[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0089273B1 - Système de conduite de tir à double écartométrie - Google Patents

Système de conduite de tir à double écartométrie Download PDF

Info

Publication number
EP0089273B1
EP0089273B1 EP19830400464 EP83400464A EP0089273B1 EP 0089273 B1 EP0089273 B1 EP 0089273B1 EP 19830400464 EP19830400464 EP 19830400464 EP 83400464 A EP83400464 A EP 83400464A EP 0089273 B1 EP0089273 B1 EP 0089273B1
Authority
EP
European Patent Office
Prior art keywords
signals
circuit
detector
control system
tracking device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19830400464
Other languages
German (de)
English (en)
Other versions
EP0089273A1 (fr
Inventor
Jean Dansac
Robert Pressiat
Bernard Grancoin
Jean-Paul Lepeytre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0089273A1 publication Critical patent/EP0089273A1/fr
Application granted granted Critical
Publication of EP0089273B1 publication Critical patent/EP0089273B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/22Aiming or laying means for vehicle-borne armament, e.g. on aircraft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/06Aiming or laying means with rangefinder

Definitions

  • the present invention relates to a fire control system, and more precisely to an automatic target targeting and tracking system, particularly suitable for use on aircraft (combat helicopter in particular).
  • the automatic aiming and tracking device is therefore particularly important since it must take full charge of monitoring the movements of a target from the moment an operator has designated this target, so that the latter is free to devote himself to piloting, issuing the firing order, monitoring and locating other targets, etc.
  • Document FR-A-2 352 271 describes a method and device for locating and shooting, day and night, at a target. This process consists in using, in both cases, a goniometer with infrared rays of a day vision device on which is fixed a night vision device previously set on the main line of a day tracking installation and to bring in superimposition, after the departure of the projectile, the thermal images of the projectile and of the target in the variable line of sight of the night vision device by continuation of the whole installation of the shooting.
  • the present invention provides a fire control system allowing rapid acquisition of the target and making automatic pursuit as much as possible.
  • the system according to the invention is designed to choose the channel used (visual or infrared) in order to avoid as much as possible the loss of the target for reasons which may be poor optical visibility, masking by obstacles, movements of the aircraft carrying the system, its structural deformations, etc.
  • the hot spot deviation allows the position and movement speeds of the target to be identified. target.
  • This location is a rough location, if only because the "hot spots" emitting infrared radiation are diffuse sources that do not allow the shape of a target to be reconstructed.
  • the aiming device is designed so that the two types of radiation follow the same optical axis, which is the aiming axis, the passage from one type of deviation measurement to the other takes place without risk of parallax error .
  • the fire control system is more particularly intended to be carried by an aircraft, and provision is preferably made for the sighting device to be stabilized by a gyroscopic system.
  • This gyroscopic system is sensitive to the movements of the device along the two independent axes around which the latter can rotate, and it includes torque motors and angular sensors through which the orientation control of the aiming device is carried out: the control signals from the control mode selection circuit are applied to the torque motors of the gyroscopic system, and the angular sensors consequently generate displacement signals which are applied after amplification to the orientation motors of the aiming device in a direction such as the rotation of the sighting device, and therefore of the gyroscopic system which it carries, generates precession torques opposing the torques applied by the torque motors.
  • the gyroscopic system to include two gyrometers, or two integrating gyrometers, or even a two-axis gyroscope with tuned suspension.
  • Figure 1 shows all of the fire control organs of the system mounted on a helicopter; we will explain how these organs work.
  • the helicopter pilot and co-pilot may be provided with helmet sights 10 and 12 coupled to an electronic circuit 14 to supply the latter with signals identifying the position of the pilot's (or co-pilot's) head and therefore the direction that he observes.
  • helmet sights 10 and 12 coupled to an electronic circuit 14 to supply the latter with signals identifying the position of the pilot's (or co-pilot's) head and therefore the direction that he observes.
  • These helmet sights can thus be used for a first acquisition of a target 18, for example a helicopter.
  • a magnifying observation telescope 16 optionally makes it possible to take over from observation with the naked eye.
  • This telescope is tele-orientable (for example on site and in bearing) manually by means of a control stick 20 with two axes, or automatically from the signals supplied by the helmet sights.
  • An automatic aiming device 22, used to track the target after its acquisition, is coupled to the helmet sights or to the telescopic sight 16 via the electronic circuit 14, so that the movements of the aiming device and the telescope are coupled to each other, whether it be the telescope 16 which drives the sighting device 22 or the opposite.
  • the sighting device 22 is orientable in elevation and in bearing (for example). It is preferably gyro-stabilized as will be explained below and the motors which drive it are preferably torque motors with electromagnetic drive to avoid the presence of gears in the transmission of movement.
  • head-up viewfinder 24 and “head-down display” 26 are provided to allow observation, for example in the form of a television image, of the field of view of the telescope, as well as of miscellaneous information, shooting or navigation aid symbols, etc. These display devices are coupled to the electronic circuit 14 which supplies them with the images to be represented.
  • a firing weapon 28 for example a cannon mounted on a turret and capable of pivoting in elevation and in bearing with respect to the structure of the helicopter, is also coupled to the electronic circuit 14 to receive information therefrom on the direction aimed by. the sighting device 22 therefore, taking into account any shooting corrections, on the pointing direction to be given to the weapon.
  • the shooting corrections are developed from various information, including in particular a measurement of the distance from the target by a rangefinder at laser 30 (whose laser transmitter emits along the axis or parallel to the axis of the sighting device 22), a measurement of the relative speed of the helicopter and of the target (measured by the tracking speed of the sighting device aiming 22), as well as other information (aerodynamic speed, speed relative to the ground, wind speed, etc.) provided by various sensors 32 mounted on the helicopter.
  • various information including in particular a measurement of the distance from the target by a rangefinder at laser 30 (whose laser transmitter emits along the axis or parallel to the axis of the sighting device 22), a measurement of the relative speed of the helicopter and of the target (measured by the tracking speed of the sighting device aiming 22), as well as other information (aerodynamic speed, speed relative to the ground, wind speed, etc.) provided by various sensors 32 mounted on the helicopter.
  • the sighting device 22 may or may not be placed on the turret of the shooting weapon. We will consider below that it is separate from it. After a target has been identified by means of the helmet sights (or of the observation telescope 16), the operator decides to switch to automatic tracking, the electronic circuit 14 then driving the orientation motors of the aiming device 22 to maintain the image of the target in the axis thereof. The shooting weapon 28 follows the movements of the sighting device, with an offset corresponding to the shooting corrections. Then the operator gives the firing order.
  • FIG. 2 shows the overall diagram of the automatic tracking system. However, to simplify the description, only the bearing tracking circuits have been shown, it being understood that the tracking is carried out both in elevation and in bearing, independently therefore with two similar independent circuit paths respectively driving a site orientation engine and a field orientation engine.
  • the sighting device 22 comprises an optical assembly 34 having a sighting axis 36 which it is desired to direct permanently towards a target.
  • the optical assembly 34 is mounted for rotation about two axes, preferably by means of a gimbal system; the universal joint assembly being conventional, it has not been shown to simplify the figure, and only the axis of rotation has been shown in reservoir 38 and a motor 40 for driving around this axis 38.
  • the motor 40 and the motor, not shown, for driving the optical assembly around the axis of rotation in elevation, is preferably a torque motor, acting without friction by electromagnetic action between a rotor and a stator.
  • the optical assembly 34 of the sighting device is preferably stabilized by gyroscopic action, that is to say to drive it in rotation, a control signal will not be directly applied to the drive motors but a signal will be applied control gyros which themselves will provide control signals to the motors.
  • the optical assembly can carry two gyrometers or two integrating gyrometers, or even a gyroscope with two axes with tuned suspension, these devices having as sensitive axes respectively the axis of rotation in bearing 38 and an axis of rotation in elevation 42 perpendicular to the plane of the figure.
  • Figure 2 which describes only one orientation control channel, there is only shown an integrating gyrometer 44 having as its sensitive axis the axis of rotation in bearing.
  • This gyrometer has a rotor rotating in a support frame, a torque motor 46 for controlling the rotation of the frame and an angular sensor 48 identifying the rotation of the frame.
  • the torque motor receives control signals which rotate the support frame, therefore the output shaft of the gyroscope, by an angle identified by the sensor 48.
  • the sensor 48 transmits a signal corresponding to this rotation, after processing and amplification in a circuit 50, to the motor 40 which rotates the optical assembly 34 around the bearing axis, thus generating on the gyroscope rotor a precession torque which balances the torque generated by the torque motor 46.
  • the process is the same for the site rotation control channel which includes an identical servo. This gyroscopic stabilization of the optical assembly 34 along the two axes makes it possible in particular to avoid the transmission of vibrations from the helicopter to the optical assembly.
  • the orientation of the line of sight 36 is identified by angular sensors, for example synchrodetectors; the reference 52 designates such a sensor symbolically represented in FIG. 2.
  • the orientation information is transmitted to the electronic circuit 14 of FIG. 1, with a view in particular to controlling the orientation of the telescopic sight 16 and of the weapon firing 28.
  • the optical assembly 34 comprises various optical means which will be detailed below, for receiving both visible and infrared radiation in the band of approximately 3 to 5 microns, along the same line of sight 36, and for separating these radiations by means of selectively reflecting surfaces, in order to direct and focus these two types of radiation on respective detectors which are an infrared detector 54 and a visible image detector 56.
  • the detector 54 is of the four-quadrant type to make it possible to locate the angular depointing of a hot point with respect to the line of sight 36.
  • the detected signals provide information on the approximate direction of the hot point and make it possible to indicate if it is to the left or to the right of the line of sight (deviation in bearing) or higher or lower (deviation in elevation).
  • a deviation circuit 58 receives the signals from the four quadrants of the detector, processes them and combines them to deliver deviation signals on hot spots enabling the aiming axis of the optical assembly 34 to be controlled in the direction of the point hot spotted.
  • This type of detector and associated deviation circuit is known and can be found in examples in French patents 2,356,152 or 2,350,010 of the applicant.
  • a modulation of infrared radiation by a mobile grid formed by transparent and opaque sectors alternating regularly or according to a code, with synchronous detection or suitable filtering or correlation, allows an improvement in the contrast between the image of the hot spot and the background (especially in the presence of sun), as well as the elimination of large sources (spatial filtering).
  • the detector 56 receiving only visible radiation, is capable of forming an image of the field of view of the objective. It can be constituted for example by a vidicon tube or by an array of photodetectors (of the charge transfer type) with the associated reading circuits. It delivers signals representing a relatively precise image of the field of view, with the target in this field; this image can be transmitted for example to the head-down display device 26 of FIG. 1.
  • the signals from the detector 56 are in any case transmitted to a second deviation circuit 60 which makes it possible to define the deviation along two independent axes location between the image of the target on the detector 56 and a reference image recorded in memory in the deviation circuit and representing the target centered in the field of view.
  • the second deviation circuit 60 is more complex than the first but much more precise. It can be a deviation measurement circuit operating by contrast: a modification of a contrasting area in a fixed location translates a displacement of the image and generates deviation measurement signals intended to control the sighting device 22 of so as to bring the contrasted area back to its initial position.
  • These offsets constitute another pair of deviation signals, called visible deviation signals, used to control the sighting device 22 so as to bring the image of the sight field as much as possible in superposition with the initial image .
  • French patent 1 504 656 of October 18, 1966 describes such an image correlation device.
  • the orientation motors of the aiming device can be controlled either by the first pair of deviation measurement signals (on hot spots), or by the second (on visible image).
  • these are signals from the control stick 20, or from angular sensors locating the position of the observation telescope 16, or from the helmet sights, etc., which serve to control the orientation of the sighting device.
  • a tracking speed memory 62 provides for Replacement signals for the orientation control of the aiming device. This memory records the tracking speed simply from the currents applied to the torque motors (46 for example) of the gyroscopic stabilization system.
  • the aiming device continues as if the target was continuing its path with the same direction and the same speed as when it was lost.
  • a control mode selection circuit 64 which receives several pairs of control signals and which selects one to transmit it to a circuit 66 for excitation of the torque motors of the gyroscopic stabilization system.
  • the selected control signals exit on an output S of circuit 64.
  • Circuit 64 can comprise either simple switches for switching a selected pair of control signals, with manual control of these switches by an operator, or automatic selection circuits, for example threshold circuits detecting a value too weak of the correlation signals of the deviation measurement circuit on visible image (60) and thus imposing the transmission of deviation measurement signals on hot spots, as well as threshold circuits detecting too low a value of the signals representing the presence of a dot hot and thus imposing the transmission of D speed memory signals.
  • control signals A In order, priority is given to the control signals A in acquisition mode, then, in tracking mode, first the signals C then the signals B if the visible light deviation is of insufficient quality, then the D signals if the infrared deviation is also of insufficient quality.
  • optical assemblies 34 Examples of the constitution of optical assemblies 34 will now be described. These assemblies are represented schematically with only the optical elements themselves, in order to make it clear how from which visible and infrared radiation are received and separated.
  • FIG. 3 shows a first example in which the incoming rays centered around the optical axis 36 are reflected by a first concave mirror 70 which returns them to a second convex mirror 72.
  • These two mirrors form a set of Cassegrain type transmitting the rays visible as the infrared rays towards a dichroic separating mirror which can be constituted by a first prism 74 behind which is attached a second prism 76, the face common to the two prisms being treated to be reflective for the infrared rays in the band from 3 to 5 microns, and transparent for visible light.
  • the photosensitive surface of the detector 56 used to detect the image of the field of view formed by the mirrors 70 and 72, in visible light only.
  • the modulating grid 78 has been placed, which may consist of a certain number of alternating transparent and opaque sectors arranged on a disc in uniform rotation.
  • the infrared radiation, separated at 75 from that in visible light, is focused by the mirrors 70 and 72 on the grid 78; if a "hot" point emitting in the infrared is present in the field of view, the image of this hot point will be alternately discovered and hidden by the alternating sectors of the grid; on the other hand, the ambient radiation sources (in the presence of the sun, such as clouds) do not undergo modulation because of their large extent.
  • the infrared rays having passed through the grid can be returned by a mirror 80 to a recovery objective 82 which focuses them again on the infrared detector 54 (cf. fig 2) with four quadrants combined with the deviation circuit 58 to provide signals of deviation corresponding to the approximate direction in elevation and in point of the hot spot.
  • Figure 4 recalls, for information only, such an arrangement: the signals from each of the quadrants of the detector 54 each pass individually through a respective synchronous detection circuit 84, working at the frequency of passage of the opaque and transparent sectors of the grid 78. These synchronous detection circuits are followed by amplifiers 85 and summers 87 and 89 which make the differences two by two of the signals coming from opposite quadrants. The outputs of these summers 87 and 89 are applied to two other summers 91 and 93 which sum and differ respectively from the signals which they receive and which supply at their output deviation signals, one at site B and the other in deposit B '.
  • FIG. 5 is another embodiment of the optical assembly 34. Again, only the optical elements and the detectors are shown.
  • the visible and infrared rays are received by the main concave mirror 70 which reflects them towards the convex secondary mirror 72 (Cassegrain type assembly) which returns them according to the initial direction. These returned rays strike a dichroic separator produced by a surface 83 treated to reflect the visible rays and let pass the 3-5 micron infrared rays. Behind the surface 83 there is the rotating modulation grid 78 and, after the recovery objective 82, the four-quadrant infrared detector 54 as in FIG. 3.
  • the surface 83 can moreover be constituted by a deposit on one face of the carrier disk of the modulation grid 78.
  • the visible rays are reflected by the surface 83 towards the center of the secondary mirror 72, and, at this center is placed the visible image detector 56 on which the visible rays are focused.
  • a laser emission means is mounted on the optical assembly 34 to transmit in the direction of the line of sight 36 (along this axis or in parallel to this axis).
  • the laser itself which is too bulky, cannot be mounted on the orientable assembly 34 and therefore a fixed laser and deflection mirrors mounted on the assembly 34 are provided and placed in such a way that the laser beam is always returned in the direction of the line of sight 36, whatever the orientation of the assembly 34.
  • the reception part of the laser rangefinder can be located on the optical assembly 34 or elsewhere.
  • FIG. 6 shows an embodiment in which the optical assembly 34 carries, as laser emission means, several deflection mirrors, the laser illuminator proper, 86, being fixed and being able to be offset.
  • a first mirror M1 secured to a support movable in rotation about the axis of rotation in elevation 42, returns the laser beam to a second mirror M2, then a third mirror M3, secured to the same support.
  • the beam received by M3 is directed towards a fourth mirror M4 mounted on the optical assembly 34 itself which is mobile in rotation around the axis of rotation in bearing 38.
  • the laser beam leaves parallel to the line of sight 36 whatever the orientation of the latter in elevation and in bearing, in particular because the mirrors M1, M3 and M4 are placed so as to return the beam either on the axis of rotation in elevation, or on the axis of rotation in deposit.
  • the laser beam pulses emitted and reflected by the target can be collected by a detection cell separate from the aiming device.
  • the optical assembly 34 can receive, in addition to visible and far infrared radiation, the laser beam (preferably wavelength, 1.06 micron).
  • Figures 7 and 8 show two examples of realization of optical assemblies 34 which incorporate a reception of laser beam at 1.06 micron for telemetry.
  • the laser emission channel which may correspond to the embodiment of FIG. 6, is not shown.
  • FIG. 7 corresponds to a modification of FIG. 3.
  • FIG. 7 The difference with FIG. 3 is located behind the prism 74: in FIG. 7, a second prism 88 is attached to the prism 74.
  • the visible and laser rays pass through this prism, reach a rear face, inclined at 90 ° with respect to the face common to prisms 74 and 88.
  • This rear face is itself a face common to the second prism 88 and to a third prism 90.
  • It is treated dichroic to reflect the laser rays at 1.06 micron, and to let the rays pass visible light.
  • the laser radiation therefore exits through a second prism without passing through the third and it is focused by a recovery objective 92 on a detection cell 94 of the range finder.
  • the visible rays, them pass through the third prism 90, and are focused by a recovery objective 96 on a photosensitive surface 56 as in FIG. 3.
  • the same optical assembly 34 receives and separates three types of radiation useful for the fire control system.
  • FIG. 8 likewise shows a variant which is inspired by FIG. 5 to which a device for separating the laser radiation at 1.06 micron has been added.
  • a device for separating the laser radiation at 1.06 micron we have simply inserted, between the semi-reflecting surface 83 of FIG. 5 and the photosensitive surface 56, two adjoining prisms 98, 100, the common face of which is treated dichroic to be transparent to visible light and reflective for the laser beam. The rays reflected by this common face strike a detection cell 103 of the range finder.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

  • La présente invention concerne un système de conduite de tir, et plus précisément un système de visée et de poursuite automatique de cible, particulièrement adapté à une utilisation sur aéronef (hélicoptère de combat notamment).
  • Dans un système de conduite de tir avec poursuite automatique de la cible, il est nécessaire de pouvoir repérer rapidement une cible adverse à détruire, la cadrer dans le champ de l'arme de destruction, la maintenir centrée dans ce champ par une poursuite automatique malgré les déplacements relatifs de la cible et de l'aéronef, et transmettre en permanence à l'arme de destruction toutes les informations relatives à la position de la cible (direction, distance, vitesse, etc.) jusqu'à ce que soit émis l'ordre de tir.
  • Le dispositif de visée et de poursuite automatique est donc particulièrement important puisqu'il doit prendre en charge totalement la surveillance des déplacements d'une cible à partir du moment où un opérateur a désigné cette cible, afin que ce dernier soit libre de se consacrer au pilotage, à l'émission de l'ordre de tir, à la surveillance et au repérage d'autres cibles, etc.
  • Le document FR-A-2 352 271 décrit un procédé et dispositif de repérage et de tir, diurnes et nocturnes, sur une cible. Ce procédé consiste à utiliser, dans les deux cas, un goniomètre à rayons infrarouges d'un appareil de vision diurne sur lequel est fixé un appareil de vision nocturne préalablement réglé sur la ligne de foi d'une installation de repérage diurne et à amener en superposition, après le départ du projectile, les images thermiques du projectile et de la cible dans la ligne de foi variable de l'appareil de vision nocturne par poursuite de toute l'installation du tir.
  • Le document US 3 989 947 décrit un ensemble télescope qui est un appareil optique adapté pour recevoir les rayonnements visibles infrarouge et laser. Il est utilisé pour guider un missile pendant la poursuite de tir sur une cible. Il utilise:
    • - un grand champ pour les rayonnements infrarouge et visible au moyen d'un premier et d'un deuxième objectif;
    • - un champ intermédiaire pour le rayonnement infrarouge au moyen du premier objectif;
    • - un champ restreint pour les trois rayonnements au moyen d'un troisième objectif commun et des moyens pour séparer les trois voies. Un calculateur d'erreur délivre des signaux représentatifs de l'erreur de position du missile par rapport à sa trajectoire théorique, et des signaux envoyés au missile pour corriger sa position. Un circuit d'asservissement centre le rayonnement infrarouge au milieu des objectifs qu'il traverse. Dans ces systèmes les différentes voies sont utilisées simultanément pour effectuer la poursuite. Aussi bien pendant la recherche que pendant la poursuite de la cible, et en fonction des différents éclairages et environnement de la cible, l'image prise en compte pour effectuer la phase en cours peut baisser de qualité et la cible peut être perdue par le système ou l'opérateur.
  • La présente invention propose un système de conduite de tir permettant une acquisition rapide de la cible et rendant le plus possible la poursuite automatique. En particulier, le système selon l'invention est conçu pour choisir la voie utilisée (visuelle ou infrarouge) afin d'éviter au maximum la perte de la cible pour des raisons qui peuvent être la mauvaise visibilité optique, le masquage par des obstacles, les mouvements de l'aéronef porteur du système les déformations structurelles de celui-ci, etc.
  • Pour atteindre ces buts, la présente invention propose un système de conduite de tir comprenant un dispositif de visée orientable selon deux axes indépendants par des moteurs d'orientation, et un circuit électronique associé pour commander les moteurs de manière à orienter en permanence le dispositif de visée en direction d'une cible, avec les caractéristiques suivantes:
    • - le dispositif de visée comprend un premier moyen optique pour recevoir et transmettre simultanément, selon un même axe optique de visée, un rayonnement infrarouge de longueur d'onde d'environ 3 à 5 microns et un rayonnement visible, tous deux issus de la cible, et un deuxième moyen optique pour séparer ces rayonnements et les diriger respectivement sur un détecteur sensible au rayonnement infrarouge et sur une surface photosensible, sensible à la lumière visible, constituant un détecteur d'image visible.
    • - le circuit électronique associé au dispositif de visée comprend un premier circuit d'écartométrie recevant les signaux issus du détecteur sensible au rayonnement infrarouge et délivrant un couple de signaux d'écartométrie dits "signaux d'écartométrie sur points chauds", un second circuit d'écartométrie recevant les signaux issus de la surface photosensible et délivrant un couple de signaux d'écartométrie dits "signaux d'écartométrie en lumière visible", et un circuit de sélection de mode de commande recevant une pluralité de couples de signaux de commande d'orientation, parmi lesquels les deux couples de signaux d'écartométrie, et transmettant aux moteurs d'orientation un couple choisi de signaux de commande.
  • Les cibles étant le plus souvent des engins mobiles munis de moteurs à combustion, constituant des sources actives de rayons infrarouges dans la bande de 3 à 5 microns, l'écartométrie sur points chauds permet un repérage de la position et des vitesses de déplacement de la cible. Ce repérage est un repérage grossier, ne serait-ce que parce que les "points chauds" émettant le rayonnement infrarouge sont des sources diffuses ne permettant pas de reconstituer la forme d'une cible.
  • Mais, cette écartométrie sur points chauds a l'avantage de pouvoir être mise en service très rapidement, dès que la cible se situe dans le champ du dispositif de visée, la poursuite pouvant commencer immédiatement, alors qu'il faut un certain temps pour mettre en place la poursuite par écartométrie en lumière visible car celle-ci nécessite au préalable une reconnaissance de la cible et un centrage de l'image de celle-ci au milieu de la surface photosensible recevant le rayonnement visible (ou dans une fenêtre).
  • Cependant, une fois que la poursuite par écartométrie en lumière visible est prête à fonctionner, elle prend, grâce au circuit de sélection, le relais de l'écartométrie sur points chauds car elle est beaucoup plus précise que cette dernière. De même, en cas de perte de l'image visible de la cible (masquage par un rideau d'arbres, etc.), le recentrage par l'écartométrie sur points chauds peut se faire rapidement avant que l'écartométrie en lumière visible ne soit à nouveau prête à fonctionner.
  • Comme le dispositif de visée est conçu pour que les deux types de rayonnement suivent le même axe optique, qui est l'axe de visée, le passage d'un type d'écartométrie à l'autre se fait sans risque d'erreur de parallaxe.
  • Le système de conduite de tir est plus particulièrement destiné à être porté par un aéronef, et on prévoit de préférence que le dispositif de visée est stabilisé par un système gyroscopique. Ce système gyroscopique est sensible aux déplacements du dispositif selon les deux axes indépendants autour desquels ce dernier peut tourner, et il comprend des moteurs-couples et des capteurs angulaires par l'intermédiaire desquels s'effectue la commande d'orientation du dispositif de visée: les signaux de commande issus du circuit de sélection de mode de commande sont appliqués aux moteurs-couples du système gyroscopique, et les capteurs angulaires engendrent en conséquence des signaux de déplacement qui sont appliqués après amplification aux moteurs d'orientation du dispositif de visée dans un sens tel que la rotation du dispositif de visée, et donc du système gyroscopique qu'il porte, engendre des couples de précession s'opposant aux couples appliqués par les moteurs-couples.
  • Le système gyroscopique pour comprendre deux gyromètres, ou deux gyrométres intégrateurs, ou encore un gyroscope à deux axes à suspension accordée.
  • D'autres caractéristiques et avantages de l'invention apparaïtront à la lecture de la description qui suit et qui est faite en référence aux dessins annexés dans lesquels:
    • - la figure 1 est une représentation générale schématique de l'ensemble du système de conduite de tir dans lequel s'intègre la présente invention;
    • - la figure 2 représente un schéme du dispositif de visée et de poursuite automatique selon l'invention;
    • - la figure 3 représente un exemple de réalisation de l'ensemble optique du dispositif de visée;
    • - la figure 4 représente à titre de rappel un schéma de circuit de production de signaux d'écartométrie sur point chaud;
    • - la figure 5 représente un deuxième exemple de réalisation de l'ensemble optique du dispositif de visée;
    • - la figure 6 représente un exemple de montage d'un illuminateur laser pour émettre selon la direction de visée;
    • - les figures 7 et 8 représentent deux exemples d'ensembles optiques aménagés pour la réception complémentaire d'un rayonnement laser de télémètrie.
  • La figure 1 montre l'ensemble des organes de conduite de tir du système monté sur un hélicoptère; on va expliquer comment fonctionnent ces organes.
  • Le pilote et le copilote de l'hélicoptère peuvent être pourvus de viseurs de casque 10 et 12 couplés à un circuit électronique 14 pour fournir à ce dernier des signaux repérant la position de la tête du pilote (ou du copilote) donc la direction qu'il observe. Ces viseurs de casque peuvent servir ainsi à une première acquisition d'une cible 18, par exemple un hélicoptère.
  • Une lunette d'observation grossissante 16 permet éventuellement de prendre le relais de l'observation à l'oeil nu. Cette lunette est télé-orientable (par exemple en site et en gisement) manuellement grâce à un manche de commande 20 à deux axes, ou automatiquement à partir des signaux fournis par les viseurs de casque.
  • Un dispositif de visée automatique 22, servant à la poursuite de la cible après son acquisition, est couplé aux viseurs de casque ou à la lunette d'observation 16 par l'intermédiaire du circuit électronique 14, de manière que les mouvements du dispositif de visée et de la lunette soient couplés l'un à l'autre, que ce soit la lunette 16 qui entraîne le dispositif de visée 22 ou le contraire.
  • Le dispositif de visée 22 est orientable en site et en gisement (par exemple). Il est de préférence gyrostabilisé comme on l'expliquera plus loin et les moteurs qui l'entraînent sont de préférence des moteurs-couples à entraînement électromagnétique pour éviter la présence d'engrenages dans la transmission du mouvement.
  • Des dispositifs de visualisation supplémentaires dits "viseur tête-haute" 24 et "visualisation tête basse" 26 sont prévus pour permettre l'observation, par exemple sous forme d'une image de télévision, du champ de visée de la lunette, ainsi que d'information diverses, de symboles d'aide au tir ou à la navigation, etc. Ces dispositifs de visualisation sont couplés au circuit électronique 14 qui leur fournit les images à représenter.
  • Une arme de tir 28, par exemple un canon monté sur une tourelle et susceptible de pivoter en site et en gisement par rapport à la structure de l'hélicoptère, est également couplée au circuit électronique 14 pour en recevoir des informations sur la direction visée par le dispositif de visée 22 donc, compte tenu de corrections de tir éventuelles, sur la direction de pointage à donner à l'arme. Les corrections de tir, fournies par le circuit électronique 14, sont élaborées à partir d'informations diverses, incluant notamment une mesure de distance de la cible par un télémètre à laser 30 (dont l'émetteur laser émet selon l'axe ou parallèlement à l'axe du dispositif de visée 22), une mesure de la vitesse relative de l'hélicoptère et de la cible (mesurée par la vitesse de poursuite du dispositif de visée 22), ainsi que d'autres informations (vitesse aérodynamique, vitesse par rapport au sol, vitesse du vent, etc.) fournies par des capteurs divers 32 montés sur l'hélicoptère.
  • Le dispositif de visée 22 peut être ou non placé sur la tourelle de l'arme de tir. On considérera ci-après qu'il en est séparé. Après qu'une cible ait été repérée au moyen des viseurs de casque (ou de la lunette d'observation 16), l'opérateur décide le passage en poursuite automatique, le circuit électronique 14 pilotant alors les moteurs d'orientation du dispositif de visée 22 pour maintenir l'image de la cible dans l'axe de celui-ci. L'arme de tir 28 suit les mouvements du dispositif de visée, avec un décalage correspondant aux corrections de tir. Puis l'opérateur donne l'ordre de tir.
  • Le système général de conduite de tir ayant ainsi été décrit, on va préciser les détails de l'invention qui concerne plus spécialement le dispositif de visée 22 et la partie de circuit électronique 14 correspondant à la poursuite automatique de la cible.
  • La figure 2 montre le schéma d'ensemble du système de poursuite automatique. Toutefois, pour simplifier la description, on n'a représenté que les circuits de poursuite en gisement étant entendu que la poursuite s'effectue à la fois en site et en gisement, de manière indépendante donc avec deux voies de circuit semblables indépendantes pilotant respectivement un moteur d'orientation en site et un moteur d'orientation en gisement.
  • Le dispositif de visée 22 comprend un ensemble optique 34 ayant un axe de visée 36 que l'on souhaite diriger en permanence vers une cible.
  • L'ensemble optique 34 est monté à rotation autour de deux axes, de préférence par l'intermédiaire d'un système à cardan; le montage à cardan étant classique, on ne l'a pas représenté pour simplifier la figure, et on a représenté seulement l'axe de rotation en gisement 38 et un moteur 40 d'entraînement autour de cet axe 38. Le moteur 40 ainsi que le moteur non représenté d'entraînement de l'ensemble optique autour de l'axe de rotation en site, est de préférence un moteur-couple, agissant sans frottement par action électromagnétique entre un rotor et un stator.
  • L'ensemble optique 34 du dispositif de visée est de préférence stabilisé par action gyroscopique, c'est à dire que pour l'entraîner en rotation, on n'appliquera pas directement un signal de commande aux moteurs d'entraînement mais on appliquera un signal de commande à des gyromètres qui eux-mêmes fourniront des signaux de commande aux moteurs.
  • Plus précisément, l'ensemble optique peut porter deux gyromètres ou deux gyromètres intégrateurs, ou encore un gyroscope à deux axes à suspension accordée, ces appareils ayant comme axes sensibles respectivement l'axe de rotation en gisement 38 et un axe de rotation en site 42 perpendiculaire au plan de la figure. Sur la figure 2 qui ne décrit qu'une voie de commande d'orientation, on a représenté uniquement un gyromètre intégrateur 44 ayant pour axe sensible l'axe de rotation en gisement. Ce gyromètre possède un rotor tournant dans un cadre support, un moteur-couple 46 de commande de rotation du cadre et un capteur angulaire 48 repérant la rotation du cadre.
  • Le moteur-couple reçoit des signaux de commande qui font tourner le cadre support, donc l'arbre de sortie du gyromètre, d'un angle repéré par le capteur 48. Le capteur 48 transmet un signal correspondant à cette rotation, après traitement et amplification dans un circuit 50, au moteur 40 qui fait tourner l'ensemble optique 34 autour de l'axe de gisement, engendrant ainsi sur le rotor du gyromètre un couple de précession qui équilibre le couple engendré par le moteur-couple 46. Le processus est le même pour la voie de commande de rotation en site qui comporte un asservissement identique. Cette stabilisation gyroscopique de l'ensemble optique 34 selon les deux axes permet notamment d'éviter la transmission de vibrations de l'hélicoptère à l'ensemble optique.
  • L'orientation de l'axe de visée 36 est repérée par des capteurs angulaires, par exemple des synchrodétecteurs; la référence 52 désigne un tel capteur représenté symboliquement à la figure 2. Les informations d'orientation sont transmises au circuit électronique 14 de la figure 1, en vue notamment de commander l'orientation de la lunette d'observation 16 et de l'arme de tir 28.
  • L'ensemble optique 34 comprend divers moyens optiques qui seront détaillés plus loin, pour recevoir à la fois un rayonnement visible et un rayonnement infrarouge dans la bande de 3 à 5 microns environ, selon le même axe de visée 36, et pour séparer ces rayonnements par le moyen de surfaces sélectivement réfléchissantes, afin de diriger et de focaliser ces deux types de rayonnement sur des détecteurs respectifs qui sont un détecteur infrarouge 54 et un détecteur d'image visible 56.
  • Le détecteur 54 est du type à quatre quadrants pour permettre de repérer le dépointage angulaire d'un point chaud vis à vis de l'axe de visée 36. Les signaux détectés fournissent une information sur la direction approximative du point chaud et permettent d'indiquer s'il est à gauche ou à droite de l'axe de visée (écart en gisement) ou plus haut ou plus bas (écart en site). Un circuit d'écartométrie 58 reçoit les signaux des quatre quadrants du détecteur, les traite et les combine pour délivrer des signaux d'écartométrie sur points chauds permettant d'asservir l'axe de visée de l'ensemble optique 34 sur la direction du point chaud repéré. Ce type de détecteur et de circuit d'écartométrie associée est connu et on peut en trouver des exemples dans les brevets français 2 356 152 ou 2 350 010 de la demanderesse. Une modulation du rayonnement infrarouge par une grille mobile formée de secteurs transparents et opaques alternés régulièrement ou selon un code, avec une détection synchrone ou un filtrage adapté ou une corrélation, permet une amélioration du contraste entre l'image du point chaud et le fond (notamment en présence de soleil), ainsi que l'élimination des sources de grande dimensions (filtrage spatial).
  • Le détecteur 56, recevant uniquement le rayonnement visible, est apte à former une image du champ de visée de l'objectif. Il peut être constitué par exemple par un tube vidicon ou par une matrice de photodétecteurs (du type à transfert de charges) avec les circuits de lecture associés. Il délivre des signaux représentant une image relativement précise du champ de visée, avec la cible dans ce champ; cette image peut être transmise par exemple au dispositif de visualisation tête-basse 26 de la figure 1. Les signaux issus du détecteur 56 sont en tous cas transmis à un deuxième circuit d'écartométrie 60 qui permet de définir selon deux axes indépendants l'écart de localisation entre l'image de la cible sur le détecteur 56 et une image de référence enregistrée en mémoire dans le circuit d'écartométrie et représentant la cible centrée dans le champ de visée.
  • Le deuxième circuit d'écartométrie 60 est plus complexe que le premier mais beaucoup plus précis. Il peut s'agir d'un circuit d'écartométrie fonctionnant par contraste: une modification d'une zone contrastée en un endroit fixe traduit un déplacement de l'image et engendre des signaux d'écartométrie destinés à piloter le dispositif de visée 22 de manière à ramener la zone contrastée à sa position initiale. Il peut s'agir aussi d'un circuit d'écartométrie fonctionnant par corrélation: au moment où l'opérateur décide de passer en phase poursuite, la cible étant centrée dans le champ de visée (vu sur le dispositif de visualisation tête-basse), l'image de ce champ est enregistrée en mémoire comme image de référence et les images ultérieures sont corrélées avec l'image en mémoire, avec une fonction de corrélation faisant intervenir des décalages latéraux et verticaux de l'image, afin de définir des pics de corrélation qui permettent de connaître le décalage des images ultérieures par rapport à l'image initiale enregistrée. Ces décalages constituent un autre couple de signaux d'écartométrie, dits signaux d'écartométrie en lumière visible, servant à piloter le dispositif de visée 22 de manière à ramener l'image du champ de visée autant que possible en superposition avec l'image initiale. Le brevet français 1 504 656 du 18 octobre 1966 décrit un tel dispositif de corrélation d'image.
  • En poursuite automatique, les moteurs d'orientation du disposif de visée peuvent être commandés soit par le premier couple de signaux d'écartométrie (sur points chauds), soit par le second (sur image visible). En recherche de cible, ce sont des signaux issus du manche de commande 20, ou issus de capteurs angulaires repérant la position de la lunette d'observation 16, ou issus des viseurs de casque, etc., qui servent à commander l'orientation du dispositif de visée. Enfin, en poursuite automatique, au cas où les couples de signaux d'écartométrie deviennent inutilisables pour une raison ou pour une autre (masquage de la cible pour un obstacle, etc.) on prévoit qu'une mémoire de vitesse de poursuite 62 fournit des signaux de remplacement pour la commande d'orientation du dispositif de visée. Cette mémoire enregistre la vitesse de poursuite simplement à partir des courants appliqués aux moteurs-couples (46 par exemple) du système de stabilisation gyroscopique. En cas de perte de la cible dans les deux dispositifs d'écartométrie 58 et 60, le dispositif de visée continue comme si la cible poursuivait son chemin avec la même direction et la même vitesse qu'au moment où elle a été perdue.
  • Ainsi, on prévoit selon l'invention un circuit 64 de sélection de mode de commande qui reçoit plusieurs couples de signaux de commande et qui en sélectionne un pour le transmettre à un circuit 66 d'excitation des moteurs-couples du système de stabilisation gyroscopique.
  • Sur la figure 2, on a représenté une seule connexion d'entrée pour chaque couple de signaux de commande puisqu'on ne s'intéresse qu'à un axe d'orientation.
  • Les couples représentés sont respectivement:
    • - un couple de signaux A pour le mode d'acquisition de la cible;
    • - un couple de signaux B d'écartométrie sur points chauds, issu du circuit 58;
    • - un couple de signaux C d'écartométrie sur image visible, issu du circuit 60;
    • - un couple de signaux D de mémoire de vitesse de poursuite;
    • - d'autres couples pourraient être prévus si nécessaire.
  • Les signaux de commande sélectionnés sortent sur une sortie S du circuit 64.
  • Le circuit 64 peut comporter soit de simples interrupteurs d'aiguillage d'un couple choisi de signaux de commande, avec une commande manuelle de ces interrupteurs par un opérateur, soit des circuits de choix automatique, par exemple des circuits à seuil détectant une valeur trop faible des signaux de corrélation du circuit d'écartométrie sur image visible (60) et imposant alors la transmission de signaux d'écartométrie sur points chauds, ainsi que des circuits à seuil détectant une valeur trop faible des signaux représentant la présence d'un point chaud et imposant alors la transmission de signaux D de mémoire de vitesse.
  • Dans l'ordre, sont transmis prioritairement les signaux A de commande en mode d'acquisition, puis, en mode de poursuite, d'abord les signaux C puis les signaux B si l'écartométrie en lumière visible est de qualité insuffisante, puis les signaux D si l'écartométrie infrarouge est également de qualité insuffisante.
  • Des exemples de constitution d'ensembles optiques 34 vont maintenant être décrits. Ces ensembles sont représentés schématiquement avec uniquement les éléments optiques proprement dits, afin de bien faire comprendre la manière dont sont reçus et séparés les rayonnements visible et infrarouge.
  • La figure 3 montre un premier exemple dans lequel les rayonnements arrivant centrés autour de l'axe optique 36 sont réfléchis par un premier miroir concave 70 qui les renvoie sur un deuxième miroir convexe 72. Ces deux miroirs forment un ensemble de type Cassegrain transmettant les rayons visibles comme les rayons infrarouges vers un miroir séparateur dichroïque qui peut être constitué par un premier prisme 74 derrière lequel est accolé un second prisme 76, la face commune aux deux prismes étant traitée pour être réfléchissante pour les rayons infrarouges dans la bande des 3 à 5 microns, et transparente pour la lumière visible.
  • Derrière la face arrière du second prisme est placée la surface photosensible du détecteur 56 servant à détecter l'image du champ de visée formée par les miroirs 70 et 72, en lumière visible uniquement.
  • Derrière la troisième face du prisme 74 (c'est à dire la face de sortie infrarouge qui n'est ni la face d'entrée ni la face commune aux deux prismes), on a disposé la grille modulatrice 78 qui peut consister en un certain nombre de secteurs alternés transparents et opaques disposés sur un disque en rotation uniforme. Le rayonnement infrarouge, séparé en 75 de celui en lumière visible, est focalisé par les miroirs 70 et 72 sur la grille 78; si un point "chaud" émettant dans l'infrarouge est présent dans le champ de visée, l'image de ce point chaud sera alternativement découverte et cachée par les secteurs alternés de la grille; par contre, les sources de rayonnement ambiantes (en présence de soleil, tels des nuages) ne subissent pas de modulation du fait de leur grande étendue.
  • Une démodulation par détection synchrone, à la fréquence de passage des secteurs alternés améliore donc considérablement le contraste de la détection des points chauds.
  • Les rayons infrarouges ayant traversé la grille peuvent être renvoyés par un miroir 80 sur un objectif de reprise 82 qui les focalise à nouveau sur le détecteur infrarouge 54 (cf. fig 2) à quatre quadrants combiné avec le circuit d'écartométrie 58 pourfournir des signaux d'écartométrie correspondant à la direction approximative en site et en gisement du point chaud.
  • La figure 4 rappelle, à titre indicatif simplement, un tel montage: les signaux issus de chacun des quadrants du détecteur 54 passent chacun individuellement dans un circuit de détection synchrone respectif 84, travaillant à la fréquence de passage des secteurs opaques et transparents de la grille 78. Ces circuits de détection synchrone sont suivis d'amplificateurs 85 et de sommateurs 87 et 89 qui font les différences deux à deux des signaux issus de quadrants opposés. Les sorties de ces sommateurs 87 et 89 sont appliquées à deux autres sommateurs 91 et 93 qui font respectivement la somme et la différence des signaux qu'ils reçoivent et qui fournissent à leur sortie des signaux d'écartométrie, l'un en site B et l'autre en gisement B'.
  • La figure 5 est un autre mode de réalisation de l'ensemble optique 34. Là encore, seuls les éléments optiques et les détecteurs sont représentés.
  • Les rayons visibles et infrarouges sont reçus par le miroir concave principal 70 qui les réfléchit vers le miroir secondaire convexe 72 (ensemble type Cassegrain) lequel les renvoie selon la direction initiale. Ces rayons renvoyés viennent frapper un séparateur dichroïque réalisé par une surface 83 traitée pour réfléchir les rayons visibles et laisser passer les rayons infrarouges 3-5 microns. Derrière la surface 83 on trouve la grille de modulation tournante 78 et, après l'objectif de reprise 82, le détecteur infrarouge quatre quadrants 54 comme à la figure 3. La surface 83 peut d'ailleurs être constituée par un dépôt sur une face du disque porteur de la grille de modulation 78.
  • Les rayons visibles sont réfléchis par la surface 83 vers le centre du miroir secondaire 72, et, au niveau de ce centre est placé le détecteur d'image visible 56 sur lequel sont focalisés les rayons visibles.
  • On souhaite parfois effectuer en outre une télémétrie par laser, et il est préférable alors qu'un moyen d'émission laser soit monté sur l'ensemble optique 34 pour émettre dans la direction de l'axe de visée 36 (selon cet axe ou parallèlement à cet axe). Cependant, le laser lui-même, trop volumineux ne peut être monté sur l'ensemble orientable 34 et on prévoit donc un laserfixe et des miroirs de renvoi montés sur l'ensemble 34 et placés de telle manière que le rayon laser soit toujours renvoyé dans la direction de l'axe de visée 36, quelle que soit l'orientation de l'ensemble 34. La partie réception du télémètre laser peut se situer sur l'ensemble optique 34 ou ailleurs.
  • La figure 6 montre une réalisation dans laquelle l'ensemble optique 34 porte, comme moyen d'émission laser, plusieurs miroirs de renvoi, l'illuminateur laser proprement dit, 86, étant fixe et pouvant se trouver déporté. Un premiermiroirM1, solidaire d'un support mobile en rotation autour de l'axe de rotation en site 42, renvoie le faisceau laser vers un deuxième miroir M2, puis un troisième miroir M3, solidaires du même support. Le faisceau reçu par M3 est dirigé vers un quatrième miroir M4 monté sur l'ensemble optique 34 lui-même qui est mobile en rotation autour de l'axe de rotation en gisement 38. Le faisceau laser sort parallèlement à l'axe de visée 36 quelle que soit l'orientation de celui-ci en site et en gisement, du fait notamment que les miroirs M1, M3 et M4 sont placés de manière à renvoyer le faisceau soit sur l'axe de rotation en site, soit sur l'axe de rotation en gisement.
  • Les éléments optiques décrits en référence aux figures 3 et 5 n'ont pas été dessinés sur la figure 6.
  • Les impulsions de faisceau laser émises et réfléchies par la cible peuvent être recueillies par une cellule de détection distincte du dispositif de visée. Mais on peut aussi prévoir que l'ensemble optique 34 peut recevoir, outre les rayonnements visible et infrarouge lointain, le rayon laser (longueur d'onde de préférence, 1,06 micron).
  • Les figures 7 et 8 montrent deux exemples de réalisation d'ensembles optiques 34 qui incorporent une réception de rayon laser à 1,06 micron pour la télémétrie. La voie d'émission laser, qui peut correspondre à la réalisation de la figure 6, n'est pas représentée.
  • La figure 7 correspond à une modification de la figure 3. On y retrouve sans changement le double réflecteur Cassegrain 70, 72, le prisme 74 dont la face arrière est traitée réfléchissante pour les rayons infrarouges lointains et transparente pour le visible et le rayonnement laser à 1,06 micron. On retrouve également la même voie de traitement des rayons infrarouges 3-5 microns (grille de modulation 78, miroir de renvoi 80, objectif de reprise 82 et détecteur quatre quadrants 54).
  • La différence avec la figure 3 se situe en arrière du prisme 74: à la figure 7, un second prisme 88 est accolé au prisme 74. Les rayons visibles et laser traversent ce prisme, atteignent une face arrière, inclinée à 90° par rapport à la face commune aux prismes 74 et 88. Cette face arrière est elle même une face commune au deuxième prisme 88 et à un troisième prisme 90. Elle est traitée dichroïque pour réfléchir les rayons laser à 1,06 micron, et pour laisser passer les rayons de lumière visible. Le rayonnement laser sort donc par un deuxième prisme sans traverser le troisième et il est focalisé par un objectif de reprise 92 sur une cellule de détection 94 du télémètre. Les rayons visibles, eux, traversent le troisième prisme 90, et sont focalisés par un objectif de reprise 96 sur une surface photosensible 56 comme à la figure 3.
  • Ainsi, le même ensemble optique 34 reçoit et sépare trois types de rayonnement utiles au système de conduite de tir.
  • La figure 8 montre de la même manière une variante qui s'inspire de la figure 5 à laquelle on a rajouté un dispositif de séparation du rayonnement laser à 1,06 micron. A cet effet, on a simplement intercalé, entre la surface semi-réfléchissante 83 de la figure 5 et la surface photosensible 56, deux prismes accolés 98, 100, dont la face commune est traitée dichroïque pour être transparente à la lumière visible et réfléchissante pour le rayon laser. Les rayons réfléchis par cette face commune viennent frapper une cellule de détection 103 du télémètre.

Claims (11)

1. Système de conduite de tir comprenant un dispositif de visée (22) orientable selon deux axes indépendants par des moteurs d'orientation, et un circuit électronique (14) associé au dispositif de visée pour commander les moteurs de manière à orienter en permanence le dispositif de visée en direction d'une cible (18), caractérisé par le fait que le dispositif de visée comprend un premier moyen optique (70, 72) pour recevoir et transmettre simultanément, selon un même axe optique de visée (36), un rayonnement infrarouge de longueur d'onde d'environ 3 à 5 microns et un rayonnement visible, issus de la cible, et un deuxième moyen optique (74, 76) pour séparer ces rayonnements et les diriger respectivement sur un détecteur (54) sensible au rayonnement infrarouge et sur un détecteur d'image (56) sensible à la lumière visible, et par le fait que le circuit électronique associé (14) comprend un premier circuit d'écartométrie (58) recevant les signaux issus du détecteur sensible au rayonnement infrarouge et délivrant deux signaux d'écartométrie dits "signaux d'écartométrie sur points chauds", un second circuit d'écartométrie (60) recevant les signaux issus du détecteur d'image et délivrant deux signaux d'écartométrie dits "signaux d'écartométrie en lumière visible", et un circuit (64) de sélection de mode de commande recevant une pluralité de couples de signaux de commande d'orientation, parmi lesquels les deux couples de signaux d'écartométrie, et transmettant aux moteurs d'orientation un couple choisi de signaux de commande.
2. Système de conduite de tir selon la revendication 1, caractérisé par le fait que le premier moyen optique comprend un double miroir catadioptrique Cassegrain, que le deuxième moyen optique comprend un séparateur dichroïque (75) transparent pour l'un des deux rayonnements visible et infrarouge et réfléchissant pour l'autre, le détecteur infrarouge et le détecteur d'image étant situés respectivement de part et d'autre de cette surface.
3. Système de conduite de tir selon l'une des revendications 1 et 2 caractérisé par le fait qu'une grille de modulation tournante (78) est interposée entre le deuxième moyen optique et le détecteur infrarouge pour faire subir une modulation à fréquence connue au rayonnement reçu par ce détecteur.
4. Système de conduite de tir selon l'une des revendications 1 à 3, caractérisé par le fait que le dispositif de visée comporte un troisième moyen optique (88, 90) apte à séparer des rayonnements visible et infrarouge, un rayonnement laser de longueur d'onde différente des rayonnements visible et infrarouge à 3 à 5 microns, et à diriger ce rayonnement laser sur une cellule de détection (94) en vue de permettre une télémétrie par laser à partir du même dispositif de visée.
5. Système de conduite de tir selon l'une des revendications 1 à 4, caractérisé par le fait que le dispositif de visée comporte en outre un moyen d'émission laser émettant dans la direction de l'axe optique de visée.
6. Système de conduite de tir selon l'une des revendications 1 à 5, caractérisé par le fait que le système comprend un viseur de casque ou une lunette d'observation commandée par des moteurs d'orientation, des capteurs angulaires d'orientation de la lunette ou du viseur de casque étant prévus et couplés au circuit de sélection (64) pour fournir à celui-ci un couple de signaux de commande permettant l'orientation du dispositif de visée à partir de la lunette ou du viseur de casque.
7. Système de conduite de tir selon l'une des revendications 1 à 6 caractérisé par le fait que le dispositif de visée porte un système de stabilisation gyroscopique (44) sensible aux déplacements selon les deux axes d'orientation du dispositif et comprenant des moteurs-couples (46) et des capteurs angulaires (48), les moteurs-couples recevant les signaux de commande issus du circuit de sélection et les capteurs angulaires fournissant des signaux d'actionnement des moteurs d'orientation (40) du dispositif de visée.
8. Système de conduite de tir selon la revendication 7 caractérisé par le fait que le système de stabilisation gyroscopique porté par le dispositif de visée comprend deux gyromètres (44).
9. Système de conduite de tir selon l'une des revendications 1 à 8, caractérisé par le fait qu'il est prévu un circuit (62) de mise en mémoire des vitesses de déplacement angulaire du dispositif de visée, ce circuit recevant à cet effet tes signaux de commande issus du circuit logique de sélection, et fournissant à ce dernier un couple de signaux de commande, le circuit de sélection transmettant ce dernier couple de signaux en cas de disparition de signaux d'écartométrie de qualité satisfaisante.
10. Système de conduite de tir selon l'une des revendications 1 à 9, caractérisé par le fait que le détecteur (54) sensible au rayonnement infrarouge est un détecteur à quatre quadrants.
11. Système de conduite de tir selon l'une des revendications 1 à 10 caractérisé par le fait que le détecteur d'image visible (56) est une matrice de photodétecteurs et que le circuit d'écartométrie associé comporte un circuit de corrélation d'images.
EP19830400464 1982-03-12 1983-03-07 Système de conduite de tir à double écartométrie Expired EP0089273B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8204214A FR2523293A1 (fr) 1982-03-12 1982-03-12 Systeme de conduite de tir a double ecartometrie
FR8204214 1982-03-12

Publications (2)

Publication Number Publication Date
EP0089273A1 EP0089273A1 (fr) 1983-09-21
EP0089273B1 true EP0089273B1 (fr) 1987-01-07

Family

ID=9271931

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19830400464 Expired EP0089273B1 (fr) 1982-03-12 1983-03-07 Système de conduite de tir à double écartométrie

Country Status (3)

Country Link
EP (1) EP0089273B1 (fr)
DE (1) DE3368978D1 (fr)
FR (1) FR2523293A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777861A (en) * 1987-01-16 1988-10-18 Recon/Optical, Inc. Missile aiming sight
FR2711806B1 (fr) * 1990-07-23 1995-12-29 Aerospatiale Système de détection et de riposte vis-à-vis d'une menace aérienne.
US5331881A (en) * 1992-05-19 1994-07-26 United Technologies Corporation Helicopter integrated fire and flight control having azimuth and pitch control
DE19720903B4 (de) * 1997-05-17 2005-07-14 LFK Lenkflugkörpersysteme GmbH Einrichtung zur Achsparallelisierung eines Wärmebildgerätes
CN102927416B (zh) * 2011-08-08 2015-04-08 天津市亚安科技股份有限公司 安装于监控设备防护罩内部的微动调节台以及监控装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038547A (en) * 1966-05-31 1977-07-26 Philco Corporation Tracking and sighting instrument
US3989947A (en) * 1971-03-01 1976-11-02 Hughes Aircraft Company Telescope cluster
FR2334079A1 (fr) * 1975-12-01 1977-07-01 Telecommunications Sa Dispositif de guidage nocturne d'engins autopropulses
FR2352271A1 (fr) * 1976-05-21 1977-12-16 Eltro Gmbh Procede et dispositif de reperage et de tir sur cible
GB1505314A (en) * 1977-01-25 1978-03-30 Barr & Stroud Ltd Gunnery fire control system sight
FR2419497A1 (fr) * 1978-03-06 1979-10-05 Barbier Benard & Turenne Dispositif optique de pointage pour artillerie antiaerienne de petit calibre automotrice
DE2841622C2 (de) * 1978-09-25 1982-10-21 Siemens AG, 1000 Berlin und 8000 München Laserentfernungsmeßsystem
FR2465188A1 (fr) * 1980-11-03 1981-03-20 Trt Telecom Radio Electr Dispositif pour detecter un point chaud dans un paysage percu selon un rayonnement infrarouge et systeme de guidage d'un missile sur une cible, comportant un tel dispositif

Also Published As

Publication number Publication date
FR2523293A1 (fr) 1983-09-16
DE3368978D1 (en) 1987-02-12
FR2523293B1 (fr) 1984-04-20
EP0089273A1 (fr) 1983-09-21

Similar Documents

Publication Publication Date Title
EP0033679B1 (fr) Système de désignation d'objectif par laser
EP0628780B1 (fr) Système de visée pour aéronef
EP0432014B1 (fr) Système optoélectronique d'aide aux missions aériennes d'attaque et de navigation
EP0441079B1 (fr) Lunette épiscopique modulable et reconfigurable
EP0004227B1 (fr) Appareil de détection optoélectrique et de localisation angulaire d'un objet lumineux et son utilisation
US5796474A (en) Projectile tracking system
US10057509B2 (en) Multiple-sensor imaging system
EP0167432B1 (fr) Système aéroporté de détection optoélectrique, de localisation et de poursuite omnidirectionnelle de cible
EP0084060B1 (fr) Mecanisme directionnel pour systeme de reproduction thermique et telemetre pour un tel systeme
EP3488540B1 (fr) Systeme combine d'imagerie et de communication par signaux laser
FR2914055A1 (fr) Tete chercheuse pour engin volant guide servant a saisir et poursuivre une cible et procede d'application.
FR3033649A1 (fr) Equipement aeroporte de detection de tirs et d'aide au pilotage
EP0089273B1 (fr) Système de conduite de tir à double écartométrie
WO1998031985A1 (fr) Dispositif apte a determiner la direction d'une cible dans un repere predefini
FR2746494A1 (fr) Tete chercheuse pour des missiles ou des projectiles
EP3839411B1 (fr) Système intelligent pour le contrôle de fonctions dans une tourelle de véhicule de combat
FR2480424A1 (fr) Systeme de conduite automatique de tir air-air ou air-sol
FR2642529A1 (fr) Procede et dispositif de mesure de la position d'un vehicule
EP0090713B1 (fr) Système de conduite de tir à lunette d'observation asservie par un dispositif de poursuite automatique
FR2687791A1 (fr) Systeme optronique de poursuite tridimensionnelle avec alignement automatique d'un telemetre optique sur la cible.
FR2657154A1 (fr) Appareil de pointage monte sur casque.
EP0169128B1 (fr) Système optoélectrique de détection et de localisation angulaire de sources lumineuses, à haute immunité envers les contre-mesures
EP4174435B1 (fr) Système de visée et de défense comprenant un tourelleau et un système laser et véhicule automobile comprenant un tel système de visée et de défense
FR3005359A1 (fr) Procede et dispositif de protection des aeronefs basse altitude vis-a-vis des missiles sol/air
FR2741721A1 (fr) Systeme optronique aeroporte pour la recherche, l'acquisition, la poursuite et l'identification de cibles, utilisable notamment pour la conduite de tir

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19831207

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 3368978

Country of ref document: DE

Date of ref document: 19870212

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19871201

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881122