[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0009292A1 - Verfahren und Anordnung zum Ermitteln des Innenmasses von langgestreckten Hohlkörpern, insbesondere von Rohren - Google Patents

Verfahren und Anordnung zum Ermitteln des Innenmasses von langgestreckten Hohlkörpern, insbesondere von Rohren Download PDF

Info

Publication number
EP0009292A1
EP0009292A1 EP79200521A EP79200521A EP0009292A1 EP 0009292 A1 EP0009292 A1 EP 0009292A1 EP 79200521 A EP79200521 A EP 79200521A EP 79200521 A EP79200521 A EP 79200521A EP 0009292 A1 EP0009292 A1 EP 0009292A1
Authority
EP
European Patent Office
Prior art keywords
determined
hollow body
tube
radiation
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP79200521A
Other languages
English (en)
French (fr)
Other versions
EP0009292B1 (de
Inventor
Ulrich Dr. Gehm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Patentverwaltung GmbH
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Philips Patentverwaltung GmbH
Publication of EP0009292A1 publication Critical patent/EP0009292A1/de
Application granted granted Critical
Publication of EP0009292B1 publication Critical patent/EP0009292B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons

Definitions

  • the invention relates to a method for determining the internal dimensions of elongated hollow bodies, in particular tubes, by means of X-ray or gamma radiation.
  • the dimensions inside the hollow body are often important in the production control of hollow bodies. However, this dimension cannot usually be measured without destroying the hollow body.
  • this dimension cannot usually be measured without destroying the hollow body.
  • the object of the invention is therefore to provide a method of the type mentioned at the outset which allows the internal dimensions of a hollow body, in particular a tube, to be determined without the x-ray or gamma emitter or the transducer which Gamma radiation converted into an optical or electrical signal, must be arranged inside the tube.
  • the hollow body is irradiated with a radiation source arranged outside the hollow body, in that the intensity profile of the radiation beyond the hollow body is detected along a line located in a plane approximately perpendicular to the longitudinal axis, preferably containing the emitter and that the location of the intensity minimum is determined.
  • the minimum of the radiation intensity behind the hollow body is not sufficiently pronounced.
  • an evaluation is also possible in this case if, according to a development of the invention, the first derivative of the intensity curve is determined and the position or the distance of the zeros of the first derivative is determined.
  • Another possibility for the exact determination of the position of the minimum is that the intensity curve on both sides of the minimum is approximated by an exponential function and that the point at which the exponential functions thus determined is the same is determined as the location of the minimum to have.
  • Fig. 1 is an X-ray tube and 2 is a tube designated, whose longitudinal axis 3 is perpendicular to the plane of the drawing.
  • the X-rays indicated by dashed lines penetrate the tube, the boundaries of which are irradiated tangentially.
  • the resulting radiation relief is converted into an electrical signal by a converter (not shown in more detail) in the horizontal straight line indicated by the arrow 4.
  • the course of the intensity y of the radiation as a function of the location x on the horizontal lines mentioned is given by curve 5.
  • the part of the radiation that reaches the transducer past the tube 2 has the maximum intensity.
  • the intensity y increases up to the central axis 3 of the tube. Beyond the central axis, the intensity runs symmetrically to the course described so far.
  • d ' The part of the attenuation curve that extends between the minimum and the point at which the intensity begins to decrease from its maximum value is denoted by d '. It arises linearly from the geometric dimensions of the shadow projections of the tube wall thickness of d if the distance of the tube from the radiator is large compared to the wall thickness of the tube.
  • the coefficients of the exponential functions can be according to the formulas be determined.
  • He can be with the equation calculate; b1, a1 are the coefficients of one exponential curve (eg exponential curve 7 in FIG. 1) and equations (1) and (2) are calculated and a2 and b2 are the coefficients of the other exponential curve (8).
  • the arrangement shown schematically in FIG. 2 for carrying out the method uses the first-mentioned possibility for the precise Determination of the minimum.
  • the arrangement contains an X-ray emitter 1, the radiation of which is masked out by a front aperture 10 in such a way that the tube walls can still be tangentially affected by the radiation, but only a small part of the radiation can fall past the tube onto the fluorescent screen of an X-ray image intensifier 11.
  • a filter 12 which consists of such a material and has such a strength that the tube can be penetrated sufficiently by the x-ray radiation on the one hand, and on the other hand the proportion of scattered radiation is low.
  • the X-ray image intensifier 11 converts the radiation relief of the tube 2 generated on its input screen into a visible image which appears increasingly on its output screen 11a.
  • the brightness of the output screen image is recorded by a television camera 14 via suitable optics 13.
  • the television camera is arranged so that the line direction is perpendicular to the central axis of the tube 2 (the line direction is therefore vertical in FIG. 2), while the vertical direction of the scanned image is parallel to the central axis of the tube 2 (perpendicular to the plane of the drawing).
  • the video signal generated by the television camera 14 is fed to a low-pass filter 15, which frees the video signal from higher-frequency noise components, so that a smoothed signal according to curve 5 of FIG. 1 is produced.
  • the output of the low-pass filter 15 is connected to a differentiating element 16, at the output of which a signal is therefore generated whose time profile corresponds to the spatial profile (in direction x) of curve 6.
  • the time interval between two zero crossings in the output signal is therefore proportional to the spatial distance between two zero crossings in curve 6.
  • the time interval between the zero crossings is determined by the circuit 17.
  • a time stamp generator can be provided or a circuit with a gate that opens at the first zero crossing is and then passes pulses of suitable well-known frequency to a counter and is closed at the next zero crossing. The counter reading then represents the time interval between the zeros of the differentiated video signal or the wall thickness.
  • the output signal of the circuit 17 could be compared with an electrical signal representing the setpoint of the zero crossings or the wall thickness and, in the event of a deviation, be used to trigger an alarm signal. If the arrangement shown is used during the manufacturing process, however, the parameters influencing the wall thickness of the tube 2 can also be controlled directly.
  • the position of the outer tube wall does not necessarily have to be determined by the X-rays. It could also be determined with visible light, the light source being mechanically coupled to the X-ray emitter and the light sensor to the X-ray detector (11).
  • the wall thickness d can only be determined at two locations on the tube.
  • the tube 2 In order to determine the wall thickness at other points, the tube 2 must be rotated about its central axis 3 by a predetermined angle. Then the pipe must be moved perpendicular to the plane of the drawing. In a manufacturing process in which the wall thickness is uniform along the pipe circumference, but can be uneven in the direction of the pipe axis, the pipe can be dispensed with.
  • the arrangement shown schematically in FIG. 3 enables the wall thickness to be determined by determining the intensity minimum as the intersection of two exponential curves.
  • the X-ray emitter 1, the diaphragms 10 and the filter 12 are not shown for the sake of clarity.
  • a number beyond (with respect to the one not shown Radiator) of the tube 2 arranged at the same distance from each other nuclear radiation detectors (the nuclear radiation detectors are compared to the dimensions of the tube much smaller than shown in the drawing) provides signals that correspond to the intensity of the radiation at the location of the various nuclear radiation detectors.
  • the signals are processed in a manner not shown in detail and fed to a digital computer 18, which calculates the two exponential functions from them in accordance with equations (1) and (2) and then their intersection in accordance with equation (3).
  • the values x i are predetermined by the spatial arrangement of the nuclear radiation detectors, while the values y i are determined by the size of the signal of the nuclear radiation detector at location x i .
  • the output signal of the computer 18 can also be used to control the manufacturing process or to trigger an alarm signal.
  • the nuclear radiation detectors are all the same distance apart.
  • the entire area of the tube does not have to be detected by the nuclear radiation detectors, as can be seen from FIG. 3. Rather, it is sufficient if a group of nuclear radiation detectors is arranged on each side of the point at which the beam tangent to the inside diameter of the tube 2 should strike, if the tube has the prescribed inside diameter, both of which determine the measured values for determining one of the associated exponential functions .
  • the nuclear radiation detectors are arranged on an arc, for example around the focal spot of the radiator. It is important, however, that the detectors are arranged on a line which is located in a plane perpendicular to the central axis of the tube and which preferably runs through the X-ray emitter.
  • the outer diameter can optionally be determined by the position of the first nuclear radiation detector (seen from the center) being full of X-rays. is hit, is determined. As already mentioned, the outside diameter can also be determined with the help of visible light.
  • the position of the inner wall of the tube 2 as the intersection of two exponential functions can also be determined with the aid of an arrangement which, like that in FIG. 2, continuously delivers the signal corresponding to the intensity of the radiation beyond the tube. This signal must then be sampled at predetermined time intervals and quantized if necessary.
  • the determination of the radiation intensity with the aid of nuclear radiation detectors has the advantage over an arrangement with an image intensifier and television camera that it is better adapted to the energy of the X-rays to be detected.
  • the method according to the invention is not only applicable to steel pipes, but also to pipes made of any other chemically homogeneous material, e.g. made of plastic or wire.
  • Cylindrical hollow bodies can also be used which have a different cross-section than the one shown in the drawing, e.g. an elliptical.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Für die Fertigungskontrolle bei der Herstellung von insbesondere tiefgezogenen Rohren ist es sehr wichtig, die Dicke des Rohres zu kontrollieren. Da die Rohre bei der Fertigung rotglühend sind, kommt eine Anordnung des Röntgenstrahlers und des Filters innerhalb des Rohres nicht in Betracht. Die Erfindung sieht daher vor, dass der Strahler (1) ausserhalb des Rohres (2) angeordnet ist und dieses tangential durchstrahlt. Die Maxima und Minima des dabei erzeugten Strahlenreliefs in einer Ebene senkrecht zur Rohrachse geben die Position der Rohraussen- und -innenwand (7, 8) an. Daraus kann die Wandstärke (d) des Rohres abgeleitet werden.

Description

  • Die Erfindung betrifft ein Verfahren zum Ermitteln des Innenmaßes von langgestreckten Hohlkörpern, insbesondere von Rohren, durch Röntgen- oder Gammastrahlung.
  • Bei der Fertigungskontrolle von Hohlkörpern sind oft die Abmessungen im Innern des Hohlkörpers von Bedeutung. Diese Abmessung kann aber meist nicht ohne Zerstörung des Hohlkörpers gemessen werden. So besteht beispielsweise bei der Fertigungskontrolle von tiefgezogenen Rohren das Problem, die Innenabmessungen des Rohres, insbesondere die Wandstärke, ständig zu kontrollieren, wobei erschwerend hinzukommt, daß die Rohre während des Fertigungsvorganges rotglühend sind, so daß es nicht möglich ist, das Rohr mittels eines in bekannter Weise innerhalb des Rohres eingebrachten Röntgenstrahlers zu kontrollieren.
  • Aufgabe der Erfindung ist es daher, ein Verfahren der eingangs genannten Art zu schaffen, daß es gestattet, die Innenabmessung eines Hohlkörpers, insbesondere eines Rohres, zu ermitteln, ohne daß der Röntgen- bzw. Gammastrahler oder der Wandler, der die Röntgen- bzw. Gammastrahlung in ein optisches oder elektrisches Signal umwandelt, im Innern des Rohres angeordnet sein muß.
  • Diese Aufgabe wird unter Zugrundelegung des eingangs genannten Verfahrens dadurch gelöst, daß der Hohlkörper mit einer außerhalb des Hohlkörpers angeordneten Strahlenquelle durchstrahlt wird, daß der Intensitätsverlauf der Strahlung jenseits des Hohlkörpers entlang einer in einer zur Längsachse ungefähr senkrechten, vorzugsweise den Strahler enthaltenden Ebene befindlichen Linie erfaßt wird und daß die Lage des Intensitätsminimums bestimmt wird.
  • In der Praxis ist das Minimum der Strahlungsintensität hinter dem Hohlkörper nicht genügend ausgeprägt. Auch in diesem Fall ist aber eine Auswertung möglich, wenn nach einer Weiterbildung der Erfindung die erste Ableitung des Intensitätsverlaufs ermittelt wird und die Lage bzw. der Abstand der Nullstellen der ersten Ableitung bestimmt wird.
  • Eine andere Möglichkeit zur genauen Bestimmung der Lage des Minimums besteht nach einer anderen Weiterbildung der Erfindung darin, daß der Intensitätsverlauf beiderseits des Minimums durch je eine Exponentialfunktion angenähert wird und daß als Ort des Minimums der Punkt bestimmt wird, an dem die so ermittelten Exponentialfunktionen denselben Wert haben.
  • Die Erfindung wird nachstehend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigen
    • Fig. 1 in schematischer Darstellung den Strahlengang bei einer erfindungsgemäßen Anordnung, den Verlauf der Intensität und den Verlauf des Differentialquotienten der Intensität,
    • Fig. 2 eine erste Ausführungsform zur Durchführung des Verfahrens und
    • Fig. 3 eine andere Ausführungsform.
  • In Fig. 1 ist mit 1 ein Röntgenstrahler und mit 2 ein Rohr bezeichnet, dessen Längsachse 3 senkrecht zur Zeichenebene steht. Die gestrichelt angedeuteten Röntgenstrahlen durchdringen das Rohr, wobei dessen Begrenzungen tangential durchstrahlt werden. Das entstehende Strahlenrelief wird von einem nicht näher dargestellten Wandler in der mit dem Pfeil 4 bezeichneten horizontalen Geraden in ein elektrisches Signal umgewandelt.
  • Der Verlauf der Intensität y der Strahlung als Funktion des Ortes x auf den erwähnten horizontalen Geraden ist durch die Kurve 5 gegeben. Der Teil der Strahlung, der an dem Rohr 2 vorbei den Wandler erreicht, hat die maximale Intensität. Sobald die Strahlung die Außenwand des'Rohres tangiert bzw. die Rohrwand durchsetzt, nimmt die Strahlungsintensität ab. Sie erreicht ihr Minimum, wenn die Strahlung die Innenwand des Rohres gerade tangiert. Danach steigt die Intensität y bis zur Mittelachse 3 des Rohres hin an. Jenseits der Mittelachse verläuft die Intensität symmetrisch zum bisher beschriebenen Verlauf.
  • Der Teil der Schwächungskurve, der sich zwischen dem Minimum und dem Punkt erstreckt, an dem die Intensität von ihrem Maximalwert abzunehmen beginnt, ist mit d' bezeichnet. Sie geht linear aus den geometrischen Dimensionen der Schattenprojektionen der Rohrwandstärke von d hervor, wenn der Abstand des Rohres vom Strahler groß ist im Vergleich zur Wandstärke des Rohres.
  • Aus physikalischen Gründen stellt das Kurvenminimum keinen scharfen Übergang dar, sondern erstreckt sich über einen gewissen Bereich. Um dennoch den genauen Ort des Minimums zu bestimmen, gibt es zwei Möglichkeiten:
    • Bei der einen Möglichkeit wird der Differentialquotient der Intensität y nach dem Ort x gebildet. Die sich daraus ergebende Kurve ist in Fig. 1 mit 6 bezeichnet. An der Stelle der Minima und der Maxima ergibt sich dabei ein Nulldurchgang der Kurve 6. Die Strecke d' ergibt sich also aus dem Abstand zweier Nulldurchgänge sehr genau. Unter Berücksichtigung des Vergrößerungsmaßstabes läßt sich daraus die Wandstärke d des Rohres 2 ableiten.
  • Die zweite Möglichkeit beruht auf der Erkenntnis, daß die Äste der Intensitätskurve 5 beiderseits des Minimums d einer Exponentialfunktion vom Typ y = a·ebx folgen, wobei sich lediglich im Bereich des Minimums Abweichungen ergeben. Es ist daher grundsätzlich möglich, diesen Teil der Kurve·5 durch zwei Exponentialfunktionen zu ersetzen, wie in Fig. 1 durch die strichpunktierten Kurven 7 und 8 angedeutet. Die Koeffizienten der Exponentialfunktionen können dabei nach den Formeln
    Figure imgb0001
    Figure imgb0002
    ermittelt werden. yi ist dabei die Intensität der Strahlung am Ort xi mit i = 1, 2 ... n, wobei n die Anzahl der Stellen ist, an denen die gemessene Intensität zur Ermittlung der Exponentialkurve herangezogen wird. Der Schnittpunkt der beiden so ermittelten Exponentialkurven stimmt praktisch mit dem Ort des Minimums überein. Er läßt sich mit der Gleichung
    Figure imgb0003
    errechnen; b1, a1 sind dabei die den Gleichungen (1) und (2) errechneten Koeffizienten der einen Exponentialkurve (z.B. der Exponentialkurve 7 in Fig. 1) und a2 und b2 sind die Koeffizienten der anderen Exponentialkurve (8). Die in Fig.2 schematisch dargestellte Anordnung zur Durchführung des Verfahrens benutzt die erstgenannte Möglichkeit zur genauen Ermittlung des Minimums. Die Anordnung enthält einen Röntgenstrahler 1, dessen Strahlung durch eine vorgesetzte Blende10 so ausgeblendet wird, daß die Rohrwände noch tangential von der Strahlung erfaßt werden können, jedoch nur ein geringer Teil der Strahlung an dem Rohr vorbei auf den Eingangsleuchtschirm eines Röntgenbildverstärkers 11 fallen kann. Zwischen den Röntgenstrahler 1 und dem Rohr 2 befindet sich ein Filter 12, das aus einem solchen Material besteht und eine solche Stärke hat, daß das Rohr durch die Röntgenstrahlung einerseits ausreichend durchdrungen werden kann, andererseits der Streustrahlenanteil gering ist.
  • Der Röntgenbildverstärker 11 wandelt das auf seinem Eingangsschirm erzeugte Strahlenrelief des Rohres 2 in ein sichtbares Bild um, das verstärkt an seinem Ausgangsschirm 11a erscheint. Das in seiner Helligkeit verstärkte Ausgangsschirmbild wird über eine geeignete Optik 13 von einer Fernsehkamera 14 aufgenommen. Die Fernsehkamera ist so angeordnet, daß die Zeilenrichtung senkrecht zur Mittelachse des Rohres 2 verläuft (die Zeilenrichtung verläuft in Fig. 2 also in vertikaler Richtung), während die Vertikalrichtung des abgetasteten Bildes parallel zur Mittelachse des Rohres 2 (senkrecht zur Zeichenebene) verläuft. Das von der Fernsehkamera 14 erzeugte Videosignal wird einem Tiefpaß 15 zugeführt, der das Videosignal von höherfrequenten Rauschkomponenten befreit, so daß ein geglättetes Signal entsprechend Kurve 5 von Fig. 1 entsteht. Der Ausgang des Tiefpasses 15 ist mit einem Differenzierglied 16 verbunden, an dessen Ausgang daher ein Signal entsteht, dessen zeitlicher Verlauf dem räumlichen Verlauf (in Richtung x) der Kurve 6 entspricht. Der zeitliche Abstand zweier Nulldurchgänge in dem Ausgangssignal ist daher dem räumlichen Abstand zweier Nulldurchgänge in Kurve 6 proportional. Der zeitliche Abstand der Nulldurchgänge wird durch die Schaltung 17 ermittelt. Es kann zu diesem Zweck ein Zeitmarkengenerator vorgesehen sein oder aber eine Schaltung mit einem Tor, das bei dem ersten Nulldurchgang geöffnet wird und dann Impulse geeigneter genau bekannter Frequenz zu einem Zähler durchläßt und bei dem nächsten Nulldurchgang geschlossen wird. Der Zählerstand stellt dann den zeitlichen Abstand der Nullstellen des differenzierten Videosignals bzw. die.Wandstärke dar. Das Ausgangssignal der Schaltung 17 könnte mit einem den Sollwert der Nulldurchgänge bzw. der Wandstärke darstellenden elektrischen Signal verglichen und bei einer Abweichung zur Auslösung eines Alarmsignals dienen. Bei einem Einsatz der dargestellen Anordnung während des Herstellungsprozesses können damit aber auch die die Wandstärke des Rohres 2 beeinflussenden Parameter direkt gesteuert werden.
  • Die Lage der äußeren Rohrwand muß nicht unbedingt durch die Röntgenstrahlung bestimmt werden. Sie könnte auch mit sichtbarem Licht ermittelt werden, wobei die Lichtquelle mit dem Röntgenstrahler und der Lichtsensor mit dem Röntgenstrahlendetektor (11) mechanisch gekoppelt wird.
  • Wie insbesondere aus Fig. 1 hervorgeht, kann mit dem erfindungsgemäßen Verfahren die Wandstärke d nur an jeweils zwei Stellen des Rohres ermittelt werden. Um die Wandstärke auch an anderen Stellen zu ermitteln, muß das Rohr 2 um einen vorgegebenen Winkelbetrag um seine Mittelachse 3 gedreht werden. Anschließend muß das Rohr senkrecht zur Zeichenebene verschoben werden. Bei einem Herstellungsverfahren, bei dem die Wandstärke längs des Rohrumfanges gleichmäßig ist, in Richtung der Rohrachse jedoch ungleichmäßig sein kann, kann auf eine Drehung des Rohres verzichtet werden.
  • Die in Fig. 3 schematisch dargestellte Anordnung gestattet die Ermittlung der Wandstärke indem das Intensitätsminimum als Schnittpunkt zweier Exponentialkurven ermittelt wird. Der Röntgenstrahler 1, die Blenden 10 und das Filter 12 sind der Übersichtlichkeit halber nicht dargestellt. Eine Anzahl jenseits (in bezug auf den nicht dargestellten Strahler)des Rohres 2 in gleichem Abstand voneinander angeordneter Kernstrahlungsdetektoren (die Kernstrahlungsdetektoren sind im Vergleich zu den Abmessungen des Rohres wesentlich kleiner als in der Zeichnung dargestellt) liefert Signale, die der Intensität der Strahlung am Ort der verschiedenen Kernstrahlungsdetektoren entsprechen. Die Signale werden auf nicht näher dargestellte Weise aufbereitet und einem Digitalrechher 18 zugeführt, der daraus gemäß den Gleichungen (1) und (2) die beiden Exponentialfunktionen und anschließend gemäß Gleichung (3) deren Schnittpunkt berechnet. Die Werte xi sind dabei durch die räumliche Anordnung der Kernstrahlungsdetektoren vorgegeben, während die Werte yi durch die Größe des Signals des Kernstrahlungsdetektors am Ort xi bestimmt sind. Auch das Ausgangssignal des Rechners 18 kann zur Steuerung des Herstellungsverfahrens oder zur Auslösung eines Alarmsignals benutzt werden.
  • Es ist nicht unbedingt erforderlich, aber zweckmäßig, daß die Kernstrahlungsdetektoren alle denselben Abstand voneinander haben. Außerdem muß auch nicht - wie aus Fig. 3 ersichtlich - der gesamte Bereich des Rohres von den Kernstrahlungsdetektoren erfaßt werden. Es genügt vielmehr, wenn beiderseits des Punktes, an dem der den Innendurchmesser des Rohres 2 tangierende Strahl auftreffen müßte, wenn das Rohr den vorgeschriebenen Innendurchmesser hat, je eine Gruppe von Kernstrahlungsdetektoren angeordnet ist, die beide jeweils die Meßwerte zur Ermittlung einer der zugehörigen Exponentialfunktionen ermitteln.
  • Es ist auch nicht erforderlich, daß die Kernstrahlungsdetektoren auf einem Kreisbogen z.B. um den Brennfleck des Strahlers angeordnet sind. Wichtig ist aber, daß die Detektoren auf einer Linie angeordnet sind, die sich in einer zur Mittelachse des Rohres senkrechten Ebene befindet, die vorzugsweise durch den Röntgenstrahler verläuft.
  • Der Außendurchmesser kann gegebenenfalls dadurch ermittelt werden, daß die Position des ersten Kernstrahlungsdetektors (von der Mitte aus gesehen), der voll von Röntgenstrahlung . getroffen wird, festgestellt wird. Der Außendurchmesser kann aber auch wie bereits erwähnt mit Hilfe von sichtbarem Licht ermittelt werden.
  • Die Ermittlung der Lage der Innenwand des Rohres 2 als Schnittpunkt zweier Exponentialfunktionen kann auch mit Hilfe einer Anordnung erfolgen, die - wie diejenige in Fig. 2 - kontinuierlichem der Intensität der Strahlung jenseits des Rohres entsprechendes Signal liefern. Dieses Signal muß dann in vorgegebenen zeitlichen Abständen abgetastet und gegebenenfalls quantisiert werden. Die Ermittlung der Strahlenintensität mit Hilfe von Kernstrahlungsdetektoren hat gegenüber einer Anordnung mit Bildverstärker-und Fernsehkamera jedoch den Vorteil der besseren Anpassung an die zu detektierende Energie der Röntgenstrahlen.
  • Das erfindungsgemäße Verfahren ist nicht nur bei Stahlrohren anwendbar, sondern auch bei Rohren aus beliebigem anderen chemisch homogenem Material, z.B. aus Plastik oder Draht. Es können auch zylinderförmige Hohlkörper verwendet werden, die einen anderen als den in der Zeichnung dargestellten kreisförmigen Querschnitt haben, z.B. einen ellipsenförmigen.

Claims (5)

1. Verfahren zum Ermitteln des Innenmaßes von langgestreckten Hohlkörpern, insbesondere von Rohren, durch Röntgen- oder Gammastrahlung, dadurch gekennzeichnet, daß der Hohlkörper (2) mit einer außerhalb des Hohlkörpers angeordneten Strahlenquelle (1) durchstrahlt wird, daß der Intensitätsverlauf der Strahlung jenseits des Hohlkörpers entlang einer in einer zur Längsachse ungefähr senkrechten, vorzugsweise den Strahler enthaltenden Ebene befindlichen Linie erfaßt wird und daß die Lage des Intensitätsminimums bestimmt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die erste Ableitung des Intensitätsverlaufs (dy/dx) ermittelt wird und daß die Lage bzw. der Abstand (d') der Nullstellen der ersten Ableitung bestimmt wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Intensitätsverlauf beiderseits des Minimums durch je eine Exponentialfunktion (7, 8) angenähert wird und daß als Ort des Minimums der Punkt (x') bestimmt wird, an dem die so ermittelten Exponentialfunktionen denselben Wert haben.
4. Anordnung zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß jenseits des Hohlkörpers ein Bildverstärker (11) angeordnet ist, daß das Ausgangsschirmbild des Bildverstärkers von einer Fernsehkamera (14) in zur Längsachse des Hohlkörpers senkrechten Zeilen abgetastet wird und daß das Videosignal über ein Differenzierglied (16) einer Schaltung zur Bestimmung der Nulldurchgänge zugeführt wird, die ein dem zeitlichen Abstand eines Nulldurchgangs vom Zeilenbeginn bzw. den zeitlichen Abstand zweier Nulldurchgänge entsprechendes Signal liefert.
5. Anordnung zur Durchführung des Verfahrens nach Anspruch 3, dadurch gekennzeichnet, daß jenseits des Hohlkörpers entlang wenigstens einer zu seiner Längsachse senkrechten Geraden eine Anzahl von Kernstrahlungsdetektoren (19) angeordnet ist und daß die Ausgangssignale der Detektoren (19) einem Digitalrechner (18) zugeführt werden, der den Intensitätsverlauf längs der Geraden durch Exponentialfunktionen annähert und der die Lage des Punktes auf der Linie ermittelt, an dem die Exponentialfunktionen denselben Wert aufweisen.
EP79200521A 1978-09-20 1979-09-18 Verfahren und Anordnung zum Ermitteln des Innenmasses von langgestreckten Hohlkörpern, insbesondere von Rohren Expired EP0009292B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19782840819 DE2840819A1 (de) 1978-09-20 1978-09-20 Verfahren zum ermitteln des innenmasses von langgestreckten hohlkoerpern, insbesondere von rohren
DE2840819 1978-09-20

Publications (2)

Publication Number Publication Date
EP0009292A1 true EP0009292A1 (de) 1980-04-02
EP0009292B1 EP0009292B1 (de) 1981-12-09

Family

ID=6049891

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79200521A Expired EP0009292B1 (de) 1978-09-20 1979-09-18 Verfahren und Anordnung zum Ermitteln des Innenmasses von langgestreckten Hohlkörpern, insbesondere von Rohren

Country Status (6)

Country Link
US (1) US4330835A (de)
EP (1) EP0009292B1 (de)
JP (1) JPS5543499A (de)
AU (1) AU529753B2 (de)
DE (2) DE2840819A1 (de)
ES (1) ES484229A0 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3123685A1 (de) * 1980-06-19 1982-03-18 Fuji Electric Co., Ltd., Kawasaki, Kanagawa Verfahren zur wanddicken-messung von rohrfoermigen gegenstaenden
DE3125009A1 (de) * 1980-06-25 1982-04-01 Fuji Electric Co., Ltd., Kawasaki, Kanagawa Rohrwanddickenmessung
GB2136954A (en) * 1980-06-26 1984-09-26 Diffracto Ltd Optical measurement system
DE3327267A1 (de) * 1983-07-28 1985-02-14 Fuji Electric Co., Ltd., Kawasaki, Kanagawa Vorrichtung zur messung der wandstaerke eines rohrfoermigen teils
DE3834586A1 (de) * 1988-10-11 1990-04-12 Dea Mineraloel Ag Verbessertes verfahren zur pruefung von rohrleitungen
US5167200A (en) * 1991-01-28 1992-12-01 Westfalia Separator Ag Pulsator for milking machines
EP1072861A1 (de) * 1999-05-10 2001-01-31 Agfa-Gevaert N.V. Verfahren zum Messen der Wanddicke rohrförmiger Objekte
WO2002036189A1 (en) 2000-10-31 2002-05-10 Glaxo Group Limited Medicament dispenser
US6981499B2 (en) 1999-12-11 2006-01-03 Glaxo Group Limited Medicament dispenser
EP2133668A1 (de) * 2008-06-12 2009-12-16 CSL Behring GmbH Zerstörungsfreie Messung des Füllvolumens eines mit einer Flüssigkeit gefüllten Behälters
KR101123449B1 (ko) * 2004-05-07 2012-03-23 에스티 에릭슨 에스에이 통신 시스템 동작 방법, 제 1 스테이션, 제 2 스테이션 및 통신 시스템
EP2600102A1 (de) * 2010-08-26 2013-06-05 FUJIFILM Corporation Vorrichtung und verfahren zur rohrdickenmessung sowie aufzeichnungsmedium dafür
AT517249B1 (de) * 2015-05-15 2017-12-15 Tiroler Rohre GmbH Verfahren zum Messen und Anpassen der Wandstärke eines Rohres

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4495635A (en) * 1981-04-03 1985-01-22 Analogic Corporation Method and apparatus for profiling structural sections
US4481595A (en) * 1981-06-19 1984-11-06 Hans Schiessl Method and apparatus for determining the fill level of containers
JPS58158510A (ja) * 1982-03-16 1983-09-20 Fuji Electric Co Ltd 管状材の肉厚測定装置
US4574357A (en) * 1984-02-21 1986-03-04 Pitney Bowes Inc. Real time character thinning system
US4618975A (en) * 1984-12-21 1986-10-21 At&T Technologies, Inc. Method and apparatus for analyzing a porous nonhomogeneous cylindrical object
DE3537658A1 (de) * 1985-10-23 1987-04-23 Schaeffler Waelzlager Kg Verfahren zur herstellung eines gehaerteten, aus einem austenitischen werkstoff bestehenden unmagnetisierbaren waelzlagerbauteils und nach diesem verfahren hergestelltes waelzlagerbauteil
US4951222A (en) * 1988-06-09 1990-08-21 Bethlehem Steel Corporation Method and system for dimensional and weight measurements of articles of manufacture by computerized tomography
US6600806B1 (en) * 1999-06-02 2003-07-29 Rochester Gasand Electric Corporation System for radiographic determination of pipe wall thickness
AU2001261767A1 (en) * 2000-05-19 2001-12-03 Aclara Biosciences, Inc. Optical alignment in capillary detection using capillary wall scatter
SE519355C2 (sv) * 2000-11-22 2003-02-18 Westinghouse Atom Ab Anordning för bestämning av nuklidinnehållet hos en radioaktiv fluid
US6520049B2 (en) 2001-04-27 2003-02-18 Hallmark Cards Incorporated Method of digitizing emboss dies and the like
GB0201677D0 (en) * 2002-01-25 2002-03-13 Glaxo Group Ltd Medicament dispenser
GB0217199D0 (en) * 2002-07-25 2002-09-04 Glaxo Group Ltd Medicament dispenser
GB0217196D0 (en) * 2002-07-25 2002-09-04 Glaxo Group Ltd Medicament dispenser
GB0217198D0 (en) * 2002-07-25 2002-09-04 Glaxo Group Ltd Medicament dispenser
JP2004093443A (ja) * 2002-09-02 2004-03-25 Katsuhiko Ogiso 多層構造容器の寸法測定法
CA2457366A1 (en) * 2003-02-12 2004-08-12 Mattel, Inc. Packaging for toy and lithophane combinations
DE102010038544A1 (de) * 2009-10-19 2011-04-21 Robert Bosch Gmbh Sensorvorrichtung für eine Verpackungsmaschine
DE102014117255B3 (de) * 2014-11-25 2016-05-25 Rattunde & Co Gmbh Vermessung von Materialabmessungen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1069541A (en) * 1964-02-17 1967-05-17 Corning Glass Works X-ray gauging method
US3796874A (en) * 1971-08-18 1974-03-12 Westinghouse Electric Corp Non-destructive eccentricity and insulation thickness measurement system
FR2277327A1 (fr) * 1974-07-01 1976-01-30 Cbr Cementbedrijven Nv Dispositif de mesure des parametres du talus de matiere contenue dans un cylindre entraine en rotation autour de son axe
JPS5226474A (en) * 1975-08-22 1977-02-28 Sumitomo Electric Ind Ltd Measurement process for thrusted coating cable
JPS5227576A (en) * 1975-08-26 1977-03-01 Sumitomo Electric Ind Ltd Off-center monitoring method for coated cable

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3673394A (en) * 1969-02-18 1972-06-27 North American Rockwell Measuring method and apparatus
US3784827A (en) * 1971-03-05 1974-01-08 Industrial Dynamics Co Container inspection system and method
US3919467A (en) * 1973-08-27 1975-11-11 Ridge Instr Company Inc X-ray baggage inspection system
US3950613A (en) * 1973-12-26 1976-04-13 Albert Macovski X-ray encoding and decoding system
JPS5922161B2 (ja) * 1974-05-13 1984-05-24 株式会社東芝 放射線厚み計
US3958078A (en) * 1974-08-30 1976-05-18 Ithaco, Inc. X-ray inspection method and apparatus
DE2442412A1 (de) * 1974-09-05 1976-03-18 Philips Patentverwaltung Anordnung zur ermittlung der verteilung der absorption oder der emission von strahlung in einer ebene eines koerpers
US3990067A (en) * 1974-09-30 1976-11-02 Sentry Technology Incorporated Electronic security tour system
BE840456A (fr) * 1975-04-22 1976-10-07 Dispositif de mesure precise des dimensions d'un objet par ultra-sons
GB1574823A (en) * 1976-03-27 1980-09-10 Emi Ltd Video display arrangements
US4064440A (en) * 1976-06-22 1977-12-20 Roder Frederick L X-ray or gamma-ray examination device for moving objects
US4047029A (en) * 1976-07-02 1977-09-06 Allport John J Self-compensating X-ray or γ-ray thickness gauge
NL7607475A (nl) * 1976-07-07 1978-01-10 Philips Nv Roentgenonderzoekinrichting met een televisie- keten uitgerust met een geheugen.
NL7613502A (nl) * 1976-12-03 1978-06-06 Optische Ind De Oude Delft Nv Synthetische apertuuraftastinrichting voor het decoderen van een gecodeerd, door kortgolvige straling, zoals roentgenstraling gevormd beeld.
US4119846A (en) * 1977-02-03 1978-10-10 Sangamo Weston, Inc. Non-contacting gage apparatus and method
US4095106A (en) * 1977-03-16 1978-06-13 The United States Of America As Represented By The United States Department Of Energy Radiation attenuation gauge with magnetically coupled source
DE2720865A1 (de) * 1977-05-10 1978-11-23 Philips Patentverwaltung Anordnung zur untersuchung von objekten
US4210812A (en) * 1977-06-02 1980-07-01 The Foundation: The Assn. of Japan General Denistry X-Ray imaging diagnostic apparatus with low X-ray radiation
DE2735400C2 (de) * 1977-08-05 1979-09-20 Heimann Gmbh, 6200 Wiesbaden Vorrichtung zum Prüfen von Gepäckstücken mitteis Röntgenstrahlung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1069541A (en) * 1964-02-17 1967-05-17 Corning Glass Works X-ray gauging method
US3796874A (en) * 1971-08-18 1974-03-12 Westinghouse Electric Corp Non-destructive eccentricity and insulation thickness measurement system
FR2277327A1 (fr) * 1974-07-01 1976-01-30 Cbr Cementbedrijven Nv Dispositif de mesure des parametres du talus de matiere contenue dans un cylindre entraine en rotation autour de son axe
JPS5226474A (en) * 1975-08-22 1977-02-28 Sumitomo Electric Ind Ltd Measurement process for thrusted coating cable
JPS5227576A (en) * 1975-08-26 1977-03-01 Sumitomo Electric Ind Ltd Off-center monitoring method for coated cable

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENTS ABSTRACTS OF JAPAN Band 1, Nr. 92, 25. August 1977 Seite 2379 E77 & JP - A - 52 - 26474. *
PATENTS ABSTRACTS OF JAPAN Band 1, Nr. 92, 25. August 1977 Seite 2488 E77 & JP - A - 52 - 27576. *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3123685A1 (de) * 1980-06-19 1982-03-18 Fuji Electric Co., Ltd., Kawasaki, Kanagawa Verfahren zur wanddicken-messung von rohrfoermigen gegenstaenden
DE3125009A1 (de) * 1980-06-25 1982-04-01 Fuji Electric Co., Ltd., Kawasaki, Kanagawa Rohrwanddickenmessung
GB2136954A (en) * 1980-06-26 1984-09-26 Diffracto Ltd Optical measurement system
DE3327267A1 (de) * 1983-07-28 1985-02-14 Fuji Electric Co., Ltd., Kawasaki, Kanagawa Vorrichtung zur messung der wandstaerke eines rohrfoermigen teils
DE3834586A1 (de) * 1988-10-11 1990-04-12 Dea Mineraloel Ag Verbessertes verfahren zur pruefung von rohrleitungen
US5167200A (en) * 1991-01-28 1992-12-01 Westfalia Separator Ag Pulsator for milking machines
EP1072861A1 (de) * 1999-05-10 2001-01-31 Agfa-Gevaert N.V. Verfahren zum Messen der Wanddicke rohrförmiger Objekte
US6377654B1 (en) 1999-05-10 2002-04-23 Agfa-Gevaert Method for measuring the wall thickness of a tubular object
US7322355B2 (en) 1999-12-11 2008-01-29 Smith Kline Beecham Corporation Medicament dispenser
US6981499B2 (en) 1999-12-11 2006-01-03 Glaxo Group Limited Medicament dispenser
WO2002036189A1 (en) 2000-10-31 2002-05-10 Glaxo Group Limited Medicament dispenser
KR101123449B1 (ko) * 2004-05-07 2012-03-23 에스티 에릭슨 에스에이 통신 시스템 동작 방법, 제 1 스테이션, 제 2 스테이션 및 통신 시스템
EP2133668A1 (de) * 2008-06-12 2009-12-16 CSL Behring GmbH Zerstörungsfreie Messung des Füllvolumens eines mit einer Flüssigkeit gefüllten Behälters
WO2009149933A1 (de) * 2008-06-12 2009-12-17 Csl Behring Gmbh Zerstörungsfreie messung des füllvolumens eines mit einer flüssigkeit gefüllten behälters
EP2600102A1 (de) * 2010-08-26 2013-06-05 FUJIFILM Corporation Vorrichtung und verfahren zur rohrdickenmessung sowie aufzeichnungsmedium dafür
EP2600102A4 (de) * 2010-08-26 2014-01-22 Fujifilm Corp Vorrichtung und verfahren zur rohrdickenmessung sowie aufzeichnungsmedium dafür
US8737682B2 (en) 2010-08-26 2014-05-27 Fujifilm Corporation Pipe thickness measuring device and method, and recording medium
AT517249B1 (de) * 2015-05-15 2017-12-15 Tiroler Rohre GmbH Verfahren zum Messen und Anpassen der Wandstärke eines Rohres

Also Published As

Publication number Publication date
DE2840819A1 (de) 1980-04-03
EP0009292B1 (de) 1981-12-09
JPS5543499A (en) 1980-03-27
ES8101268A1 (es) 1980-04-16
AU5093579A (en) 1980-03-27
US4330835A (en) 1982-05-18
DE2961555D1 (en) 1982-02-04
AU529753B2 (en) 1983-06-16
ES484229A0 (es) 1980-04-16

Similar Documents

Publication Publication Date Title
EP0009292B1 (de) Verfahren und Anordnung zum Ermitteln des Innenmasses von langgestreckten Hohlkörpern, insbesondere von Rohren
DE3586996T2 (de) Verfahren und geraet zu roentgenstrahlenuntersuchung.
DE2817018C2 (de) Vorrichtung zur Messung der Dichte einer Ein- oder Mehrphasenströmung
DE3685891T2 (de) Verfahren und vorrichtung zur messung der verteilung von radioaktivitaet.
DE3009835A1 (de) Verfahren und vorrichtung zur bestimmung der eigenschaften eines segmentierten fluids, ohne in das fluid einzudringen
DE10163583A1 (de) Verfahren und Vorrichtung zur Belichtung von Röntgenaufnahmen
DE3406905A1 (de) Roentgengeraet
DE69938096T2 (de) Strahlstreuungsmessvorrichtung mit Nachweis der durchgehenden Strahlenenergie
DE2330415A1 (de) Verfahren zum beruehrungslosen messen eines bewegten gegenstandes und vorrichtung zur durchfuehrung des verfahrens
EP0416302A1 (de) Verfahren für die optische Qualitätsprüfung von grossflächigen Scheiben aus einem transparenten Werkstoff wie Glas
DE2432891A1 (de) Einrichtung zum messen des gewichts pro flaecheneinheit verschiedener bestandteile eines bahnenfoermigen materials
DE1772807A1 (de) Verstellbare Linsenanordnung mit gleichbleibender Vergroesserung
DE2650023C3 (de)
DE69027538T2 (de) Verfahren zum messen von defekten in einer pipeline
DE4233830C2 (de) Strahlpositionsmonitor
DE3872208T2 (de) Verfahren und vorrichtung zur messung der radioaktivitaet.
DE3135838C2 (de) Verfahren zur Füllstandsmessung von mit Pulvern oder Flüssigkeiten gefüllten Rohren oder Hülsen
DE1598800A1 (de) Verfahren und Vorrichtung zur Messung des Feuchtigkeitsgehaltes von viskosen Pasten oder aehnlichen Materialien
EP0072367B1 (de) Verfahren zur Messung der Beschichtungsdicke von ummantelten Drähten oder Rohren
DE68913387T2 (de) Ermittlung von Flüssigkeitstömungseigenschaften mit einem räumlich-zeitlichen Verfahren.
EP1358450A2 (de) Verfahren und vorrichtung zur grobunterscheidung eines füllgutes in einem behälter in flüssigkeit oder schüttgut
EP0418587A2 (de) Gerät zur Messung der Strahlendosis eines Fluoreszenzglasdosimeters
DE3504534A1 (de) Verfahren und geraet zum messen eines gammastrahlenfluss-einfalls
DE2364081C3 (de) Verfahren und Vorrichtung zum Klassifizieren von Reifen
DE2211708A1 (de) Elektro-optisches system und verfahren zur untersuchung von gegenstaenden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL SE

17P Request for examination filed
ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 2961555

Country of ref document: DE

Date of ref document: 19820204

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: PHILIPS PATENTVERWALTUNG GMBH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840928

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840930

Year of fee payment: 6

Ref country code: BE

Payment date: 19840930

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19841127

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870930

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19880601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19880918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19880930

BERE Be: lapsed

Owner name: N.V. PHILIPS'GLOEILAMPENFABRIEKEN

Effective date: 19880930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890531

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 79200521.7

Effective date: 19890614

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT