium salts Chemical class 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/23—Oxidation
Definitions
- N-alpha-alkoxyethyl-carboxamides are valuable intermediates, in particular for the production of N-vinyl-carboxamides (DE-A 23 36 977), which can be converted into water-soluble polymers with interesting and diverse application properties (Ullmanns Encyclopedia of Industrial Chemistry, 3 Edition, vol. 14, pages 261-264).
- Electrodes Nets or sheets made of Pd or Pt as well as noble metal or mixed oxide coated metal electrodes, preferably titanium electrodes, are mentioned as electrode materials for this process.
- the main salts used are salts whose cation is the ammonium, an alkali or tetraalkylammonium ion with (C 1 -C 6 ) -alkyl groups, the nitryl or nitrosyl ion, and whose anion is the nitrate or chloride ion, or oxygen in complex contain bound form with P, CI, Br or J as central atom or F in complex bound form with P, B, Ti, Sb, As, Sn or Si as central atom.
- electrolyte salts especially ammonium or alkali metal nitrate, ammonium or Alkalihexafluorophosphat, -hexafluorotitanat, -hexafluorosilikat, hexafluoroantimonate, -hexafluoroarsenat, tetrafluoroborate, perchlorate or -trifluorostannat, Tetraalkylammoniumtetrafluoroborat or tetraalkylammonium chloride with (C 1 -C 8) alkyl mentioned.
- conductive salts are alkali and tetraalkylammonium tetrafluoroborates, hexafluorophosphates and nitrates.
- the ratios in the anodic alkoxylation of ring-shaped N compounds cannot be transferred to the anodic alkoxylation of open-chain N-alkylcarboxamides, especially since it is known that even within the class of open-chain carboxamides under one and the same electrolysis conditions - in particular using the same electrode material - completely different results can occur.
- the anodic alkoxylation of dimethylformamide to N-alkoxymethyl-methylformamide succeeds easily both on Pt and on graphite anodes with tetrafluoroborates or nitrates as conductive salts, whereas the anodic alkoxylation of N- (mono-) methylformamide under the same conditions (to N -Alkoxymethylformamide) only on a Pt anode and with tetrafluoroborates as conductive salts
- N-alpha-alkoxyethyl carboxamides would result, for example, in the anodic oxidation of N-ethylcarboxamides with an alcohol according to BE-A837906 using graphite anodes instead of the noble metal electrodes described there.
- the glassy carbon instead of normal graphite, which is also known as the electrode material, since glassy carbon does not differ chemically from normal graphite and since the other properties important for electrolysis, such as e.g. the porosity of the material is essentially the same in both cases (N.L. Weinberg, Technique of Electroorganic Synthesis, Vol. V, Part 1, p. 19, John Wiley and Sons 1976).
- the subject of the invention is thus a process for the preparation of N-alpha-alkoxy-ethyl-carboxamides by anodic alkoxylation of N-ethyl-carboxamides with an alcohol in an electrolysis cell provided with anode (s) and cathode (s) in the presence of a conductive salt; the process is characterized in that at least 1 alkali and / or tetraalkylammonium alkosulfate is used as the material for the anode vitreous carbon and as the conducting salt.
- N-ethylcarboxamides - the amide nitrogen of which is only substituted by the ethyl group - can be used as starting materials for the process.
- preference is given to using the N-ethylcarboxamides of the formula III which are also used for the process of BE-A 837 906 wherein R 1 H, (C 1 -C 6 ) alkyl or (C 6 -C 10 ) aryl - preferably H or CH 3 .
- N-ethylcarboxamides of the formula 111 are, for example: N-ethylformamide, N-ethyl acetamide, N-ethylpropionamide, N-ethylbutyramide and N-ethylbenzamide; the preferred compounds are N-ethylformamide and N-ethyl acetamide.
- Alcohols R'OH suitable for the process are - just like in the process of BE-PS 837 906 - mainly (C 1 -C 6 ) alkanols (methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol Etc.) ; methanol and ethanol, in particular methanol, are preferred.
- Anode material for the process is commercially available glassy carbon.
- the common base metals such as steel, nickel etc. can be used as cathode materials.
- Conductive salts for the electrolysis process according to the invention are alkali and / or tetraalkylammonium alkosulfates.
- alkali ions of Li, Na, K, Rb, Cs
- alkali ions of these salts with the ions of Na and K being preferred.
- Alkyl groups in the tetraalkylammonium salts are mainly those with 1-6 C atoms, preferably methyl and ethyl groups.
- the tetramethylammonium salts are particularly preferred.
- Alkosulfates are salts of sulfuric acid alkyl half-esters; preferred are the (C 1 -C 6 ) alkyl and especially the methyl and ethyl half esters.
- Tetramethylammoniummethosulfat Methyltriethylammoniummethosulfat, Methyltripropylammoniumthosulfat, methyltri-n-butylammoniummethosulfat, Methyltriamylammoniummethosulfat, Methyltrihexylammoniummethosulfat, Tetraethylammoniumethosulfat, Ethyltrimethylammoniumethosulfat, Ethyltripropylammoniumethosulfat, ethyltri-n-butylammoniumethosulfat, Methyltriamylammoniumethosulfat, etc.
- Ethyltrihexylammoniumethosulfat; the preferred conductive salts are tetramethylammonium methosulfate and tetraethylammonium ethosulfate, especially tetramethylammonium methosulfate.
- the conductive salts can be used both individually and as a mixture.
- the starting electrolysis solution contains the starting amide 111 and the conducting salt in alcoholic solution. It is advantageous if the molar ratio of N-ethylcarboxamide to alcohol is between about 1: 1 and about 1: 100, preferably between 1: 2 to about 1:60 and in particular between 1: 5 and about 1:50.
- the concentration of the (total) electrolysis solution of conductive salt is advantageously between about 0.1 and about 40% by weight, preferably between about 5 and about 20% by weight.
- the conductive salt is usually added after the alcoholic solution has been prepared, but the order can also be changed.
- the electrolysis process according to the invention is advantageously carried out in such a way that an amount of electricity of at least about 2.5 Faraday / mol carboxamide is used.
- the use of smaller amounts of electricity is possible; however, it reduces the sales of starting amide III.
- the current density is expediently set between approximately 10 and 1000 mA / cm z , preferably between approximately 20 and 600 mA / cm z . Lower current densities are possible, but without advantage; rather, they slow down product formation.
- a temperature which is below the boiling temperature of the respective alcohol and above the melting temperature of the electrolysis solution is advantageously chosen as the working temperature for the electrolysis.
- temperatures from about -10 to + 100 ° C, preferably from about 0 to 60 ° C, are used.
- Electrolysis is normally carried out at atmospheric pressure, but it can also be carried out under reduced or increased pressure, although without advantages.
- the process can be optimized in terms of energy or material yield in that the conversion of the N-ethylcarboxamide is very high, e.g. over 99%, which also has a very advantageous effect on the processing of the electrolysis solution. It is therefore generally electrolyzed until practically all of the starting product has been converted, so that there is no need to separate it later from the reaction product. After the desired amount of electricity has been passed through, the electrolysis current is switched off, the electrolysis discharge is freed of the conducting salt and worked up in a known manner, preferably by distillation.
- the reaction product of the electrolysis can e.g. be examined for purity by nuclear magnetic resonance spectroscopy.
- the electrolysis can e.g. in the electrolytic cell (1) shown in the figure. It is provided with a tight-fitting lid (2) through which the current leads for the electrodes (3) and (4) are guided and in which there are openings (5) for the inlet of the electrolysis solution, (6) for the discharge of the Gases and for a thermometer (9).
- the opening for the discharge of the gas can be provided with a reflux condenser in which evaporating portions of the electrolysis mixture can be re-condensed.
- the electrolytic cell is encased and can be connected to a heating or cooling liquid circuit through the inlet (7) and outlet connection (8).
- the temperature of the electrolysis solution is monitored by a thermometer (9) or a thermal sensor.
- the two electrodes (3) (anode) and (4) (cathode) are arranged at a distance of 0.5 to 50 mm, preferably between 1 and 15 mm, from one another.
- Anode material is glassy carbon.
- a base metal such as nickel or a metal alloy such as VA steel is used as the cathode material.
- the vertical arrangement of the electrodes can also be replaced by a horizontal one.
- Electrodes it is also possible to arrange several pairs of electrodes, as has proven particularly useful in the block-like combination of angled or non-angled capillary gap electrodes with and without vibration of the electrodes. It is also possible to use the electrodes in a bipolar circuit.
- the solution is passed through a stirrer, for example a magnetic stirrer (10), or by pumping around. especially with the block-like combinations, vigorously mixed.
- a further opening is provided in the cover (2) of the electrolysis vessel (1) for continuously pumping around the electrolysis solution.
- a part of each product preparation is separated from the circulated electrolysis solution.
- the solution is worked up in a known manner.
- the starting materials recovered in the distillation, after having been adjusted to the molar ratio used, are metered in again together with the required amount of the conductive salt of the continuously pumped-over electrolysis solution.
- the method according to the invention has the particular advantage that, contrary to the material removal known also for electrodes made of glass-containing carbon (see NL Weinberg “Technique of Electroorganic Synthesis Vol. 5, Part 1, p. 19, Par. 2, John Wiley 1972) - practically no removal occurs in the electrolyte system used here. In addition, no troublesome, hardly soluble precipitate forms on the cathode. Because of the higher solubility of the conductive salts used according to the invention in alcohols, considerably higher current densities can be used than in the known processes which mainly work with the tetrafluoroborates, hexafluorophosphates and nitrates which are less soluble in alcohols; as a result, higher sales are possible in a shorter time.
- the invention thus represents a significant advance.
- a mixture of the respective carboxamide and the corresponding alcohol is poured into an electrolysis cell according to the figure of about 500 ml with a lid and reflux condenser, in which the conductive salt is dissolved.
- the cell contents are stirred during the electrolysis using a magnetic stirrer at 50 to 60 revolutions per minute and kept at the value T given in Table 1 below. After the amount of current Q (also shown in Table 1) has been passed through, the current is switched off.
- the electrolysis solution is worked up in a known manner.
- An undivided electrolytic cell with a block-like electrode combination is installed in a flow-through apparatus with a circulation pump, heat exchanger and degassing vessel.
- This consists of a glass-like carbon anode, a steel cathode and four bipolar electrode plates made of glass-like carbon. Between these plates is a stack of nickel mesh (2 layers of 0.19 mm and 0.1 mm wire gauge and two layers of 0.5 mm and 0.3 mm wire gauge) and polyethylene mesh (1 layer of 0 mesh) , 9 mm and 0.3 mm thread thickness) so that the nickel fabric came to rest on the cathode sides of the carbon plates or the steel plate. These combinations are built in to minimize the electrode gap.
- All electrode plates are surrounded by a polyethylene frame that was 22 mm wide perpendicular to the flow direction of the electrolyte - parallel to the flow direction 12 mm wide - and, like each of the plates, was approximately 2.5 mm thick.
- the effective electrode area of each anode was 255 cm 2 .
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
- N-alpha-Alkoxyethyl-carbonsäureamide sind wertvolle Zwischenprodukte insbesondere für die Herstellung von N-Vinyl-carbonsäureamiden (DE-A 23 36 977), die sich zu wasserlöslichen Polymeren mit interessanten und vielfältigen anwendungstechnischen Eigenschaften umsetzen lassen (Ullmanns Enzyklopädie der Technischen Chemie, 3. Auflage, Bd. 14, Seiten 261-264).
-
- R1 = H, (C1-Ce)-Alkyl oder (C6-C10)-Aryl,
- R2 = H, (C2-C6)-Alkyl, oder
- R' + R2 = ggf. durch (C,-C4)-Alkylgruppen substituierte (C2-Ce)-Alkylengruppe, und
- R 3 = H oder (C1-C6)-Alkyl,
- R4 = (C1-C6)-Alkyl oder -Alkylen oder (C4-C7)-Cycloalkyl oder -Cycloalkylen, und
- n = 1 oder 2,
- Als Elektrodenmaterialien für diesen Prozeß werden Netze oder Bleche aus Pd oder Pt sowie edelmetall- oder mischoxydbeschichtete Metallelektroden, vorzugsweise Titanelektroden, genannt.
- Als Leitsalze werden vor allem solche Salze verwendet, deren Kation das Ammonium-, ein Alkali- oder Tetraalkylammoniumion mit (C1-C6)-Alkylgruppen, das Nitryl- oder Nitrosylion, und deren Anion das Nitrat- oder Chloridion, oder Sauerstoff in komplex gebundener Form mit P, CI, Br oder J als Zentralatom oder F in komplex gebundener Form mit P, B, Ti, Sb, As, Sn oder Si als Zentralatom enthalten. So werden als Leitsalze vor allem Ammonium- oder Alkalinitrat, Ammonium- oder Alkalihexafluorophosphat, -hexafluorotitanat, -hexafluorosilikat, -hexafluoroantimonat, -hexafluoroarsenat, -tetrafluoroborat, -trifluorostannat oder -perchlorat, Tetraalkylammoniumtetrafluoroborat oder Tetraalkylammoniumchlorid mit (C1-C8)-Alkylgruppen erwähnt.
- In der genannten DE-A heißt es, daß es sich als vorteilhaft erwiesen hat, die Elektrolyse nicht bis zum vollständigen Umsatz der Reaktionspartner durchzuführen, weil durch die Produktbildung die Zellspannung ansteigt, wobei die Stoff- und Energieausbeuten sinken. Deshalb wurden bei diesem Verfahren nur Strommengen nicht über 2,4 Faraday/Mol Carbonsäureamid angewandt.
- Die Anwendung höherer Strommengen ist möglich und sogar vorteilhaft, wenn nur ganz spezielle der in der DE-A-21 13 338 aufgeführten Ausgangsstoffe, nämlich N-Ethylcarbonsäureamide der Formel III
- Für diese ansonsten recht vorteilhaften elektrochemischen Verfahren stellt jedoch die Notwendigkeit der Verwendung von teuren Edelmetallen als Elektrodenmaterialien einen gewissen Nachteil dar. Die billigeren (beschichteten) Titananoden sind in dem bei diesem Verfahren angewandten nicht-wäßrigen System (Alkohole) nur wenig beständig, sobald das Basismetall direkt vom Elektrolyten benetzt wird. Wenn man den Einsatz von Edelmetallelektroden dadurch zu vermindern sucht, daß man nur als Anoden Edelmetalle und als Kathoden Nichtedelmetalle (Stahl, Nickel etc.) verwendet, bilden sich - wie durch eigene Versuche festgestellt wurde - in Gegenwart fluorhaltiger Leitsalze (welche bei den genannten elektrochemischen Verfahren die vorteilhaftesten Leitsalze sind) auf den Kathoden im Elektrolyten schwer lösliche Niederschläge, die das Verfahren erheblich beeinträchtigen und u.U. sogar zum Stillstand bringen können.
- Es war daher wünschenswert und bestand die Aufgabe, für die elektrochemische Alkoxylierung von N-Ethylcarbonsäureamiden zu den entsprechenden N-alpha-Alkoxyethylcarbonsäureamiden ein billigeres, für den Einsatz in der Praxis genügend stabiles Elektrodenmaterial zu finden sowie auch die Bildung störender schwerlöslicher Niederschläge auf den Elektroden zu vermeiden.
- Man hätte zur Lösung dieser Aufgabe etwa an einen Ersatz der Edelmetallanoden durch Graphitanoden, welche billig und wohlfeil sind, denken können, da Graphitanoden auch bei ähnlichen elektrochemischen Prozessen wie z.B. den Prozessen gemäß DE-A 23 36 976, BE-A 845 901 und BE-A 849 625 verwendet werden.
-
- R6 = niederes Alkyl
- Wie aus der Reaktionsgleichung ersichtlich, entsteht bei diesem Prozeß jedoch -im Gegensatz zu den elektrochemischen Alkoxylierungen gemäß der eingangs erwähnten DE-A 21 13 338 sowie der BE-A837906 - CO2, weswegen dieser Prozeß mit den eingangs erwähnten Verfahren nicht, direkt vergleichbar ist.
- In den BE-A845901 und 849625 wird die elektrochemische Alkoxylierung von ringförmigen N-Verbindungen zu den entsprechenden, am Ring alkoxylierten Derivaten beschrieben:
- BE-A 845 901 :
- R6 = verzweigte oder unverzweigte Alkylengruppe mit 1-4 C-Atomen in der Kette,
- R9 = (C1-C4)-Alkyl, und
- Y' = H, (C1-C4)-Alkyl oder (C1-C4)-Alkoxy.
- BE-A 849 625 :
- R11= H oder verzweigte (C3-C10)-Alkylgruppen mit einem sec. oder tert. N-a-C-Atom.
- Leitsalze sind in beiden Fällen Alkali- und Tetraalkylammoniumtetrafluoroborate, -hexafluorophosphate und -nitrate.
- Die Verhältnisse bei der anodischen Alkoxylierung ringförmiger N-Verbindungen können jedoch nicht auf die anodische Alkoxylierung offenkettiger N-Alkylcarbonsäureamide übertragen werden, zumal bekannt ist, daß schon innerhalb der Klasse der offenkettigen Carbonsäureamide unter ein- und denselben Elektrolysebedingungen - insbesondere unter Verwendung desselben Elektrodenmaterials - völlig unterschiedliche Resultate auftreten können.
- So gelingt beispielsweise die anodische Alkoxylierung von Dimethylformamid zu N-Alkoxymethyl-Methylformamid ohne weiteres sowohl an Pt- als auch an Graphitanoden mit Tetrafluoroboraten oder Nitraten als Leitsalzen, wogegen die anodische Alkoxylierung von N-(Mono-)Methylformamid unter den gleichen Bedingungen (zu N-Alkoxymethylformamid) nur an einer Pt-Anode und mit Tetrafluoroboraten als Leitsalzen gelingt (M. Finkelstein und S.D. Ross, Tetrahedron Vol. 28, S. 4497-4502, Pergamon Press 1972 ; S.D. Ross, M. Finkelstein und E.J. Rudd ; Anodic Oxidation, S. 236/237, Academic Press 1975) ; bei Verwendung einer Graphitanode wird beim Versuch der anodischen Oxydation von N-Methylformamid hauptsächlich der als Lösungsmittel und Alkoxylierungsreagenz vorhandene Alkohol zum Aldehyd oxydiert, der dann mit noch nicht oxydiertem Alkohol das entsprechende Acetal ergibt.
- Diese Feststellung steht im Einklang mit der an sich bekannten Tatsache, daß bei elektroorganischen Reaktionen an verschiedenen Anoden wie etwa Pt- und Graphit-Anoden oft völlig verschiedene Ergebnisse erhalten werden (M.M. Baizer, Organic Electrochemistry, S. 201, Marcel Dekker Verlag, New York 1973).
- Deswegen war auch nicht zu erwarten, daß etwa bei der anodischen Oxydation von N-Ethylcarbonsäureamiden mit einem Alkohol gemäß BE-A837906 unter Verwendung von Graphitanoden anstelle der dort beschriebenen Edelmetallelektroden das gleiche Ergebnis (N-alpha-Alkoxyethyl)-carbonsäureamide) resultiert. Auch von dem - ebenfalls als Elektrodenmaterial bekannten - glasartigen Kohlenstoff anstelle von normalem Graphit war nichts anderes zu erwarten, da sich glasartiger Kohlenstoff von normalem Graphit chemisch nicht unterscheidet und da auch die übrigen für die Elektrolyse wichtigen Eigenschaften wie z.B. die Porosität des Materials in beiden Fällen im wesentlichen gleich sind (N.L. Weinberg, Technique of Electroorganic Synthesis, Vol. V, Part 1, S. 19, John Wiley and Sons 1976).
- Es war im Hinblick auf diesen Stand der Technik daher außerordentlich überraschend, als gefunden wurde, daß die elektrochemische Herstellung von N-a-Alkoxyethylcarbonsäureamiden durch anodische Alkoxylierung von N-Ethyl-carbonsäureamiden mit Alkoholen unter Verwendung von glasartigem Kohlenstoff als Anodenmaterial und Alkali- und/oder Tetraalkylammoniumalkosulfaten als Leitsalzen sehr gut gelingt. Die ausgangs gestellte Aufgabe konnte dadurch in ausgezeichneter Weise gelöst werden. Bei dieser Lösung war nicht nur der erfolgreiche Einsatz von glasartigem Kohlenstoff als Anodenmaterial, sondern auch die erfolgreiche Verwendung der genannten Leitsalze überraschend, weil Alkosulfate (= Salze von Halbestern der Schwefelsäure) nur als Leitsalze für eine völlig verschiedene elektrochemische Reaktion, nämlich die elektrochemische Hydrodimerisierung von Acrylnitril zu Adipinsäuredinitril, bekannt sind. (F. Beck, « Elektroorganische Chemie, Grundlagen und Anwendungen », Verlag Chemie 1974, S. 109 und die dort zitierte Primärliteratur M.M. Baizer, J. Electrochemical Society 111 (1964), S. 215-222, insbesondere 220, sowie US-PS 2198 746). Für das unerwartete und vorteilhafte Gelingen der Reaktion scheint die Kombination des speziellen Anodenmaterials mit den speziellen Leitsalzen verantwortlich zu sein.
- Erfindungsgegenstand ist somit ein Verfahren zur Herstellung von N-alpha-Alkoxy-ethyl-carbonsäureamiden durch anodische Alkoxylierung von N-Ethyl-carbonsäureamiden mit einem Alkohol in einer mit Anode(n) und Kathode(n) versehenen Elektrolysezelle in Gegenwart eines Leitsalzes ; das Verfahren ist dadurch gekennzeichnet, daß man als Material für die Anode glasartigen Kohlenstoff und als Leitsalz mindestens 1 Alkali- und/oder Tetraalkylammoniumalkosulfat verwendet.
- Als Ausgangsstoffe für das Verfahren können alle möglichen aliphatischen und aromatischen N-Ethylcarbonsäureamide - deren Amidstickstoff also nur durch die Ethylgruppe substituiert ist - verwendet werden. Bevorzugt ist jedoch die Verwendung der auch für das Verfahren der BE-A 837 906 eingesetzten N-Ethylcarbonsäureamide der Formel 111
- Konkrete N-Ethylcarbonsäureamide der Formel 111 sind beispielsweise : N-Ethylformamid, N-Ethylacetamid, N-Ethylpropionamid, N-Ethylbutyramid und N-Ethylbenzamid ; die bevorzugten Verbindungen sind N-Ethylformamid und N-Ethylacetamid.
- Für das Verfahren geeignete Alkohole R'OH sind - ebenso wie beim Verfahren der BE-PS 837 906 ― hauptsächlich (C1-C6)-Alkanole (Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, sek.-Butanol etc.) ; bevorzugt sind Methanol und Ethanol, insbesondere Methanol.
- Anodenmaterial für das Verfahren ist handelsüblicher glasartiger Kohlenstoff. Als Kathodenmaterialien können die hierfür üblichen Nichtedelmetalle wie Stahl, Nickel etc. verwendet werden.
- Leitsalze für das erfindungsgemäße Elektrolyseverfahren sind Alkali- und/oder Tetraalkylammoniumalkosulfate. Als Alkaliionen dieser Salze kommen im Prinzip sämtliche Alkaliionen (von Li, Na, K, Rb, Cs) infrage, wobei die Ionen von Na und K bevorzugt sind.
- Alkylgruppen in den Tetraalkylammoniumsalzen sind hauptsächlich solche mit 1-6 C-Atomen, vorzugsweise Methyl- und Ethylgruppen. Besonders bevorzugt sind die Tetramethylammoniumsalze.
- Alkosulfate sind Salze der Schwefelsäure-Alkylhalbester; bevorzugt sind der (C1-C6)-Alkyl- und insbesondere der Methyl- und Ethyl-Halbester.
- Als konkrete, für das erfindungsgemäße Verfahren geeignete Leitsalze sind in beispielhafter Weise zu nennen :
- Natriummethosulfat, Kaliummethosulfat, Lithiummethosulfat etc. ;
- Tetramethylammoniummethosulfat, Methyltriethylammoniummethosulfat, Methyltripropylammoniumthosulfat, Methyltri-n-butylammoniummethosulfat, Methyltriamylammoniummethosulfat, Methyltrihexylammoniummethosulfat, Tetraethylammoniumethosulfat, Ethyltrimethylammoniumethosulfat, Ethyltripropylammoniumethosulfat, Ethyltri-n-butylammoniumethosulfat, Methyltriamylammoniumethosulfat, Ethyltrihexylammoniumethosulfat etc. ; die bevorzugten Leitsalze sind Tetramethylammoniummethosulfat und Tetraethylammoniumethosulfat, insbesondere Tetramethylammoniummethosulfat. Die Leitsalze können sowohl einzeln als auch in Mischung eingesetzt werden. Die Elektrolyse-Ausgangslösung enthält das Ausgangsamid 111 und das Leitsalz in alkoholischer Lösung. Dabei ist es günstig, wenn das Molverhältnis von N-Ethylcarbonsäureamid zu Alkohol zwischen etwa 1 : 1 und etwa 1 : 100, vorzugsweise zwischen 1 : 2 bis etwa 1 : 60 und insbesondere zwischen 1 : 5 und etwa 1 : 50 beträgt.
- Die Konzentration der (Gesamt-)Elektrolyselösung an Leitsalz beträgt zweckmäßig zwischen etwa 0,1 und etwa 40 Gew.-%, vorzugsweise zwischen etwa 5 und etwa 20 Gew.-%.
- Die Zugabe des Leitsalzes erfolgt meist nach dem Herstellen der alkoholischen Lösung, doch kann die Reihenfolge auch geändert werden.
- Wasser muß von der Elektrolyse nicht vollständig ausgeschlossen werden, da geringe Feuchtigkeitsanteile den Reaktionsablauf kaum beeinträchtigen.
- Das erfindungsgemäße Elektrolyseverfahren wird in vorteilhafter Weise so ausgeführt, daß man eine Strommenge von mindestens etwa 2,5 Faraday/Mol Carbonsäureamid verwendet. Die Anwendung geringerer Strommengen ist möglich ; sie verringert jedoch den Umsatz an Ausgangsamid lll.
- Die Stromdichte wird zweckmäßg zwischen etwa 10 und 1 000 mA/cmz, vorzugsweise zwischen etwa 20 und 600 mA/cmz, eingestellt. Niedrigere Stromdichten sind möglich, jedoch ohne Vorteil ; sie verlangsamen vielmehr die Produktbildung.
- Als Arbeitstemperatur für die Elektrolyse wird vorteilhaft eine Temperatur gewählt, die unterhalb der Siedetemperatur des jeweiligen Alkohols und oberhalb der Schmelztemperatur der Elektrolyselösung liegt. Im allgemeinen werden Temperaturen von etwa - 10 bis + 100 °C, vorzugsweise von etwa 0 bis 60 °C, angewandt.
- Normalerweise wird die Elektrolyse bei Atmosphärendruck durchgeführt, doch ist - wenngleich ohne Vorteile - auch die Durchfürung unter vermindertem oder erhöhtem Druck möglich.
- Zur Vermeidung von explosiblen Gasgemischen aus (bei der Elektrolyse entstehendem) Wasserstoff und Luft ist das Arbeiten unter Zusatz eines Inertgases wie z.B. Stickstoff, vorteilhaft.
- Das Verfahren kann hinsichtlich der Energie- oder Stoffausbeute dadurch optimiert werden, daß der Umsatz des N-Ethylcarbonsäureamids sehr hoch, z.B. über 99 %, getrieben wird, was sich außerdem sehr vorteilhaft auf die Aufarbeitung der Elektrolyselösung auswirkt. Es wird daher im allgemeinen solange elektrolysiert, bis praktisch alles Ausgangsprodukt umgesetzt ist, so daß sich dessen spätere Abtrennung vom Reaktionsprodukt erübrigt. Nach Durchleiten der gewünschten Strommenge wird der Elektrolysestrom abgeschaltet, der Elektrolyseaustrag wird vom Leitsalz befreit und in bekannter Weise - vorzugsweise destillativ - aufgearbeitet. Das Reaktionsprodukt der Elektrolyse kann z.B. kernresonanzspektroskopisch auf Reinheit untersucht werden.
- Bei diskontinuierlicher Verfahrensweise kann die Elektrolyse z.B. in der in der Figur dargestellten Elektrolysezelle (1) ausgeführt werden. Sie ist mit einem dichtschließenden Deckel (2) versehen, durch den die Stromzuleitungen für die Elektroden (3) und (4) geführt werden, und in dem sich die Öffnungen (5) für den Zulauf der Elektrolyselösung, (6) für die Ableitung des Gases und für ein Thermometer (9) befinden. Die Öffnung für die Ableitung des Gases kann mit einem Rückflußkühler versehen sein, in dem verdampfende Anteile der Elektrolysemischung rückkondensiert werden können.
- Die Elektrolysezelle ist ummantelt und kann durch die Ein- (7) und Ausgangsstutzen (8) an einen Heiz- oder Kühlflüssigkeitskreislauf angeschlossen werden. Die Temperatur der Elektrolyselösung wird über ein Thermometer (9) oder einen Thermofühler überwacht. Die zwei Elektroden (3) (Anode) und (4) (Kathode) sind in einem Abstand von 0,5 bis 50 mm, vorzugsweise zwischen 1 und 15 mm, zueinander angeordnet. Anodenmaterial ist glasartiger Kohlenstoff. Als Kathodenmaterial wird ein Nichtedelmetall wie z.B. Nickel, oder auch eine Metallegierung wie z.B. VA-Stahl, eingesetzt. Die vertikale Anordnung der Elektroden kann auch durch eine horizontale ersetzt werden. Ebenso ist die Anordnung mehrerer Elektrodenpaare möglich, wie sie sich vor allem in der blockartigen Kombination von gewinkelten oder nicht gewinkelten Kapillarspaltelektroden mit und ohne Vibration der Elektroden bewährt hat. Ebenso ist die Verwendung der Elektroden in bipolarer Schaltung möglich. Während der Elektrolyse wird die Lösung durch einen Rührer, z.B. Magnetrührer (10), oder durch Umpumpen,. vor allem bei den blockartigen Kombinationen, kräftig durchmischt.
- Wird das Verfahren kontinuierlich betrieben, so ist in dem Deckel (2) des Elektrolysegefäßes (1) eine weitere Öffnung zum kontinuierlichen Umpumpen der Elektrolyselösung vorgesehen. Aus der im Kreislauf umgepumpten Elektrolyselösung wird jeweils ein Teil zur Produktaufbereitung abgetrennt. Nach einer Gehaltsprüfung der Elektrolyselösung auf das Verhältnis von gewünschtem Reaktionsprodukt zu Ausgangsmaterial, z.B. mit Hilfe der NMR-Spektroskopie oder Gaschromatographie, wird die Lösung in bekannter Weise aufgearbeitet. Die bei der Destillation zurückgewonnenen Ausgangsmaterialien werden, nachdem sie auf das verwendete Molverhältnis eingestellt wurden, zusammen mit der erforderlichen Menge des Leitsalzes der kontinuierlich umgepumpten Elektrolyselösung erneut zudosiert.
- Die nach dem erfindungsgemäßen Verfahren erhaltenen bzw. erhältlichen Produkte sind N-a-Alkoxyethyl-carbonsäureamide, welche - wenn man von den bevorzugten Ausgangsmaterialien der Formel 111 ausgeht - die folgende Formel XII besitzen :
- Das erfindungsgemäße Verfahren besitzt den besonderen Vorteil, daß - entgegen der auch bei Elektroden aus glashaltigem Kohlenstoff bekannten Materialabtragung (s. N. L. Weinberg « Technique of Electroorganic Synthesis Vol. 5, Part 1, S. 19, Abs. 2, John Wiley 1972) - in dem hier verwendeten Elektrolytsystem praktisch kein Abtrag eintritt. Außerdem bildet sich an der Kathode kein störender schwerlöslicher Niederschlag. Wegen der höheren Löslichkeit der erfindungsgemäß verwendeten Leitsalze in Alkoholen können erheblich höhere Stromdichten angewandt werden als bei den bekannten Verfahren, welche hauptsächlich mit den in Alkoholen weniger löslichen Tetrafluoroboraten, Hexafluorophosphaten und Nitraten arbeiten ; dadurch sind in kürzerer Zeit höhere Umsätze möglich.
- Die Erfindung stellt somit einen erheblichen Fortschritt dar.
- Die Erfindung wird durch die nachfolgenden Beispiele näher erläutert.
- In eine Elektrolysezelle gemäß der Figur von etwa 500 ml Inhalt mit Deckel und Rückflußkühler wird eine Mischung aus dem jeweiligen Carbonsäureamid und dem entsprechenden Alkohol eingefüllt, in der das Leitsalz gelöst wird. Je eine Platte aus Stahl und glasartigem Kohlenstoff (Breite x Länge = 50 x 130 mm2) werden so angeordnet, daß sie einen gegenseitigen Abstand von 3 bis 5 mm haben und 100 mm in die Lösung eintauchen. Der Zelleninhalt wird während der Elektrolyse mit Hilfe eines Magnetrührers mit 50 bis 60 Umdrehungen pro Minute umgerührt und dabei auf dem in folgender Tabelle 1 jeweils angegebenem Wert T gehalten. Nachdem die (ebenfalls in Tabelle 1 angegebene) Strommenge Q durchgeleitet worden ist, wird der Strom abgeschaltet.
- Die Elektrolyselösung wird in bekannter Weise aufgearbeitet.
-
- In einer Durchflußapparatur mit Umwälzpumpe, Wärmetauscher und Entgasungsgefäß wird eine ungeteilte Elektrolysezelle mit einer blockartigen Elektrodenkombination eingebaut. Diese besteht aus einer Anode aus glasartigem Kohlenstoff, aus einer Kathode aus Stahl und aus dazwischen vier bipolar geschalteten Elektrodenplatten aus glasartigem Kohlenstoff. Zwischen diese Platten wird jeweils ein Stapel aus Nickelgewebe (2 Lagen der Maschenweite 0,19 mm und 0,1 mm Drahtstärke und dazwischen zwei Lagen der Maschenweite 0,5 mm und 0,3 mm Drahtstärke) und aus Polyethylengewebe (1 Lage der Maschenweite 0,9 mm und 0,3 mm Fadenstärke) so eingeschoben, daß das Nickelgewebe auf die Kathodenseiten der Kohleplatten bzw. die Stahlplatte zu liegen kam. Diese Kombinationen wird zur Minimierung des Elektrodenabstandes zusammengepreßt eingebaut. Alle Elektrodenplatten sind mit einem Polyethylenrahmen eingefaßt, der senkrecht zur Strömungsrichtung des Elektrolyten 22 mm breit - parallel zur Strömungsrichtung 12 mm breit - und wie jede der Platten etwa 2,5 mm dick war. Die wirksame Elektrodenfläche jeder Anode betrug 255 cm2.
-
mit Alkoholen der Formel II
in Gegenwart eines Leitsalzes bei Temperaturen zwischen + 10 und 100 °C elektrolysiert.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT80102539T ATE1454T1 (de) | 1979-05-16 | 1980-05-08 | Verfahren zur herstellung von n-alpha-alkoxyethyl-carbons[ureamiden. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19792919756 DE2919756A1 (de) | 1979-05-16 | 1979-05-16 | Verfahren zur herstellung von n- alpha -alkoxyethyl-carbonsaeureamiden |
DE2919756 | 1979-05-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0019226A1 EP0019226A1 (de) | 1980-11-26 |
EP0019226B1 true EP0019226B1 (de) | 1982-08-11 |
Family
ID=6070873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP80102539A Expired EP0019226B1 (de) | 1979-05-16 | 1980-05-08 | Verfahren zur Herstellung von N-alpha-Alkoxy-ethyl-carbonsäureamiden |
Country Status (7)
Country | Link |
---|---|
US (1) | US4288300A (de) |
EP (1) | EP0019226B1 (de) |
JP (1) | JPS55154589A (de) |
AT (1) | ATE1454T1 (de) |
AU (1) | AU5843680A (de) |
CA (1) | CA1135656A (de) |
DE (2) | DE2919756A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3529531A1 (de) * | 1985-08-17 | 1987-02-26 | Basf Ag | Verfahren zur herstellung von carbamidsaeureestern |
US4927508A (en) * | 1988-02-11 | 1990-05-22 | The Dow Chemical Company | Alkyl 2-fluoro-1-methoxyethylcarbamates |
US5144074A (en) * | 1988-02-24 | 1992-09-01 | Air Products And Chemicals, Inc. | Process for the synthesis of carboxamides |
US4997984A (en) * | 1989-12-19 | 1991-03-05 | Shawa Denko K.K. | Process for preparation of N-(α-alkoxyethyl)-carboxylic acid amide |
DE102012008612A1 (de) * | 2012-04-27 | 2013-10-31 | Ika-Werke Gmbh & Co. Kg | Temperaturmessvorrichtung |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3193483A (en) * | 1964-01-14 | 1965-07-06 | Monsanto Co | Electrolysis of acrylamides |
DE2336976A1 (de) * | 1973-07-20 | 1975-02-13 | Hoechst Ag | Verfahren zur herstellung von n-(alphaalkoxyaethyl)-carbonsaeureamiden |
NL7600544A (nl) * | 1975-01-25 | 1976-07-27 | Hoechst Ag | Werkwijze voor de bereiding van n-(gamma-alkoxy- ethyl)-carbonzuuramiden. |
DE2539767C2 (de) * | 1975-09-06 | 1982-06-16 | Hoechst Ag, 6000 Frankfurt | Verfahren zur Herstellung von N-(α-Alkoxyäthyl)-carbonsäureamiden |
US4149941A (en) * | 1975-09-06 | 1979-04-17 | Hoechst Aktiengesellschaft | Process for preparing fungicidal monoalkoxy and dialkoxy N-substituted cyclic amines |
US4138408A (en) * | 1975-12-20 | 1979-02-06 | Hoechst Aktiengesellschaft | ω-Alkoxy derivatives of lactams and process for their manufacture |
-
1979
- 1979-05-16 DE DE19792919756 patent/DE2919756A1/de not_active Withdrawn
-
1980
- 1980-05-08 AT AT80102539T patent/ATE1454T1/de not_active IP Right Cessation
- 1980-05-08 DE DE8080102539T patent/DE3060750D1/de not_active Expired
- 1980-05-08 EP EP80102539A patent/EP0019226B1/de not_active Expired
- 1980-05-14 US US06/149,149 patent/US4288300A/en not_active Expired - Lifetime
- 1980-05-15 CA CA000351988A patent/CA1135656A/en not_active Expired
- 1980-05-15 AU AU58436/80A patent/AU5843680A/en not_active Abandoned
- 1980-05-15 JP JP6347180A patent/JPS55154589A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
DE3060750D1 (en) | 1982-10-07 |
AU5843680A (en) | 1980-11-20 |
ATE1454T1 (de) | 1982-08-15 |
JPS55154589A (en) | 1980-12-02 |
CA1135656A (en) | 1982-11-16 |
US4288300A (en) | 1981-09-08 |
EP0019226A1 (de) | 1980-11-26 |
DE2919756A1 (de) | 1980-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0012215B1 (de) | 2-Hydroxybutansulfonsaures Cholin und dessen Verwendung als Leitsalz | |
DE2460754C2 (de) | Verfahren zur Herstellung von p-Benzochinondiketalen | |
DE19548428C1 (de) | 2-Alkylmerkapto-4-(trifluormethyl)-benzoesäureester sowie ein Verfahren zu ihrer Herstellung | |
EP0131001B1 (de) | Verfahren zur herstellung eines aldehyds | |
EP0019225A1 (de) | Verfahren zur Herstellung von N-Vinyl-N-alkyl-carbonsäureamiden | |
EP0019226B1 (de) | Verfahren zur Herstellung von N-alpha-Alkoxy-ethyl-carbonsäureamiden | |
DE2336976A1 (de) | Verfahren zur herstellung von n-(alphaalkoxyaethyl)-carbonsaeureamiden | |
EP0576853B1 (de) | Verfahren zur Herstellung von Perfluorpolyethern | |
DE2240731C3 (de) | Verfahren zur Herstellung von Glyoxylsäure | |
DE1263768B (de) | Vorrichtung zur Durchfuehrung elektrochemischer Reaktionen organischer Verbindungen mit stroemendem Elektrolyten | |
DE3608853C2 (de) | ||
DE2113338C3 (de) | Verfahren zur Alkoxylierung von am Stickstoff alkylierten Carbonsäureamiden | |
DE1693005A1 (de) | Verfahren zur Herstellung von Adipinsaeuredinitril | |
DE2855508A1 (de) | Verfahren zur herstellung von benzaldehyden | |
DE2720425C2 (de) | Verfahren zur Herstellung eines Gemisches eines gegebenenfalls durch einen inerten Rest substituierten 4-Hydroxymethylimidazols mit einem 4-nieder-Alkoxymethylimidazol | |
DE2547383A1 (de) | Verfahren zur herstellung von p-benzochinondiketalen | |
EP0029995A1 (de) | Verfahren zur Herstellung von 4-tert. Butylbenzaldehyd | |
WO1992005299A1 (de) | Verfaharen zur herstellung von halogenierten acrylsäuren | |
DE2403446C2 (de) | Verfahren zur Herstellung hydrierter Indole | |
DE2610148C3 (de) | Verfahren zur Herstellung von Perfluoräthyljodid | |
DE2503114C3 (de) | Verfahren zur Herstellung von N-(α-Alkoxyäthyl)-carbonsäureamiden | |
DE2812508B2 (de) | Verfahren zur Herstellung von NJS'dialkylsubstituierten Tetrahydro-4,4'bipyridylen | |
DE2539767C2 (de) | Verfahren zur Herstellung von N-(α-Alkoxyäthyl)-carbonsäureamiden | |
DE1793568B1 (de) | Verfahren zur Herstellung von paraffinischen Dicarbonsaeure- oder Teracarbonsaeureamiden | |
DE1906292C3 (de) | Verfahren zur elektrolytischen Behandlung von alpha, beta- monoolefinischen Nitriten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19801224 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 1454 Country of ref document: AT Date of ref document: 19820815 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3060750 Country of ref document: DE Date of ref document: 19821007 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19830421 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19830430 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19840419 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19840420 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19840508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19840509 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19840620 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19840630 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19850531 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19860531 Ref country code: CH Effective date: 19860531 Ref country code: BE Effective date: 19860531 |
|
BERE | Be: lapsed |
Owner name: HOECHST A.G. Effective date: 19860531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19861201 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19880129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19880202 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19881118 |
|
EUG | Se: european patent has lapsed |
Ref document number: 80102539.6 Effective date: 19850417 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |