EP0063423B1 - Gnrh antagonists - Google Patents
Gnrh antagonists Download PDFInfo
- Publication number
- EP0063423B1 EP0063423B1 EP82301612A EP82301612A EP0063423B1 EP 0063423 B1 EP0063423 B1 EP 0063423B1 EP 82301612 A EP82301612 A EP 82301612A EP 82301612 A EP82301612 A EP 82301612A EP 0063423 B1 EP0063423 B1 EP 0063423B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- phe
- nal
- accordance
- gly
- peptide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229940121381 gonadotrophin releasing hormone (gnrh) antagonists Drugs 0.000 title description 2
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 69
- 150000001413 amino acids Chemical class 0.000 claims abstract description 23
- 125000002252 acyl group Chemical group 0.000 claims abstract description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 6
- 239000001257 hydrogen Substances 0.000 claims abstract description 6
- 125000001711 D-phenylalanine group Chemical group [H]N([H])[C@@]([H])(C(=O)[*])C([H])([H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 claims abstract description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 4
- BEBCJVAWIBVWNZ-UHFFFAOYSA-N glycinamide Chemical group NCC(N)=O BEBCJVAWIBVWNZ-UHFFFAOYSA-N 0.000 claims abstract description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 4
- ONIBWKKTOPOVIA-SCSAIBSYSA-N D-Proline Chemical compound OC(=O)[C@H]1CCCN1 ONIBWKKTOPOVIA-SCSAIBSYSA-N 0.000 claims abstract description 3
- 125000002698 D-tryptophano group Chemical group C(=O)(O)[C@@H](CC1=CNC2=CC=CC=C12)N* 0.000 claims abstract 2
- 125000006239 protecting group Chemical group 0.000 claims description 26
- 229920005989 resin Polymers 0.000 claims description 25
- 239000011347 resin Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 18
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 3
- 231100000252 nontoxic Toxicity 0.000 claims description 3
- 230000003000 nontoxic effect Effects 0.000 claims description 3
- 230000001476 alcoholic effect Effects 0.000 claims description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 2
- 102000004196 processed proteins & peptides Human genes 0.000 abstract description 30
- 230000016087 ovulation Effects 0.000 abstract description 12
- 102000006771 Gonadotropins Human genes 0.000 abstract description 8
- 108010086677 Gonadotropins Proteins 0.000 abstract description 8
- 206010062767 Hypophysitis Diseases 0.000 abstract description 8
- 239000002622 gonadotropin Substances 0.000 abstract description 8
- 229940094892 gonadotropins Drugs 0.000 abstract description 8
- 210000003635 pituitary gland Anatomy 0.000 abstract description 8
- 150000003431 steroids Chemical class 0.000 abstract description 7
- 210000002149 gonad Anatomy 0.000 abstract description 6
- 230000028327 secretion Effects 0.000 abstract description 3
- 235000013601 eggs Nutrition 0.000 abstract description 2
- -1 acrylyl Chemical group 0.000 description 30
- NMJREATYWWNIKX-UHFFFAOYSA-N GnRH Chemical compound C1CCC(C(=O)NCC(N)=O)N1C(=O)C(CC(C)C)NC(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)CNC(=O)C(NC(=O)C(CO)NC(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C(CC=1NC=NC=1)NC(=O)C1NC(=O)CC1)CC1=CC=C(O)C=C1 NMJREATYWWNIKX-UHFFFAOYSA-N 0.000 description 27
- 101000857870 Squalus acanthias Gonadoliberin Proteins 0.000 description 27
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 21
- 235000001014 amino acid Nutrition 0.000 description 21
- 229940024606 amino acid Drugs 0.000 description 21
- 241000700159 Rattus Species 0.000 description 15
- 102000009151 Luteinizing Hormone Human genes 0.000 description 13
- 108010073521 Luteinizing Hormone Proteins 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- 229940040129 luteinizing hormone Drugs 0.000 description 12
- 238000006467 substitution reaction Methods 0.000 description 11
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Natural products NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 9
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 8
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 8
- 229940088597 hormone Drugs 0.000 description 7
- 239000005556 hormone Substances 0.000 description 7
- 241000124008 Mammalia Species 0.000 description 6
- 230000037396 body weight Effects 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 6
- 125000000539 amino acid group Chemical group 0.000 description 5
- 230000003042 antagnostic effect Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- MGHPNCMVUAKAIE-UHFFFAOYSA-N diphenylmethanamine Chemical compound C=1C=CC=CC=1C(N)C1=CC=CC=C1 MGHPNCMVUAKAIE-UHFFFAOYSA-N 0.000 description 5
- XLXSAKCOAKORKW-AQJXLSMYSA-N gonadorelin Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)NCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 XLXSAKCOAKORKW-AQJXLSMYSA-N 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 4
- 239000005557 antagonist Substances 0.000 description 4
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 4
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229960003604 testosterone Drugs 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 101000904177 Clupea pallasii Gonadoliberin-1 Proteins 0.000 description 3
- COLNVLDHVKWLRT-MRVPVSSYSA-N D-phenylalanine Chemical compound OC(=O)[C@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-MRVPVSSYSA-N 0.000 description 3
- QIVBCDIJIAJPQS-SECBINFHSA-N D-tryptophane Chemical compound C1=CC=C2C(C[C@@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-SECBINFHSA-N 0.000 description 3
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 3
- 102000012673 Follicle Stimulating Hormone Human genes 0.000 description 3
- 108010079345 Follicle Stimulating Hormone Proteins 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- 239000000579 Gonadotropin-Releasing Hormone Substances 0.000 description 3
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003433 contraceptive agent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229940028334 follicle stimulating hormone Drugs 0.000 description 3
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 3
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- OMGHIGVFLOPEHJ-UHFFFAOYSA-N 2,5-dihydro-1h-pyrrol-1-ium-2-carboxylate Chemical compound OC(=O)C1NCC=C1 OMGHIGVFLOPEHJ-UHFFFAOYSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- 125000005076 adamantyloxycarbonyl group Chemical group C12(CC3CC(CC(C1)C3)C2)OC(=O)* 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000010511 deprotection reaction Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 230000001158 estrous effect Effects 0.000 description 2
- 230000001456 gonadotroph Effects 0.000 description 2
- 239000000601 hypothalamic hormone Substances 0.000 description 2
- 229940043650 hypothalamic hormone Drugs 0.000 description 2
- 210000003016 hypothalamus Anatomy 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 231100000546 inhibition of ovulation Toxicity 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 230000001817 pituitary effect Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- WBIIPXYJAMICNU-AWEZNQCLSA-N (2s)-5-[amino-[(4-methylphenyl)sulfonylamino]methylidene]azaniumyl-2-[(2-methylpropan-2-yl)oxycarbonylamino]pentanoate Chemical compound CC1=CC=C(S(=O)(=O)NC(N)=NCCC[C@H](NC(=O)OC(C)(C)C)C(O)=O)C=C1 WBIIPXYJAMICNU-AWEZNQCLSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical group OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241000024188 Andala Species 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- MTCFGRXMJLQNBG-UWTATZPHSA-N D-Serine Chemical compound OC[C@@H](N)C(O)=O MTCFGRXMJLQNBG-UWTATZPHSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UWTATZPHSA-N D-alanine Chemical compound C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- HNDVDQJCIGZPNO-RXMQYKEDSA-N D-histidine Chemical compound OC(=O)[C@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-RXMQYKEDSA-N 0.000 description 1
- ROHFNLRQFUQHCH-RXMQYKEDSA-N D-leucine Chemical compound CC(C)C[C@@H](N)C(O)=O ROHFNLRQFUQHCH-RXMQYKEDSA-N 0.000 description 1
- 125000003941 D-tryptophan group Chemical group [H]C1=C([H])C([H])=C2C(C([C@@](N([H])[H])(C(=O)[*])[H])([H])[H])=C([H])N([H])C2=C1[H] 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 208000005171 Dysmenorrhea Diseases 0.000 description 1
- 206010013935 Dysmenorrhoea Diseases 0.000 description 1
- 201000009273 Endometriosis Diseases 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical group CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 102000015611 Hypothalamic Hormones Human genes 0.000 description 1
- 108010024118 Hypothalamic Hormones Proteins 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ODHCTXKNWHHXJC-GSVOUGTGSA-N Pyroglutamic acid Natural products OC(=O)[C@H]1CCC(=O)N1 ODHCTXKNWHHXJC-GSVOUGTGSA-N 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229920002253 Tannate Polymers 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-UHFFFAOYSA-N acide pyroglutamique Natural products OC(=O)C1CCC(=O)N1 ODHCTXKNWHHXJC-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005915 ammonolysis reaction Methods 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000002668 chloroacetyl group Chemical group ClCC(=O)* 0.000 description 1
- 229940124558 contraceptive agent Drugs 0.000 description 1
- 230000002254 contraceptive effect Effects 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 125000000950 dibromo group Chemical group Br* 0.000 description 1
- 125000006286 dichlorobenzyl group Chemical group 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 230000007849 functional defect Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 230000002710 gonadal effect Effects 0.000 description 1
- 239000003163 gonadal steroid hormone Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 208000000509 infertility Diseases 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 231100000535 infertility Toxicity 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 125000005928 isopropyloxycarbonyl group Chemical group [H]C([H])([H])C([H])(OC(*)=O)C([H])([H])[H] 0.000 description 1
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- PQIOSYKVBBWRRI-UHFFFAOYSA-N methylphosphonyl difluoride Chemical group CP(F)(F)=O PQIOSYKVBBWRRI-UHFFFAOYSA-N 0.000 description 1
- UBLQIESZTDNNAO-UHFFFAOYSA-N n,n-diethylethanamine;phosphoric acid Chemical compound [O-]P([O-])([O-])=O.CC[NH+](CC)CC.CC[NH+](CC)CC.CC[NH+](CC)CC UBLQIESZTDNNAO-UHFFFAOYSA-N 0.000 description 1
- SHDMMLFAFLZUEV-UHFFFAOYSA-N n-methyl-1,1-diphenylmethanamine Chemical compound C=1C=CC=CC=1C(NC)C1=CC=CC=C1 SHDMMLFAFLZUEV-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000000624 ovulatory effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000004810 partition chromatography Methods 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 125000001557 phthalyl group Chemical group C(=O)(O)C1=C(C(=O)*)C=CC=C1 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 208000006155 precocious puberty Diseases 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000186 progesterone Substances 0.000 description 1
- 229960003387 progesterone Drugs 0.000 description 1
- 229940077150 progesterone and estrogen Drugs 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003578 releasing effect Effects 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000013223 sprague-dawley female rat Methods 0.000 description 1
- 238000012453 sprague-dawley rat model Methods 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 125000004044 trifluoroacetyl group Chemical group FC(C(=O)*)(F)F 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- PQDJYEQOELDLCP-UHFFFAOYSA-N trimethylsilane Chemical compound C[SiH](C)C PQDJYEQOELDLCP-UHFFFAOYSA-N 0.000 description 1
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/04—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/16—Oxytocins; Vasopressins; Related peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/23—Luteinising hormone-releasing hormone [LHRH]; Related peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S930/00—Peptide or protein sequence
- Y10S930/01—Peptide or protein sequence
- Y10S930/13—Luteinizing hormone-releasing hormone; related peptides
Definitions
- the present invention relates to peptides which inhibit the release of gonadotropins by the pituitary gland in mammalians, including humans and to methods of preventing ovulation and/or inhibiting the release of steroids. More particularly, the present invention is directed to peptides which inhibit gonadal function and the release of the steroidal hormones, progesterone and testosterone. The invention also relates to non-toxic salts of the peptides according to the invention.
- the pituitary gland is attached by a stalk to the region in the base of the brain known as the hypothalamus.
- follicle stimulating hormone (FSH) and luteinizing hormone (LH) are released by the pituitary gland.
- FSH follicle stimulating hormone
- LH luteinizing hormone
- gonadotropins gonadotropic hormones
- GnRH The hypothalamic hormone which acts as a releasing factor for LH is referred to herein as GnRH although it has also been referred to as LH-RH and as LRF.
- GnRH has been isolated and characterized as a decapeptide having the following structure:
- Peptides are compounds which contain two or more amino acids in which the carboxyl group of one acid is linked to the amino group of the other acid.
- the formula for GnRH, as represented above, is in accordance with conventional representation of peptides where the amino group appears to the left and the carboxyl group to the right. The position of the amino acid residue is identified by numbering the amino acid residues from left to right. In the case of GnRH, the hydroxyl portion of the carboxyl group of glycine has been replaced with an amino group (NH 2 ).
- the abbreviations for the individual amino acid residues above are conventional and are based on the trivial name of the amino acid, e.g.
- p-Glu is pyroglutamic acid
- His is histidine
- Trp is tryptophan
- Ser is serine
- Tyr is tyrosine
- Gly is glycine
- Leu is Leucine
- Arg is arginine
- Pro proline
- Phe is phenylalanine
- Ala is alanine.
- amino acids together with valine, isoleucine, threonine, lysine, aspartic acid, asparagine, glutamine, cysteine, methionine, phenylalanine, and proline are generally considered to be the common, naturally occurring amino acids.
- amino acids of the peptides of the invention are of the L-configuration unless noted otherwise.
- GnRH is considered suitable for the treatment of those cases of infertility where a functional defect resides in the hypothalmus.
- GnRH analogs that are antagonistic to the normal function of GnRH have been used to prevent ovulation.
- analogs of GnRH which are antagonistic to GnRH are being investigated for their potential use as a contraceptive or for regulating conception periods. It is desired to provide peptides which are strongly antagonistic to endogenous GnRH and which prevent secretion of LH and the release of steroids by the gonads of mammals.
- Decapeptides having this effect are disclosed in U.S. Patent 4253997 (Sarantakis). These decapeptides are characterized by D-p-Glu and D-NAL(1) 3 with D-NAL(1) as one of a variety of residues which may be present at the 6-position.
- the peptide: disclosed in Example 2 of Sarantakis produces 93% (1/14) ovulation inhibition when administered to mature Sprague-Dawley rats of body weight 242 ⁇ 4.7 g at a dosage of 1000 ⁇ g. Results at smaller but nevertheless quite large dosage levels of 500 pg and 375 pg are, respectively, 70% (6/20) and 17% (5/6).
- Peptides having LH-RH antagonism are also disclosed in U.K. Patent Application No. 2053229A. These peptides are LH-RH analogs differing from LH-RH in having D-Trp or D-Phe (there may optionally be substitution of D-Phe) at the 1- and 6-positions and substituted D-Phe at the 2-position.
- the present invention provides peptides which inhibit the release of gonadotropins in mammalians, including humans, and also provides methods for inhibiting the release of steroids by the gonads of male and female mammalians.
- the improved GnRH analogs are antagonistic to GnRH and have an inhibitory effect on the reproduction processes of mammalians. These analogs may be used to inhibit the production of gonadotropins and sex hormones under various circumstances including precocious puberty, hormone dependent neoplasia, dysmenorrhea and endometriosis.
- peptides have been synthesized which strongly inhibit the secretion of gonadotropins by the pituitary gland of mammalians, including humans, and/or inhibit the release of steroids by the gonads.
- These peptides are analogs of GnRH wherein there is a 1-position substitution in the form of dehydroproline, a 3- and/or 6-position substitution in the form of ⁇ -(naphthyl) D-alanine (hereinafter ⁇ -D-NAL) and preferably a substituent is also present in the 2-position.
- the 1-position substituent may be modified so that its alpha amino group contains an acyl group, such as formyl, acetyl, acrylyl, vinylacetyl or benzoyl.
- Dehydro L-Pro is preferred in the 1-position.
- Modified D-Phe is preferably present in the 2-position and provides increased antagonistic activity as a result of the specific modifications present in the benzene ring.
- Single substitutions for hydrogen are preferably made in the para- or 4-position, and double substitutions are made preferably in the 2,4- or the 3,4-positions.
- substitutions are most preferably selected from chloro, dichloro, methyl, fluoro, difluoro, trifluoromethyl, methoxy, bromo, dibromo, nitro, dinitro, acetylamino and methyl mercapto.
- ⁇ -D-NAL is preferred in the 3-position; however, D-Trp may be used.
- p-D-NAL or imBzl D-His or D-Trp or some other lipophilic aromatic D-amino acid is preferred in the 6-position, although any D-isomer amino acid, particularly naturally occurring amino acids unsubstituted or substituted, e.g. D-Leu and D-Ser(O-t But), may be used.
- the substitutions in the 7- and 10-positions are optional.
- peptides are highly potent to inhibit release of LH, they are often referred to as GnRH antagonists.
- the peptides inhibit ovulation of female mammals when administered at very low levels at proestrous and are also effective to cause resorption of fertilized eggs if administered shortly after conception. These peptides are also effective for the contraceptive treatment of male mammals.
- the peptides of the present invention are represented by the following formula: wherein X is hydrogen or an acyl group having 7 or less carbon atoms; R 1 is dehydro Pro or dehydro D-Pro; R 2 is D-Phe, CI-D-Phe, dichloro-D-Phe, CF 3 -D-Phe, F-D-Phe, difluoro-D-Phe, AcNH-D-Phe, N0 2 -D-Phe, dinitro-D-Phe, Br-D-Phe, dibromo-D-Phe, CH 3 -S-D-Phe, OCH 3- D-Phe or CH 3 -D-Phe; R 3 is D-Trp or ⁇ -D-NAL; R 4 is a D-isomer aromatic amino acid or ⁇ -D-NAL; R 5 is Leu or N°Me-Leu; and R 6 is Gly-NH 2 or NHCH 2 CH 3 ; provided however that either R 3
- dehydro Pro 3,4 dehydroproline, C 5 H 7 0 2 N, and when X is an acyl radical, it is attached to the nitrogen.
- ⁇ -D-NAL is meant the D-isomer of alanine which is substituted by naphthyl on the ⁇ -carbon atom, which may also be designated 3- ⁇ -D-NAL.
- ⁇ -D-2NAL is employed; however ⁇ -D-1 NAL may also be used.
- the peptides of the present invention can be synthesized by classical solution synthesis or by a solid phase technique using a chloromethylated resin, a methylbenzhydrylamine resin (MBHA) or a benzhydryl- amine (BHA) resin.
- the solid phase synthesis is conducted in a manner to stepwise add the amino acids in the chain in the manner set forth in detail in the U.S. Patent No. 4,211,693.
- Side-chain protecting groups are preferably added to Ser, Tyr, Arg and His before these amino acids are coupled to the chain being built upon the resin. Such a method provides the fully protected intermediate peptidoresin.
- X 1 is an a-amino protecting group of the type known to be useful in the art in the stepwise synthesis of polypeptides and when X in the desired peptide composition is a particular acyl group, that group may be used as the protecting group.
- acyl-type protecting groups such as formyl (For), trifluoroacetyl, phthalyl, p-toluenesulfonyl (Tos), benzoyl (Bz), benzensulfonyl, o-nitrophenylsulfenyl (Nps), tritylsulfenyl, o-nitrophenoxyacetyl, acrylyl (Acr), chloroacetyl, acetyl (Ac) and a-chlorobutyryl; (2) aromatic urethan-type protecting groups, e.g., benzyloxycarbonyl (Z).
- acyl-type protecting groups such as formyl (For), trifluoroacetyl, phthalyl, p-toluenesulfonyl (Tos), benzoyl (Bz), benzensulfonyl, o-nitrophenylsulfenyl (Nps),
- benzyloxycarbonyl such as p-chloro-benzyloxycarbonyl, p-nitrobenzyloxycarbonyl, p-bromobenzyloxycarbonyl and p-methoxybenzyloxycarbonyl; (3) aliphatic urethan protecting groups, such as tertbutyloxycarbonyl (Boc), diisopropylmethoxycarbonyl, isopropyloxycarbonyl, ethoxycarbonyl and allyloxycarbonyl; (4) cycloalkyl urethan-type protecting groups, such as cyclopentyloxycarbonyl, adamantyloxycarbonyl and cyclohexyloxycarbonyl; (5) thiourethan-type protecting groups, such as phenylthiocarbonyl; (6) alkyl-type protecting groups, such as allyl (Aly), triphenylmethyl(trityl) and benzyl (Bzl); (7) trial
- X 2 is a protecting group for the alcoholic hydroxyl group of Ser and is selected from the group consisting of acetyl, benzoyl, tetrahydropyranyl, tert-butyl, trityl, benzyl and 2,6-dichlorobenzyl. Benzyl is preferred.
- X 3 is a protecting group for the phenolic hydroxyl group of Tyr selected from the group consisting of tetrahydropyranyl, tert-butyl, trityl, benzyl, benzyloxycarbonyl, 4-bromobenzyloxycarbonyl and 2,6-dichlorobenzyl. 2,6-dichlorobenzyl is preferred.
- X 4 is a protecting group for the nitrogen atoms of Arg and is selected from the group consisting of nitro, Tos, benzyloxycarbonyl, adamantyloxycarbonyl, and Boc; alternatively X 4 may be hydrogen, which means there are no protecting groups on the side chain nitrogen atoms of arginine. Tos is preferred.
- X 5 is selected from the group consisting of Gly-O-CH 2 -[resin support]; O-CH 2 -[resin support]; Gly-NH-[resin support]; and OH, ester, amide and hydrazide, of Gly or attached directly to Pro.
- the criterion for selecting side chain protecting groups for X Z- X 4 is that the protecting group must be stable to the reagent under the reaction conditions selected for removing the a-amino protecting group at each step of the synthesis.
- the protecting group must not be split off under coupling conditions, and the protecting group must be removable upon completion of the synthesis of the desired amino acid sequence under reaction conditions that will not alter the peptide chain.
- the ester moiety of one of the many functional groups of the polystyrene resin support is being represented.
- the X 5 group is Gly-NH-[resin support]
- an amide bond connects Gly to BHA resin or to a MBHA resin.
- X When X is acetyl, formyl, acrylyl, vinylacetyl, benzoyl or some other acyl group having 7 carbon atoms or less, it may be employed as the X 1 protecting group for the a-amino group of R 1 in which case it can be added before coupling of the last amino acid to the peptide chain.
- a reaction may be carried out with the peptide on the resin, e.g. reacting with acetic acid in the presence of dicyclohexyl carbodiimide (DCC) or preferably with acetic anhydride.
- DCC dicyclohexyl carbodiimide
- the fully protected peptide can be cleaved from the chloromethylated resin support by ammonolysis, as is well known in the art, to yield the fully protected amide intermediate.
- Deprotection of the peptide, as well as cleavage of the peptide from the benzhydryfamine resin, can take place at 0°C with hydrofluoric acid (HF).
- Anisole is preferably added to the peptide prior to treatment with HF. After the removal of HF, under vacuum, the cleaved, deprotected peptide is conveniently treated with ether, decanted, taken-up in dilute acetic acid and lyophilized.
- Purification of the peptide is effected by ion exchange chromotography on a CMC column, followed by partition chromotography using the elution system: n-butanol; 0.1 N acetic acid (1:1 volume ratio) on a column packed with Sephadex G-25, or by using HPLC, as known in the art.
- the pepetides of the invention are effective at levels of less than 200 micrograms per kilogram of body weight, when administered at about noon on the day of proestrous, to prevent ovulation in female rats. For prolonged suppression of ovulation, it may be necessary to use dosage levels in the range of from about 0.1 to about 5 milligrams per kilogram of body weight.
- These antagonists are also effective as contraceptives when administered to male mammals on a regular basis. Since these compounds will reduce testosterone levels (an undesired consequence in the normal, sexually active male), it may be reasonable to administer replacement dosages of testosterone along with the GnRH antogonist. These antagonists can also be used to regulate the production of gonadotropines and sex steroids for other purposes as indicated hereinbefore.
- a BHA resin is used, and Boc-protected Gly is coupled to the resin over a 2-hour period in CH 2 CI 2 using a 3-fold excess of Boc derivative and DCC as an activating reagent.
- the glycine residue attaches to the BHA residue by an amide bond.
- step 13 an aliquot is taken for a ninhydrin test: if the test is negative, go back to step 1 for coupling of the next amino acid; if the test is positive or slightly positive, go back and repeat steps 9 through 13.
- Na BocB-D-NAL is prepared by a method known in the art, e.g. as described in detail in U.S. Patent No. 4,234,571, issued November 18,1980.
- the side chain of Arg is protected with Tos.
- OBzl is used as a side chain protecting group for the hydroxyl group of Ser, and 2-6 dichlorobenzyl is used as the side chain protecting group for the hydroxyl group of Tyr.
- N-acetyl-dehydro Pro is introduced as the final amino acid.
- Boc-Arg(Tos) and Boc-D-Trp which have low solubility in CH 2 CI 2 , are coupled using DMF CH 2 CI 2 mixtures.
- the peptide is judged to be homogeneous using thin layer chromatography and several different solvent systems, as well as by using reversed-phase high pressure liquid chromatography and an aqueous triethylammonium phosphate solution plus acetonitrile.
- Amino acid analysis of the resultant, purified peptide is consistent with the formula for the prepared structure, showing substantially integer-values for each amino acid in the chain.
- the pepetide assayed in vitro and in vivo.
- the in vitro test is made using dissociated rat pituitary cells maintained in culture for 4 days prior to the assay.
- the levels of LH mediated in response to the application of peptides is assayed by specific radioimmunoassay for rat LH.
- Control dishes of cells only receive a measure which is 3 nanomplar in GnRH: experimental dishes receive a measure 3 nanomolar in GnRH plus a measure having a concentration of test peptide ranging from 0.01 to 3 nanomolar.
- the amount of LH secreted in the samples treated only with GnRH is compared with that secreted by the samples treated with the peptide plus GnRH.
- Results are calculated to determine the molar concentration ratio of test peptide to GnRH (antagonist/GnRH) required to reduce the amount of LH released by 3 nanomolar GnRH to 50 percent of the control value (ICR 50 ) which is found to be 0.005.
- the peptide described hereinabove is also used to determine effectiveness to prevent ovulation in female rats.
- a specified number of mature female Sprague-Dawley rats each having a body weight from 225 to 250 grams, is injected with 5 micrograms of peptide in corn oil at about noon on the day of proestrous. Proestrous is the afternoon before estrous (ovulation).
- a separate female rat group is used as a control to which the peptide is not administered.
- Each of the control rat females has ovulation at estrous; of the rats treated, none of them ovulated.
- the peptide is considered to be significantly effective to prevent ovulation of female rats at a very low dosage, and the peptide is considered to be totally effective at a dose of one milligram.
- Peptide No. 12 is similarly synthesized and purified. After amino acid analysis is completed, in vitro testing in similar fashion shows the peptide to have an ICR 50 of 0.008. /n vivo testing at a dosage of 2.5 pg. shows that 0 out of 10 rats ovulate. Peptide No. 8 is similarly tested in vivo at a dosage of 5 ⁇ g., and only 2 out of 10 rats ovulate. Testing of Peptide No. 2 shows that zero out of 10 rats ovulate at a dosage of 5 pg. and only 3 out of 10 rats ovulate at a dosage of 2.5 ⁇ g.
- the remaining peptides are similarly tested and are considered to be likewise effective to prevent ovulation of female rats at a very low dosage.
- the peptides of the invention are often administered in the form of pharmaceutically acceptable, nontoxic salts, such as acid addition salts, or of metal complexes, e.g., with zinc, barium, calcium, magnesium, aluminum or the like (which are considered as addition salts for purposes of this application), or of combinations of the two.
- acid addition salts are hydrochloride, hydrobromide, sulphate, phosphate, nitrate, oxalate, fumarate, gluconate, tannate, maleate, acetate, citrate, benzoate, succinate, alginate, pamoate, malate, ascorbate, tartrate and the like.
- the tablet may contain a pharmaceutically-acceptable diluent which includes a binder, such as tragacanth, corn starch or gelatin; a disintegrating agent, such as alginic acid; and a lubricant, such as magnesium stearate.
- a pharmaceutically-acceptable diluent which includes a binder, such as tragacanth, corn starch or gelatin; a disintegrating agent, such as alginic acid; and a lubricant, such as magnesium stearate.
- sweetening and/or flavoring may be used as part of the pharmaceutically-acceptable diluent, and intravenous administration in isotonic saline, phosphate buffer solutions or the like may be effected.
- the peptides of the invention should be administered under the guidance of a physician, and pharmaceutical compositions will usually contain the peptide in conjunction with a conventional, pharmaceutically-acceptable carrier. Usually, the dosage will be from about 0.1 to about 100 micrograms of the peptide per kilogram of the body weight of the host. Overall, treatment of subjects with these peptides is generally carried out in the same manner as the clinical treatment using other antagonists of GnRH.
- peptides can be administered to mammals intravenously, subcutaneously, intramuscularly, orally, intranasally or intravaginally to achieve fertility inhibition and/or control. Effective dosages will vary with the form of administration and the particular species of mammal being treated.
- An example of one typical dosage form is a physiological saline solution containing the peptide which solution is administered to provide a dose in the range of about 0.1 to 5 mg/kg of body weight.
- Oral administration of the peptide may be given in either solid form or liquid form.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Endocrinology (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- The present invention relates to peptides which inhibit the release of gonadotropins by the pituitary gland in mammalians, including humans and to methods of preventing ovulation and/or inhibiting the release of steroids. More particularly, the present invention is directed to peptides which inhibit gonadal function and the release of the steroidal hormones, progesterone and testosterone. The invention also relates to non-toxic salts of the peptides according to the invention.
- The pituitary gland is attached by a stalk to the region in the base of the brain known as the hypothalamus. In particular, follicle stimulating hormone (FSH) and luteinizing hormone (LH), sometimes referred to as gonadotropins or gonadotropic hormones, are released by the pituitary gland. These hormones, in combination, regulate the functioning of the gonads to produce testosterone in the testes and progesterone and estrogen in the ovaries, and also regulate the production and maturation of gametes.
- The release of a hormone by the anterior lobe of the pituitary gland usually requires a prior release of another class of hormones produced by the hypothalamus. One of the hypothalamic hormones acts as a factor that triggers the release of the gonadotropic hormones, particularly LH. The hypothalamic hormone which acts as a releasing factor for LH is referred to herein as GnRH although it has also been referred to as LH-RH and as LRF. GnRH has been isolated and characterized as a decapeptide having the following structure:
- Peptides are compounds which contain two or more amino acids in which the carboxyl group of one acid is linked to the amino group of the other acid. The formula for GnRH, as represented above, is in accordance with conventional representation of peptides where the amino group appears to the left and the carboxyl group to the right. The position of the amino acid residue is identified by numbering the amino acid residues from left to right. In the case of GnRH, the hydroxyl portion of the carboxyl group of glycine has been replaced with an amino group (NH2). The abbreviations for the individual amino acid residues above are conventional and are based on the trivial name of the amino acid, e.g. p-Glu is pyroglutamic acid, His is histidine, Trp is tryptophan, Ser is serine, Tyr is tyrosine, Gly is glycine, Leu is Leucine, Arg is arginine, Pro is proline, Phe is phenylalanine and Ala is alanine. These amino acids together with valine, isoleucine, threonine, lysine, aspartic acid, asparagine, glutamine, cysteine, methionine, phenylalanine, and proline are generally considered to be the common, naturally occurring amino acids. Except for glycine, amino acids of the peptides of the invention are of the L-configuration unless noted otherwise.
- It is well known that the substitution of D-amino acids for Gly in the 6-position of the GnRH decapeptide provides a peptide material having from about 1 to 35 times greater potency than does GnRH to effect the release of LH and other gonadotropins by the pituitary gland of mammalians. It is taught by K.U. Prasad et al. J. Med Chem., Vol. 19, 492 (1976) that greater potency is also achieved by the substitution in the 3-position of 3-(1-naphthyl) Ala. The releasing effect is obtained when the GnRH analog is administered to a mammalian intravenously, subcutaneously, intramuscularly, orally, intranasally or intravaginally.
- It is also known that substitution of various amino acids for His (or the deletion of His) at the 2-position of the GnRH decapeptide produces analogs having an inhibitory effect on the release of LH and other gonadotropins by the pituitary gland of mammalians.
- Some female mammalians who have no ovulatory cycle and who show no pituitary or ovarian defect begin to secrete normal amounts of the gonadotropins LH and FSH after the appropriate administration of GnRH. Thus, the administration of GnRH is considered suitable for the treatment of those cases of infertility where a functional defect resides in the hypothalmus.
- There are also reasons for desiring to prevent ovulation in female mammalians, and the administration of GnRH analogs that are antagonistic to the normal function of GnRH have been used to prevent ovulation. For this reason, analogs of GnRH which are antagonistic to GnRH are being investigated for their potential use as a contraceptive or for regulating conception periods. It is desired to provide peptides which are strongly antagonistic to endogenous GnRH and which prevent secretion of LH and the release of steroids by the gonads of mammals.
- Decapeptides having this effect are disclosed in U.S. Patent 4253997 (Sarantakis). These decapeptides are characterized by D-p-Glu and D-NAL(1)3 with D-NAL(1) as one of a variety of residues which may be present at the 6-position. In illustration of the activity of these peptides in ovulation inhibition, the peptide:
- Peptides having LH-RH antagonism are also disclosed in U.K. Patent Application No. 2053229A. These peptides are LH-RH analogs differing from LH-RH in having D-Trp or D-Phe (there may optionally be substitution of D-Phe) at the 1- and 6-positions and substituted D-Phe at the 2-position.
- The present invention provides peptides which inhibit the release of gonadotropins in mammalians, including humans, and also provides methods for inhibiting the release of steroids by the gonads of male and female mammalians. The improved GnRH analogs are antagonistic to GnRH and have an inhibitory effect on the reproduction processes of mammalians. These analogs may be used to inhibit the production of gonadotropins and sex hormones under various circumstances including precocious puberty, hormone dependent neoplasia, dysmenorrhea and endometriosis.
- Generally, in accordance with the present invention, peptides have been synthesized which strongly inhibit the secretion of gonadotropins by the pituitary gland of mammalians, including humans, and/or inhibit the release of steroids by the gonads. These peptides are analogs of GnRH wherein there is a 1-position substitution in the form of dehydroproline, a 3- and/or 6-position substitution in the form of β-(naphthyl) D-alanine (hereinafter β-D-NAL) and preferably a substituent is also present in the 2-position. The 1-position substituent may be modified so that its alpha amino group contains an acyl group, such as formyl, acetyl, acrylyl, vinylacetyl or benzoyl. Dehydro L-Pro is preferred in the 1-position. Modified D-Phe is preferably present in the 2-position and provides increased antagonistic activity as a result of the specific modifications present in the benzene ring. Single substitutions for hydrogen are preferably made in the para- or 4-position, and double substitutions are made preferably in the 2,4- or the 3,4-positions. The substitutions are most preferably selected from chloro, dichloro, methyl, fluoro, difluoro, trifluoromethyl, methoxy, bromo, dibromo, nitro, dinitro, acetylamino and methyl mercapto. β-D-NAL is preferred in the 3-position; however, D-Trp may be used. p-D-NAL or imBzl D-His or D-Trp or some other lipophilic aromatic D-amino acid is preferred in the 6-position, although any D-isomer amino acid, particularly naturally occurring amino acids unsubstituted or substituted, e.g. D-Leu and D-Ser(O-t But), may be used. The substitutions in the 7- and 10-positions are optional.
- Because these peptides are highly potent to inhibit release of LH, they are often referred to as GnRH antagonists. The peptides inhibit ovulation of female mammals when administered at very low levels at proestrous and are also effective to cause resorption of fertilized eggs if administered shortly after conception. These peptides are also effective for the contraceptive treatment of male mammals.
- More specifically, the peptides of the present invention are represented by the following formula:
- By dehydro Pro is meant 3,4 dehydroproline, C5H702N, and when X is an acyl radical, it is attached to the nitrogen. By β-D-NAL is meant the D-isomer of alanine which is substituted by naphthyl on the β-carbon atom, which may also be designated 3-β-D-NAL. Preferably β-D-2NAL is employed; however β-D-1 NAL may also be used.
- The peptides of the present invention can be synthesized by classical solution synthesis or by a solid phase technique using a chloromethylated resin, a methylbenzhydrylamine resin (MBHA) or a benzhydryl- amine (BHA) resin. The solid phase synthesis is conducted in a manner to stepwise add the amino acids in the chain in the manner set forth in detail in the U.S. Patent No. 4,211,693. Side-chain protecting groups, as are well known in the art, are preferably added to Ser, Tyr, Arg and His before these amino acids are coupled to the chain being built upon the resin. Such a method provides the fully protected intermediate peptidoresin.
- The intermediates of the invention may be represented as:
- X2 is a protecting group for the alcoholic hydroxyl group of Ser and is selected from the group consisting of acetyl, benzoyl, tetrahydropyranyl, tert-butyl, trityl, benzyl and 2,6-dichlorobenzyl. Benzyl is preferred.
- X3 is a protecting group for the phenolic hydroxyl group of Tyr selected from the group consisting of tetrahydropyranyl, tert-butyl, trityl, benzyl, benzyloxycarbonyl, 4-bromobenzyloxycarbonyl and 2,6-dichlorobenzyl. 2,6-dichlorobenzyl is preferred.
- X4 is a protecting group for the nitrogen atoms of Arg and is selected from the group consisting of nitro, Tos, benzyloxycarbonyl, adamantyloxycarbonyl, and Boc; alternatively X4 may be hydrogen, which means there are no protecting groups on the side chain nitrogen atoms of arginine. Tos is preferred.
- X5 is selected from the group consisting of Gly-O-CH2-[resin support]; O-CH2-[resin support]; Gly-NH-[resin support]; and OH, ester, amide and hydrazide, of Gly or attached directly to Pro.
- The criterion for selecting side chain protecting groups for XZ-X4 is that the protecting group must be stable to the reagent under the reaction conditions selected for removing the a-amino protecting group at each step of the synthesis. The protecting group must not be split off under coupling conditions, and the protecting group must be removable upon completion of the synthesis of the desired amino acid sequence under reaction conditions that will not alter the peptide chain.
- When the X5 group is Gly-O-CH2-[resin support] or O-CH2-[resin support], the ester moiety of one of the many functional groups of the polystyrene resin support is being represented. When the X5 group is Gly-NH-[resin support], an amide bond connects Gly to BHA resin or to a MBHA resin.
- When X is acetyl, formyl, acrylyl, vinylacetyl, benzoyl or some other acyl group having 7 carbon atoms or less, it may be employed as the X1 protecting group for the a-amino group of R1 in which case it can be added before coupling of the last amino acid to the peptide chain. Alternatively, a reaction may be carried out with the peptide on the resin, e.g. reacting with acetic acid in the presence of dicyclohexyl carbodiimide (DCC) or preferably with acetic anhydride.
- The fully protected peptide can be cleaved from the chloromethylated resin support by ammonolysis, as is well known in the art, to yield the fully protected amide intermediate. Deprotection of the peptide, as well as cleavage of the peptide from the benzhydryfamine resin, can take place at 0°C with hydrofluoric acid (HF). Anisole is preferably added to the peptide prior to treatment with HF. After the removal of HF, under vacuum, the cleaved, deprotected peptide is conveniently treated with ether, decanted, taken-up in dilute acetic acid and lyophilized.
- Purification of the peptide is effected by ion exchange chromotography on a CMC column, followed by partition chromotography using the elution system: n-butanol; 0.1 N acetic acid (1:1 volume ratio) on a column packed with Sephadex G-25, or by using HPLC, as known in the art.
- The pepetides of the invention are effective at levels of less than 200 micrograms per kilogram of body weight, when administered at about noon on the day of proestrous, to prevent ovulation in female rats. For prolonged suppression of ovulation, it may be necessary to use dosage levels in the range of from about 0.1 to about 5 milligrams per kilogram of body weight. These antagonists are also effective as contraceptives when administered to male mammals on a regular basis. Since these compounds will reduce testosterone levels (an undesired consequence in the normal, sexually active male), it may be reasonable to administer replacement dosages of testosterone along with the GnRH antogonist. These antagonists can also be used to regulate the production of gonadotropines and sex steroids for other purposes as indicated hereinbefore.
- The following Example is intended further to illustrate the invention by way of example only.
-
-
- A BHA resin is used, and Boc-protected Gly is coupled to the resin over a 2-hour period in CH2CI2 using a 3-fold excess of Boc derivative and DCC as an activating reagent. The glycine residue attaches to the BHA residue by an amide bond.
-
- After step 13, an aliquot is taken for a ninhydrin test: if the test is negative, go back to step 1 for coupling of the next amino acid; if the test is positive or slightly positive, go back and repeat steps 9 through 13.
- The above schedule is used for coupling of each of the amino acids of the peptide of the invention after the first amino acid has been attached. Na Boc protection is used for each of the remaining amino acids throughout the synthesis. Na BocB-D-NAL is prepared by a method known in the art, e.g. as described in detail in U.S. Patent No. 4,234,571, issued November 18,1980. The side chain of Arg is protected with Tos. OBzl is used as a side chain protecting group for the hydroxyl group of Ser, and 2-6 dichlorobenzyl is used as the side chain protecting group for the hydroxyl group of Tyr. N-acetyl-dehydro Pro is introduced as the final amino acid. Boc-Arg(Tos) and Boc-D-Trp, which have low solubility in CH2CI2, are coupled using DMF CH2CI2 mixtures.
- The cleavage of the peptide from the resin and complete deprotection of the side chains takes place very readily at 0°C. with HF. Anisole is added as a scavenger prior to HF treatment. After the removal of HF under vacuum, the resin is extracted with 50% acetic acid, and the washings are lyophilized to provide a crude peptide powder.
- Purification of the peptide is then effected by ion exchange chromatography on CMC (Whatman CM 32, using a gradient of 0.05 to 0.3M NH40Ac in 50/50 methanol/water) followed by partition chromatography in a gel filtration column using the elution system: n-Butanol; 0.1 N Acetic acid (1:1-volume ratio).
- The peptide is judged to be homogeneous using thin layer chromatography and several different solvent systems, as well as by using reversed-phase high pressure liquid chromatography and an aqueous triethylammonium phosphate solution plus acetonitrile. Amino acid analysis of the resultant, purified peptide is consistent with the formula for the prepared structure, showing substantially integer-values for each amino acid in the chain. The optical rotation is measured on a photoelectric polarimeter as [a]D 22=-16.1°±1 (c=1, 50% acetic acid).
- The pepetide assayed in vitro and in vivo. The in vitro test is made using dissociated rat pituitary cells maintained in culture for 4 days prior to the assay. The levels of LH mediated in response to the application of peptides is assayed by specific radioimmunoassay for rat LH. Control dishes of cells only receive a measure which is 3 nanomplar in GnRH: experimental dishes receive a measure 3 nanomolar in GnRH plus a measure having a concentration of test peptide ranging from 0.01 to 3 nanomolar. The amount of LH secreted in the samples treated only with GnRH is compared with that secreted by the samples treated with the peptide plus GnRH. Results are calculated to determine the molar concentration ratio of test peptide to GnRH (antagonist/GnRH) required to reduce the amount of LH released by 3 nanomolar GnRH to 50 percent of the control value (ICR50) which is found to be 0.005.
- The peptide described hereinabove is also used to determine effectiveness to prevent ovulation in female rats. In this test, a specified number of mature female Sprague-Dawley rats, each having a body weight from 225 to 250 grams, is injected with 5 micrograms of peptide in corn oil at about noon on the day of proestrous. Proestrous is the afternoon before estrous (ovulation). A separate female rat group is used as a control to which the peptide is not administered. Each of the control rat females has ovulation at estrous; of the rats treated, none of them ovulated. As a result, the peptide is considered to be significantly effective to prevent ovulation of female rats at a very low dosage, and the peptide is considered to be totally effective at a dose of one milligram.
- Peptide No. 2 is similarly synthesized and purified. After amino acid analysis is completed, the optical rotation is measured on a photoelectric polarimeter as [α]D22=69.3°±1 (C=1, 50% acetic acid). In vitro testing in similar fashion shows the peptide to have an ICR50 of 0.011. /n vivo testing at a dosage of 5 pg. shows that 0 out of 10 rats ovulate, and at a dosage of 2.5 pg. only 2 out of 10 rats ovulate.
- Peptide No. 12 is similarly synthesized and purified. After amino acid analysis is completed, in vitro testing in similar fashion shows the peptide to have an ICR50 of 0.008. /n vivo testing at a dosage of 2.5 pg. shows that 0 out of 10 rats ovulate. Peptide No. 8 is similarly tested in vivo at a dosage of 5 µg., and only 2 out of 10 rats ovulate. Testing of Peptide No. 2 shows that zero out of 10 rats ovulate at a dosage of 5 pg. and only 3 out of 10 rats ovulate at a dosage of 2.5 µg.
- The remaining peptides are similarly tested and are considered to be likewise effective to prevent ovulation of female rats at a very low dosage.
- The peptides of the invention are often administered in the form of pharmaceutically acceptable, nontoxic salts, such as acid addition salts, or of metal complexes, e.g., with zinc, barium, calcium, magnesium, aluminum or the like (which are considered as addition salts for purposes of this application), or of combinations of the two. Illustrative of such acid addition salts are hydrochloride, hydrobromide, sulphate, phosphate, nitrate, oxalate, fumarate, gluconate, tannate, maleate, acetate, citrate, benzoate, succinate, alginate, pamoate, malate, ascorbate, tartrate and the like. If the active ingredient is to be administered in tablet form, the tablet may contain a pharmaceutically-acceptable diluent which includes a binder, such as tragacanth, corn starch or gelatin; a disintegrating agent, such as alginic acid; and a lubricant, such as magnesium stearate. If administration in liquid form is desired, sweetening and/or flavoring may be used as part of the pharmaceutically-acceptable diluent, and intravenous administration in isotonic saline, phosphate buffer solutions or the like may be effected.
- The peptides of the invention should be administered under the guidance of a physician, and pharmaceutical compositions will usually contain the peptide in conjunction with a conventional, pharmaceutically-acceptable carrier. Usually, the dosage will be from about 0.1 to about 100 micrograms of the peptide per kilogram of the body weight of the host. Overall, treatment of subjects with these peptides is generally carried out in the same manner as the clinical treatment using other antagonists of GnRH.
- These peptides can be administered to mammals intravenously, subcutaneously, intramuscularly, orally, intranasally or intravaginally to achieve fertility inhibition and/or control. Effective dosages will vary with the form of administration and the particular species of mammal being treated. An example of one typical dosage form is a physiological saline solution containing the peptide which solution is administered to provide a dose in the range of about 0.1 to 5 mg/kg of body weight. Oral administration of the peptide may be given in either solid form or liquid form.
- Although the invention has been described with regard to its preferred embodiments, it should be understood that changes and modifications as would be obvious to one having the ordinary skill in this art may be made without departing from the scope of the invention which is set forth in the claims which are appended hereto. For example, other substitutions known in the art which do not significantly detract from the effectiveness of the peptides may be employed in the peptides of the invention.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT82301612T ATE14886T1 (en) | 1981-04-21 | 1982-03-26 | GNRH ANTAGONISTS. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US256063 | 1981-04-21 | ||
US06/256,063 US4409208A (en) | 1980-04-15 | 1981-04-21 | GnRH antagonists |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0063423A1 EP0063423A1 (en) | 1982-10-27 |
EP0063423B1 true EP0063423B1 (en) | 1985-08-14 |
Family
ID=22970967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP82301612A Expired EP0063423B1 (en) | 1981-04-21 | 1982-03-26 | Gnrh antagonists |
Country Status (20)
Country | Link |
---|---|
US (1) | US4409208A (en) |
EP (1) | EP0063423B1 (en) |
JP (1) | JPS57181047A (en) |
KR (1) | KR830010052A (en) |
AT (1) | ATE14886T1 (en) |
AU (1) | AU551892B2 (en) |
CA (1) | CA1241950A (en) |
CS (1) | CS228924B2 (en) |
DD (1) | DD202694A5 (en) |
DE (1) | DE3265349D1 (en) |
DK (1) | DK151033C (en) |
ES (1) | ES511525A0 (en) |
GR (1) | GR75542B (en) |
HU (1) | HU186007B (en) |
IE (1) | IE52442B1 (en) |
IL (1) | IL65371A (en) |
NO (1) | NO821274L (en) |
NZ (1) | NZ200125A (en) |
PH (1) | PH18965A (en) |
ZA (1) | ZA822053B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58162562A (en) * | 1982-03-05 | 1983-09-27 | シンテツクス・(ユ−・エス・エイ)・インコ−ポレ−テツド | Lhrh nonapeptide and decapeptide analog |
IL70888A0 (en) * | 1983-03-10 | 1984-05-31 | Salk Inst For Biological Studi | Gn rh antagonist peptides and pharmaceutical compositions containing them |
US4547370A (en) * | 1983-11-29 | 1985-10-15 | The Salk Institute For Biological Studies | GnRH Antagonists |
IL74827A (en) * | 1984-05-21 | 1989-06-30 | Salk Inst For Biological Studi | Peptides active as gnrh antagonists and pharmaceutical compositions containing them |
DE3634435A1 (en) * | 1986-10-09 | 1988-04-14 | Hoechst Ag | ANALOGA OF GONADOLIBERIN WITH IMPROVED SOLUBILITY, METHOD FOR THE PRODUCTION THEREOF, THE CONTAINERS THEREOF AND THEIR USE |
WO1988007056A1 (en) * | 1987-03-10 | 1988-09-22 | Eastern Virginia Medical Authority | METHOD AND KIT FOR CONTRACEPTION WITH GnRH-ANTAGONIST AND PROGESTIN |
US5068221A (en) * | 1989-05-09 | 1991-11-26 | Mathias John R | Treatment of motility disorders with a gnrh analog |
US5434136A (en) * | 1990-12-14 | 1995-07-18 | Mathias; John R. | Treatment of motility disorders with a GNRH analog |
US5502035A (en) * | 1993-08-06 | 1996-03-26 | Tap Holdings Inc. | N-terminus modified analogs of LHRH |
US5843901A (en) * | 1995-06-07 | 1998-12-01 | Advanced Research & Technology Institute | LHRH antagonist peptides |
ES2814343T3 (en) | 2006-10-24 | 2021-03-26 | Allergan Pharmaceuticals Int Ltd | Compositions and methods for suppressing endometrial proliferations |
WO2018177746A1 (en) | 2017-03-31 | 2018-10-04 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | A gnrh antagonist for use in the treatment of a women affected with polycystic ovary syndrome |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PH11571A (en) * | 1973-10-03 | 1978-03-31 | American Home Prod | P-gui-d-phe-trp-ser-tyr-d-ala-leu-arg-pro-gly-nh2,its non-toxic salts and method of use thereof |
US3933782A (en) * | 1974-11-14 | 1976-01-20 | American Home Products Corporation | (N-Acetyl)-Pro-D-Phe-Trp-Ser-Tyr-D-Ala-Leu-Arg-Pro-NHEt and intermediates |
NZ188987A (en) * | 1977-11-30 | 1982-02-23 | Salk Inst For Biological Studi | Peptide analogues of luteinizing hormone releasing factor |
US4234571A (en) * | 1979-06-11 | 1980-11-18 | Syntex (U.S.A.) Inc. | Nonapeptide and decapeptide derivatives of luteinizing hormone releasing hormone |
GB2053229B (en) * | 1979-06-13 | 1983-03-02 | Schally Andrew Victor | Lh-rh antagonists |
US4253997A (en) * | 1979-12-17 | 1981-03-03 | American Home Products Corporation | Anti-ovulatory decapeptides |
NZ196558A (en) * | 1980-04-15 | 1984-10-19 | Salk Inst For Biological Studi | Lrf antagonists and pharmaceutical compositions |
-
1981
- 1981-04-21 US US06/256,063 patent/US4409208A/en not_active Expired - Fee Related
-
1982
- 1982-03-24 NZ NZ200125A patent/NZ200125A/en unknown
- 1982-03-25 ZA ZA822053A patent/ZA822053B/en unknown
- 1982-03-26 DE DE8282301612T patent/DE3265349D1/en not_active Expired
- 1982-03-26 AT AT82301612T patent/ATE14886T1/en active
- 1982-03-26 EP EP82301612A patent/EP0063423B1/en not_active Expired
- 1982-03-29 IL IL65371A patent/IL65371A/en unknown
- 1982-04-06 CA CA000400559A patent/CA1241950A/en not_active Expired
- 1982-04-06 IE IE819/82A patent/IE52442B1/en unknown
- 1982-04-13 GR GR67903A patent/GR75542B/el unknown
- 1982-04-19 DK DK173082A patent/DK151033C/en active IP Right Grant
- 1982-04-20 HU HU821217A patent/HU186007B/en unknown
- 1982-04-20 NO NO821274A patent/NO821274L/en unknown
- 1982-04-20 KR KR1019820001743A patent/KR830010052A/en unknown
- 1982-04-20 ES ES511525A patent/ES511525A0/en active Granted
- 1982-04-20 JP JP57066179A patent/JPS57181047A/en active Pending
- 1982-04-20 CS CS822832A patent/CS228924B2/en unknown
- 1982-04-20 AU AU82838/82A patent/AU551892B2/en not_active Ceased
- 1982-04-21 DD DD82239196A patent/DD202694A5/en unknown
- 1982-04-21 PH PH27170A patent/PH18965A/en unknown
Also Published As
Publication number | Publication date |
---|---|
DE3265349D1 (en) | 1985-09-19 |
DK151033C (en) | 1988-03-14 |
ES8307720A1 (en) | 1983-07-16 |
NO821274L (en) | 1982-10-22 |
ZA822053B (en) | 1983-02-23 |
GR75542B (en) | 1984-07-27 |
NZ200125A (en) | 1984-10-19 |
JPS57181047A (en) | 1982-11-08 |
US4409208A (en) | 1983-10-11 |
CS228924B2 (en) | 1984-05-14 |
AU8283882A (en) | 1982-10-28 |
HU186007B (en) | 1985-05-28 |
CA1241950A (en) | 1988-09-13 |
ATE14886T1 (en) | 1985-08-15 |
PH18965A (en) | 1985-11-26 |
DK173082A (en) | 1982-10-22 |
AU551892B2 (en) | 1986-05-15 |
IE820819L (en) | 1982-10-21 |
EP0063423A1 (en) | 1982-10-27 |
KR830010052A (en) | 1983-12-24 |
DK151033B (en) | 1987-10-12 |
IL65371A0 (en) | 1982-05-31 |
ES511525A0 (en) | 1983-07-16 |
IL65371A (en) | 1985-12-31 |
IE52442B1 (en) | 1987-10-28 |
DD202694A5 (en) | 1983-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4444759A (en) | GnRH Antagonists II | |
EP0143573B1 (en) | Gnrh antagonists | |
US4565804A (en) | GnRH Antagonists VI | |
US4569927A (en) | GnRH Antagonists IV | |
EP0201260B1 (en) | Gnrh antagonists | |
EP0162575B1 (en) | Gnrh antagonists vii | |
US4652550A (en) | GnRH antagonists VII | |
IE910380A1 (en) | CYCLIC GnRH ANTAGONISTS | |
EP0063423B1 (en) | Gnrh antagonists | |
US4292313A (en) | LRF Antagonists | |
US4619914A (en) | GNRH antagonists IIIB | |
US4740500A (en) | GnRH antagonists VIII | |
EP0038135B1 (en) | Lrf antagonists | |
EP0122712A2 (en) | GnRH antagonists | |
US4377574A (en) | Contraceptive treatment of male mammals | |
US4489061A (en) | Treatment of male mammals | |
US4386074A (en) | LRF Antagonists | |
IE58287B1 (en) | Spiro-heteroazolones for treatment of diabetes complications | |
KR910002702B1 (en) | Method for producing peptide | |
WO1982000004A1 (en) | Contraceptive treatment of male mammals | |
HU189504B (en) | Process for preparing decapeptide derivatives inhibiting the release of luteinizing hormone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LU NL SE |
|
17P | Request for examination filed |
Effective date: 19830418 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 14886 Country of ref document: AT Date of ref document: 19850815 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3265349 Country of ref document: DE Date of ref document: 19850919 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19860331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19860404 Year of fee payment: 5 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19870218 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19870331 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19890326 Ref country code: AT Effective date: 19890326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19890327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19890331 Ref country code: CH Effective date: 19890331 Ref country code: BE Effective date: 19890331 |
|
BERE | Be: lapsed |
Owner name: THE SALK INSTITUTE FOR BIOLOGICAL STUDIES Effective date: 19890331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19891001 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19891130 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19891201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
EUG | Se: european patent has lapsed |
Ref document number: 82301612.6 Effective date: 19900124 |