EP0050412A2 - A process for making fuel slurries of coal in water and the product thereof - Google Patents
A process for making fuel slurries of coal in water and the product thereof Download PDFInfo
- Publication number
- EP0050412A2 EP0050412A2 EP81304187A EP81304187A EP0050412A2 EP 0050412 A2 EP0050412 A2 EP 0050412A2 EP 81304187 A EP81304187 A EP 81304187A EP 81304187 A EP81304187 A EP 81304187A EP 0050412 A2 EP0050412 A2 EP 0050412A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- slurry
- coal
- mmd
- particles
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002002 slurry Substances 0.000 title claims abstract description 72
- 239000003245 coal Substances 0.000 title claims abstract description 54
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 11
- 239000000446 fuel Substances 0.000 title abstract description 9
- 239000002245 particle Substances 0.000 claims abstract description 44
- 239000012530 fluid Substances 0.000 claims abstract description 24
- 239000002270 dispersing agent Substances 0.000 claims abstract description 23
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 239000000337 buffer salt Substances 0.000 claims abstract description 10
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 6
- -1 alkaline earth metal salt Chemical class 0.000 claims abstract description 5
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical compound [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 claims abstract description 5
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 4
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 4
- 229920005551 calcium lignosulfonate Polymers 0.000 claims abstract description 4
- 230000009974 thixotropic effect Effects 0.000 claims abstract description 4
- RYAGRZNBULDMBW-UHFFFAOYSA-L calcium;3-(2-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-(3-sulfonatopropyl)phenoxy]propane-1-sulfonate Chemical group [Ca+2].COC1=CC=CC(CC(CS([O-])(=O)=O)OC=2C(=CC(CCCS([O-])(=O)=O)=CC=2)OC)=C1O RYAGRZNBULDMBW-UHFFFAOYSA-L 0.000 claims description 3
- 239000011882 ultra-fine particle Substances 0.000 claims 3
- 229910000318 alkali metal phosphate Inorganic materials 0.000 claims 2
- 238000003860 storage Methods 0.000 abstract description 5
- 239000000499 gel Substances 0.000 description 9
- 238000002156 mixing Methods 0.000 description 8
- 239000000047 product Substances 0.000 description 7
- 238000004062 sedimentation Methods 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- 239000003250 coal slurry Substances 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 5
- 238000011068 loading method Methods 0.000 description 4
- 229910000397 disodium phosphate Inorganic materials 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000000295 fuel oil Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 239000013049 sediment Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/32—Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
- C10L1/326—Coal-water suspensions
Definitions
- This invention relates to the production of fuel slurries of coal in water which can be injected directly into a furnace as a combustible fuel.
- a high fuel value coal slurry can supplant large quantities of increasingly expensive fuel oil presently being used by utilities, ,factories, ships and other commercial enterprises. Since the inert water vehicle reduces fuel value in terms of BTU/lb (J/kg) it is desirable to minimise its concentration and maximise coal concentration for efficient use of the slurry as a fuel.
- a high coal content also improves the combustion characteristics of the slurry.
- the slurry be loadable with finely-divided coal in amounts as high, for example, as about 50% to 70% of the slurry.
- the slurry must be sufficiently fluid to be pumped and sprayed into the furnace.
- the coal particles must also be uniformly dispersed. The fluidity and dispersion must be stabley maintained during storage.
- An object of this invention is to provide an improved process for producing a slurry suitable for this purpose.
- This invention further provides a coal-water slurry which comprises:
- fluid, pourable slurries comprising up to about 70% or higher of coal stabley dispersed in water are produced by admixing finely-divided coal having a critical distribution of particle sizes, water, and an organic dispersant in a high shear rate mixer.
- An inorganic buffer salt may also be added.
- fluid as used in this specification and claims means a slurry which is fluid and pourable both at rest and in motion or a slurry which gels or flocculates into. a substantially non-pourable composition at rest and becomes pourably fluid with stirring or other application of relatively low shear stress.
- the partial size mixture necessary for fluidity of the highly loaded slurry, comprises ultrafine (UF) particles having a maximum size of up to about 10 ⁇ m MMD (mass mean diameter), preferably about l ⁇ m to 8gm MMD and larger particles (F/C) having a size range of about 20gm to 200ym MMD, preferably about 20gm to 150 ⁇ m MMD.
- UF particles should comprise about 10 to 30% by weight of the slurry, preferably about 15 to 25%.
- the actual degree of coal loading is not critical and will vary with the given use and operating equipment.
- concentration of coal successfully incorporated into a given slurry varies with such factors as the relative amounts of UF and F/C particles, size of the F/C particles used within the effective range, and the like. In general, percentage loading increases with increasing F/C size.
- An organic dispersant is essential to maintain the coal particles in stable dispersion. It has been found that the highly-loaded slurries are very sensitive to the particular type of surfactant used, especially with respect to fluidity and storageability.
- the dispersants which have proven to be effective in producing stable fluid mixes are high molecular weight alkaline earth metal (e.g. Ca, Mg) organosulfonates in which the organic moiety is poly-functional. Molecular weight of the organosulfonate is desirably about 1,000 to 25,000.
- the surfactant is used in minor amount, e.g. about 0.5 to 5 pph of coal, preferably about 1 to 2
- an inorganic, alkali metal (e.g. Na, K) buffer salt to stabilize pH of the slurry in the range of from pH 5 to 8, preferably from pH 6 to 7.5.
- the salt improves aging stability, pourability and handling characteristics of the slurry. It may be that the buffer counteracts potentially adverse effects of acid leachates from the coal.
- the salt such as sodium or potassium phosphate or carbonate, including their acid salts is used in minor amounts sufficient to provide the desired pH, e.g. about 0.1 to 2% based on the water.
- the inorganic salts also serve to reduce gaseous sulfur pollutants by forming non-gaseous sulfur compounds.
- the ultrafine and larger F/C coal particles, water, dispersant, and inorganic salt components are mixed in a blender or other mixing device which can deliver high shear rates.
- High shear mixing e.g. at shear rates of at least about 100 sec 1 , preferably at least about 500 sec -1 , is essential for producing a stable slurry free from substantial sedimentation.
- the use of high shear mixing and the dispersant appears to have a synergistic effect.
- Dispersant with low shear mixing results in an extremely viscous, non-pourable slurry, while high shear mixing without dispersant produces a slurry which is unstable towards settling. With both dispersant and high shear mixing a fluid, pourable, stable slurry can be obtained.
- the slurries are viscous, fluid dispersions which can generally be characterized as thixotropic or Bingham fluids having a yield point.
- the slurries may gel or flocculate when at rest into a substantially non-pourable composition but are easily rendered fluid by stirring or other application of relatively low shear stress. They can be stored for considerable periods of time without excessive settling or sedimentation.
- the slurries can be employed as fuels by injection directly into a furnace previously brought up to ignition temperature of the slurry. The finely divided state of the coal particles improves combustion efficiency. Since the dispersants are organic compounds, they may be biodegraded with time. This can readily be prevented by addition of a small amount of biocides.
- the ultrafine coal particles can be made in any suitable device, such as a ball mill or attritor, which is capable of very fine comminution.
- the coal is milled with water so that the UF particles are in water slurry when introduced into the mixer.
- Some of the dispersant can be included, if desired, in the UF milling operation to improve flow and dispersion characteristics of the UF slurry.
- the required larger size coal particles (20 ⁇ m to 200 ⁇ m) can be made from crushed coal in a comminuting device such as a hammermill equipped with a grate having appropriately sized openings. Excessively sized coal residue can be used for making the UF particles.
- coal concentrations as used in the specification and in the following examples is on a dried coal basis which normally equals 98.5% by weight of bone-dried coal.
- the 3.6 ⁇ m MMD UF particles employed in Examples 3 - 8 were prepared in accordance with Example 1 and the UF particles were introduced in the form of the Example 1 aqueous slurry containing a portion of the dispersant.
- the total amount of dispersant given in the Examples includes the portion introduced in this way.
- A. 65% by wt. of coal comprising 55% 110 ⁇ m MMD coal and 45% 3.6 ⁇ m MMD coal, 1,3% Marasperse C-21 (calcium ligning sulfonate) and 33.7% water were mixed in a blender at 6,000 RPM at a shear rate of 1,000 sec -1 .
- the resulting slurry was a paint-like gel that set into a soft gel which was easily stirred to a liquid. After 23 days, it exhibited no sedimentation and was easily restirrable to a uniform dispersion having relatively low viscosity - 6.7p.
- a mix was made identical to A except that 34gm MMD particles were substituted for the UF particles.
- the mix though initially fluid was unstable. Within 3 days it separated, forming a large supernatant and a highly packed subsidence. It could not be remixed into a uniform, pourable dispersion.
- A 65% coal slurry comprising 15% 3.6gm MMD and 50% 34gm MMD particles by wt. of the slurry, 1.3% Marasperse C-21 and 33.7% water were mixed in a blender at 6000 RPM.
- the resulting product was an uniformly dispersed gel which after 12 days in storage exhibited no supernatant, subsidence or sedimentation. The gel was non-pourable at rest and became a pourable fluid with stirring.
- a mix was made identical to A except that the blender was run at a low shear rate of 60 RPM (10 sec -1 ). The resulting slurry was unstable. Within 4 days it had separated into liquid and aggregated sediment.
- A 65% coal slurry comprising 26% 3.6 ⁇ m MMD particles and 39% 110 ⁇ m MMD particles, 13% Marasperse C-21 and 33.7% water were mixed in a blender at 6,000 RPM.
- the resulting product was a uniformly dispersed slurry which was fluid and pourable and after 10 days was still pourable and substantially free from subsidence or sedimentation.
- a mix was made identical to A except that the blender was run at a low shear rate of 10 sec -1 .
- the resulting slurry was unstable. Within 3 days, it had separated into supernatant and aggregated sediment.
- Example 3A A 65% coal slurry was made identical to Example 3A except that no dispersant was added. The resulting product had the consistency of a stiff grease.
- a 70% coal slurry comprising 45.5% 110 ⁇ m MMD particles and 24.5% 3.6 ⁇ m MMD particles, 1.4% Marasperse C-21, and 28.6% water solution buffered to pH 7 by 0,15% Na 2 HPO 4 added in the blender was mixed at 6,000 RPM.
- the resulting slurry has an EOM viscosity of 1.48 Kp, is fluid and pourable. After 7 days in storage it exhibited no supernatant liquid, settling or aggregation.
- Example 4A A mix was made identical to Example 4A except that Na 2 HP0 4 in amount providing buffered pH 7 was added in the blender. The resulting slurry was fluid and pourable. ' Its viscosity was EOM-T-bar 0.92 Kp. It retained its stability and pourability during storage and after 12 days was free from separation.
- a 65 wt. % coal slurry comprising 50 wt.% 34 ⁇ m MMD coal particles, 15 wt.%, 3.88 ⁇ m MMD (using 50 wt.% of slurry from 9A supra), 2 pph on coal of Marasperse C-21, and the remainder water, was mixed in a blender at a shear rate of 6,000 RPM (1000 see -1 ).
- the product was a uniformly-dispersed, pourable slurry. After 56 days the slurry was a stable, soft, non-pourable gel free from settling or sedimentation. There was a very slight supernatant. Probably caused by water evaporation and condensation on the surface. The thixotropic gel became easily pourable with slight stirring. At rest it returned to a stable non-pourable state within a short time. After 61 days it retained its stable characteristics after several stirrings to pourability.
- a slurry similar to 9B was prepared except that the mix was buffered to pH 7 by the addition of Na2HP04, The product was a uniformly-dispersed fluid slurry of relatively low viscosity. After 55 days the slurry was a weak, non-pourable gel free from settling or sedimentation. As in 9B there was a very slight supernatant. With slight stirring, it became very fluid and pourable.It was still stable and pourable after 24 hours and, although somewhat more viscous, retained its stability and pourabilty 5 days after the initial stirring.
- Example 3 demonstrates the need for the UF particles in controlled size distribution to impart stability.
- Examples 4 and 5 show the need for high shear rate mixing.
- Example 6 shows the importance of the dispersant.
- Example 7 illustrates the improvement made in a highly-loaded 70% slurry by use of an inorganic buffer salt and the adverse effect of low shear mixing.
- Example 8 shows that the use of the pH buffer salt maintained the slurry in a stable fluid condition.
- Example 9 shows that the buffer salt improved aging and its user and handling characteristics.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
- Colloid Chemistry (AREA)
Abstract
- (i) ultrafine coal particles having a maximum size of 10 µm MMD in an amount comprising from 10 to 30% by weight of the slurry,
- (ii) larger coal particles within the size range of from 20 to 200 µm MMD in an amount sufficient to provide a desired total coal concentration in the slurry, (iii) water, and,
- (iv) a minor amount of dispersant consisting essentially of an alkaline earth metal salt of an organosulfonate in which the organic moiety is multifunctional, and
- b) subjecting the mixture to high shear at a rate of at least 100 sec-1.
Description
- This invention relates to the production of fuel slurries of coal in water which can be injected directly into a furnace as a combustible fuel. A high fuel value coal slurry can supplant large quantities of increasingly expensive fuel oil presently being used by utilities, ,factories, ships and other commercial enterprises. Since the inert water vehicle reduces fuel value in terms of BTU/lb (J/kg) it is desirable to minimise its concentration and maximise coal concentration for efficient use of the slurry as a fuel. A high coal content also improves the combustion characteristics of the slurry.
- It is important, therefore, that the slurry be loadable with finely-divided coal in amounts as high, for example, as about 50% to 70% of the slurry. Despite such high solids loading, the slurry must be sufficiently fluid to be pumped and sprayed into the furnace. The coal particles must also be uniformly dispersed. The fluidity and dispersion must be stabley maintained during storage.
- An object of this invention is to provide an improved process for producing a slurry suitable for this purpose.
- According to the present invention there is provided a process for making substantially stable coal-water slurries comprising:
- a) Admixing:
- (1) ultrafine coal particles having a maximum size of 10µm MMD in an amount comprising from 10 to 30% by weight of the slurry,
- (ii) larger coal particles within the size range of from 20 to 200ym MMD in an amount sufficient to provide a desired total coal concentration in the slurry,
- (iii) water, and,
- (iv) a minor amount of dispersant consisting essentially of an alkaline earth metal salt of an organo- sulfonate in which the organic moiety is multi- functional, and
- b) subjecting the mixture to high shear at a rate of at least 100 sec-1.
- This invention further provides a coal-water slurry which comprises:
- a) ultrafine coal particles having a maximum size of 10µm MMD, in an amount comprising from 10 to 30% by weight of slurry;
- b) larger coal particles within the size range of from 20 to 200µm MMD in an amount sufficient to provide a desired total coal concentration in the slurry;
- c) water; and
- d) a minor amount of a dispersant consisting essentially of an alkaline earth metal organo-sulfonate in which the organic moiety is multi-functional.
- Thus fluid, pourable slurries comprising up to about 70% or higher of coal stabley dispersed in water are produced by admixing finely-divided coal having a critical distribution of particle sizes, water, and an organic dispersant in a high shear rate mixer. An inorganic buffer salt may also be added. The term "fluid" as used in this specification and claims means a slurry which is fluid and pourable both at rest and in motion or a slurry which gels or flocculates into. a substantially non-pourable composition at rest and becomes pourably fluid with stirring or other application of relatively low shear stress.
- Controlled distribution of coal particles sizes is essential for both fluidity and stability. The partial size mixture, necessary for fluidity of the highly loaded slurry, comprises ultrafine (UF) particles having a maximum size of up to about 10µm MMD (mass mean diameter), preferably about lµm to 8gm MMD and larger particles (F/C) having a size range of about 20gm to 200ym MMD, preferably about 20gm to 150µm MMD. For stability of the slurry, the UF particles should comprise about 10 to 30% by weight of the slurry, preferably about 15 to 25%.
- The actual degree of coal loading is not critical and will vary with the given use and operating equipment. The concentration of coal successfully incorporated into a given slurry varies with such factors as the relative amounts of UF and F/C particles, size of the F/C particles used within the effective range, and the like. In general, percentage loading increases with increasing F/C size. An organic dispersant is essential to maintain the coal particles in stable dispersion. It has been found that the highly-loaded slurries are very sensitive to the particular type of surfactant used, especially with respect to fluidity and storageability. The dispersants which have proven to be effective in producing stable fluid mixes are high molecular weight alkaline earth metal (e.g. Ca, Mg) organosulfonates in which the organic moiety is poly-functional. Molecular weight of the organosulfonate is desirably about 1,000 to 25,000. The surfactant is used in minor amount, e.g. about 0.5 to 5 pph of coal, preferably about 1 to 2 pph.
- In some cases, particularly at higher coal loadings, it has been found desirable to add an inorganic, alkali metal (e.g. Na, K) buffer salt to stabilize pH of the slurry in the range of from pH 5 to 8, preferably from pH 6 to 7.5. The salt improves aging stability, pourability and handling characteristics of the slurry. It may be that the buffer counteracts potentially adverse effects of acid leachates from the coal. The salt, such as sodium or potassium phosphate or carbonate, including their acid salts is used in minor amounts sufficient to provide the desired pH, e.g. about 0.1 to 2% based on the water. The inorganic salts also serve to reduce gaseous sulfur pollutants by forming non-gaseous sulfur compounds.
- The ultrafine and larger F/C coal particles, water, dispersant, and inorganic salt components are mixed in a blender or other mixing device which can deliver high shear rates. High shear mixing, e.g. at shear rates of at least about 100 sec 1, preferably at least about 500 sec-1, is essential for producing a stable slurry free from substantial sedimentation. The use of high shear mixing and the dispersant appears to have a synergistic effect. Dispersant with low shear mixing results in an extremely viscous, non-pourable slurry, while high shear mixing without dispersant produces a slurry which is unstable towards settling. With both dispersant and high shear mixing a fluid, pourable, stable slurry can be obtained.
- The slurries are viscous, fluid dispersions which can generally be characterized as thixotropic or Bingham fluids having a yield point. In some cases, the slurries may gel or flocculate when at rest into a substantially non-pourable composition but are easily rendered fluid by stirring or other application of relatively low shear stress. They can be stored for considerable periods of time without excessive settling or sedimentation. The slurries can be employed as fuels by injection directly into a furnace previously brought up to ignition temperature of the slurry. The finely divided state of the coal particles improves combustion efficiency. Since the dispersants are organic compounds, they may be biodegraded with time. This can readily be prevented by addition of a small amount of biocides.
- The ultrafine coal particles can be made in any suitable device, such as a ball mill or attritor, which is capable of very fine comminution. Preferably, though not essentially, the coal is milled with water so that the UF particles are in water slurry when introduced into the mixer. Some of the dispersant can be included, if desired, in the UF milling operation to improve flow and dispersion characteristics of the UF slurry.
- The required larger size coal particles (20µm to 200µm) can be made from crushed coal in a comminuting device such as a hammermill equipped with a grate having appropriately sized openings. Excessively sized coal residue can be used for making the UF particles.
- The coal concentrations as used in the specification and in the following examples is on a dried coal basis which normally equals 98.5% by weight of bone-dried coal.
- The 3.6µm MMD UF particles employed in Examples 3 - 8 were prepared in accordance with Example 1 and the UF particles were introduced in the form of the Example 1 aqueous slurry containing a portion of the dispersant. The total amount of dispersant given in the Examples includes the portion introduced in this way.
- The 34µm MMD and 110µm MMD particles used in the Examples were prepared in accordance with Example 2.
- 50% by wt. crushed coal, 1% calcium lignosulfonate (Marasperse C-21)and 49% water were ball milled for 2 hours. The size of the resulting UF coal particles was 3.6µm MMD. The UF coal-water slurry was fluid and pourable.
- A. Crushed coal was comminuted in a hammermill at 3,450 RPM with a 27 HB grate. The particle size of the product was 110µm MMD.
- B. Crushed coal was comminuted in a hammermill at 13,800 RPM with a 10 HB grate. The particle size of the resulting product was 34µm MMD.
- A. 65% by wt. of coal comprising 55% 110µm MMD coal and 45% 3.6µm MMD coal, 1,3% Marasperse C-21 (calcium ligning sulfonate) and 33.7% water were mixed in a blender at 6,000 RPM at a shear rate of 1,000 sec-1. The resulting slurry was a paint-like gel that set into a soft gel which was easily stirred to a liquid. After 23 days, it exhibited no sedimentation and was easily restirrable to a uniform dispersion having relatively low viscosity - 6.7p.
- B. A mix was made identical to A except that 34gm MMD particles were substituted for the UF particles. The mix, though initially fluid was unstable. Within 3 days it separated, forming a large supernatant and a highly packed subsidence. It could not be remixed into a uniform, pourable dispersion.
- A. A 65% coal slurry comprising 15% 3.6gm MMD and 50% 34gm MMD particles by wt. of the slurry, 1.3% Marasperse C-21 and 33.7% water were mixed in a blender at 6000 RPM. The resulting product was an uniformly dispersed gel which after 12 days in storage exhibited no supernatant, subsidence or sedimentation. The gel was non-pourable at rest and became a pourable fluid with stirring.
- B. A mix was made identical to A except that the blender was run at a low shear rate of 60 RPM (10 sec-1). The resulting slurry was unstable. Within 4 days it had separated into liquid and aggregated sediment.
- A. A 65% coal slurry comprising 26% 3.6µm MMD particles and 39% 110µm MMD particles, 13% Marasperse C-21 and 33.7% water were mixed in a blender at 6,000 RPM. The resulting product was a uniformly dispersed slurry which was fluid and pourable and after 10 days was still pourable and substantially free from subsidence or sedimentation.
- B. A mix was made identical to A except that the blender was run at a low shear rate of 10 sec-1. The resulting slurry was unstable. Within 3 days, it had separated into supernatant and aggregated sediment.
- A 65% coal slurry was made identical to Example 3A except that no dispersant was added. The resulting product had the consistency of a stiff grease.
- A. A 70% coal slurry comprising 45.5% 110µm MMD particles and 24.5% 3.6µm MMD particles, 1.4% Marasperse C-21, and 28.6% water solution buffered to pH 7 by 0,15% Na2HPO4 added in the blender was mixed at 6,000 RPM. The resulting slurry has an EOM viscosity of 1.48 Kp, is fluid and pourable. After 7 days in storage it exhibited no supernatant liquid, settling or aggregation.
- B. A mix was made identical to A except that phosphate salt was not added. The resulting slurry set up into a stiff non-pourable mass within 3 days.
- C. A mix identical to A, except that the buffer salt was added to the ballmill producing the UF particles, was run in a blender at the low shear rate of 60 RPM (10 sec-1). The slurry was unstable and within 5 days separated into supernatant and stiff aggregated sediment.
- A mix was made identical to Example 4A except that Na2HP04 in amount providing buffered pH 7 was added in the blender. The resulting slurry was fluid and pourable. 'Its viscosity was EOM-T-bar 0.92 Kp. It retained its stability and pourability during storage and after 12 days was free from separation.
- A. 30 wt.% of hammermilled coal fines (30gm MMD), 0.3% Marasperse C-21 (1 pph coal), and 69.7% water were milled in an attritor for 30 minutes. The resulting slurry was very fluid. The UF coal particle size was 3.88µm MMD.
- B. A 65 wt. % coal slurry comprising 50 wt.% 34µm MMD coal particles, 15 wt.%, 3.88µm MMD (using 50 wt.% of slurry from 9A supra), 2 pph on coal of Marasperse C-21, and the remainder water, was mixed in a blender at a shear rate of 6,000 RPM (1000 see-1). The product was a uniformly-dispersed, pourable slurry. After 56 days the slurry was a stable, soft, non-pourable gel free from settling or sedimentation. There was a very slight supernatant. Probably caused by water evaporation and condensation on the surface. The thixotropic gel became easily pourable with slight stirring. At rest it returned to a stable non-pourable state within a short time. After 61 days it retained its stable characteristics after several stirrings to pourability.
- C. A slurry similar to 9B was prepared except that the mix was buffered to pH 7 by the addition of Na2HP04, The product was a uniformly-dispersed fluid slurry of relatively low viscosity. After 55 days the slurry was a weak, non-pourable gel free from settling or sedimentation. As in 9B there was a very slight supernatant. With slight stirring, it became very fluid and pourable.It was still stable and pourable after 24 hours and, although somewhat more viscous, retained its stability and pourabilty 5 days after the initial stirring.
- Example 3 demonstrates the need for the UF particles in controlled size distribution to impart stability. Examples 4 and 5 show the need for high shear rate mixing. Example 6 shows the importance of the dispersant. Example 7 illustrates the improvement made in a highly-loaded 70% slurry by use of an inorganic buffer salt and the adverse effect of low shear mixing. Example 8 shows that the use of the pH buffer salt maintained the slurry in a stable fluid condition. Example 9 shows that the buffer salt improved aging and its user and handling characteristics.
-
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT81304187T ATE11927T1 (en) | 1980-10-17 | 1981-09-14 | PROCESS FOR THE PREPARATION OF COAL-WATERFUEL SUSPENSIONS AND THE RESULTING PRODUCT. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US19785380A | 1980-10-17 | 1980-10-17 | |
US197853 | 1980-10-17 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0050412A2 true EP0050412A2 (en) | 1982-04-28 |
EP0050412A3 EP0050412A3 (en) | 1982-08-04 |
EP0050412B1 EP0050412B1 (en) | 1985-02-20 |
Family
ID=22731003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81304187A Expired EP0050412B1 (en) | 1980-10-17 | 1981-09-14 | A process for making fuel slurries of coal in water and the product thereof |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP0050412B1 (en) |
JP (1) | JPS5796090A (en) |
AT (1) | ATE11927T1 (en) |
AU (1) | AU554293B2 (en) |
CA (1) | CA1178441A (en) |
DE (1) | DE3169061D1 (en) |
IL (1) | IL63866A (en) |
ZA (1) | ZA816150B (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2506323A1 (en) * | 1981-05-21 | 1982-11-26 | Snam Progetti | AQUEOUS COAL SUSPENSION |
EP0089766A1 (en) * | 1982-03-22 | 1983-09-28 | Atlantic Research Corporation | A process for making coal-water slurries and product thereof |
EP0092353A1 (en) * | 1982-04-16 | 1983-10-26 | Atlantic Research Corporation | Coal-water fuel slurries and process for making |
WO1983004046A1 (en) * | 1982-05-07 | 1983-11-24 | Ab Carbogel | A process for producing a slurry of a pulverized carbonaceous material |
US4441889A (en) * | 1981-01-29 | 1984-04-10 | Gulf & Western Industries, Inc. | Coal-aqueous mixtures |
WO1984001387A1 (en) * | 1982-09-30 | 1984-04-12 | Occidental Res Corp | Dispersions of coal in water useful as fuel |
FR2538407A1 (en) * | 1982-12-27 | 1984-06-29 | Raffinage Cie Francaise | LIQUID FUEL BASED ON PULVERIZED SOLID FUEL, PETROLEUM RESIDUES AND WATER, ITS PREPARATION PROCESS AND APPLICATION IN BOILERS OR INDUSTRIAL FURNACES |
US4511365A (en) * | 1982-09-10 | 1985-04-16 | Sohio Alternate Energy Development Company | Coal-aqueous mixtures |
US4525173A (en) * | 1982-05-19 | 1985-06-25 | The British Petroleum Company P.L.C. | Mineral slurries |
US4551179A (en) * | 1981-01-29 | 1985-11-05 | The Standard Oil Company | Coal-aqueous mixtures |
EP0170433A2 (en) * | 1984-07-30 | 1986-02-05 | Babcock-Hitachi Kabushiki Kaisha | Process for producing a high concentration solid fuel-water slurry |
US4598873A (en) * | 1982-06-14 | 1986-07-08 | F. L. Smidth & Co. A/S | Method of manufacturing a pumpable coal/liquid mixture |
US4706891A (en) * | 1981-12-03 | 1987-11-17 | Lion Corporation | Process for producing high concentration coal-water slurry |
EP0149664B1 (en) * | 1983-07-14 | 1988-01-20 | Ab Carbogel | A composition and a method of capturing sulphur |
US4747548A (en) * | 1983-07-05 | 1988-05-31 | Babcock-Hitachi Kabushiki Kaisha | Process for producing a high concentration coal-water slurry |
US4810259A (en) * | 1985-09-19 | 1989-03-07 | Oxce Fuel Company | Method to minimize viscosity and improve stability of coal-water fuels |
EP0386943A1 (en) * | 1989-03-06 | 1990-09-12 | Central Research Institute Of Electric Power Industry | Process for production of coal-water mixture |
US5028238A (en) * | 1987-03-12 | 1991-07-02 | Rybinski Wolfgang | Dispersants and their use in aqueous coal suspensions |
US8177867B2 (en) * | 2008-06-30 | 2012-05-15 | Nano Dispersions Technology Inc. | Nano-dispersions of coal in water as the basis of fuel related technologies and methods of making same |
US9701920B2 (en) | 2008-06-30 | 2017-07-11 | Nano Dispersions Technology, Inc. | Nano-dispersions of carbonaceous material in water as the basis of fuel related technologies and methods of making same |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1211049B (en) * | 1981-05-21 | 1989-09-29 | Snam Progetti | COAL WATER SUSPENSION. |
US4504277A (en) * | 1982-04-16 | 1985-03-12 | Atlantic Research Corporation | Coal-water fuel slurries and process for making same |
JPS6058491A (en) * | 1983-09-09 | 1985-04-04 | Electric Power Dev Co Ltd | Stabilizing treatment of aqueous slully of carbon- containing composition |
JPS6071693A (en) * | 1983-09-29 | 1985-04-23 | Babcock Hitachi Kk | Production of coal-water mixture |
JP2595465B2 (en) * | 1994-04-13 | 1997-04-02 | 英司 池田 | Water / coal blended fuel |
SG10201602735VA (en) * | 2011-04-07 | 2016-05-30 | Nano Dispersions Technology Inc | Nano-dispersions of carbonaceous material in water as the basis of fuel related technologies and methods of making same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1522575A (en) * | 1976-06-24 | 1978-08-23 | Texaco Development Corp | Production of solid fuel-water slurries |
US4261701A (en) * | 1980-01-09 | 1981-04-14 | Gulf Research & Development Company | Uniform coal suspensions and process for preparing same |
-
1981
- 1981-09-04 ZA ZA816150A patent/ZA816150B/en unknown
- 1981-09-14 DE DE8181304187T patent/DE3169061D1/en not_active Expired
- 1981-09-14 AT AT81304187T patent/ATE11927T1/en not_active IP Right Cessation
- 1981-09-14 EP EP81304187A patent/EP0050412B1/en not_active Expired
- 1981-09-17 IL IL63866A patent/IL63866A/en unknown
- 1981-09-17 AU AU75439/81A patent/AU554293B2/en not_active Ceased
- 1981-10-06 CA CA000387401A patent/CA1178441A/en not_active Expired
- 1981-10-17 JP JP56164956A patent/JPS5796090A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1522575A (en) * | 1976-06-24 | 1978-08-23 | Texaco Development Corp | Production of solid fuel-water slurries |
US4261701A (en) * | 1980-01-09 | 1981-04-14 | Gulf Research & Development Company | Uniform coal suspensions and process for preparing same |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4441889A (en) * | 1981-01-29 | 1984-04-10 | Gulf & Western Industries, Inc. | Coal-aqueous mixtures |
US4551179A (en) * | 1981-01-29 | 1985-11-05 | The Standard Oil Company | Coal-aqueous mixtures |
FR2506323A1 (en) * | 1981-05-21 | 1982-11-26 | Snam Progetti | AQUEOUS COAL SUSPENSION |
US4706891A (en) * | 1981-12-03 | 1987-11-17 | Lion Corporation | Process for producing high concentration coal-water slurry |
EP0089766A1 (en) * | 1982-03-22 | 1983-09-28 | Atlantic Research Corporation | A process for making coal-water slurries and product thereof |
EP0092353A1 (en) * | 1982-04-16 | 1983-10-26 | Atlantic Research Corporation | Coal-water fuel slurries and process for making |
WO1983004046A1 (en) * | 1982-05-07 | 1983-11-24 | Ab Carbogel | A process for producing a slurry of a pulverized carbonaceous material |
US4549881A (en) * | 1982-05-07 | 1985-10-29 | Ab Carbogel | Aqueous slurry of a solid fuel and a process and means for the production thereof |
US4525173A (en) * | 1982-05-19 | 1985-06-25 | The British Petroleum Company P.L.C. | Mineral slurries |
US4598873A (en) * | 1982-06-14 | 1986-07-08 | F. L. Smidth & Co. A/S | Method of manufacturing a pumpable coal/liquid mixture |
US4511365A (en) * | 1982-09-10 | 1985-04-16 | Sohio Alternate Energy Development Company | Coal-aqueous mixtures |
US4722740A (en) * | 1982-09-30 | 1988-02-02 | Oxce Fuel Company | Dispersions of coal in water useful as a fuel |
WO1984001387A1 (en) * | 1982-09-30 | 1984-04-12 | Occidental Res Corp | Dispersions of coal in water useful as fuel |
FR2538407A1 (en) * | 1982-12-27 | 1984-06-29 | Raffinage Cie Francaise | LIQUID FUEL BASED ON PULVERIZED SOLID FUEL, PETROLEUM RESIDUES AND WATER, ITS PREPARATION PROCESS AND APPLICATION IN BOILERS OR INDUSTRIAL FURNACES |
US4610695A (en) * | 1982-12-27 | 1986-09-09 | Compagnie Francaise De Raffinage | Fluid fuel mixture based on a pulverized solid fuel, petroleum residues and water, process for its preparation, and the use in boilers and industrial furnaces |
EP0115718A1 (en) * | 1982-12-27 | 1984-08-15 | COMPAGNIE FRANCAISE DE RAFFINAGE Société anonyme dite: | Liquid fuel based on solid pulverised fuel, petroleum residues and water, its preparation and its use in boilers or industrial furnaces |
US4747548A (en) * | 1983-07-05 | 1988-05-31 | Babcock-Hitachi Kabushiki Kaisha | Process for producing a high concentration coal-water slurry |
EP0149664B1 (en) * | 1983-07-14 | 1988-01-20 | Ab Carbogel | A composition and a method of capturing sulphur |
EP0170433A3 (en) * | 1984-07-30 | 1987-11-04 | Babcock-Hitachi Kabushiki Kaisha | Process for producing a high concentration solid fuel-water slurry |
EP0170433A2 (en) * | 1984-07-30 | 1986-02-05 | Babcock-Hitachi Kabushiki Kaisha | Process for producing a high concentration solid fuel-water slurry |
US4810259A (en) * | 1985-09-19 | 1989-03-07 | Oxce Fuel Company | Method to minimize viscosity and improve stability of coal-water fuels |
US5028238A (en) * | 1987-03-12 | 1991-07-02 | Rybinski Wolfgang | Dispersants and their use in aqueous coal suspensions |
EP0386943A1 (en) * | 1989-03-06 | 1990-09-12 | Central Research Institute Of Electric Power Industry | Process for production of coal-water mixture |
US8177867B2 (en) * | 2008-06-30 | 2012-05-15 | Nano Dispersions Technology Inc. | Nano-dispersions of coal in water as the basis of fuel related technologies and methods of making same |
US20140013656A1 (en) * | 2008-06-30 | 2014-01-16 | Nano Dispersions Technology, Inc. | Nano-dispersions of coal in water as the basis of fuel related technologies and methods of making same |
US9574151B2 (en) * | 2008-06-30 | 2017-02-21 | Blue Advanced Colloidal Fuels Corp. | Nano-dispersions of coal in water as the basis of fuel related technologies and methods of making same |
US9701920B2 (en) | 2008-06-30 | 2017-07-11 | Nano Dispersions Technology, Inc. | Nano-dispersions of carbonaceous material in water as the basis of fuel related technologies and methods of making same |
Also Published As
Publication number | Publication date |
---|---|
AU554293B2 (en) | 1986-08-14 |
IL63866A0 (en) | 1981-12-31 |
DE3169061D1 (en) | 1985-03-28 |
ATE11927T1 (en) | 1985-03-15 |
EP0050412A3 (en) | 1982-08-04 |
CA1178441A (en) | 1984-11-27 |
EP0050412B1 (en) | 1985-02-20 |
IL63866A (en) | 1984-07-31 |
JPS5796090A (en) | 1982-06-15 |
AU7543981A (en) | 1982-04-22 |
ZA816150B (en) | 1982-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0050412A2 (en) | A process for making fuel slurries of coal in water and the product thereof | |
US4465495A (en) | Process for making coal-water fuel slurries and product thereof | |
US4069022A (en) | Water-free liquid fuel slurry | |
US5902227A (en) | Multiple emulsion and method for preparing same | |
US4432771A (en) | Combustible coal/water mixtures for fuels and methods of preparing the same | |
US4030894A (en) | Stabilized fuel slurry | |
US4090853A (en) | Colloil product and method | |
US4147519A (en) | Coal suspensions in organic liquids | |
US4412844A (en) | Stable oil dispersible magnesium hydroxide slurries | |
EP0092353B1 (en) | Coal-water fuel slurries and process for making | |
US4305729A (en) | Carbon slurry fuels | |
US4358292A (en) | Stabilized hybrid fuel slurries | |
EP0089766B1 (en) | A process for making coal-water slurries and product thereof | |
EP0124670B1 (en) | Coal-water fuel slurries and process for making same | |
EP0025278A2 (en) | A method for the preparation of a uniform dispersion of a friable solid fuel, oil and water and the obtained fuel-oil-water dispersion | |
US4306882A (en) | Carbon slurry fuels | |
US4505716A (en) | Combustible coal/water mixture for fuels and methods of preparing same | |
US4983187A (en) | Method for preparing a high-concentration solids suspension in water | |
US4530701A (en) | Process of manufacturing a co-fuel additive with combustion-modifying effects | |
US4670019A (en) | Stabilization of coal-oil-water mixtures | |
US4592760A (en) | Coal slurry | |
JPH0349318B2 (en) | ||
US4713086A (en) | Oil-compatible coal/water mixtures | |
EP0024847A2 (en) | A method for the preparation of a uniform dispersion of a friable solid fuel, oil and water | |
EP0109740A2 (en) | Combustible compositions containing coal, water and surfactant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19820921 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 11927 Country of ref document: AT Date of ref document: 19850315 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3169061 Country of ref document: DE Date of ref document: 19850328 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19850930 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19860910 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19860930 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19870915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19880401 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19880914 Ref country code: AT Effective date: 19880914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19880930 Ref country code: CH Effective date: 19880930 Ref country code: BE Effective date: 19880930 |
|
BERE | Be: lapsed |
Owner name: ATLANTIC RESEARCH CORP. Effective date: 19880930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19890531 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19890601 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
ITTA | It: last paid annual fee | ||
EUG | Se: european patent has lapsed |
Ref document number: 81304187.8 Effective date: 19880907 |