[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0000918B1 - Process for the preparation of linear, high molecular polyesters - Google Patents

Process for the preparation of linear, high molecular polyesters Download PDF

Info

Publication number
EP0000918B1
EP0000918B1 EP78100670A EP78100670A EP0000918B1 EP 0000918 B1 EP0000918 B1 EP 0000918B1 EP 78100670 A EP78100670 A EP 78100670A EP 78100670 A EP78100670 A EP 78100670A EP 0000918 B1 EP0000918 B1 EP 0000918B1
Authority
EP
European Patent Office
Prior art keywords
temperature
condensation
polyester
high molecular
lowered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100670A
Other languages
German (de)
French (fr)
Other versions
EP0000918A2 (en
EP0000918A3 (en
Inventor
Hans-Josef Dr. Sterzel
Kasimir Von Dziembowski
Hans Dr. Pirzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25772598&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0000918(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19772738093 external-priority patent/DE2738093B1/en
Priority claimed from DE19782803530 external-priority patent/DE2803530A1/en
Application filed by BASF SE filed Critical BASF SE
Publication of EP0000918A2 publication Critical patent/EP0000918A2/en
Publication of EP0000918A3 publication Critical patent/EP0000918A3/en
Application granted granted Critical
Publication of EP0000918B1 publication Critical patent/EP0000918B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/785Preparation processes characterised by the apparatus used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00081Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/0013Controlling the temperature by direct heating or cooling by condensation of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00168Controlling or regulating processes controlling the viscosity

Definitions

  • the invention relates to a process for the preparation of high molecular weight linear polyesters which are derived from dicarboxylic acids or their ester-forming derivatives and diols and which consist of at least 50 mol% of polyethylene or polybutylene terephthalate units, by condensation of polyester precondensates with a relative viscosity of at least 1.05 at temperatures from 270 to 340 ° C under reduced pressure.
  • polyester precondensate In the manufacture of high molecular weight linear polyesters, low molecular precondensates with low viscosity are converted into high molecular weight condensates at temperatures of 260 to 300 ° C. under reduced pressure with elimination of diols. At the high temperatures required, however, polyester melts are unstable, which results in an increased carboxyl end group content.
  • the polyester precondensate In the process known from DE-B 17 45 541, the polyester precondensate is passed through a horizontal device which is divided into chambers, the melt being formed into a thin film in each chamber.
  • the method has the disadvantage that it takes considerable time, e.g. several hours, and the higher-condensed melt formed in the film is continuously returned to the bottom of the lower molecular weight.
  • polyester precondensates which are derived from dicarboxylic acids or their ester-forming derivatives and diols and which consist of at least 50 mol% of polyethylene or polybutylene terephthalate units, by condensing polyester precondensates with a relative viscosity of at least 1.05, at temperatures of 270 to 340 ° C under reduced pressure, the temperature being lowered during the condensation, characterized in that the polyester precondensate is briefly heated to a temperature of 290 to 340 ° C and then by evaporating the released diol under a pressure of 0.133 to 2.66 mbar, the temperature lowered by 30 to 50 ° C with the proviso that the final temperature is at least 10 ° C above the melting point of the polyester produced.
  • the new process has the advantage that the condensation takes less time than before. Furthermore, the new process has the advantage that very low carboxyl end group contents are achieved even with sensitive polyesters, such as polybutylene terephthalate.
  • the new process is remarkable in that the condensation is carried out with a continuously decreasing temperature.
  • DE-A 19 20 954 and FR-A 15 45 487 it was assumed that short residence times could only be achieved with increasing temperature.
  • the high molecular weight linear polyesters are derived from dicarboxylic acids or their ester-forming derivatives, such as alkyl esters. Aliphatic are preferred. and / or aromatic dicarboxylic acids with a molecular weight ⁇ 390. In addition to the carboxyl group, particularly preferred dicarboxylic acids have a hydrocarbon structure. Alkanedicarboxylic acids with 5 to carbon atoms or benzene or naphthalenedicarboxylic acids, in particular those derived from benzene, have acquired particular industrial importance. Terephthalic acid is particularly noteworthy.
  • Suitable starting materials are, for example, glutaric acid, adipic acid, sebacic acid, terephthalic acid, isophthalic acid, succinic acid, naphthalene-2,6-dicarboxylic acid, 4,4'-diphenyl-4,4' Diphenoxydicarbonklare or their C, - to C 4- alkyl esters.
  • Preferred diols are aliphatic, cycloaliphatic or aromatic diols with a molecular weight ⁇ 280. Apart from the hydroxyl groups, they preferably have a hydrocarbon structure. Alkanediols, in particular those having 2 to 6 carbon atoms, have gained particular industrial importance. Suitable diols are, for example, ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,5-pentanediol, decamethylene glycol, neopentyl glycol or 1,4- Bis-hydroxymethylcyclohexane. Ethylene glycol and 1,4-butanediol have become particularly important.
  • polyesters and also their precondensates consist of at least 50 mol% of polyethylene terephthalate or polybutylene terephthalate units.
  • the rest can also consist of other short-chain polyester units derived from the above-mentioned polyester-forming starting materials.
  • Polyesters which are 70 to 100 mol% of polyethylene or polybutyl are particularly preferred enterephthalate exist.
  • the method according to the invention has attained particular importance for the production of polybutylene terephthalate.
  • the polyester precondensates are obtained in a manner known per se by reacting dicarboxylic acids or their esters with a diol in the presence of catalysts such as titanium acid esters, antimony, manganese or zinc compounds, e.g. their fatty acid salts, at temperatures from 150 to 260 ° C.
  • the diglycol esters of carboxylic acids obtained in this way are precondensed under reduced pressure at temperatures of 230 to 270 ° C.
  • Such precondensates have a relative viscosity of at least 1.05 (measured as a 0.5 percent by weight solution in a mixture of phenol and o-dichlorobenzene in a weight ratio of 3: at 25 ° C.).
  • polyester precondensates are used with a relative viscosity of 1.05 to 1.2. The production of such precondensates is described, for example, in DE-A 25 14 116.
  • the condensation of the polyester precondensates to high molecular weight polyesters is carried out at temperatures of 270 to 340 ° C under reduced pressure. It is advantageous to maintain pressures from 0.133 to 2.66 mbar. It goes without saying that the diols which split off during the condensation are continuously removed from the reaction mixture.
  • An essential feature of the invention is that the condensation is first started at a temperature of 290 to 340 ° C. and the temperature is lowered as the condensation proceeds. With the proviso that the final temperature is at least 10 ° C, advantageously 30 ° C above the melting point of the polyester produced.
  • the initial temperature also depends on the type of pre-condensate. In the case of polyethylene terephthalate, starting temperatures of 320 to 340 ° C have proven particularly useful, while temperatures of 290 to 310 ° C have proven particularly favorable in the production of polybutylene terephthalate.
  • the high initial temperature is advantageously reduced by 30 to 50 ° C. during the condensation. The temperature drops continuously.
  • the final temperature depends essentially on the melting point of the polyester produced and should be so high above its melting point that no solidification occurs and further processing is not hindered. As a rule, temperatures around 10 ° C above the melting point have been found to be useful.
  • the process according to the invention can also be carried out advantageously by continuously lowering the temperature by 30 to 50 ° C. in the course of the condensation by adiabatic operation.
  • This procedure has the advantage that the optimal reaction temperature is largely independent. Furthermore, the new process has the advantage that the retrofitting of a heat exchanger before the condensation stage of the polyester condensation can be carried out in conventional condensation reactors after an optimal temperature-time profile.
  • the low-viscosity polyester precondensate melt is heated by 30 to 50 ° C. above the temperature which the fully condensed polyester should have after the polycondensation before entering the polycondensation zone.
  • the temperature of the polyester precondensate is expediently first increased to the extent that it decreases in the subsequent polycondensation.
  • the polyester precondensate melt is advantageously heated briefly in a heat exchanger, e.g. Tube or plate heat exchangers or in a similar suitable device.
  • the condensation starts as a result of transesterification reactions.
  • the heat energy required for the reaction and evaporation of the released diol and any by-products, for example tetrahydrofuran, in the condensation of polyesters containing 1,4-butanediol is taken from the heat content of the melt.
  • the temperature drops as the condensation reaction proceeds.
  • the optimal reaction temperature is largely independent. Accordingly, the areas in the polycondensation zone which come into contact with the melt are kept at the temperature which the polyester should have after polycondensation, up to a temperature which is below the final temperature of the polycondensation up to 10 ° C.
  • the melt Towards the end of the polycondensation, the melt then has a temperature which corresponds to the surfaces in contact with the melt or, as a result of the absorption of mechanical energy during the movement of the melt, the temperature of the contact surfaces by 5 to 10 ° C., depending on the design of the device used exceeds.
  • the condensation is preferably carried out in a thin layer.
  • thin layers are understood to be those with a layer thickness of up to 7 mm.
  • Polyesters obtainable by the process of the invention are suitable for the production of shaped structures such as threads, foils, injection-molded or extruded parts, and also for coatings.
  • the precondensate was poured into a bowl under nitrogen, where it quickly solidified.
  • the relative viscosity of this precondensate was 1.13.
  • the condensation was carried out in a 250 ml round-bottom flask equipped with a stirrer, cooler and nitrogen inlet, which was heated by a Woodsches metal bath.
  • 50 g of the pre-condensate were melted under nitrogen at the selected post-condensation temperature.
  • the flask was quickly evacuated to a pressure of approximately 0.67 mbar.
  • the stirring speed was adapted to the respective viscosity.
  • the post-condensation was interrupted by breaking the vacuum with nitrogen.
  • Comparative Examples 1 to 4 show the relative viscosity as a function of the post-condensation temperature after a reaction time of 15 minutes. According to the prior art, the temperatures were kept constant during the polycondensation time. If the temperature is increased from 255 ° C to 280 ° C, higher relative viscosities are obtained and thus a higher degree of polycondensation. When the temperature is increased further to 290 ° C., the relative viscosity drops again and a yellowish product is obtained.
  • Examples 1 and 2 were carried out by the process according to the invention.
  • the metal bath was preheated to 295 ° C. and the post-condensation reaction was started after the precondensate had melted.
  • the temperature of the heating bath was lowered in the steps given in the table. According to the Ver driving a relative viscosity of 1.67 was reached within 12 minutes (Example 2).
  • the polybutylene terephthalate precondensate was pressed through a plate heat exchanger and thereby heated to 285 ° C. and passed into a condensation vessel of 40 l content preheated to 285 ° C. with diphyl steam. This heating process took 10 minutes. The flow of the diphyl vapor was then interrupted and, with rapid stirring, a vacuum of 1.33 mbar was suddenly established in the condensation vessel.
  • the melting temperature dropped within. 33 minutes exponentially to 250 ° C. From this point on, the temperature was kept at 250 ° C. by diphyl vapor. After a further 21 minutes, the vacuum was released and the melt was discharged under nitrogen pressure. The relative viscosity of the polybutylene terephthalate thus produced was 1.72.
  • the polybutylene terephthalate precondensate was also pressed through the plate heat exchanger within 10 minutes, but the temperature was kept at 250.degree.
  • the condensation boiler was preheated to 250 ° C. At this temperature, a vacuum of 1.33 mbar was suddenly produced with rapid stirring and condensed under these conditions for 54 minutes. After a condensation time of 54 minutes, the vacuum was released and the melt was discharged. The relative viscosity was only 1.49.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

Gegenstand der Erfindung ist ein Verfahren zur Herstellung von hochmolekularen linearen Polyestern, die sich von Dicarbonsäuren oder deren esterbildenden Derivaten und Diolen ableiten und die zu mindestens 50 Mol% aus Polyethylen- oder Polybutylenterephthalat-Einheiten bestehen, durch Kondensation von Polyestervorkondensaten mit einer relativen Viskosität von mindestens 1,05 bei Temperaturen von 270 bis 340°C unter vermindertem Druck.The invention relates to a process for the preparation of high molecular weight linear polyesters which are derived from dicarboxylic acids or their ester-forming derivatives and diols and which consist of at least 50 mol% of polyethylene or polybutylene terephthalate units, by condensation of polyester precondensates with a relative viscosity of at least 1.05 at temperatures from 270 to 340 ° C under reduced pressure.

Bei der Herstellung von hochmolekularen linearen Polyestern werden niedrig molekulare Vorkondensate mit niedriger Viskosität bei Temperaturen von 260 bis 300°C unter vermindertem Druck unter Abspaltung von Diolen in hochmolekulare Kondensate übergeführt. Bei den hohen erforderlichen Temperaturen sind Polyesterschmelzen jedoch instabil, was sich in einem erhöhten Carboxylendgruppengehalt auswirkt. Bei dem aus der DE-B 17 45 541 bekannten Verfahren wird das Polyestervorkondensat durch eine horizontale Vorrichtung, die in Kammern unterteilt ist, geleitet, wobei in jeder Kammer die Schmelze zu einem dünnen Film geformt wird. Das Verfahren hat den Nachteil, daß es erhebliche Zeit, z.B. mehrere Stunden, in Anspruch nimmt und fortlaufend die im Film gebildete höherkondensierte Schmelze wieder in den Sumpf mit niedrigerem Molekulargewicht zurückgeführt wird. Aus der DE-A 19 59 455 ist ferner ein Verfahren bekannt, bei dem die kondensierende Schmelze über eine Folge übereinander angeordneter Zonen geleitet wird, wobei die kondensierende Masse in jeder Zone zirkuliert und dabei abwechselnd mit der Heizwand in Berührung kommt und von Zone zu Zone unter Schwerkraft und Filmbildung fließt. Das Verfahren hat den Nachteil, daß sich innerhalb der einzelenen Zonen Toträume ausbilden, die zur Rückvermischung führen. Ferner hat das Verfahren den Nachteil, daß bei besonders empfindlichen Polyestern die Kondensationszeit immer noch zuviel Zeit in Anspruch nimmt. Das aus der FR-A 15 45 487 bekannte Verfahren, bei dem man die kondensierende Schmelze über eine Mehrzahl von rotierenden geneigten Flächen leitet, benötigt für die Kondensation immer noch etwa 30 Minuten. Es ist bemerkenswert, daß bei sämtlichen Verfahren die Temperatur entweder auf gleichem Niveau gehalten wird oder mit zunehmender Viskosität gesteigert wird.In the manufacture of high molecular weight linear polyesters, low molecular precondensates with low viscosity are converted into high molecular weight condensates at temperatures of 260 to 300 ° C. under reduced pressure with elimination of diols. At the high temperatures required, however, polyester melts are unstable, which results in an increased carboxyl end group content. In the process known from DE-B 17 45 541, the polyester precondensate is passed through a horizontal device which is divided into chambers, the melt being formed into a thin film in each chamber. The method has the disadvantage that it takes considerable time, e.g. several hours, and the higher-condensed melt formed in the film is continuously returned to the bottom of the lower molecular weight. From DE-A 19 59 455 a method is also known in which the condensing melt is passed over a series of zones arranged one above the other, the condensing mass circulating in each zone and thereby coming into contact with the heating wall alternately and from zone to zone flows under gravity and film formation. The method has the disadvantage that dead spaces form within the individual zones, which lead to backmixing. Furthermore, the method has the disadvantage that the condensation time still takes too much time for particularly sensitive polyesters. The process known from FR-A 15 45 487, in which the condensing melt is passed over a plurality of rotating, inclined surfaces, still requires about 30 minutes for the condensation. It is noteworthy that in all processes the temperature is either kept at the same level or increased with increasing viscosity.

Es war deshalb die technische Aufgabe gestellt, bei der Herstellung von hochmolekularen linearen Polyestern die Kondensation so durchzuführen, daß ein Minimum an Zeit beansprucht wird und auch bei empfindlichen Polyestern ein möglichst niedriger Gehalt an Carboxylendgruppen erzielt wird.It was therefore the technical task to carry out the condensation in the production of high molecular weight linear polyesters in such a way that a minimum of time is required and the lowest possible carboxyl end group content is achieved even with sensitive polyesters.

Diese technische Aufgabe wird gelöst in einem Verfahren zur Herstellung von hochmolekularen linearen Polyestern, die sich von Dicarbonsäuren oder deren esterbildenden Derivaten und Diolen ableiten und die zu wenigstens 50 Mol% aus polyethylen- oder Polybutylenterephthalat-Einheiten bestehen, durch Kondensation von Polyestervorkondensaten mit einer relativen Viskosität von mindestens 1,05, bei Temperaturen von 270 bis 340°C unter vermindertem Druck, wobei man während der Kondensation die Temperatur erniedrigt, dadurch gekennzeichnet, daß man das Polyestervorkondensat kurzzeitig auf eine Temperatur von 290 bis 340°C erhitzt und dann durch Verdampfen des freigesetzten Diols unter einem Druck von 0,133 bis 2,66 mbar die Temperatur um 30 bis 50°C erniedrigt mit der Maßgabe, daß die Endtemperatur mindestens 10°C über dem Schmelzpunkt des hergestellten Polyesters liegt.This technical problem is solved in a process for the production of high molecular weight linear polyesters, which are derived from dicarboxylic acids or their ester-forming derivatives and diols and which consist of at least 50 mol% of polyethylene or polybutylene terephthalate units, by condensing polyester precondensates with a relative viscosity of at least 1.05, at temperatures of 270 to 340 ° C under reduced pressure, the temperature being lowered during the condensation, characterized in that the polyester precondensate is briefly heated to a temperature of 290 to 340 ° C and then by evaporating the released diol under a pressure of 0.133 to 2.66 mbar, the temperature lowered by 30 to 50 ° C with the proviso that the final temperature is at least 10 ° C above the melting point of the polyester produced.

Das neue Verfahren hat den Vorteil, daß die Kondensation in kürzerer Zeit als bisher verläuft. Ferner hat das neue Verfahren den Vorteil, daß selbst bei empfindlichen Polyestern, wie Polybutylenterephthalat sehr niedrige Carboxylendgruppengehalte erzielt werden.The new process has the advantage that the condensation takes less time than before. Furthermore, the new process has the advantage that very low carboxyl end group contents are achieved even with sensitive polyesters, such as polybutylene terephthalate.

Das neue Verfahren ist insofern bemerkenswert als die Kondensation bei fortlaufend sinkender Temperatur durchgeführt wird. Im Hinblick auf die DE-A 19 20 954 und die FR-A 15 45 487 war davon auszugehen, daß man kurze Verweilzeiten nur mit ansteigender Temperatur erzielt.The new process is remarkable in that the condensation is carried out with a continuously decreasing temperature. With regard to DE-A 19 20 954 and FR-A 15 45 487, it was assumed that short residence times could only be achieved with increasing temperature.

Die hochmolekularen linearen Polyester leiten sich ebenso wie die Polyestervorkondensate ab von Dicarbonsäuren oder deren esterbildenden Derivaten, wie Alkylestern. Bevorzugt sind aliphatische . und/oder aromatische Dicarbonsäuren mit einem Molekulargewicht <390. Besonders bevorzugte Dicarbonsäuren haben außer der Carboxylgruppe Kohlenwasserstoffstruktur. Besondere technische Bedeutung haben Alkandicarbonsäuren mit 5 bis Kohlenstoffatomen oder Benzol- oder Naphthalindicarbonsäuren, insbesondere solche, die sich vom Benzol ableiten, erlangt. Insbesondere ist Terephthalsäure hervorzuheben. Geeignete Ausgangsstoffe sind beispielsweise Glutarsäure, Adipinsäuren, Sebacinsäure, Terephthalsäure, Isophthalsäure, Bernsteinsäure, Napthalin-2,6-dicarbonsäure, 4,4'-Diphenyldicarbonsäure 4,4'-Diphenoxydicarbonsäure oder deren C,- bis C4-Alkylester.The high molecular weight linear polyesters, like the polyester precondensates, are derived from dicarboxylic acids or their ester-forming derivatives, such as alkyl esters. Aliphatic are preferred. and / or aromatic dicarboxylic acids with a molecular weight <390. In addition to the carboxyl group, particularly preferred dicarboxylic acids have a hydrocarbon structure. Alkanedicarboxylic acids with 5 to carbon atoms or benzene or naphthalenedicarboxylic acids, in particular those derived from benzene, have acquired particular industrial importance. Terephthalic acid is particularly noteworthy. Suitable starting materials are, for example, glutaric acid, adipic acid, sebacic acid, terephthalic acid, isophthalic acid, succinic acid, naphthalene-2,6-dicarboxylic acid, 4,4'-diphenyl-4,4' Diphenoxydicarbonsäure or their C, - to C 4- alkyl esters.

Bevorzugte Diole sind aliphatische, cycloaliphatische oder aromatische Diole mit einem Molekulargewicht <280. Sie haben vorzugsweise, abgesehen von den Hydroxylgruppen, Kohlenwasserstoffstruktur. Besondere technische Bedeutung haben Alkandiole, insbesondere solche mit 2 bis 6 Kohlenstoffatomen, erlangt, Geeignete Diole sind beispielsweise Ethylenglykol, Propylenglykol, Butandiol-1,4, Hexandiol-1,6, Pentandiol-1,5, Decamethylenglykol, Neopentylglykol oder 1,4-Bis-hydroxymethylcyclohexan. Besondere Bedeutung haben Ethylenglykol und Butandiol-1,4 erlangt.Preferred diols are aliphatic, cycloaliphatic or aromatic diols with a molecular weight <280. Apart from the hydroxyl groups, they preferably have a hydrocarbon structure. Alkanediols, in particular those having 2 to 6 carbon atoms, have gained particular industrial importance. Suitable diols are, for example, ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,5-pentanediol, decamethylene glycol, neopentyl glycol or 1,4- Bis-hydroxymethylcyclohexane. Ethylene glycol and 1,4-butanediol have become particularly important.

Die Polyester und auch deren Vorkondensate bestehen zu wenigstens 50 Mol% aus Polyethylenterephthalat oder Polybutylenterephthalat-Einheiten. Der Rest kann auch aus anderen kurzkettigen Polyester-Einheiten bestehen, die sich von den vorgenannten Polyester bildenden Ausgangsstoffen herleiten. Besonders bevorzugt sind Polyester, die zu 70 bis 100 Mol% aus Polyethylen oder Polybutylenterephthalat bestehen. Besondere Bedeutung hat das Verfahren nach der Erfindung für die Herstellung von Polybutylenterephthalat erlangt.The polyesters and also their precondensates consist of at least 50 mol% of polyethylene terephthalate or polybutylene terephthalate units. The rest can also consist of other short-chain polyester units derived from the above-mentioned polyester-forming starting materials. Polyesters which are 70 to 100 mol% of polyethylene or polybutyl are particularly preferred enterephthalate exist. The method according to the invention has attained particular importance for the production of polybutylene terephthalate.

Die Polyestervorkondensate erhält man in an sich bekannter Weise durch Umsetzen von Dicarbonsäuren oder deren Estern mit einem Diol in Gegenwart von Katalysatoren wie Titansäureestern, Antimon-, Mangan- oder Zinkverbindungen, z.B. deren fettsaure Salze, bei Temperaturen von 150 bis 260°C. Die so erhaltenen Diglykolester von Carbonsäuren werden unter vermindertem Druck bei Temperaturen von 230 bis 270°C vorkondensiert. Solche Vorkondensate haben eine relative Viskosität von mindestens 1,05 (gemessen als 0,5 gewichtsprozentige Lösung in einem Gemisch aus Phenol und o-Dichlorbenzol im Gewichtsverhältnis 3: bei 25°C). In der Regel geht man von Polyestervorkondensaten aus mit einer relativen Viskosität von 1,05 bis 1,2. Die Herstellung solcher Vorkondensate wird beispielsweise beschrieben in der DE-A 25 14 116.The polyester precondensates are obtained in a manner known per se by reacting dicarboxylic acids or their esters with a diol in the presence of catalysts such as titanium acid esters, antimony, manganese or zinc compounds, e.g. their fatty acid salts, at temperatures from 150 to 260 ° C. The diglycol esters of carboxylic acids obtained in this way are precondensed under reduced pressure at temperatures of 230 to 270 ° C. Such precondensates have a relative viscosity of at least 1.05 (measured as a 0.5 percent by weight solution in a mixture of phenol and o-dichlorobenzene in a weight ratio of 3: at 25 ° C.). As a rule, polyester precondensates are used with a relative viscosity of 1.05 to 1.2. The production of such precondensates is described, for example, in DE-A 25 14 116.

Die Kondensation der Polyestervorkondensate zu hochmolekularen Polyestern wird bei Temperaturen von 270 bis 340°C unter vermindertem Druck durchgeführt. Vorteilhaft hält man Drücke von 0,133 bis 2,66 mbar ein. Es versteht sich, daß die bei der Kondensation abspaltenden Diole fortlaufend aus dem Reaktionsgemisch entfernt werden.The condensation of the polyester precondensates to high molecular weight polyesters is carried out at temperatures of 270 to 340 ° C under reduced pressure. It is advantageous to maintain pressures from 0.133 to 2.66 mbar. It goes without saying that the diols which split off during the condensation are continuously removed from the reaction mixture.

Ein wesentliches Merkmal der Erfindung ist es, daß man die Kondensation zunächst bei einer Temperatur von 290 bis 340°C beginnt und mit fortschreitender Kondensation die Temperatur erniedrigt. Mit der Maßgabe, daß die Endtemperatur mindestens 10°C, vorteilhaft 30°C über dem Schmelzpunkt des jeweils hergestellten Polyesters liegt. Die Anfangstemperatur richtet sich auch nach der Art des Vorkondensats. Bei Polyethylenterephthalat haben sich Anfangstemperaturen von 320 bis 340°C besonders bewährt, während sich bei der Herstellung von Polybutylenterephthalat Temperaturen von 290 bis 310°C besonders günstig erwiesen haben. Vorteilhaft senkt man während der Kondensation die hohe Anfangstemperatur um 30 bis 50°C. Das Absinken der Temperatur erfolgt kontinuierlich. Die Endtemperatur richtet sich im wesentlichen nach dem Schmelzpunkt des erzeugten Polyesters und soll so hoch über dessen Schmelzpunkt liegen, damit keine Verfestigung eintritt und die weitere Verarbeitung nicht behindert wird. In der Regel haben sich Temperaturen etwa 10°C über dem Schmelzpunkt als brauchbar erwiesen.An essential feature of the invention is that the condensation is first started at a temperature of 290 to 340 ° C. and the temperature is lowered as the condensation proceeds. With the proviso that the final temperature is at least 10 ° C, advantageously 30 ° C above the melting point of the polyester produced. The initial temperature also depends on the type of pre-condensate. In the case of polyethylene terephthalate, starting temperatures of 320 to 340 ° C have proven particularly useful, while temperatures of 290 to 310 ° C have proven particularly favorable in the production of polybutylene terephthalate. The high initial temperature is advantageously reduced by 30 to 50 ° C. during the condensation. The temperature drops continuously. The final temperature depends essentially on the melting point of the polyester produced and should be so high above its melting point that no solidification occurs and further processing is not hindered. As a rule, temperatures around 10 ° C above the melting point have been found to be useful.

Das erfindungsgemäße Verfahren läßt sich auch vorteilhaft durchführen, indem man die Temperatur durch adiabatische Arbeitsweise im Verlauf der Kondensation kontinuierlich um 30 bis 50°C senkt.The process according to the invention can also be carried out advantageously by continuously lowering the temperature by 30 to 50 ° C. in the course of the condensation by adiabatic operation.

Diese Arbeitsweise hat den Vorteil, daß sich die optimale Reaktionstemperatur weitgehend selbständig einstellt. Ferner hat das neue Verfahren den Vorteil, daß durch den nachträglichen Einbau eines Wärmeaustauschers vor die Kondensationsstufe der Polyesterkondensation nach einem optimalen Temperaturzeitprofil in konventionellen Kondensationsreaktoren durchgeführt werden kann.This procedure has the advantage that the optimal reaction temperature is largely independent. Furthermore, the new process has the advantage that the retrofitting of a heat exchanger before the condensation stage of the polyester condensation can be carried out in conventional condensation reactors after an optimal temperature-time profile.

Zunächst wird die niedrigviskose Polyestervorkondensatschmelze vor dem Eintritt in die Polykondensationszone um 30 bis 50°C über die Temperatur erhitzt, welche der fertig kondensierte Polyester nach der Polykondensation aufweisen soll. Zweckmäßig wird die Temperatur des Polyestervorkondensats zunächst soweit erhöht, wie sie bei der nachfolgenden Polykondensation absinkt. Das Erhitzen der Polyestervorkondensatschmelze erfolgt vorteilhaft kurzzeitig in einem Wärmetauscher, z.B. Röhren-oder Plattenwärmetauscher oder in einer ähnlichen geeigneten Vorrichtung.First of all, the low-viscosity polyester precondensate melt is heated by 30 to 50 ° C. above the temperature which the fully condensed polyester should have after the polycondensation before entering the polycondensation zone. The temperature of the polyester precondensate is expediently first increased to the extent that it decreases in the subsequent polycondensation. The polyester precondensate melt is advantageously heated briefly in a heat exchanger, e.g. Tube or plate heat exchangers or in a similar suitable device.

Nach dem Eintritt der so erhitzten Polyestervorkondensatschmelze in die Kondensationszone setzt die Kondensation infolge von Umesterungsreaktionen ein. Die für die Reaktion und die Verdampfung des freigesetzten Diols und eventuellen Nebenprodukten, beispielsweise Tetrahydrofuran, bei der Kondensation von butandiol-1,4-haltigen Polyestern erforderliche Wärmeenergie wird dem Wärmeinhalt der Schmelze entnommen. Dadurch sinkt die Temperatur in dem Maße, wie die Kondensationsreaktion fortschreitet. Hierdurch stellt sich somit die optimale Reaktionstemperatur weitgehend selbständig ein. Demzufolge werden auch die Flächen in der Polykondensationszone, die mit der Schmelze in Berührung kommen, bei der Temperatur gehalten, welche der Polyester nach Polykondensation aufweisen soll, bis zu einer Temperatur, die die Endtemperatur der Polykondensation bis zu 10°C unterschreitet. Gegen Ende Der Polykondensation weist dann die Schmelze eine Temperatur auf, die den mit der Schmelze in Berührung stehenden Flächen entspricht oder infolge der Aufnahme von mechanischer Energie bei der Bewegung der Schmelze die Temperatur der Berührungsflächen je nach Konstruktion der verwendeten Vorrichtung um 5 bis 10°C übersteigt.After the polyester precondensate melt thus heated has entered the condensation zone, the condensation starts as a result of transesterification reactions. The heat energy required for the reaction and evaporation of the released diol and any by-products, for example tetrahydrofuran, in the condensation of polyesters containing 1,4-butanediol is taken from the heat content of the melt. As a result, the temperature drops as the condensation reaction proceeds. As a result, the optimal reaction temperature is largely independent. Accordingly, the areas in the polycondensation zone which come into contact with the melt are kept at the temperature which the polyester should have after polycondensation, up to a temperature which is below the final temperature of the polycondensation up to 10 ° C. Towards the end of the polycondensation, the melt then has a temperature which corresponds to the surfaces in contact with the melt or, as a result of the absorption of mechanical energy during the movement of the melt, the temperature of the contact surfaces by 5 to 10 ° C., depending on the design of the device used exceeds.

Vorzugsweise wird die Kondensation in dünner Schicht durchgeführt. Erfindungsgemäß seien als dünne Schichten solche mit bis zu 7 mm schichtdicke verstanden.The condensation is preferably carried out in a thin layer. According to the invention, thin layers are understood to be those with a layer thickness of up to 7 mm.

Polyester, die nach dem Verfahren der Erfindung erhältlich sind, eignen sich zur Herstellung von geformten Gebilden, wie Fäden, Folien, spritzgegossenen oder extrudierten Teilen, ferner für Überzüge.Polyesters obtainable by the process of the invention are suitable for the production of shaped structures such as threads, foils, injection-molded or extruded parts, and also for coatings.

Das Verfahren nach der Erfindung sei in den folgenden Beispielen veranschaulicht.The process according to the invention is illustrated in the following examples.

BeispieleExamples (a) Herstellung des Polyestervorkondensats(a) Preparation of the polyester precondensate

In einem 2-Liter-Rundkolben, ausgestattet mit Rührer, Stickstoffeinleitung und Füllkörperkolonne, wurden 1 000 g Dimethylterephthalat und 685 g Butandiol-1,4 auf 130°C erhitzt. Bei dieser Temperatur wurde unter Rühren 1,5 g Tetrabutylorthotitanat als Umesterungskatalysator zugegeben. Alsbald begann die Destillation von Methanol. Die Temperatur wurde innerhalb von 2 Stunden auf 220°C erhöht. Nach dieser Zeit waren 330 g Methanol abdestilliert und die Umesterungsreaktion beendet. Nun wurde die Füllkörperkolonne durch einen absteigenden Kühler ersetzt und innerhalb von 15 Minuten die Temperatur auf 250°C erhöht. Danach wurde unter schnellem Rühren der Druck stetig und linear innerhalb von 40 Minuten auf 13,3 mbar abgesenkt. Bei diesem Druck wurde noch 5 Minuten gerührt und dann die Vorkondensation durch Aufheben des Vakuums mit Stickstoff beendet.1,000 g of dimethyl terephthalate and 685 g of 1,4-butanediol were heated to 130 ° C. in a 2 liter round-bottomed flask equipped with a stirrer, nitrogen inlet and packed column. At this temperature, 1.5 g of tetrabutyl orthotitanate was added as the transesterification catalyst with stirring. The distillation of methanol soon began. The temperature was raised to 220 ° C within 2 hours. After this time, 330 g of methanol had been distilled off and the transesterification reaction was complete ends. The packed column was then replaced by a descending condenser and the temperature was raised to 250 ° C. in the course of 15 minutes. The pressure was then steadily and linearly reduced to 13.3 mbar within 40 minutes with rapid stirring. At this pressure the mixture was stirred for a further 5 minutes and the precondensation was then ended by breaking the vacuum with nitrogen.

Das Vorkondensat wurde unter Stickstoff in eine Schale gegossen, wo es schnell erstarrte. Die relative Viskosität dieses Vorkondensats betrug 1,13.The precondensate was poured into a bowl under nitrogen, where it quickly solidified. The relative viscosity of this precondensate was 1.13.

(b) Kondensation(b) condensation

Die Kondensation erfolgte in einem mit Rührer, Kühler, Stickstoffeinleitung ausgestatteten 250 ml großen Rundkolben, welcher durch ein Woodsches-Metallbad geheizt wurde. Zur Nachkondensation wurden 50 g des Vorkondensats unter Stickstoff bei der gewählten Nachkondensationstemperatur aufgeschmolzen. Nach dem Aufschmelzen und dem Temperaturausgleich wurde der Kolben schnell auf einen Druck von ca. 0,67 mbar evakuiert. Die Rührgeschwindigkeit wurde der jeweiligen Viskosität angepaßt. Nach einer vorgegebenen Zeit wurde die Nachkondensation durch Aufheben des Vakuums mit stickstoff unterbrochen.The condensation was carried out in a 250 ml round-bottom flask equipped with a stirrer, cooler and nitrogen inlet, which was heated by a Woodsches metal bath. For post-condensation, 50 g of the pre-condensate were melted under nitrogen at the selected post-condensation temperature. After melting and temperature compensation, the flask was quickly evacuated to a pressure of approximately 0.67 mbar. The stirring speed was adapted to the respective viscosity. After a predetermined time, the post-condensation was interrupted by breaking the vacuum with nitrogen.

Die Ergebnisse sind in der folgenden Tabelle aufgeführt.

Figure imgb0001
The results are shown in the table below.
Figure imgb0001

Die Vergleichsbeispiele 1 bis 4 zeigen die relative Viskosität als Funktion der Nachkondensationstemperatur nach einer Reaktionszeit von 15 Minuten. Nach dem Stand der Technik wurden die Temperaturen während der Polykondensationszeit konstant gehalten. Wenn die Temperatur von 255°C auf 280°C erhöht wird, werden auch höhere relative Viskositäten erhalten und damit ein höherer Polykondensationsgrad. Bei weiterer Erhöhung der Temperatur auf 290°C sinkt die relative Viskosität wieder ab, und es wird ein gelblich verfärbtes Produkt erhalten.Comparative Examples 1 to 4 show the relative viscosity as a function of the post-condensation temperature after a reaction time of 15 minutes. According to the prior art, the temperatures were kept constant during the polycondensation time. If the temperature is increased from 255 ° C to 280 ° C, higher relative viscosities are obtained and thus a higher degree of polycondensation. When the temperature is increased further to 290 ° C., the relative viscosity drops again and a yellowish product is obtained.

Die Beispiele 1 und 2 wurden dagegen nach dem erfindungsgemäßen Verfahren durchgeführt. Dazu wurde das Metallbad auf 295°C vorgeheizt und nach dem Aufschmelzen des Vorkondensats die Nachkondensationsreaktion begonnen. Im Verlauf der Nachkondensation wurde die Temperatur des Heizbades in den in der Tabelle angegebenen Schritten erniedrigt. Nach dem erfindungsgemäßen Verfahren wurde innerhalb von 12 Minuten eine relative Viskosität von 1,67 erreicht (Beispiel 2).In contrast, Examples 1 and 2 were carried out by the process according to the invention. For this purpose, the metal bath was preheated to 295 ° C. and the post-condensation reaction was started after the precondensate had melted. In the course of the post-condensation, the temperature of the heating bath was lowered in the steps given in the table. According to the Ver driving a relative viscosity of 1.67 was reached within 12 minutes (Example 2).

Beispiel 3Example 3 A. Herstellung eines Polybutylenterephthalat-VorkondensatsA. Preparation of a polybutylene terephthalate precondensate

In einem Rührkessel mit 40 I Inhalt, ausgestattet mit Rührer, Stickstoffeinleitung und Dephlegmator wurden 20 kg Dimethylterephthalat und 13,7 kg Butandiol-1,4 auf 130°C erhitzt. Bei dieser Temperatur wurden unter Rühren 30 g Tetrabutylorthotitanat als Umesterungskatalysator zugegeben. Danach begann die Destillation von Methanol. Die Temperatur wurde innerhalb von 2 Stunden auf 220°C erhöht. Nach dieser Zeit waren 6,6 kg Methanol abdestilliert und die Umesterungsreaktion beendet. Innerhalb von 30 Minuten wurde die Temperatur auf 250°C erhöht. Danach wurde der Druck stetig und linear innerhalb von 45 Minuten auf 13,3 mbar abgesenkt. In diesem Stadium betrug die relative Viskosität des so erhaltenen Polybutylenterephthalat-Vorkondensats 1,12.20 kg of dimethyl terephthalate and 13.7 kg of 1,4-butanediol were heated to 130 ° C. in a 40 l stirred kettle equipped with a stirrer, nitrogen inlet and dephlegmator. At this temperature, 30 g of tetrabutyl orthotitanate were added as a transesterification catalyst with stirring. Thereafter, the distillation of methanol started. The temperature was raised to 220 ° C within 2 hours. After this time, 6.6 kg of methanol had been distilled off and the transesterification reaction had ended. The temperature was raised to 250 ° C. within 30 minutes. The pressure was then steadily and linearly reduced to 13.3 mbar within 45 minutes. At this stage, the relative viscosity of the polybutylene terephthalate precondensate thus obtained was 1.12.

B. Kondensation des Polybutylenterephthalat-Vorkondensats nach dem erfindungsgemäßen VerfahrenB. condensation of the polybutylene terephthalate precondensate according to the inventive method

Das Polybutylenterephthalat-Vorkondensat wurde durch einen Platten-Wärmeaustauscher gedrückt und dabei auf 285°C erwärmt und in einem auf 285°C mit Diphyldampf vorgeheizten Kondensationskessel von 40 I Inhalt geleitet. Dieser Aufheizvorgang nahm 10 Minuten in Anspruch. Danach wurde der Fluß des Diphyldampfs unterbrochen und unter schnellem Rühren schlagartig ein Vakuum von 1,33 mbar im Kondensationskessel hergestellt.The polybutylene terephthalate precondensate was pressed through a plate heat exchanger and thereby heated to 285 ° C. and passed into a condensation vessel of 40 l content preheated to 285 ° C. with diphyl steam. This heating process took 10 minutes. The flow of the diphyl vapor was then interrupted and, with rapid stirring, a vacuum of 1.33 mbar was suddenly established in the condensation vessel.

Während der nun ablaufenden Polykondensation sank die Schmelztemperatur innerhalb von. 33 Minuten exponentiell auf 250°C ab. Von diesem Zeitpunkt an wurde die Temperatur durch Diphyldampf auf 250°C gehalten. Nach weiteren 21 Minuten wurde das Vakuum aufgehoben und die Schmelze unter Stickstoffdruck ausgetragen. Die relative Viskosität des so hergestellten Polybutylenterephthalats betrug 1,72.As the polycondensation now takes place, the melting temperature dropped within. 33 minutes exponentially to 250 ° C. From this point on, the temperature was kept at 250 ° C. by diphyl vapor. After a further 21 minutes, the vacuum was released and the melt was discharged under nitrogen pressure. The relative viscosity of the polybutylene terephthalate thus produced was 1.72.

Vergleichsbeispiel 5Comparative Example 5

In diesem Versuch wurde das Polybutylenterephthalat-Vorkondensat ebenfalls innerhalb von 10 Minuten durch den Platten-Wärmetauscher gedrückt, die Temperatur aber auf 250°C gehalten. Der Kondensationskessel war auf 250°C vorgeheizt. Bei dieser Temperatur wurde nach dem Füllvorgang unter schnellem Rühren schlagartig ein Vakuum von 1,33 mbar hergestellt und unter diesen Bedingungen 54 Minuten Kondensiert. Nach 54 Minuten Kondensationszeit wurde das Vakuum aufgehoben und die Schmelze ausgetragen. Die relative Viskosität betrug nur 1,49.In this experiment, the polybutylene terephthalate precondensate was also pressed through the plate heat exchanger within 10 minutes, but the temperature was kept at 250.degree. The condensation boiler was preheated to 250 ° C. At this temperature, a vacuum of 1.33 mbar was suddenly produced with rapid stirring and condensed under these conditions for 54 minutes. After a condensation time of 54 minutes, the vacuum was released and the melt was discharged. The relative viscosity was only 1.49.

Claims (3)

1. A process for the manufacture of high molecular weight linear polyesters which are derived from dicarboxylic acids or their ester-forming derivatives and from diols, and consist to the extent of at least 50 mole% of polyethylene or polybutylene terephthalate units, by condensing polyester precondensates, having a relative viscosity of at least 1.05, under reduced pressure at from 270 to 340°C, the temperature being lowered as the condensation progresses, characterized in that the polyester precon- densate is heated for a short period at a temperature of from 290 to 340°C and then the temperature is lowered by from 30 to 50°C by vaporizing the liberated diol under a pressure of from 0.133 to 2.66 millibars, with the proviso that the final temperature is at least 10°C above the melting point of the polyester produced.
2. A process as claimed in claim 1, characterized in that the condensation is carried out in a thin layer.
3. A process as claimed in claims 1 and 2, characterized in that the temperature is lowered continuously, during the condensation, by from 30 to 50°C, by carrying out the process adiabatically.
EP78100670A 1977-08-24 1978-08-16 Process for the preparation of linear, high molecular polyesters Expired EP0000918B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19772738093 DE2738093B1 (en) 1977-08-24 1977-08-24 Process and device for the production of linear high molecular weight polyesters
DE2738093 1977-08-24
DE19782803530 DE2803530A1 (en) 1978-01-27 1978-01-27 Linear high mol. wt. polyester prepn. - by precondensate after-condensn. under reduced pressure while progressively decreasing process temp. opt. continuously
DE2803530 1978-01-27

Publications (3)

Publication Number Publication Date
EP0000918A2 EP0000918A2 (en) 1979-03-07
EP0000918A3 EP0000918A3 (en) 1979-04-04
EP0000918B1 true EP0000918B1 (en) 1982-03-17

Family

ID=25772598

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100670A Expired EP0000918B1 (en) 1977-08-24 1978-08-16 Process for the preparation of linear, high molecular polyesters

Country Status (5)

Country Link
US (2) US4214072A (en)
EP (1) EP0000918B1 (en)
JP (1) JPS5443997A (en)
DE (1) DE2861668D1 (en)
IT (1) IT1097584B (en)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3820362A1 (en) * 1988-06-15 1990-03-15 Basf Ag METHOD FOR THE CONTINUOUS PRODUCTION OF LINEAR THERMOPLASTIC POLYESTERS
US5238740A (en) * 1990-05-11 1993-08-24 Hoechst Celanese Corporation Drawn polyester yarn having a high tenacity and high modulus and a low shrinkage
US5869011A (en) * 1994-02-01 1999-02-09 Lee; Jing Ming Fixed-bed catalytic reactor
US5520891A (en) * 1994-02-01 1996-05-28 Lee; Jing M. Cross-flow, fixed-bed catalytic reactor
JP3001181B2 (en) * 1994-07-11 2000-01-24 株式会社クボタ Reaction tube for ethylene production
DE19509551A1 (en) * 1995-03-16 1996-09-19 Basf Ag Process for the continuous production of thermoplastic polyesters
DE19615886C1 (en) 1996-04-22 1997-07-31 Huels Chemische Werke Ag Increasing yield in crude di:methyl terephthalate prodn.
US6194609B1 (en) * 1997-06-30 2001-02-27 Bp Amoco Corporation Crystallization in a plate heat exchanger
DE19929791A1 (en) * 1999-06-29 2001-02-01 Basf Ag Process for the continuous production of polybutylene terephthalate from terephthalic acid and butanediol
FR2811789B1 (en) * 2000-07-13 2003-08-15 France Etat Ponts Chaussees METHOD AND DEVICE FOR CLASSIFYING VEHICLES INTO SILHOUETTE CATEGORIES AND FOR DETERMINING THEIR SPEED, FROM THEIR ELECTROMAGNETIC SIGNATURE
KR100880071B1 (en) 2000-12-07 2009-01-23 이스트만 케미칼 컴파니 Low cost polyester process using a pipe reactor
US6906164B2 (en) 2000-12-07 2005-06-14 Eastman Chemical Company Polyester process using a pipe reactor
US7074879B2 (en) 2003-06-06 2006-07-11 Eastman Chemical Company Polyester process using a pipe reactor
US7135541B2 (en) 2003-06-06 2006-11-14 Eastman Chemical Company Polyester process using a pipe reactor
DE102004001914A1 (en) 2004-01-14 2005-08-04 Sms Eumuco Gmbh Coupling device for a mechanical press, scissors or punching device
US7332548B2 (en) 2004-03-04 2008-02-19 Eastman Chemical Company Process for production of a polyester product from alkylene oxide and carboxylic acid
DE102004019810A1 (en) 2004-04-23 2005-03-24 Zimmer Ag Production of thermoplastic polyester for use e.g. in fibres, film or bottles, involves precondensation by passing an esterification product downwards under reduced pressure through a column with structured packing
US20060251547A1 (en) * 2005-05-05 2006-11-09 Windes Larry C Family of stationary film generators and film support structures for vertical staged polymerization reactors
US7919652B2 (en) * 2005-05-19 2011-04-05 Eastman Chemical Company Process to produce an enriched composition through the use of a catalyst removal zone and an enrichment zone
US7741516B2 (en) * 2005-05-19 2010-06-22 Eastman Chemical Company Process to enrich a carboxylic acid composition
US7880031B2 (en) * 2005-05-19 2011-02-01 Eastman Chemical Company Process to produce an enrichment feed
US7304178B2 (en) * 2005-05-19 2007-12-04 Eastman Chemical Company Enriched isophthalic acid composition
US7557243B2 (en) * 2005-05-19 2009-07-07 Eastman Chemical Company Enriched terephthalic acid composition
US20060264656A1 (en) * 2005-05-19 2006-11-23 Fujitsu Limited Enrichment process using compounds useful in a polyester process
US20060264662A1 (en) * 2005-05-19 2006-11-23 Gibson Philip E Esterification of an enriched composition
US20060264664A1 (en) * 2005-05-19 2006-11-23 Parker Kenny R Esterification of an exchange solvent enriched composition
US7897809B2 (en) * 2005-05-19 2011-03-01 Eastman Chemical Company Process to produce an enrichment feed
US7834208B2 (en) * 2005-05-19 2010-11-16 Eastman Chemical Company Process to produce a post catalyst removal composition
US7432395B2 (en) 2005-05-19 2008-10-07 Eastman Chemical Company Enriched carboxylic acid composition
US7884231B2 (en) * 2005-05-19 2011-02-08 Eastman Chemical Company Process to produce an enriched composition
US7888529B2 (en) * 2006-03-01 2011-02-15 Eastman Chemical Company Process to produce a post catalyst removal composition
US7943094B2 (en) 2006-12-07 2011-05-17 Grupo Petrotemex, S.A. De C.V. Polyester production system employing horizontally elongated esterification vessel
US7649109B2 (en) 2006-12-07 2010-01-19 Eastman Chemical Company Polyester production system employing recirculation of hot alcohol to esterification zone
US7863477B2 (en) 2007-03-08 2011-01-04 Eastman Chemical Company Polyester production system employing hot paste to esterification zone
US7868130B2 (en) 2007-07-12 2011-01-11 Eastman Chemical Company Multi-level tubular reactor with vertically spaced segments
US7868129B2 (en) 2007-07-12 2011-01-11 Eastman Chemical Company Sloped tubular reactor with spaced sequential trays
US7842777B2 (en) 2007-07-12 2010-11-30 Eastman Chemical Company Sloped tubular reactor with divided flow
US7872090B2 (en) 2007-07-12 2011-01-18 Eastman Chemical Company Reactor system with optimized heating and phase separation
US7858730B2 (en) 2007-07-12 2010-12-28 Eastman Chemical Company Multi-level tubular reactor with dual headers
US7847053B2 (en) 2007-07-12 2010-12-07 Eastman Chemical Company Multi-level tubular reactor with oppositely extending segments
US7872089B2 (en) 2007-07-12 2011-01-18 Eastman Chemical Company Multi-level tubular reactor with internal tray
US7829653B2 (en) 2007-07-12 2010-11-09 Eastman Chemical Company Horizontal trayed reactor
US10010812B2 (en) 2014-05-08 2018-07-03 Eastman Chemical Company Furan-2,5-dicarboxylic acid purge process
US9604202B2 (en) 2014-05-08 2017-03-28 Eastman Chemical Company Furan-2,5-dicarboxylic acid purge process
US9944615B2 (en) 2014-05-08 2018-04-17 Eastman Chemical Company Purifying crude furan 2,5-dicarboxylic acid by hydrogenation and a purge zone
US10421736B2 (en) 2017-07-20 2019-09-24 Eastman Chemical Company Production of purified dialkyl-furan-2,5-dicarboxylate (DAFD) in a retrofitted DMT plant
US10344011B1 (en) 2018-05-04 2019-07-09 Eastman Chemical Company Furan-2,5-dicarboxylic acid purge process
US10526301B1 (en) 2018-10-18 2020-01-07 Eastman Chemical Company Production of purified dialkyl-furan-2,5-dicarboxylate (DAFD) in a retrofitted DMT plant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1920945A1 (en) * 1969-04-24 1970-11-12 Polysius Ag Rotating drum cooler for any type of solid - material
DE2514116A1 (en) * 1975-03-29 1976-09-30 Basf Ag PROCESS FOR THE CONTINUOUS MANUFACTURING OF POLYBUTYLENE TEREPHTHALATES

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US401685A (en) * 1889-04-16 Ments
US1200996A (en) * 1912-10-14 1916-10-10 Techno Chemical Lab Ltd Method of evaporation, &c.
US1327599A (en) * 1914-05-25 1920-01-06 Andrew M Hunt Apparatus for cooling and scrubbing gases
DE517176C (en) * 1927-01-10 1931-01-31 Karl Fried Dr Device for evaporating and thickening liquids
FR702279A (en) * 1929-12-10 1931-04-03 gas and smoke purifier
US2689839A (en) * 1951-08-22 1954-09-21 Du Pont Dispersion of delusterants in polyamides
US2994724A (en) * 1958-08-14 1961-08-01 Exxon Research Engineering Co Cyclodiene dimer vapor phase cracking method and furnace
NL130338C (en) * 1963-06-11 1900-01-01
GB1101348A (en) * 1964-06-16 1968-01-31 Ici Ltd Improvements in sodium bicarbonate manufacture by the ammonia-soda process
FR1545487A (en) * 1966-11-30 1968-11-08 Bemberg Spa Continuous process for the production of polymethylene terephthalate with a high degree of polymerization, the product thus obtained and fibers made therefrom
US3499873A (en) * 1967-06-22 1970-03-10 Vickers Zimmer Ag Preparation of polyethylene terephthalate by means of free falling films
NL6809754A (en) * 1968-04-11 1969-10-14
US3609125A (en) * 1968-04-24 1971-09-28 Asahi Chemical Ind Polyesterification process and apparatus
DE1770350A1 (en) * 1968-05-08 1971-10-14 Hoechst Ag Process for the production of polyesters
FR1593419A (en) * 1968-11-26 1970-05-25
DE2557580A1 (en) * 1975-12-20 1977-06-30 Dynamit Nobel Ag PROCESS AND DEVICE FOR PRODUCING POLYCONDENSATE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1920945A1 (en) * 1969-04-24 1970-11-12 Polysius Ag Rotating drum cooler for any type of solid - material
DE2514116A1 (en) * 1975-03-29 1976-09-30 Basf Ag PROCESS FOR THE CONTINUOUS MANUFACTURING OF POLYBUTYLENE TEREPHTHALATES

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Fisyuk und Grajzel, Sowjetische Beiträge zur Forschung in deutscher Übersetzung, Band 7, Heft 10, Okt. 1970, S. 505/6 *

Also Published As

Publication number Publication date
IT7826342A0 (en) 1978-07-31
US4214072A (en) 1980-07-22
DE2861668D1 (en) 1982-04-15
IT1097584B (en) 1985-08-31
EP0000918A2 (en) 1979-03-07
US4235844A (en) 1980-11-25
JPS5443997A (en) 1979-04-06
EP0000918A3 (en) 1979-04-04

Similar Documents

Publication Publication Date Title
EP0000918B1 (en) Process for the preparation of linear, high molecular polyesters
DE2514116C3 (en) Process for the continuous production of linear, high molecular weight polybutylene terephthalates
DE69507957T2 (en) INTEGRATED METHOD FOR PRODUCING LACTID
DE69830415T2 (en) LATE ADDITION OF ADDITIONAL ETHYLENE GLYCOL IN THE PREPARATION OF COPOLYESTERS
DE69933292T2 (en) POLYESTER THE ISOSORBIDE CONTAINED AS MONOMER AND METHOD FOR THEIR MANUFACTURE
EP0346735B1 (en) Process for the continuous preparation of linear thermoplastic polyesters
DE1745695C3 (en) Process for the production of linear, thermoplastic mixed polyester with softening temperatures above 100 degrees C.
DE2337288A1 (en) METHOD OF MANUFACTURING POLYESTERS
DE2327668B2 (en) Process for the production of a segmented, thermoplastic mixed polyester elastomer
EP0226078B1 (en) Wholly aromatic, mesomorphic polyesters, their production and utilization
EP0815158B1 (en) Thermoplastic polyester continuous production process
EP0940398A1 (en) Process for the preparation of macrocyclic esters
WO2001000704A1 (en) Method for the continuous production of polybutylene terephthalate from terephthal acid and butane diole
WO2001000705A1 (en) Method for the continuous production of polybutyleneterephthalate from terephthalic acid and butanediol
DE60201084T2 (en) PREPARATION OF CYCLIC ESTEROLIGOMERS
DE1495265B2 (en) PROCESS FOR MANUFACTURING LINEAR, THERMOPLASTIC POLYESTERS WITH FREEZING TEMPERATURE ABOVE 100 DEGREES C.
DE3943129A1 (en) METHOD FOR PRODUCING THERMOPLASTIC, HIGH MOLECULAR COPOLYESTERS
DE1520883A1 (en) Process for the production of polyesters
DE2336026C3 (en) Process for the preparation of modified polyalkylene terephthalates
EP0004343B1 (en) Process for the preparation of linear high-molecular saturated polyesters
CH379765A (en) Process for the production of high molecular weight polyethylene glycol terephthalic acid ester
CH484099A (en) Process for the preparation of optionally substituted glycolides
DE2738093B1 (en) Process and device for the production of linear high molecular weight polyesters
DE2504156A1 (en) LOW MOLECULAR MOLECULAR TEREPHTHAL ACID AETHYLENE GLYCOLESTER, THEIR PREPARATION AND USE
AT247003B (en) Process for the production of linear thermoplastic polyesters with glass transition temperatures above 100 ° C

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE CH DE FR GB NL

AK Designated contracting states

Designated state(s): BE CH DE FR GB NL

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB NL

REF Corresponds to:

Ref document number: 2861668

Country of ref document: DE

Date of ref document: 19820415

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

KL Correction list

Free format text: 82/06

NLR4 Nl: receipt of corrected translation in the netherlands language at the initiative of the proprietor of the patent
26 Opposition filed

Opponent name: ENKA AG

Effective date: 19821106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840719

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840720

Year of fee payment: 7

Ref country code: CH

Payment date: 19840720

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840930

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870831

Year of fee payment: 10

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
27W Patent revoked

Effective date: 19871016

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLR2 Nl: decision of opposition
BERE Be: lapsed

Owner name: BASF A.G.

Effective date: 19880831

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO