EP0000918B1 - Process for the preparation of linear, high molecular polyesters - Google Patents
Process for the preparation of linear, high molecular polyesters Download PDFInfo
- Publication number
- EP0000918B1 EP0000918B1 EP78100670A EP78100670A EP0000918B1 EP 0000918 B1 EP0000918 B1 EP 0000918B1 EP 78100670 A EP78100670 A EP 78100670A EP 78100670 A EP78100670 A EP 78100670A EP 0000918 B1 EP0000918 B1 EP 0000918B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- condensation
- polyester
- high molecular
- lowered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0006—Controlling or regulating processes
- B01J19/0013—Controlling the temperature of the process
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/785—Preparation processes characterised by the apparatus used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00074—Controlling the temperature by indirect heating or cooling employing heat exchange fluids
- B01J2219/00076—Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
- B01J2219/00081—Tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00121—Controlling the temperature by direct heating or cooling
- B01J2219/0013—Controlling the temperature by direct heating or cooling by condensation of reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00162—Controlling or regulating processes controlling the pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00168—Controlling or regulating processes controlling the viscosity
Definitions
- the invention relates to a process for the preparation of high molecular weight linear polyesters which are derived from dicarboxylic acids or their ester-forming derivatives and diols and which consist of at least 50 mol% of polyethylene or polybutylene terephthalate units, by condensation of polyester precondensates with a relative viscosity of at least 1.05 at temperatures from 270 to 340 ° C under reduced pressure.
- polyester precondensate In the manufacture of high molecular weight linear polyesters, low molecular precondensates with low viscosity are converted into high molecular weight condensates at temperatures of 260 to 300 ° C. under reduced pressure with elimination of diols. At the high temperatures required, however, polyester melts are unstable, which results in an increased carboxyl end group content.
- the polyester precondensate In the process known from DE-B 17 45 541, the polyester precondensate is passed through a horizontal device which is divided into chambers, the melt being formed into a thin film in each chamber.
- the method has the disadvantage that it takes considerable time, e.g. several hours, and the higher-condensed melt formed in the film is continuously returned to the bottom of the lower molecular weight.
- polyester precondensates which are derived from dicarboxylic acids or their ester-forming derivatives and diols and which consist of at least 50 mol% of polyethylene or polybutylene terephthalate units, by condensing polyester precondensates with a relative viscosity of at least 1.05, at temperatures of 270 to 340 ° C under reduced pressure, the temperature being lowered during the condensation, characterized in that the polyester precondensate is briefly heated to a temperature of 290 to 340 ° C and then by evaporating the released diol under a pressure of 0.133 to 2.66 mbar, the temperature lowered by 30 to 50 ° C with the proviso that the final temperature is at least 10 ° C above the melting point of the polyester produced.
- the new process has the advantage that the condensation takes less time than before. Furthermore, the new process has the advantage that very low carboxyl end group contents are achieved even with sensitive polyesters, such as polybutylene terephthalate.
- the new process is remarkable in that the condensation is carried out with a continuously decreasing temperature.
- DE-A 19 20 954 and FR-A 15 45 487 it was assumed that short residence times could only be achieved with increasing temperature.
- the high molecular weight linear polyesters are derived from dicarboxylic acids or their ester-forming derivatives, such as alkyl esters. Aliphatic are preferred. and / or aromatic dicarboxylic acids with a molecular weight ⁇ 390. In addition to the carboxyl group, particularly preferred dicarboxylic acids have a hydrocarbon structure. Alkanedicarboxylic acids with 5 to carbon atoms or benzene or naphthalenedicarboxylic acids, in particular those derived from benzene, have acquired particular industrial importance. Terephthalic acid is particularly noteworthy.
- Suitable starting materials are, for example, glutaric acid, adipic acid, sebacic acid, terephthalic acid, isophthalic acid, succinic acid, naphthalene-2,6-dicarboxylic acid, 4,4'-diphenyl-4,4' Diphenoxydicarbonklare or their C, - to C 4- alkyl esters.
- Preferred diols are aliphatic, cycloaliphatic or aromatic diols with a molecular weight ⁇ 280. Apart from the hydroxyl groups, they preferably have a hydrocarbon structure. Alkanediols, in particular those having 2 to 6 carbon atoms, have gained particular industrial importance. Suitable diols are, for example, ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,5-pentanediol, decamethylene glycol, neopentyl glycol or 1,4- Bis-hydroxymethylcyclohexane. Ethylene glycol and 1,4-butanediol have become particularly important.
- polyesters and also their precondensates consist of at least 50 mol% of polyethylene terephthalate or polybutylene terephthalate units.
- the rest can also consist of other short-chain polyester units derived from the above-mentioned polyester-forming starting materials.
- Polyesters which are 70 to 100 mol% of polyethylene or polybutyl are particularly preferred enterephthalate exist.
- the method according to the invention has attained particular importance for the production of polybutylene terephthalate.
- the polyester precondensates are obtained in a manner known per se by reacting dicarboxylic acids or their esters with a diol in the presence of catalysts such as titanium acid esters, antimony, manganese or zinc compounds, e.g. their fatty acid salts, at temperatures from 150 to 260 ° C.
- the diglycol esters of carboxylic acids obtained in this way are precondensed under reduced pressure at temperatures of 230 to 270 ° C.
- Such precondensates have a relative viscosity of at least 1.05 (measured as a 0.5 percent by weight solution in a mixture of phenol and o-dichlorobenzene in a weight ratio of 3: at 25 ° C.).
- polyester precondensates are used with a relative viscosity of 1.05 to 1.2. The production of such precondensates is described, for example, in DE-A 25 14 116.
- the condensation of the polyester precondensates to high molecular weight polyesters is carried out at temperatures of 270 to 340 ° C under reduced pressure. It is advantageous to maintain pressures from 0.133 to 2.66 mbar. It goes without saying that the diols which split off during the condensation are continuously removed from the reaction mixture.
- An essential feature of the invention is that the condensation is first started at a temperature of 290 to 340 ° C. and the temperature is lowered as the condensation proceeds. With the proviso that the final temperature is at least 10 ° C, advantageously 30 ° C above the melting point of the polyester produced.
- the initial temperature also depends on the type of pre-condensate. In the case of polyethylene terephthalate, starting temperatures of 320 to 340 ° C have proven particularly useful, while temperatures of 290 to 310 ° C have proven particularly favorable in the production of polybutylene terephthalate.
- the high initial temperature is advantageously reduced by 30 to 50 ° C. during the condensation. The temperature drops continuously.
- the final temperature depends essentially on the melting point of the polyester produced and should be so high above its melting point that no solidification occurs and further processing is not hindered. As a rule, temperatures around 10 ° C above the melting point have been found to be useful.
- the process according to the invention can also be carried out advantageously by continuously lowering the temperature by 30 to 50 ° C. in the course of the condensation by adiabatic operation.
- This procedure has the advantage that the optimal reaction temperature is largely independent. Furthermore, the new process has the advantage that the retrofitting of a heat exchanger before the condensation stage of the polyester condensation can be carried out in conventional condensation reactors after an optimal temperature-time profile.
- the low-viscosity polyester precondensate melt is heated by 30 to 50 ° C. above the temperature which the fully condensed polyester should have after the polycondensation before entering the polycondensation zone.
- the temperature of the polyester precondensate is expediently first increased to the extent that it decreases in the subsequent polycondensation.
- the polyester precondensate melt is advantageously heated briefly in a heat exchanger, e.g. Tube or plate heat exchangers or in a similar suitable device.
- the condensation starts as a result of transesterification reactions.
- the heat energy required for the reaction and evaporation of the released diol and any by-products, for example tetrahydrofuran, in the condensation of polyesters containing 1,4-butanediol is taken from the heat content of the melt.
- the temperature drops as the condensation reaction proceeds.
- the optimal reaction temperature is largely independent. Accordingly, the areas in the polycondensation zone which come into contact with the melt are kept at the temperature which the polyester should have after polycondensation, up to a temperature which is below the final temperature of the polycondensation up to 10 ° C.
- the melt Towards the end of the polycondensation, the melt then has a temperature which corresponds to the surfaces in contact with the melt or, as a result of the absorption of mechanical energy during the movement of the melt, the temperature of the contact surfaces by 5 to 10 ° C., depending on the design of the device used exceeds.
- the condensation is preferably carried out in a thin layer.
- thin layers are understood to be those with a layer thickness of up to 7 mm.
- Polyesters obtainable by the process of the invention are suitable for the production of shaped structures such as threads, foils, injection-molded or extruded parts, and also for coatings.
- the precondensate was poured into a bowl under nitrogen, where it quickly solidified.
- the relative viscosity of this precondensate was 1.13.
- the condensation was carried out in a 250 ml round-bottom flask equipped with a stirrer, cooler and nitrogen inlet, which was heated by a Woodsches metal bath.
- 50 g of the pre-condensate were melted under nitrogen at the selected post-condensation temperature.
- the flask was quickly evacuated to a pressure of approximately 0.67 mbar.
- the stirring speed was adapted to the respective viscosity.
- the post-condensation was interrupted by breaking the vacuum with nitrogen.
- Comparative Examples 1 to 4 show the relative viscosity as a function of the post-condensation temperature after a reaction time of 15 minutes. According to the prior art, the temperatures were kept constant during the polycondensation time. If the temperature is increased from 255 ° C to 280 ° C, higher relative viscosities are obtained and thus a higher degree of polycondensation. When the temperature is increased further to 290 ° C., the relative viscosity drops again and a yellowish product is obtained.
- Examples 1 and 2 were carried out by the process according to the invention.
- the metal bath was preheated to 295 ° C. and the post-condensation reaction was started after the precondensate had melted.
- the temperature of the heating bath was lowered in the steps given in the table. According to the Ver driving a relative viscosity of 1.67 was reached within 12 minutes (Example 2).
- the polybutylene terephthalate precondensate was pressed through a plate heat exchanger and thereby heated to 285 ° C. and passed into a condensation vessel of 40 l content preheated to 285 ° C. with diphyl steam. This heating process took 10 minutes. The flow of the diphyl vapor was then interrupted and, with rapid stirring, a vacuum of 1.33 mbar was suddenly established in the condensation vessel.
- the melting temperature dropped within. 33 minutes exponentially to 250 ° C. From this point on, the temperature was kept at 250 ° C. by diphyl vapor. After a further 21 minutes, the vacuum was released and the melt was discharged under nitrogen pressure. The relative viscosity of the polybutylene terephthalate thus produced was 1.72.
- the polybutylene terephthalate precondensate was also pressed through the plate heat exchanger within 10 minutes, but the temperature was kept at 250.degree.
- the condensation boiler was preheated to 250 ° C. At this temperature, a vacuum of 1.33 mbar was suddenly produced with rapid stirring and condensed under these conditions for 54 minutes. After a condensation time of 54 minutes, the vacuum was released and the melt was discharged. The relative viscosity was only 1.49.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Polyesters Or Polycarbonates (AREA)
Description
Gegenstand der Erfindung ist ein Verfahren zur Herstellung von hochmolekularen linearen Polyestern, die sich von Dicarbonsäuren oder deren esterbildenden Derivaten und Diolen ableiten und die zu mindestens 50 Mol% aus Polyethylen- oder Polybutylenterephthalat-Einheiten bestehen, durch Kondensation von Polyestervorkondensaten mit einer relativen Viskosität von mindestens 1,05 bei Temperaturen von 270 bis 340°C unter vermindertem Druck.The invention relates to a process for the preparation of high molecular weight linear polyesters which are derived from dicarboxylic acids or their ester-forming derivatives and diols and which consist of at least 50 mol% of polyethylene or polybutylene terephthalate units, by condensation of polyester precondensates with a relative viscosity of at least 1.05 at temperatures from 270 to 340 ° C under reduced pressure.
Bei der Herstellung von hochmolekularen linearen Polyestern werden niedrig molekulare Vorkondensate mit niedriger Viskosität bei Temperaturen von 260 bis 300°C unter vermindertem Druck unter Abspaltung von Diolen in hochmolekulare Kondensate übergeführt. Bei den hohen erforderlichen Temperaturen sind Polyesterschmelzen jedoch instabil, was sich in einem erhöhten Carboxylendgruppengehalt auswirkt. Bei dem aus der DE-B 17 45 541 bekannten Verfahren wird das Polyestervorkondensat durch eine horizontale Vorrichtung, die in Kammern unterteilt ist, geleitet, wobei in jeder Kammer die Schmelze zu einem dünnen Film geformt wird. Das Verfahren hat den Nachteil, daß es erhebliche Zeit, z.B. mehrere Stunden, in Anspruch nimmt und fortlaufend die im Film gebildete höherkondensierte Schmelze wieder in den Sumpf mit niedrigerem Molekulargewicht zurückgeführt wird. Aus der DE-A 19 59 455 ist ferner ein Verfahren bekannt, bei dem die kondensierende Schmelze über eine Folge übereinander angeordneter Zonen geleitet wird, wobei die kondensierende Masse in jeder Zone zirkuliert und dabei abwechselnd mit der Heizwand in Berührung kommt und von Zone zu Zone unter Schwerkraft und Filmbildung fließt. Das Verfahren hat den Nachteil, daß sich innerhalb der einzelenen Zonen Toträume ausbilden, die zur Rückvermischung führen. Ferner hat das Verfahren den Nachteil, daß bei besonders empfindlichen Polyestern die Kondensationszeit immer noch zuviel Zeit in Anspruch nimmt. Das aus der FR-A 15 45 487 bekannte Verfahren, bei dem man die kondensierende Schmelze über eine Mehrzahl von rotierenden geneigten Flächen leitet, benötigt für die Kondensation immer noch etwa 30 Minuten. Es ist bemerkenswert, daß bei sämtlichen Verfahren die Temperatur entweder auf gleichem Niveau gehalten wird oder mit zunehmender Viskosität gesteigert wird.In the manufacture of high molecular weight linear polyesters, low molecular precondensates with low viscosity are converted into high molecular weight condensates at temperatures of 260 to 300 ° C. under reduced pressure with elimination of diols. At the high temperatures required, however, polyester melts are unstable, which results in an increased carboxyl end group content. In the process known from DE-B 17 45 541, the polyester precondensate is passed through a horizontal device which is divided into chambers, the melt being formed into a thin film in each chamber. The method has the disadvantage that it takes considerable time, e.g. several hours, and the higher-condensed melt formed in the film is continuously returned to the bottom of the lower molecular weight. From DE-A 19 59 455 a method is also known in which the condensing melt is passed over a series of zones arranged one above the other, the condensing mass circulating in each zone and thereby coming into contact with the heating wall alternately and from zone to zone flows under gravity and film formation. The method has the disadvantage that dead spaces form within the individual zones, which lead to backmixing. Furthermore, the method has the disadvantage that the condensation time still takes too much time for particularly sensitive polyesters. The process known from FR-A 15 45 487, in which the condensing melt is passed over a plurality of rotating, inclined surfaces, still requires about 30 minutes for the condensation. It is noteworthy that in all processes the temperature is either kept at the same level or increased with increasing viscosity.
Es war deshalb die technische Aufgabe gestellt, bei der Herstellung von hochmolekularen linearen Polyestern die Kondensation so durchzuführen, daß ein Minimum an Zeit beansprucht wird und auch bei empfindlichen Polyestern ein möglichst niedriger Gehalt an Carboxylendgruppen erzielt wird.It was therefore the technical task to carry out the condensation in the production of high molecular weight linear polyesters in such a way that a minimum of time is required and the lowest possible carboxyl end group content is achieved even with sensitive polyesters.
Diese technische Aufgabe wird gelöst in einem Verfahren zur Herstellung von hochmolekularen linearen Polyestern, die sich von Dicarbonsäuren oder deren esterbildenden Derivaten und Diolen ableiten und die zu wenigstens 50 Mol% aus polyethylen- oder Polybutylenterephthalat-Einheiten bestehen, durch Kondensation von Polyestervorkondensaten mit einer relativen Viskosität von mindestens 1,05, bei Temperaturen von 270 bis 340°C unter vermindertem Druck, wobei man während der Kondensation die Temperatur erniedrigt, dadurch gekennzeichnet, daß man das Polyestervorkondensat kurzzeitig auf eine Temperatur von 290 bis 340°C erhitzt und dann durch Verdampfen des freigesetzten Diols unter einem Druck von 0,133 bis 2,66 mbar die Temperatur um 30 bis 50°C erniedrigt mit der Maßgabe, daß die Endtemperatur mindestens 10°C über dem Schmelzpunkt des hergestellten Polyesters liegt.This technical problem is solved in a process for the production of high molecular weight linear polyesters, which are derived from dicarboxylic acids or their ester-forming derivatives and diols and which consist of at least 50 mol% of polyethylene or polybutylene terephthalate units, by condensing polyester precondensates with a relative viscosity of at least 1.05, at temperatures of 270 to 340 ° C under reduced pressure, the temperature being lowered during the condensation, characterized in that the polyester precondensate is briefly heated to a temperature of 290 to 340 ° C and then by evaporating the released diol under a pressure of 0.133 to 2.66 mbar, the temperature lowered by 30 to 50 ° C with the proviso that the final temperature is at least 10 ° C above the melting point of the polyester produced.
Das neue Verfahren hat den Vorteil, daß die Kondensation in kürzerer Zeit als bisher verläuft. Ferner hat das neue Verfahren den Vorteil, daß selbst bei empfindlichen Polyestern, wie Polybutylenterephthalat sehr niedrige Carboxylendgruppengehalte erzielt werden.The new process has the advantage that the condensation takes less time than before. Furthermore, the new process has the advantage that very low carboxyl end group contents are achieved even with sensitive polyesters, such as polybutylene terephthalate.
Das neue Verfahren ist insofern bemerkenswert als die Kondensation bei fortlaufend sinkender Temperatur durchgeführt wird. Im Hinblick auf die DE-A 19 20 954 und die FR-A 15 45 487 war davon auszugehen, daß man kurze Verweilzeiten nur mit ansteigender Temperatur erzielt.The new process is remarkable in that the condensation is carried out with a continuously decreasing temperature. With regard to DE-A 19 20 954 and FR-A 15 45 487, it was assumed that short residence times could only be achieved with increasing temperature.
Die hochmolekularen linearen Polyester leiten sich ebenso wie die Polyestervorkondensate ab von Dicarbonsäuren oder deren esterbildenden Derivaten, wie Alkylestern. Bevorzugt sind aliphatische . und/oder aromatische Dicarbonsäuren mit einem Molekulargewicht <390. Besonders bevorzugte Dicarbonsäuren haben außer der Carboxylgruppe Kohlenwasserstoffstruktur. Besondere technische Bedeutung haben Alkandicarbonsäuren mit 5 bis Kohlenstoffatomen oder Benzol- oder Naphthalindicarbonsäuren, insbesondere solche, die sich vom Benzol ableiten, erlangt. Insbesondere ist Terephthalsäure hervorzuheben. Geeignete Ausgangsstoffe sind beispielsweise Glutarsäure, Adipinsäuren, Sebacinsäure, Terephthalsäure, Isophthalsäure, Bernsteinsäure, Napthalin-2,6-dicarbonsäure, 4,4'-Diphenyldicarbonsäure 4,4'-Diphenoxydicarbonsäure oder deren C,- bis C4-Alkylester.The high molecular weight linear polyesters, like the polyester precondensates, are derived from dicarboxylic acids or their ester-forming derivatives, such as alkyl esters. Aliphatic are preferred. and / or aromatic dicarboxylic acids with a molecular weight <390. In addition to the carboxyl group, particularly preferred dicarboxylic acids have a hydrocarbon structure. Alkanedicarboxylic acids with 5 to carbon atoms or benzene or naphthalenedicarboxylic acids, in particular those derived from benzene, have acquired particular industrial importance. Terephthalic acid is particularly noteworthy. Suitable starting materials are, for example, glutaric acid, adipic acid, sebacic acid, terephthalic acid, isophthalic acid, succinic acid, naphthalene-2,6-dicarboxylic acid, 4,4'-diphenyl-4,4' Diphenoxydicarbonsäure or their C, - to C 4- alkyl esters.
Bevorzugte Diole sind aliphatische, cycloaliphatische oder aromatische Diole mit einem Molekulargewicht <280. Sie haben vorzugsweise, abgesehen von den Hydroxylgruppen, Kohlenwasserstoffstruktur. Besondere technische Bedeutung haben Alkandiole, insbesondere solche mit 2 bis 6 Kohlenstoffatomen, erlangt, Geeignete Diole sind beispielsweise Ethylenglykol, Propylenglykol, Butandiol-1,4, Hexandiol-1,6, Pentandiol-1,5, Decamethylenglykol, Neopentylglykol oder 1,4-Bis-hydroxymethylcyclohexan. Besondere Bedeutung haben Ethylenglykol und Butandiol-1,4 erlangt.Preferred diols are aliphatic, cycloaliphatic or aromatic diols with a molecular weight <280. Apart from the hydroxyl groups, they preferably have a hydrocarbon structure. Alkanediols, in particular those having 2 to 6 carbon atoms, have gained particular industrial importance. Suitable diols are, for example, ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,5-pentanediol, decamethylene glycol, neopentyl glycol or 1,4- Bis-hydroxymethylcyclohexane. Ethylene glycol and 1,4-butanediol have become particularly important.
Die Polyester und auch deren Vorkondensate bestehen zu wenigstens 50 Mol% aus Polyethylenterephthalat oder Polybutylenterephthalat-Einheiten. Der Rest kann auch aus anderen kurzkettigen Polyester-Einheiten bestehen, die sich von den vorgenannten Polyester bildenden Ausgangsstoffen herleiten. Besonders bevorzugt sind Polyester, die zu 70 bis 100 Mol% aus Polyethylen oder Polybutylenterephthalat bestehen. Besondere Bedeutung hat das Verfahren nach der Erfindung für die Herstellung von Polybutylenterephthalat erlangt.The polyesters and also their precondensates consist of at least 50 mol% of polyethylene terephthalate or polybutylene terephthalate units. The rest can also consist of other short-chain polyester units derived from the above-mentioned polyester-forming starting materials. Polyesters which are 70 to 100 mol% of polyethylene or polybutyl are particularly preferred enterephthalate exist. The method according to the invention has attained particular importance for the production of polybutylene terephthalate.
Die Polyestervorkondensate erhält man in an sich bekannter Weise durch Umsetzen von Dicarbonsäuren oder deren Estern mit einem Diol in Gegenwart von Katalysatoren wie Titansäureestern, Antimon-, Mangan- oder Zinkverbindungen, z.B. deren fettsaure Salze, bei Temperaturen von 150 bis 260°C. Die so erhaltenen Diglykolester von Carbonsäuren werden unter vermindertem Druck bei Temperaturen von 230 bis 270°C vorkondensiert. Solche Vorkondensate haben eine relative Viskosität von mindestens 1,05 (gemessen als 0,5 gewichtsprozentige Lösung in einem Gemisch aus Phenol und o-Dichlorbenzol im Gewichtsverhältnis 3: bei 25°C). In der Regel geht man von Polyestervorkondensaten aus mit einer relativen Viskosität von 1,05 bis 1,2. Die Herstellung solcher Vorkondensate wird beispielsweise beschrieben in der DE-A 25 14 116.The polyester precondensates are obtained in a manner known per se by reacting dicarboxylic acids or their esters with a diol in the presence of catalysts such as titanium acid esters, antimony, manganese or zinc compounds, e.g. their fatty acid salts, at temperatures from 150 to 260 ° C. The diglycol esters of carboxylic acids obtained in this way are precondensed under reduced pressure at temperatures of 230 to 270 ° C. Such precondensates have a relative viscosity of at least 1.05 (measured as a 0.5 percent by weight solution in a mixture of phenol and o-dichlorobenzene in a weight ratio of 3: at 25 ° C.). As a rule, polyester precondensates are used with a relative viscosity of 1.05 to 1.2. The production of such precondensates is described, for example, in DE-A 25 14 116.
Die Kondensation der Polyestervorkondensate zu hochmolekularen Polyestern wird bei Temperaturen von 270 bis 340°C unter vermindertem Druck durchgeführt. Vorteilhaft hält man Drücke von 0,133 bis 2,66 mbar ein. Es versteht sich, daß die bei der Kondensation abspaltenden Diole fortlaufend aus dem Reaktionsgemisch entfernt werden.The condensation of the polyester precondensates to high molecular weight polyesters is carried out at temperatures of 270 to 340 ° C under reduced pressure. It is advantageous to maintain pressures from 0.133 to 2.66 mbar. It goes without saying that the diols which split off during the condensation are continuously removed from the reaction mixture.
Ein wesentliches Merkmal der Erfindung ist es, daß man die Kondensation zunächst bei einer Temperatur von 290 bis 340°C beginnt und mit fortschreitender Kondensation die Temperatur erniedrigt. Mit der Maßgabe, daß die Endtemperatur mindestens 10°C, vorteilhaft 30°C über dem Schmelzpunkt des jeweils hergestellten Polyesters liegt. Die Anfangstemperatur richtet sich auch nach der Art des Vorkondensats. Bei Polyethylenterephthalat haben sich Anfangstemperaturen von 320 bis 340°C besonders bewährt, während sich bei der Herstellung von Polybutylenterephthalat Temperaturen von 290 bis 310°C besonders günstig erwiesen haben. Vorteilhaft senkt man während der Kondensation die hohe Anfangstemperatur um 30 bis 50°C. Das Absinken der Temperatur erfolgt kontinuierlich. Die Endtemperatur richtet sich im wesentlichen nach dem Schmelzpunkt des erzeugten Polyesters und soll so hoch über dessen Schmelzpunkt liegen, damit keine Verfestigung eintritt und die weitere Verarbeitung nicht behindert wird. In der Regel haben sich Temperaturen etwa 10°C über dem Schmelzpunkt als brauchbar erwiesen.An essential feature of the invention is that the condensation is first started at a temperature of 290 to 340 ° C. and the temperature is lowered as the condensation proceeds. With the proviso that the final temperature is at least 10 ° C, advantageously 30 ° C above the melting point of the polyester produced. The initial temperature also depends on the type of pre-condensate. In the case of polyethylene terephthalate, starting temperatures of 320 to 340 ° C have proven particularly useful, while temperatures of 290 to 310 ° C have proven particularly favorable in the production of polybutylene terephthalate. The high initial temperature is advantageously reduced by 30 to 50 ° C. during the condensation. The temperature drops continuously. The final temperature depends essentially on the melting point of the polyester produced and should be so high above its melting point that no solidification occurs and further processing is not hindered. As a rule, temperatures around 10 ° C above the melting point have been found to be useful.
Das erfindungsgemäße Verfahren läßt sich auch vorteilhaft durchführen, indem man die Temperatur durch adiabatische Arbeitsweise im Verlauf der Kondensation kontinuierlich um 30 bis 50°C senkt.The process according to the invention can also be carried out advantageously by continuously lowering the temperature by 30 to 50 ° C. in the course of the condensation by adiabatic operation.
Diese Arbeitsweise hat den Vorteil, daß sich die optimale Reaktionstemperatur weitgehend selbständig einstellt. Ferner hat das neue Verfahren den Vorteil, daß durch den nachträglichen Einbau eines Wärmeaustauschers vor die Kondensationsstufe der Polyesterkondensation nach einem optimalen Temperaturzeitprofil in konventionellen Kondensationsreaktoren durchgeführt werden kann.This procedure has the advantage that the optimal reaction temperature is largely independent. Furthermore, the new process has the advantage that the retrofitting of a heat exchanger before the condensation stage of the polyester condensation can be carried out in conventional condensation reactors after an optimal temperature-time profile.
Zunächst wird die niedrigviskose Polyestervorkondensatschmelze vor dem Eintritt in die Polykondensationszone um 30 bis 50°C über die Temperatur erhitzt, welche der fertig kondensierte Polyester nach der Polykondensation aufweisen soll. Zweckmäßig wird die Temperatur des Polyestervorkondensats zunächst soweit erhöht, wie sie bei der nachfolgenden Polykondensation absinkt. Das Erhitzen der Polyestervorkondensatschmelze erfolgt vorteilhaft kurzzeitig in einem Wärmetauscher, z.B. Röhren-oder Plattenwärmetauscher oder in einer ähnlichen geeigneten Vorrichtung.First of all, the low-viscosity polyester precondensate melt is heated by 30 to 50 ° C. above the temperature which the fully condensed polyester should have after the polycondensation before entering the polycondensation zone. The temperature of the polyester precondensate is expediently first increased to the extent that it decreases in the subsequent polycondensation. The polyester precondensate melt is advantageously heated briefly in a heat exchanger, e.g. Tube or plate heat exchangers or in a similar suitable device.
Nach dem Eintritt der so erhitzten Polyestervorkondensatschmelze in die Kondensationszone setzt die Kondensation infolge von Umesterungsreaktionen ein. Die für die Reaktion und die Verdampfung des freigesetzten Diols und eventuellen Nebenprodukten, beispielsweise Tetrahydrofuran, bei der Kondensation von butandiol-1,4-haltigen Polyestern erforderliche Wärmeenergie wird dem Wärmeinhalt der Schmelze entnommen. Dadurch sinkt die Temperatur in dem Maße, wie die Kondensationsreaktion fortschreitet. Hierdurch stellt sich somit die optimale Reaktionstemperatur weitgehend selbständig ein. Demzufolge werden auch die Flächen in der Polykondensationszone, die mit der Schmelze in Berührung kommen, bei der Temperatur gehalten, welche der Polyester nach Polykondensation aufweisen soll, bis zu einer Temperatur, die die Endtemperatur der Polykondensation bis zu 10°C unterschreitet. Gegen Ende Der Polykondensation weist dann die Schmelze eine Temperatur auf, die den mit der Schmelze in Berührung stehenden Flächen entspricht oder infolge der Aufnahme von mechanischer Energie bei der Bewegung der Schmelze die Temperatur der Berührungsflächen je nach Konstruktion der verwendeten Vorrichtung um 5 bis 10°C übersteigt.After the polyester precondensate melt thus heated has entered the condensation zone, the condensation starts as a result of transesterification reactions. The heat energy required for the reaction and evaporation of the released diol and any by-products, for example tetrahydrofuran, in the condensation of polyesters containing 1,4-butanediol is taken from the heat content of the melt. As a result, the temperature drops as the condensation reaction proceeds. As a result, the optimal reaction temperature is largely independent. Accordingly, the areas in the polycondensation zone which come into contact with the melt are kept at the temperature which the polyester should have after polycondensation, up to a temperature which is below the final temperature of the polycondensation up to 10 ° C. Towards the end of the polycondensation, the melt then has a temperature which corresponds to the surfaces in contact with the melt or, as a result of the absorption of mechanical energy during the movement of the melt, the temperature of the contact surfaces by 5 to 10 ° C., depending on the design of the device used exceeds.
Vorzugsweise wird die Kondensation in dünner Schicht durchgeführt. Erfindungsgemäß seien als dünne Schichten solche mit bis zu 7 mm schichtdicke verstanden.The condensation is preferably carried out in a thin layer. According to the invention, thin layers are understood to be those with a layer thickness of up to 7 mm.
Polyester, die nach dem Verfahren der Erfindung erhältlich sind, eignen sich zur Herstellung von geformten Gebilden, wie Fäden, Folien, spritzgegossenen oder extrudierten Teilen, ferner für Überzüge.Polyesters obtainable by the process of the invention are suitable for the production of shaped structures such as threads, foils, injection-molded or extruded parts, and also for coatings.
Das Verfahren nach der Erfindung sei in den folgenden Beispielen veranschaulicht.The process according to the invention is illustrated in the following examples.
In einem 2-Liter-Rundkolben, ausgestattet mit Rührer, Stickstoffeinleitung und Füllkörperkolonne, wurden 1 000 g Dimethylterephthalat und 685 g Butandiol-1,4 auf 130°C erhitzt. Bei dieser Temperatur wurde unter Rühren 1,5 g Tetrabutylorthotitanat als Umesterungskatalysator zugegeben. Alsbald begann die Destillation von Methanol. Die Temperatur wurde innerhalb von 2 Stunden auf 220°C erhöht. Nach dieser Zeit waren 330 g Methanol abdestilliert und die Umesterungsreaktion beendet. Nun wurde die Füllkörperkolonne durch einen absteigenden Kühler ersetzt und innerhalb von 15 Minuten die Temperatur auf 250°C erhöht. Danach wurde unter schnellem Rühren der Druck stetig und linear innerhalb von 40 Minuten auf 13,3 mbar abgesenkt. Bei diesem Druck wurde noch 5 Minuten gerührt und dann die Vorkondensation durch Aufheben des Vakuums mit Stickstoff beendet.1,000 g of dimethyl terephthalate and 685 g of 1,4-butanediol were heated to 130 ° C. in a 2 liter round-bottomed flask equipped with a stirrer, nitrogen inlet and packed column. At this temperature, 1.5 g of tetrabutyl orthotitanate was added as the transesterification catalyst with stirring. The distillation of methanol soon began. The temperature was raised to 220 ° C within 2 hours. After this time, 330 g of methanol had been distilled off and the transesterification reaction was complete ends. The packed column was then replaced by a descending condenser and the temperature was raised to 250 ° C. in the course of 15 minutes. The pressure was then steadily and linearly reduced to 13.3 mbar within 40 minutes with rapid stirring. At this pressure the mixture was stirred for a further 5 minutes and the precondensation was then ended by breaking the vacuum with nitrogen.
Das Vorkondensat wurde unter Stickstoff in eine Schale gegossen, wo es schnell erstarrte. Die relative Viskosität dieses Vorkondensats betrug 1,13.The precondensate was poured into a bowl under nitrogen, where it quickly solidified. The relative viscosity of this precondensate was 1.13.
Die Kondensation erfolgte in einem mit Rührer, Kühler, Stickstoffeinleitung ausgestatteten 250 ml großen Rundkolben, welcher durch ein Woodsches-Metallbad geheizt wurde. Zur Nachkondensation wurden 50 g des Vorkondensats unter Stickstoff bei der gewählten Nachkondensationstemperatur aufgeschmolzen. Nach dem Aufschmelzen und dem Temperaturausgleich wurde der Kolben schnell auf einen Druck von ca. 0,67 mbar evakuiert. Die Rührgeschwindigkeit wurde der jeweiligen Viskosität angepaßt. Nach einer vorgegebenen Zeit wurde die Nachkondensation durch Aufheben des Vakuums mit stickstoff unterbrochen.The condensation was carried out in a 250 ml round-bottom flask equipped with a stirrer, cooler and nitrogen inlet, which was heated by a Woodsches metal bath. For post-condensation, 50 g of the pre-condensate were melted under nitrogen at the selected post-condensation temperature. After melting and temperature compensation, the flask was quickly evacuated to a pressure of approximately 0.67 mbar. The stirring speed was adapted to the respective viscosity. After a predetermined time, the post-condensation was interrupted by breaking the vacuum with nitrogen.
Die Ergebnisse sind in der folgenden Tabelle aufgeführt.
Die Vergleichsbeispiele 1 bis 4 zeigen die relative Viskosität als Funktion der Nachkondensationstemperatur nach einer Reaktionszeit von 15 Minuten. Nach dem Stand der Technik wurden die Temperaturen während der Polykondensationszeit konstant gehalten. Wenn die Temperatur von 255°C auf 280°C erhöht wird, werden auch höhere relative Viskositäten erhalten und damit ein höherer Polykondensationsgrad. Bei weiterer Erhöhung der Temperatur auf 290°C sinkt die relative Viskosität wieder ab, und es wird ein gelblich verfärbtes Produkt erhalten.Comparative Examples 1 to 4 show the relative viscosity as a function of the post-condensation temperature after a reaction time of 15 minutes. According to the prior art, the temperatures were kept constant during the polycondensation time. If the temperature is increased from 255 ° C to 280 ° C, higher relative viscosities are obtained and thus a higher degree of polycondensation. When the temperature is increased further to 290 ° C., the relative viscosity drops again and a yellowish product is obtained.
Die Beispiele 1 und 2 wurden dagegen nach dem erfindungsgemäßen Verfahren durchgeführt. Dazu wurde das Metallbad auf 295°C vorgeheizt und nach dem Aufschmelzen des Vorkondensats die Nachkondensationsreaktion begonnen. Im Verlauf der Nachkondensation wurde die Temperatur des Heizbades in den in der Tabelle angegebenen Schritten erniedrigt. Nach dem erfindungsgemäßen Verfahren wurde innerhalb von 12 Minuten eine relative Viskosität von 1,67 erreicht (Beispiel 2).In contrast, Examples 1 and 2 were carried out by the process according to the invention. For this purpose, the metal bath was preheated to 295 ° C. and the post-condensation reaction was started after the precondensate had melted. In the course of the post-condensation, the temperature of the heating bath was lowered in the steps given in the table. According to the Ver driving a relative viscosity of 1.67 was reached within 12 minutes (Example 2).
In einem Rührkessel mit 40 I Inhalt, ausgestattet mit Rührer, Stickstoffeinleitung und Dephlegmator wurden 20 kg Dimethylterephthalat und 13,7 kg Butandiol-1,4 auf 130°C erhitzt. Bei dieser Temperatur wurden unter Rühren 30 g Tetrabutylorthotitanat als Umesterungskatalysator zugegeben. Danach begann die Destillation von Methanol. Die Temperatur wurde innerhalb von 2 Stunden auf 220°C erhöht. Nach dieser Zeit waren 6,6 kg Methanol abdestilliert und die Umesterungsreaktion beendet. Innerhalb von 30 Minuten wurde die Temperatur auf 250°C erhöht. Danach wurde der Druck stetig und linear innerhalb von 45 Minuten auf 13,3 mbar abgesenkt. In diesem Stadium betrug die relative Viskosität des so erhaltenen Polybutylenterephthalat-Vorkondensats 1,12.20 kg of dimethyl terephthalate and 13.7 kg of 1,4-butanediol were heated to 130 ° C. in a 40 l stirred kettle equipped with a stirrer, nitrogen inlet and dephlegmator. At this temperature, 30 g of tetrabutyl orthotitanate were added as a transesterification catalyst with stirring. Thereafter, the distillation of methanol started. The temperature was raised to 220 ° C within 2 hours. After this time, 6.6 kg of methanol had been distilled off and the transesterification reaction had ended. The temperature was raised to 250 ° C. within 30 minutes. The pressure was then steadily and linearly reduced to 13.3 mbar within 45 minutes. At this stage, the relative viscosity of the polybutylene terephthalate precondensate thus obtained was 1.12.
Das Polybutylenterephthalat-Vorkondensat wurde durch einen Platten-Wärmeaustauscher gedrückt und dabei auf 285°C erwärmt und in einem auf 285°C mit Diphyldampf vorgeheizten Kondensationskessel von 40 I Inhalt geleitet. Dieser Aufheizvorgang nahm 10 Minuten in Anspruch. Danach wurde der Fluß des Diphyldampfs unterbrochen und unter schnellem Rühren schlagartig ein Vakuum von 1,33 mbar im Kondensationskessel hergestellt.The polybutylene terephthalate precondensate was pressed through a plate heat exchanger and thereby heated to 285 ° C. and passed into a condensation vessel of 40 l content preheated to 285 ° C. with diphyl steam. This heating process took 10 minutes. The flow of the diphyl vapor was then interrupted and, with rapid stirring, a vacuum of 1.33 mbar was suddenly established in the condensation vessel.
Während der nun ablaufenden Polykondensation sank die Schmelztemperatur innerhalb von. 33 Minuten exponentiell auf 250°C ab. Von diesem Zeitpunkt an wurde die Temperatur durch Diphyldampf auf 250°C gehalten. Nach weiteren 21 Minuten wurde das Vakuum aufgehoben und die Schmelze unter Stickstoffdruck ausgetragen. Die relative Viskosität des so hergestellten Polybutylenterephthalats betrug 1,72.As the polycondensation now takes place, the melting temperature dropped within. 33 minutes exponentially to 250 ° C. From this point on, the temperature was kept at 250 ° C. by diphyl vapor. After a further 21 minutes, the vacuum was released and the melt was discharged under nitrogen pressure. The relative viscosity of the polybutylene terephthalate thus produced was 1.72.
In diesem Versuch wurde das Polybutylenterephthalat-Vorkondensat ebenfalls innerhalb von 10 Minuten durch den Platten-Wärmetauscher gedrückt, die Temperatur aber auf 250°C gehalten. Der Kondensationskessel war auf 250°C vorgeheizt. Bei dieser Temperatur wurde nach dem Füllvorgang unter schnellem Rühren schlagartig ein Vakuum von 1,33 mbar hergestellt und unter diesen Bedingungen 54 Minuten Kondensiert. Nach 54 Minuten Kondensationszeit wurde das Vakuum aufgehoben und die Schmelze ausgetragen. Die relative Viskosität betrug nur 1,49.In this experiment, the polybutylene terephthalate precondensate was also pressed through the plate heat exchanger within 10 minutes, but the temperature was kept at 250.degree. The condensation boiler was preheated to 250 ° C. At this temperature, a vacuum of 1.33 mbar was suddenly produced with rapid stirring and condensed under these conditions for 54 minutes. After a condensation time of 54 minutes, the vacuum was released and the melt was discharged. The relative viscosity was only 1.49.
Claims (3)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19772738093 DE2738093B1 (en) | 1977-08-24 | 1977-08-24 | Process and device for the production of linear high molecular weight polyesters |
DE2738093 | 1977-08-24 | ||
DE19782803530 DE2803530A1 (en) | 1978-01-27 | 1978-01-27 | Linear high mol. wt. polyester prepn. - by precondensate after-condensn. under reduced pressure while progressively decreasing process temp. opt. continuously |
DE2803530 | 1978-01-27 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0000918A2 EP0000918A2 (en) | 1979-03-07 |
EP0000918A3 EP0000918A3 (en) | 1979-04-04 |
EP0000918B1 true EP0000918B1 (en) | 1982-03-17 |
Family
ID=25772598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP78100670A Expired EP0000918B1 (en) | 1977-08-24 | 1978-08-16 | Process for the preparation of linear, high molecular polyesters |
Country Status (5)
Country | Link |
---|---|
US (2) | US4214072A (en) |
EP (1) | EP0000918B1 (en) |
JP (1) | JPS5443997A (en) |
DE (1) | DE2861668D1 (en) |
IT (1) | IT1097584B (en) |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3820362A1 (en) * | 1988-06-15 | 1990-03-15 | Basf Ag | METHOD FOR THE CONTINUOUS PRODUCTION OF LINEAR THERMOPLASTIC POLYESTERS |
US5238740A (en) * | 1990-05-11 | 1993-08-24 | Hoechst Celanese Corporation | Drawn polyester yarn having a high tenacity and high modulus and a low shrinkage |
US5869011A (en) * | 1994-02-01 | 1999-02-09 | Lee; Jing Ming | Fixed-bed catalytic reactor |
US5520891A (en) * | 1994-02-01 | 1996-05-28 | Lee; Jing M. | Cross-flow, fixed-bed catalytic reactor |
JP3001181B2 (en) * | 1994-07-11 | 2000-01-24 | 株式会社クボタ | Reaction tube for ethylene production |
DE19509551A1 (en) * | 1995-03-16 | 1996-09-19 | Basf Ag | Process for the continuous production of thermoplastic polyesters |
DE19615886C1 (en) | 1996-04-22 | 1997-07-31 | Huels Chemische Werke Ag | Increasing yield in crude di:methyl terephthalate prodn. |
US6194609B1 (en) * | 1997-06-30 | 2001-02-27 | Bp Amoco Corporation | Crystallization in a plate heat exchanger |
DE19929791A1 (en) * | 1999-06-29 | 2001-02-01 | Basf Ag | Process for the continuous production of polybutylene terephthalate from terephthalic acid and butanediol |
FR2811789B1 (en) * | 2000-07-13 | 2003-08-15 | France Etat Ponts Chaussees | METHOD AND DEVICE FOR CLASSIFYING VEHICLES INTO SILHOUETTE CATEGORIES AND FOR DETERMINING THEIR SPEED, FROM THEIR ELECTROMAGNETIC SIGNATURE |
KR100880071B1 (en) | 2000-12-07 | 2009-01-23 | 이스트만 케미칼 컴파니 | Low cost polyester process using a pipe reactor |
US6906164B2 (en) | 2000-12-07 | 2005-06-14 | Eastman Chemical Company | Polyester process using a pipe reactor |
US7074879B2 (en) | 2003-06-06 | 2006-07-11 | Eastman Chemical Company | Polyester process using a pipe reactor |
US7135541B2 (en) | 2003-06-06 | 2006-11-14 | Eastman Chemical Company | Polyester process using a pipe reactor |
DE102004001914A1 (en) | 2004-01-14 | 2005-08-04 | Sms Eumuco Gmbh | Coupling device for a mechanical press, scissors or punching device |
US7332548B2 (en) | 2004-03-04 | 2008-02-19 | Eastman Chemical Company | Process for production of a polyester product from alkylene oxide and carboxylic acid |
DE102004019810A1 (en) | 2004-04-23 | 2005-03-24 | Zimmer Ag | Production of thermoplastic polyester for use e.g. in fibres, film or bottles, involves precondensation by passing an esterification product downwards under reduced pressure through a column with structured packing |
US20060251547A1 (en) * | 2005-05-05 | 2006-11-09 | Windes Larry C | Family of stationary film generators and film support structures for vertical staged polymerization reactors |
US7919652B2 (en) * | 2005-05-19 | 2011-04-05 | Eastman Chemical Company | Process to produce an enriched composition through the use of a catalyst removal zone and an enrichment zone |
US7741516B2 (en) * | 2005-05-19 | 2010-06-22 | Eastman Chemical Company | Process to enrich a carboxylic acid composition |
US7880031B2 (en) * | 2005-05-19 | 2011-02-01 | Eastman Chemical Company | Process to produce an enrichment feed |
US7304178B2 (en) * | 2005-05-19 | 2007-12-04 | Eastman Chemical Company | Enriched isophthalic acid composition |
US7557243B2 (en) * | 2005-05-19 | 2009-07-07 | Eastman Chemical Company | Enriched terephthalic acid composition |
US20060264656A1 (en) * | 2005-05-19 | 2006-11-23 | Fujitsu Limited | Enrichment process using compounds useful in a polyester process |
US20060264662A1 (en) * | 2005-05-19 | 2006-11-23 | Gibson Philip E | Esterification of an enriched composition |
US20060264664A1 (en) * | 2005-05-19 | 2006-11-23 | Parker Kenny R | Esterification of an exchange solvent enriched composition |
US7897809B2 (en) * | 2005-05-19 | 2011-03-01 | Eastman Chemical Company | Process to produce an enrichment feed |
US7834208B2 (en) * | 2005-05-19 | 2010-11-16 | Eastman Chemical Company | Process to produce a post catalyst removal composition |
US7432395B2 (en) | 2005-05-19 | 2008-10-07 | Eastman Chemical Company | Enriched carboxylic acid composition |
US7884231B2 (en) * | 2005-05-19 | 2011-02-08 | Eastman Chemical Company | Process to produce an enriched composition |
US7888529B2 (en) * | 2006-03-01 | 2011-02-15 | Eastman Chemical Company | Process to produce a post catalyst removal composition |
US7943094B2 (en) | 2006-12-07 | 2011-05-17 | Grupo Petrotemex, S.A. De C.V. | Polyester production system employing horizontally elongated esterification vessel |
US7649109B2 (en) | 2006-12-07 | 2010-01-19 | Eastman Chemical Company | Polyester production system employing recirculation of hot alcohol to esterification zone |
US7863477B2 (en) | 2007-03-08 | 2011-01-04 | Eastman Chemical Company | Polyester production system employing hot paste to esterification zone |
US7868130B2 (en) | 2007-07-12 | 2011-01-11 | Eastman Chemical Company | Multi-level tubular reactor with vertically spaced segments |
US7868129B2 (en) | 2007-07-12 | 2011-01-11 | Eastman Chemical Company | Sloped tubular reactor with spaced sequential trays |
US7842777B2 (en) | 2007-07-12 | 2010-11-30 | Eastman Chemical Company | Sloped tubular reactor with divided flow |
US7872090B2 (en) | 2007-07-12 | 2011-01-18 | Eastman Chemical Company | Reactor system with optimized heating and phase separation |
US7858730B2 (en) | 2007-07-12 | 2010-12-28 | Eastman Chemical Company | Multi-level tubular reactor with dual headers |
US7847053B2 (en) | 2007-07-12 | 2010-12-07 | Eastman Chemical Company | Multi-level tubular reactor with oppositely extending segments |
US7872089B2 (en) | 2007-07-12 | 2011-01-18 | Eastman Chemical Company | Multi-level tubular reactor with internal tray |
US7829653B2 (en) | 2007-07-12 | 2010-11-09 | Eastman Chemical Company | Horizontal trayed reactor |
US10010812B2 (en) | 2014-05-08 | 2018-07-03 | Eastman Chemical Company | Furan-2,5-dicarboxylic acid purge process |
US9604202B2 (en) | 2014-05-08 | 2017-03-28 | Eastman Chemical Company | Furan-2,5-dicarboxylic acid purge process |
US9944615B2 (en) | 2014-05-08 | 2018-04-17 | Eastman Chemical Company | Purifying crude furan 2,5-dicarboxylic acid by hydrogenation and a purge zone |
US10421736B2 (en) | 2017-07-20 | 2019-09-24 | Eastman Chemical Company | Production of purified dialkyl-furan-2,5-dicarboxylate (DAFD) in a retrofitted DMT plant |
US10344011B1 (en) | 2018-05-04 | 2019-07-09 | Eastman Chemical Company | Furan-2,5-dicarboxylic acid purge process |
US10526301B1 (en) | 2018-10-18 | 2020-01-07 | Eastman Chemical Company | Production of purified dialkyl-furan-2,5-dicarboxylate (DAFD) in a retrofitted DMT plant |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1920945A1 (en) * | 1969-04-24 | 1970-11-12 | Polysius Ag | Rotating drum cooler for any type of solid - material |
DE2514116A1 (en) * | 1975-03-29 | 1976-09-30 | Basf Ag | PROCESS FOR THE CONTINUOUS MANUFACTURING OF POLYBUTYLENE TEREPHTHALATES |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US401685A (en) * | 1889-04-16 | Ments | ||
US1200996A (en) * | 1912-10-14 | 1916-10-10 | Techno Chemical Lab Ltd | Method of evaporation, &c. |
US1327599A (en) * | 1914-05-25 | 1920-01-06 | Andrew M Hunt | Apparatus for cooling and scrubbing gases |
DE517176C (en) * | 1927-01-10 | 1931-01-31 | Karl Fried Dr | Device for evaporating and thickening liquids |
FR702279A (en) * | 1929-12-10 | 1931-04-03 | gas and smoke purifier | |
US2689839A (en) * | 1951-08-22 | 1954-09-21 | Du Pont | Dispersion of delusterants in polyamides |
US2994724A (en) * | 1958-08-14 | 1961-08-01 | Exxon Research Engineering Co | Cyclodiene dimer vapor phase cracking method and furnace |
NL130338C (en) * | 1963-06-11 | 1900-01-01 | ||
GB1101348A (en) * | 1964-06-16 | 1968-01-31 | Ici Ltd | Improvements in sodium bicarbonate manufacture by the ammonia-soda process |
FR1545487A (en) * | 1966-11-30 | 1968-11-08 | Bemberg Spa | Continuous process for the production of polymethylene terephthalate with a high degree of polymerization, the product thus obtained and fibers made therefrom |
US3499873A (en) * | 1967-06-22 | 1970-03-10 | Vickers Zimmer Ag | Preparation of polyethylene terephthalate by means of free falling films |
NL6809754A (en) * | 1968-04-11 | 1969-10-14 | ||
US3609125A (en) * | 1968-04-24 | 1971-09-28 | Asahi Chemical Ind | Polyesterification process and apparatus |
DE1770350A1 (en) * | 1968-05-08 | 1971-10-14 | Hoechst Ag | Process for the production of polyesters |
FR1593419A (en) * | 1968-11-26 | 1970-05-25 | ||
DE2557580A1 (en) * | 1975-12-20 | 1977-06-30 | Dynamit Nobel Ag | PROCESS AND DEVICE FOR PRODUCING POLYCONDENSATE |
-
1978
- 1978-07-31 IT IT26342/78A patent/IT1097584B/en active
- 1978-08-10 US US05/932,632 patent/US4214072A/en not_active Expired - Lifetime
- 1978-08-16 DE DE7878100670T patent/DE2861668D1/en not_active Expired
- 1978-08-16 EP EP78100670A patent/EP0000918B1/en not_active Expired
- 1978-08-22 JP JP10151178A patent/JPS5443997A/en active Pending
-
1979
- 1979-03-27 US US06/024,298 patent/US4235844A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1920945A1 (en) * | 1969-04-24 | 1970-11-12 | Polysius Ag | Rotating drum cooler for any type of solid - material |
DE2514116A1 (en) * | 1975-03-29 | 1976-09-30 | Basf Ag | PROCESS FOR THE CONTINUOUS MANUFACTURING OF POLYBUTYLENE TEREPHTHALATES |
Non-Patent Citations (1)
Title |
---|
Fisyuk und Grajzel, Sowjetische Beiträge zur Forschung in deutscher Übersetzung, Band 7, Heft 10, Okt. 1970, S. 505/6 * |
Also Published As
Publication number | Publication date |
---|---|
IT7826342A0 (en) | 1978-07-31 |
US4214072A (en) | 1980-07-22 |
DE2861668D1 (en) | 1982-04-15 |
IT1097584B (en) | 1985-08-31 |
EP0000918A2 (en) | 1979-03-07 |
US4235844A (en) | 1980-11-25 |
JPS5443997A (en) | 1979-04-06 |
EP0000918A3 (en) | 1979-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0000918B1 (en) | Process for the preparation of linear, high molecular polyesters | |
DE2514116C3 (en) | Process for the continuous production of linear, high molecular weight polybutylene terephthalates | |
DE69507957T2 (en) | INTEGRATED METHOD FOR PRODUCING LACTID | |
DE69830415T2 (en) | LATE ADDITION OF ADDITIONAL ETHYLENE GLYCOL IN THE PREPARATION OF COPOLYESTERS | |
DE69933292T2 (en) | POLYESTER THE ISOSORBIDE CONTAINED AS MONOMER AND METHOD FOR THEIR MANUFACTURE | |
EP0346735B1 (en) | Process for the continuous preparation of linear thermoplastic polyesters | |
DE1745695C3 (en) | Process for the production of linear, thermoplastic mixed polyester with softening temperatures above 100 degrees C. | |
DE2337288A1 (en) | METHOD OF MANUFACTURING POLYESTERS | |
DE2327668B2 (en) | Process for the production of a segmented, thermoplastic mixed polyester elastomer | |
EP0226078B1 (en) | Wholly aromatic, mesomorphic polyesters, their production and utilization | |
EP0815158B1 (en) | Thermoplastic polyester continuous production process | |
EP0940398A1 (en) | Process for the preparation of macrocyclic esters | |
WO2001000704A1 (en) | Method for the continuous production of polybutylene terephthalate from terephthal acid and butane diole | |
WO2001000705A1 (en) | Method for the continuous production of polybutyleneterephthalate from terephthalic acid and butanediol | |
DE60201084T2 (en) | PREPARATION OF CYCLIC ESTEROLIGOMERS | |
DE1495265B2 (en) | PROCESS FOR MANUFACTURING LINEAR, THERMOPLASTIC POLYESTERS WITH FREEZING TEMPERATURE ABOVE 100 DEGREES C. | |
DE3943129A1 (en) | METHOD FOR PRODUCING THERMOPLASTIC, HIGH MOLECULAR COPOLYESTERS | |
DE1520883A1 (en) | Process for the production of polyesters | |
DE2336026C3 (en) | Process for the preparation of modified polyalkylene terephthalates | |
EP0004343B1 (en) | Process for the preparation of linear high-molecular saturated polyesters | |
CH379765A (en) | Process for the production of high molecular weight polyethylene glycol terephthalic acid ester | |
CH484099A (en) | Process for the preparation of optionally substituted glycolides | |
DE2738093B1 (en) | Process and device for the production of linear high molecular weight polyesters | |
DE2504156A1 (en) | LOW MOLECULAR MOLECULAR TEREPHTHAL ACID AETHYLENE GLYCOLESTER, THEIR PREPARATION AND USE | |
AT247003B (en) | Process for the production of linear thermoplastic polyesters with glass transition temperatures above 100 ° C |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): BE CH DE FR GB NL |
|
AK | Designated contracting states |
Designated state(s): BE CH DE FR GB NL |
|
17P | Request for examination filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE CH DE FR GB NL |
|
REF | Corresponds to: |
Ref document number: 2861668 Country of ref document: DE Date of ref document: 19820415 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
KL | Correction list |
Free format text: 82/06 |
|
NLR4 | Nl: receipt of corrected translation in the netherlands language at the initiative of the proprietor of the patent | ||
26 | Opposition filed |
Opponent name: ENKA AG Effective date: 19821106 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19840719 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19840720 Year of fee payment: 7 Ref country code: CH Payment date: 19840720 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19840930 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19870831 Year of fee payment: 10 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state | ||
27W | Patent revoked |
Effective date: 19871016 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLR2 | Nl: decision of opposition | ||
BERE | Be: lapsed |
Owner name: BASF A.G. Effective date: 19880831 |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |