[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0041952B1 - Danger detection device with detector - Google Patents

Danger detection device with detector Download PDF

Info

Publication number
EP0041952B1
EP0041952B1 EP80901773A EP80901773A EP0041952B1 EP 0041952 B1 EP0041952 B1 EP 0041952B1 EP 80901773 A EP80901773 A EP 80901773A EP 80901773 A EP80901773 A EP 80901773A EP 0041952 B1 EP0041952 B1 EP 0041952B1
Authority
EP
European Patent Office
Prior art keywords
radiation
optical
alarm device
electro
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80901773A
Other languages
German (de)
French (fr)
Other versions
EP0041952A1 (en
Inventor
Jürg Muggli
Gustav Pfister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cerberus AG
Original Assignee
Cerberus AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cerberus AG filed Critical Cerberus AG
Priority to AT80901773T priority Critical patent/ATE14252T1/en
Publication of EP0041952A1 publication Critical patent/EP0041952A1/en
Application granted granted Critical
Publication of EP0041952B1 publication Critical patent/EP0041952B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the invention relates to a hazard reporting unit with a status sensor element which changes its output voltage when a hazardous status to be reported occurs, whereby a reporting signal is generated.
  • Such reporting units can be used to report dangerous conditions, for example to report a fire, to report dangerous gases or vapors, to increase temperature undesirably, or to protect against burglary or theft.
  • the message signal can be used to alarm or to initiate protective or countermeasures when the undesired state occurs.
  • the sensor elements used in the reporting units are matched to the condition to be detected and are designed, for example, as fire, smoke, gas, radiation, temperature or intrusion detectors.
  • the invention can be used with particular advantage where sensor elements with high electrical resistance are required, for example ionization chambers when used as fire detectors.
  • the voltage supply from an evaluation unit to the individual signaling unit arranged at a distance therefrom and the signal return from these signaling units to the signaling center generally takes place by means of electrical lines, possibly also by wireless electrical transmission.
  • electrical lines possibly also by wireless electrical transmission.
  • electrical interference often occurs during line transmission, e.g. B. network pulses or induced in the lines electrical voltages that lead to an incorrect response of the signaling units and to an incorrect signal transmission.
  • telephone connections with a modulated laser beam have been proposed, as described in "The Bell System Technical Journal 58 (1979)".
  • the known detectors have further disadvantages, which are listed below.
  • the supply voltage fluctuates due to the voltage drop in the lines, so that complex stabilization devices are required.
  • the components of the signaling unit are also exposed to environmental influences, e.g. B. temperature-dependent, so that complex compensation measures must be taken.
  • environmental influences e.g. B. temperature-dependent
  • special protective measures are necessary when voltage is supplied via electrical cables.
  • US Pat. No. 3,805,066 shows an optical smoke detector in which the individual smoke chambers arranged in series are connected to one another by light guides.
  • the optical connection between the smoke chambers has nothing to do with the above-mentioned reasons, namely the exchange of an electrical connection by an optical connection, because it only connects purely optical sensors that work according to the light barrier principle, without the sensor element having to be supplied with an electrical voltage, and therefore neither an optical-electrical nor an electrical-optical converter are provided.
  • the object of the invention is to provide a hazard alarm unit that has low power consumption and works sensitively, reliably, without interference, stably, precisely and independently of voltage over longer periods.
  • the hazard detection unit is particularly suitable for use in potentially explosive atmospheres and / or under the influence of electrical interference.
  • a central evaluation unit E which has a radiation source Q and a radiation receiver R.
  • the radiation source Q is fed by a signal circuit S, while the output signal of the radiation receiver R is fed back to the signal circuit S.
  • the signal circuit S emits an alarm signal to an alarm unit A or causes z. B. via EDP the initiation of protective or countermeasures.
  • Corresponding signal circuits are e.g. B. in large numbers from the technology of optical condition detectors, for. B. smoke detectors, known.
  • the radiation from the radiation source Q is referred to by a first radiation-conducting element L ⁇ , also known as fiber optics, hereinafter referred to as light guide for the sake of brevity, to a plurality of signaling units M i , M 2 , M 3 , ... ver arranged away from the evaluation unit E. shares that have sensors for the condition to be detected.
  • the coupling and decoupling of the radiation for the individual signaling units takes place in a manner known in light guide technology, with branching elements V 1 , V 2 , ... or W 1 , W 2 , ... suitable training, likewise the connection to the individual reporting units via suitable known connections.
  • the radiation is taken from the individual signaling units M 1 , M 2 , M3,...
  • the individual signaling units M i , M 2 , M 3 , ... are therefore connected in parallel via a light guide L 1 and L 2 to the evaluation unit E in a group.
  • the entire group can be closed behind the last signaling unit by an end element T, which is used to monitor the functioning of the light guides.
  • the light guides used can either consist of a single fiber or can be made of several, ie as a light guide bundle.
  • Supply line L 1 and return line L 2 can also be combined into a single bundle.
  • the type of light guide can be selected as required and in coordination with the signaling units of various types.
  • any suitable lamp, a light or infrared emitting diode or a LASER can be used as radiation source Q, the spectral distribution being broadband, monochromatic, multimonochromatic.
  • the spectrum of this radiation source Q such that it is adapted to the transmission properties of the light guides when using single-mode light guides and to the properties of the radiation receiver R.
  • the radiation source intermittently or in pulses e.g. B. to operate at a frequency of 30 Hz or to design the branching elements in a known manner so that the individual signaling units receive radiation sequentially at different times in the manner of an optical multiplex.
  • the radiation receiver R is expediently matched to the radiation source Q and can, for. B. as a photoconductor (Si, GaAs, PbSe, InSb), as a pyroelectric element (LiTa0 3 , TGS, PVF 2 ) or as a bolometer.
  • a photoconductor Si, GaAs, PbSe, InSb
  • a pyroelectric element LiTa0 3 , TGS, PVF 2
  • FIG. 2 shows a signaling unit M with a high-resistance sensor element F, which requires a voltage supply of a few volts for operation, but only has a very low power consumption.
  • the sensor element F contains a sensor 8, the electrical resistance of which changes when exposed to a state variable to be detected, which is connected in series with a reference element 9. In such an arrangement, the voltage drop at the sensor 8 and thus the output potential U of the sensor element changes when the state parameter to be monitored changes.
  • one or more solar cells, for. B. silicon diodes which receive radiation from a branch L 3 of the light guide L. If the resistance of the sensor element F is large enough and the power consumption is correspondingly low, the voltage generated by these solar cells or silicon diodes 7 is sufficient to operate the sensor element F.
  • the output potential U of the sensor element F controls a likewise very high-resistance electrical-optical converter T.
  • This can consist of an LCD element with electrically controllable radiation permeability or reflection, e.g. B. a suitable liquid crystal, which is attached to a reflective surface R o . Radiation is fed to this transducer T via a branch L 4 of the light guide Li and removed again from the light guide L 2 . Normally, as long as the liquid crystal is opaque to radiation, no signal is returned via this light guide L 2 .
  • the liquid crystal becomes transparent so that the radiation supplied via the light guide L 4 is reflected by the reflector R o and the evaluation unit via the Light guide L 2 receives radiation.
  • Such LCD elements are known from watch technology.
  • FIG. 3 shows a detection unit designed as an ionization fire detector.
  • the sensor 8 is designed as an air-accessible ionization chamber and the reference element 9 as a less air-accessible or smoke-insensitive ionization chamber. Both ionization chambers contain radioactive sources for ionizing the air in the chambers. In this arrangement, the potential U at the junction of the two ionization chambers changes in accordance with the smoke density in the air-accessible ionization chamber 8.
  • a field-effect transistor FET serving as an impedance converter and threshold switch, the gate of which is connected to the connection point of the two ionization chambers 8 and 9 and its source and drain via contr Stands 1 and 2 are connected to connections 3 and 4 of the sensor element.
  • condition sensors can also be used, which react to other condition parameters to be detected, for example to certain gases or vapors, to changes in humidity, temperature or pressure, etc.
  • FIG. 4 shows, as a high-resistance sensor F, a semiconductor element, for example a MOSFET, a MOS capacitance or a Schottky diode with a gas, temperature, moisture, smoke or pressure-sensitive active layer A1.
  • a pressure and temperature sensitive MOSFET structure is known as POSFET ("Science” 200 [1978], p. 1371), in which the active layer AI consists of polarized polyvinylidene fluoride.
  • CFT charge flow
  • the active layer consists of poly (p-aminophenylacetylene) , the characteristic of which changes as a function of moisture, and which is applied to a silicon dioxide layer SIO.
  • the hydrogen-sensitive MOSFET structure in which the active layer AI consists of palladium metal ("Vacuum” 27 [1976], p. 245).
  • Sensors of the type described thus represent high-resistance controllable semiconductors in which the insulator layer of a gas, temperature, moisture, pressure or smoke-sensitive insulator layer Al, for. B. from a PVF 2 (polyvinyl difluoride) layer corresponds.
  • the bias voltage at the gate electrode EG is set approximately to the threshold value for the conductivity between the source electrode Es and the drain electrode ED. This conductivity changes when exposed to ambient conditions.
  • FIG. 5 shows an electrical-optical converter with electrically controllable radiation deflection, for example of the LiNb0 3 type.
  • a converter T has a chip EO, which has the property that when an electrical voltage U is applied, the light irradiated via an optical fiber L 4 is deflected in different directions depending on the voltage.
  • the light guide L 2 which absorbs the radiation is now arranged at a point which corresponds to an output voltage of the sensor element F and thus an input voltage U of the converter at which an alarm message is to be given.
  • FIG. 6 shows an electro-optical converter in which the beam path in the air space between the two light guides L 4 , L 2 through a piezoelectric element PB, for example through a multilayer polyvinyl difluoride (PVF 2 ) structure which has become known as a »bimorph structure is changed, which is arranged in a gap between the light guides L 4 and L 2 covered with a cladding CL and is provided on both outer sides with electrodes EL.
  • PV 2 multilayer polyvinyl difluoride
  • FIG. 7 shows, as a further example, an electro-optical converter in which the beam path in the air space between the two light guides L 4 , L 2 is changed by an electrostatic semiconductor switch SI.
  • a silicon oxide layer SIO is moved into the beam path by an applied voltage V 1 , V 2 between the electrodes EL.
  • This element SIO-EL also acts as a bimetal, so that a fire detector provided with it is sensitive to both smoke and temperature.
  • the semiconductor switch can also be constructed like the stepper motors used in clock technology.
  • a signaling unit can be created in which both the transmission of the power required to operate the sensor element and the signal transmission back to the evaluation unit take place in a purely optical way.
  • the selection of the sensor elements is by no means limited to the components mentioned, but any, with particular advantage high-resistance sensors for any state variables can be used, for.
  • FIG. 8 shows the structural design of a detection unit designed as an ionization fire detector, which operates according to the functional principle explained with reference to FIGS.
  • the ionization chambers can be constructed, for example, according to Swiss patent 551 057 or US Pat. No. 3,908,957.
  • the fire detector contains an outer ionization chamber 8 and an inner ionization chamber 9, which are arranged on the two sides of an electrically insulating carrier plate 10.
  • the first ionization chamber 8, which serves as a sensor element, has an outer electrode 11 designed as a metal grid, through which air can penetrate into the interior of the chamber.
  • the outer electrode of the other ionization chamber 9 serving as a reference chamber, on the other hand, is equipped with a largely air-impermeable metal hood 13 as the outer electrode.
  • the carrier plate 10 is mounted in a housing 20 which has a base plate 21, an adjoining cylinder part 22 and a cover 23.
  • a housing 20 which has a base plate 21, an adjoining cylinder part 22 and a cover 23.
  • an annular opening 24 is provided between the cylinder part 22 and cover 23 for the air to enter the smoke-sensitive ionization chamber 8.
  • the housing 20 can be connected to a base part 30 which is fastened, for example, to the room ceiling.
  • This connection can be made, for example, with a snap lock, with projections 26 of a plurality of snap springs 25 provided on the housing 20 sliding over an annular web 31 on the base part 30 and locking there.
  • the base part 30 is connected to a central evaluation unit via light guides Li and L 2 . These light guides end in a plug S 1 on the underside of the base part 30.
  • the base plate 21 contains a matching light guide socket S 2 as a counterpart. Light guide connections of this type are commercially available and known. European patent publications 6 662 and 8 709 are mentioned from the large number of publications. For example, a "Connector" C-21 from Hughes Aircraft Co. can be used for this.
  • the radiation arriving via the light guide Li is directed via a branch L 3 to the optical-electrical converter 7, for example a solar cell battery, which is connected to the two outer electrodes 11 and 13 of the ionization chambers 8 and 9 is connected and the series circuit of the two chambers supplies a voltage.
  • the plunger 15 connecting the counterelectrodes 12 and 14 is connected to the electrical-optical converter T, which receives radiation via the other branch L 4 of the light guide L 1 and whose retroreflection is removed from the light guide L 2 and via plug connection S 2 , S 1 and the Base part 30 is returned to the evaluation unit.
  • An ionization fire detector designed in this way has all the advantages of conventional ionization fire detectors with regard to optimal smoke sensitivity and a particularly early response to the slightest trace of smoke, but avoids the disadvantages associated with the need for power supply and signal return via electrical lines.
  • Such an ionization fire detector can be used with particular advantage when electrical interference in the lines is to be expected or in an explosive environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Alarm Systems (AREA)
  • Fire Alarms (AREA)
  • Burglar Alarm Systems (AREA)
  • Emergency Alarm Devices (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

In a detection arrangement comprising a central processing unit (E) and signalling devices (M) remotely located, the energy transmission from a radiation source (Q) and the signal return takes place exclusively optically by means of radiation conductor elements, so called optical conductors (L1, L2), through which the signalling devices are connected to the processing unit (E). The signalling devices (M) contain a detector (F), preferably with a high ohmic capacity, e.g. a smoke sensitive ionisation chamber (8) fed by a solar sensor (7) exposed to a radiation via an optical conductor and of which the output signal is sent back to the processing unit (E) by an electric transformer with a high ohmic capacity (T) and by an optical conductor (L2). This type of detection arrangement is preferably used for indicating the presence of a fire, smoke, a rise of temperature, or for the protection against house breaking, and it is particularly suitable for an area where there is a danger of explosion or electrical break-down.

Description

Die Erfindung betrifft eine Gefahren-Meldeeinheit mit einem Zustands-Sensorelement, das bei Eintritt eines zu meldenden Gefahrenzustandes seine Ausgangsspannung ändert, wodurch ein Melde-Signal erzeugt wird.The invention relates to a hazard reporting unit with a status sensor element which changes its output voltage when a hazardous status to be reported occurs, whereby a reporting signal is generated.

Solche Meldeeinheiten sind verwendbar zur Meldung von Gefahrenzuständen, beispielsweise zur Brandmeldung, zur Meldung gefährlicher Gase oder Dämpfe, von unerwünschter Temperatursteigerung, oder zum Einbruch- oder Diebstahlschutz. Das Meldesignal kann zur Alarmierung oder zur Einleitung von Schutz- oder Gegenmaßnahmen bei Eintritt des unerwünschten Zustandes dienen.Such reporting units can be used to report dangerous conditions, for example to report a fire, to report dangerous gases or vapors, to increase temperature undesirably, or to protect against burglary or theft. The message signal can be used to alarm or to initiate protective or countermeasures when the undesired state occurs.

Dabei sind die in den Meldeeinheiten verwendeten Sensorelemente auf den nachzuweisenden Zustand abgestimmt und sind beispielsweise als Brand-, Rauch-, Gas-, Strahlungs-, Temperatur- oder Einbruchdetektoren ausgebildet. Die Erfindung läßt sich mit besonderem Vorteil dort verwenden, wo Sensorelemente mit hohem elektrischen Widerstand erforderlich sind, beispielsweise lonisationskammern bei der Verwendung als Brandmelder.The sensor elements used in the reporting units are matched to the condition to be detected and are designed, for example, as fire, smoke, gas, radiation, temperature or intrusion detectors. The invention can be used with particular advantage where sensor elements with high electrical resistance are required, for example ionization chambers when used as fire detectors.

Bei vorbekannten Meldeanlagen erfolgt die Spannungsversorgung von einer Auswerteeinheit zu den entfernt von dieser angeordneten einzelnen Meldeeinheit und die Signalrückleitung von diesen Meldeeinheiten zur Signalzentrale in der Regel mittels elektrischer Leitungen, gegebenenfalls auch durch drahtlose elektrische Übertragung. Eine derartige Übertragung ist jedoch sehr störanfällig und unzuverlässig. Bei einer Leitungsübertragung treten häufig elektrische Störungen auf, z. B. Netzimpulse oder in den Leitungen induzierte elektrische Spannungen, die zu einem fehlerhaften Ansprechen der Meldeeinheiten und zu einer fehlerhaften Signalübermittlung führen. Aus ähnlichen Gründen sind Fernsprechverbindungen mit moduliertem Laserstrahl vorgeschlagen worden, wie im »The Bell System Technical Journal 58 (1979)« beschrieben. Bei den bekannten Meldern ergeben sich weitere Nachteile, die im folgenden aufgezählt werden. Durch den Spannungsabfall in den Leitungen schwankt die Versorgungsspannung, so daß aufwendige Stabilisierungseinrichtungen erforderlich sind. Die Komponenten der Meldeeinheit sind darüber hinaus Umwelteinflüssen ausgesetzt, z. B. temperaturabhängig, so daß aufwendige Kompensationsmaßnahmen getroffen werden müssen. Bei speziellen Verwendungen, insbesondere in explosionsgefährdeter Umgebung sind bei Spannungszufuhr über elektrische Leitungen noch besondere Schutzmaßnahmen notwendig. Durch Verwendung einer drahtlosen Übertragung und einer speziellen explosionsgeschützten Ausführung der Meldeeinheiten läßt sich der letztgenannte Nachteil zwar überwinden, jedoch ist eine drahtlose Übertragung bekanntermaßen wegen der vielfältigen Störungen noch wesentlich störungsanfälliger und unzuverlässiger.In the case of previously known signaling systems, the voltage supply from an evaluation unit to the individual signaling unit arranged at a distance therefrom and the signal return from these signaling units to the signaling center generally takes place by means of electrical lines, possibly also by wireless electrical transmission. However, such a transmission is very susceptible to interference and unreliable. Electrical interference often occurs during line transmission, e.g. B. network pulses or induced in the lines electrical voltages that lead to an incorrect response of the signaling units and to an incorrect signal transmission. For similar reasons, telephone connections with a modulated laser beam have been proposed, as described in "The Bell System Technical Journal 58 (1979)". The known detectors have further disadvantages, which are listed below. The supply voltage fluctuates due to the voltage drop in the lines, so that complex stabilization devices are required. The components of the signaling unit are also exposed to environmental influences, e.g. B. temperature-dependent, so that complex compensation measures must be taken. For special uses, especially in potentially explosive atmospheres, special protective measures are necessary when voltage is supplied via electrical cables. By using a wireless transmission and a special explosion-proof design of the signaling units, the last-mentioned disadvantage can be overcome, but as is known, wireless transmission is even more susceptible to faults and unreliable because of the various interferences.

Die US-PS 3805 066 zeigt einen optischen Rauchmelder, bei dem die einzelnen in Reihe angeordneten Rauchkammern durch Lichtleiter miteinander verbunden sind. Die optische Verbindung zwischen den Rauchkammern hat nichts mit den obengenannten Gründen, nämlich Austausch elektrischer Verbindung durch optische Verbindung, zu tun, weil sie lediglich rein optische, nach dem Lichtschrankenprinzip arbeitende Fühler miteinander verbindet, ohne daß das Sensorelement mit einer elektrischen Spannung versorgt werden müßte, und daher weder ein optisch-elektrischer noch ein elektrischoptischer Wandler vorgesehen sind.US Pat. No. 3,805,066 shows an optical smoke detector in which the individual smoke chambers arranged in series are connected to one another by light guides. The optical connection between the smoke chambers has nothing to do with the above-mentioned reasons, namely the exchange of an electrical connection by an optical connection, because it only connects purely optical sensors that work according to the light barrier principle, without the sensor element having to be supplied with an electrical voltage, and therefore neither an optical-electrical nor an electrical-optical converter are provided.

Die Aufgabe der Erfindung ist darin zu sehen, eine Gefahrenmeldeeinheit zu schaffen, die einen geringen Stromverbrauch hat und empfindlich, zuverlässig, ohne Störungen, stabil, genau und spannungsunabhängig über längere Zeiten arbeitet. Die Gefahrenmeldeeinheit eignet sich besonders für den Einsatz in explosiorisgefährdeter Umgebung und/oder unter Einwirkung elektrischer Störungen.The object of the invention is to provide a hazard alarm unit that has low power consumption and works sensitively, reliably, without interference, stably, precisely and independently of voltage over longer periods. The hazard detection unit is particularly suitable for use in potentially explosive atmospheres and / or under the influence of electrical interference.

Diese Aufgabe wird bei der im Oberbegriff des Anspruchs 1 angegebenen Gefahrenmeldeeinheit durch das im kennzeichnenden Teil des Anspruchs 1 definierte Merkmal gelöst.This object is achieved in the hazard notification unit specified in the preamble of claim 1 by the feature defined in the characterizing part of claim 1.

Die Erfindung wird anhand der in den Figuren dargestellten Ausführungsbeispiele beschrieben.

  • Figur 1 zeigt ein Beispiel einer Meldeanlage mit parallel angeschlossenen Meldeeinheiten.
  • Figur 2 zeigt den Prinzipaufbau eines Brandmelders.
  • Figur 3 zeigt den Prinzipaufbau eines lonisations-Brandmelders.
  • Figur 4 zeigt ein Brand-Sensorelement.
  • Figuren 5 bis 7 zeigen verschiedene Ausführungsformen.
  • Figur 8 zeigt den konstruktiven Aufbau eines lonisations-Brandmelders.
The invention is described on the basis of the exemplary embodiments shown in the figures.
  • FIG. 1 shows an example of an alarm system with alarm units connected in parallel.
  • Figure 2 shows the basic structure of a fire detector.
  • Figure 3 shows the basic structure of an ionization fire detector.
  • Figure 4 shows a fire sensor element.
  • Figures 5 to 7 show different embodiments.
  • Figure 8 shows the construction of an ionization fire detector.

Bei der in Figur 1 dargestellten Meldeanlage ist eine zentrale Auswerteeinheit E vorgesehen, welche eine Strahlungsquelle Q und einen Strahlungsempfänger R aufweist. Die Strahlungsquelle Q wird von einer Signalschaltung S angespiesen, während das Ausgangssignal des Strahlungsempfängers R an die Signalschaltung S zurückgeleitet wird. Sobald ein vorgegebener Unterschied zwischen ausgesandter und empfangener Strahlung festgestellt wird, so gibt die Signalschaltung S ein Alarmsignal an eine Alarmeinheit A ab oder veranlaßt z. B. über EDV die Einleitung von Schutz- oder Gegenmaßnahmen. Entsprechende Signalschaltungen sind z. B. in großer Zahl aus der Technik optischer Zustandsmelder, z. B. Rauchmelder, bekannt.In the alarm system shown in FIG. 1, a central evaluation unit E is provided, which has a radiation source Q and a radiation receiver R. The radiation source Q is fed by a signal circuit S, while the output signal of the radiation receiver R is fed back to the signal circuit S. As soon as a predetermined difference between emitted and received radiation is determined, the signal circuit S emits an alarm signal to an alarm unit A or causes z. B. via EDP the initiation of protective or countermeasures. Corresponding signal circuits are e.g. B. in large numbers from the technology of optical condition detectors, for. B. smoke detectors, known.

Die Strahlung der Strahlungsquelle Q wird von einem ersten strahlungsleitenden Element Lτ , auch als Fiberoptik bekannt, im folgenden der Kürze halber als Lichtleiter bezeichnet, an mehrere entfernt von der Auswerteeinheit E angeordneten Meldeeinheit Mi, M2, M3, ... verteilt, die Fühler für den zu detektierenden Zustand aufweisen. Die Aus- und Einkoppelung der Strahlung für die einzelnen Meldeeinheiten erfolgt dabei in in der Lichtleitertechnik bekannter Art, mit Verzweigungselementen V1, V2, ... bzw. W1, W2, ... geeigneter Ausbildung, ebenfalls der Anschluß an die einzelnen Meldeeinheiten über geeignete bekannte Verbindungen. Von den einzelnen Meldeeinheiten M1, M2, M3, ... wird die Strahlung abgenommen und über einen zweiten Lichtleiter L2 zum Empfänger R in der Auswerteeinheit E zurückgeleitet. Die einzelnen Meldeeinheiten Mi, M2, M3, ... sind also über die Lichtleiter L1 und L2 parallel mit der Auswerteeinheit E in einer Gruppe verbunden. Die gesamte Gruppe kann hinter der letzten Meldeeinheit durch ein Endglied T abgeschlossen sein, das zur Überwachung des Funktionierens der Lichtleiter dient.The radiation from the radiation source Q is referred to by a first radiation-conducting element Lτ, also known as fiber optics, hereinafter referred to as light guide for the sake of brevity, to a plurality of signaling units M i , M 2 , M 3 , ... ver arranged away from the evaluation unit E. shares that have sensors for the condition to be detected. The coupling and decoupling of the radiation for the individual signaling units takes place in a manner known in light guide technology, with branching elements V 1 , V 2 , ... or W 1 , W 2 , ... suitable training, likewise the connection to the individual reporting units via suitable known connections. The radiation is taken from the individual signaling units M 1 , M 2 , M3,... And returned to the receiver R in the evaluation unit E via a second light guide L 2 . The individual signaling units M i , M 2 , M 3 , ... are therefore connected in parallel via a light guide L 1 and L 2 to the evaluation unit E in a group. The entire group can be closed behind the last signaling unit by an end element T, which is used to monitor the functioning of the light guides.

Es wird bemerkt, daß an die Strahlungsquelle Q und den Strahlungsempfänger R weitere solcher Gruppen von parallel geschalteten Meldeeinheiten über weitere Lichtleiter angeschlossen sein können (L1', L21It is noted that further such groups of signaling units connected in parallel can be connected to the radiation source Q and the radiation receiver R via further light guides (L 1 ', L21

Die verwendeten Lichtleiter können entweder aus jeweils einer einzigen Faser bestehen oder aus mehreren, d. h. als Lichtleiterbündel, ausgeführt sein. Auch können Zuleitung L1 und Rückleitung L2 zu einem einzigen Bündel vereinigt sein. Die Art der Lichtleiter kann je nach Bedarf und in Abstimmung mit den Meldeeinheiten von verschiedener Art gewählt werden.The light guides used can either consist of a single fiber or can be made of several, ie as a light guide bundle. Supply line L 1 and return line L 2 can also be combined into a single bundle. The type of light guide can be selected as required and in coordination with the signaling units of various types.

Als Strahlungsquelle Q läßt sich im Prinzip eine beliebige geeignete Lampe, eine Licht oder Infrarot emittierende Diode oder ein LASER verwenden, wobei die Spektralverteilung breitbandig, monochromatisch, multimonochromatisch sein kann. Es ist jedoch zweckmäßig, das Spektrum dieser Strahlungsquelle Q so zu wählen, daß dieses auf Übertragungseigenschaften der Lichtleiter bei Verwendung von Monomode-Lichtleitern, sowie an die Eigenschaften des Strahlungsempfängers R angepaßt ist. Es kann zweckmäßig sein, die Strahlungsquelle intermittierend oder impulsförmig, z. B. mit einer Frequenz von 30 Hz zu betreiben oder die Verzweigungselemente in bekannter Weise so steuerbar auszubilden, daß die einzelnen Meldeeinheiten sequentiell zu unterschiedlichen Zeiten Strahlung in der Art eines optischen Multiplex erhalten.In principle, any suitable lamp, a light or infrared emitting diode or a LASER can be used as radiation source Q, the spectral distribution being broadband, monochromatic, multimonochromatic. However, it is expedient to select the spectrum of this radiation source Q such that it is adapted to the transmission properties of the light guides when using single-mode light guides and to the properties of the radiation receiver R. It may be appropriate to use the radiation source intermittently or in pulses, e.g. B. to operate at a frequency of 30 Hz or to design the branching elements in a known manner so that the individual signaling units receive radiation sequentially at different times in the manner of an optical multiplex.

Der Strahlungsempfänger R ist zweckmäßigerweise auf die Strahlungsquelle Q abgestimmt und kann z. B. als Photoleiter (Si, GaAs, PbSe, InSb), als pyroelektrisches Element (LiTa03, TGS, PVF2) oder als Bolometer ausgeführt sein.The radiation receiver R is expediently matched to the radiation source Q and can, for. B. as a photoconductor (Si, GaAs, PbSe, InSb), as a pyroelectric element (LiTa0 3 , TGS, PVF 2 ) or as a bolometer.

Figur 2 zeigt eine Meldeeinheit M mit einem hochohmigen Sensorelement F, welche zum Betrieb eine Spannungsversorgung von einigen Volt benötigt, jedoch nur einen sehr geringen Stromverbrauch aufweist. Das Sensorelement F enthält einen Fühler 8, dessen elektrischer Widerstand sich bei Einwirkung einer nachzuweisenden Zustandsgröße ändert, welcher in Serie mit einem Referenzelement 9 geschaltet ist. Bei einer solchen Anordnung ändert sich der Spannungsabfall am Fühler 8 und damit das Ausgangspotential U des Sensorelementes bei Änderung des zu überwachenden Zustandsparameters. Zur Spannungsversorgung der seriegeschalteten Elemente 8 und 9 dienen eine oder mehrere Solarzellen, z. B. Siliziumdioden, welche von einer Abzweigung L3 des Lichtleiters L, Strahlung erhalten. Sofern der Widerstand des Sensorelementes F groß genug ist und der Stromverbrauch entsprechend gering, genügt die von diesen Solarzellen oder Siliziumdioden 7 erzeugte Spannung vollauf zum Betrieb des Sensorelementes F.FIG. 2 shows a signaling unit M with a high-resistance sensor element F, which requires a voltage supply of a few volts for operation, but only has a very low power consumption. The sensor element F contains a sensor 8, the electrical resistance of which changes when exposed to a state variable to be detected, which is connected in series with a reference element 9. In such an arrangement, the voltage drop at the sensor 8 and thus the output potential U of the sensor element changes when the state parameter to be monitored changes. For the voltage supply of the series-connected elements 8 and 9, one or more solar cells, for. B. silicon diodes, which receive radiation from a branch L 3 of the light guide L. If the resistance of the sensor element F is large enough and the power consumption is correspondingly low, the voltage generated by these solar cells or silicon diodes 7 is sufficient to operate the sensor element F.

Das Ausgangspotential U des Sensorelementes F steuert einen ebenfalls sehr hochohmigen elektrisch-optischen Wandler T. Dieser kann aus einem LCD-Element mit elektrisch steuerbarer Strahlungsdurchlässigkeit oder Reflexion bestehen, z. B. einem geeigneten Flüssigkristall, der auf einer reflektierenden Fläche Ro angebracht ist. Auf diesen Wandler T wird Strahlung über einen Abzweig L4 des Lichtleiters Li zugeleitet und vom Lichtleiter L2 wieder abgenommen. Normalerweise, solange der Flüssigkristall strahlungsundurchlässig ist, wird über diesen Lichtleiter L2 kein Signal zurückgeleitet. Übersteigt jedoch bei einer bestimmten Zustandsänderung die Ausgangsspannung U des Sensorelementes F und somit die Steuerspannung des Wandlers T eine bestimmte Schwelle, so wird der Flüssigkristall transparent, so daß die über den Lichtleiter L4 zugeführte Strahlung vom Reflektor Ro reflektiert wird und die Auswerteeinheit über den Lichtleiter L2 Strahlung erhält. Solche LCD-Elemente sind aus der Uhrentechnik bekannt.The output potential U of the sensor element F controls a likewise very high-resistance electrical-optical converter T. This can consist of an LCD element with electrically controllable radiation permeability or reflection, e.g. B. a suitable liquid crystal, which is attached to a reflective surface R o . Radiation is fed to this transducer T via a branch L 4 of the light guide Li and removed again from the light guide L 2 . Normally, as long as the liquid crystal is opaque to radiation, no signal is returned via this light guide L 2 . However, if the output voltage U of the sensor element F and thus the control voltage of the converter T exceeds a certain threshold for a certain change in state, the liquid crystal becomes transparent so that the radiation supplied via the light guide L 4 is reflected by the reflector R o and the evaluation unit via the Light guide L 2 receives radiation. Such LCD elements are known from watch technology.

Figur 3 zeigt eine als lonisations-Brandmelder ausgebildete Meldeeinheit. Dabei ist der Fühler 8 als luftzugängliche lonisationskammer ausgebildet und das Referenzelement 9 als weniger luftzugängliche oder rauchunempfindliche lonisationskammer. Beide lonisationskammern enthalten radioaktive Quellen zur lonisation der Luft in den Kammern. Bei dieser Anordnung ändert sich das Potential U am Verbindungspunkt beider lonisationskammern entsprechend der Rauchdichte in der luftzugänglichen lonisationskammer 8.FIG. 3 shows a detection unit designed as an ionization fire detector. The sensor 8 is designed as an air-accessible ionization chamber and the reference element 9 as a less air-accessible or smoke-insensitive ionization chamber. Both ionization chambers contain radioactive sources for ionizing the air in the chambers. In this arrangement, the potential U at the junction of the two ionization chambers changes in accordance with the smoke density in the air-accessible ionization chamber 8.

Von besonderem Vorteil ist bei der Ausbildung des Fühlers als lonisationskammer der außerordentlich große Innenwiderstand und damit der besonders geringe Stromverbrauch, so daß die von der Auswerteeinheit gelieferte Strahlungsleistung zum Betrieb einer großen Anzahl parallel geschalteter Meldeeinheiten ausreicht.Of particular advantage in the design of the sensor as an ionization chamber is the extraordinarily high internal resistance and thus the particularly low power consumption, so that the radiation power supplied by the evaluation unit is sufficient to operate a large number of signaling units connected in parallel.

Bei diesem Ausführungsbeispiel kann es zweckmäßig sein, das Ausgangspotential U des Sensorelementes nicht direkt dem elektrisch-optischen Wandler T zuzuführen, sondern über einen als Impedanzwandler und Schwellenwertschalter dienenden Feldeffekt-Transistor FET, dessen Gate an den Verbindungspunkt der beiden lonisationskammern 8 und 9 angeschlossen ist und dessen Source und Drain über Widerstände 1 und 2 an die Anschlüsse 3 und 4 des Sensorelementes angeschlossen sind.In this exemplary embodiment, it may be expedient not to supply the output potential U of the sensor element directly to the electrical-optical converter T, but via a field-effect transistor FET serving as an impedance converter and threshold switch, the gate of which is connected to the connection point of the two ionization chambers 8 and 9 and its source and drain via contr Stands 1 and 2 are connected to connections 3 and 4 of the sensor element.

Es wird bemerkt, daß statt der lonisationskammern 8 und 9 auch andere hochohmige Zustandsfühler verwendet werden können, die auf andere nachzuweisende Zustandsparameter reagieren, beispielsweise auf bestimmte Gase oder Dämpfe, auf Feuchtigkeits-, Temperatur-oder Druckänderungen etc.It is noted that instead of the ionization chambers 8 and 9, other high-resistance condition sensors can also be used, which react to other condition parameters to be detected, for example to certain gases or vapors, to changes in humidity, temperature or pressure, etc.

Figur4 zeigt als hochohmigen Fühler F ein Halbleiterelement, beispielsweise einen MOSFET, eine MOS-Kapazität oder eine Schottky-Diode mit einer gas-, temperatur-, feuchtigkeits-, rauch- oder druckempfindlichen aktiven Schicht Al. Beispielsweise ist als POSFET (»Science« 200 [1978], S. 1371) eine druck- und temperaturempfindliche MOSFET-Struktur bekannt, bei welcher die aktive Schicht AI aus polarisiertem Polyvinyliden-Fluorid besteht. Ein andres Beispiel ist der »Charge Flow«-Transistor (CFT, »IEEE of Solid-State Circuitsa, vol. SC-14 [1979], p. 753), bei welchem die aktive Schicht aus Poly-(p-aminophenylacetylen) besteht, dessen Charakteristik sich als Funktion der Feuchtigkeit ändert, und die auf einer Siliziumdioxid-Schicht SIO angebracht ist. Ein weiteres Beispiel ist die wasserstoffempfindliche MOSFET-Struktur, bei welcher die aktive Schicht AI aus Palladium-Metall besteht (»Vacuum« 27 [1976], p. 245). Fühler der beschriebenen Art stellen also hochohmige steuerbare Halbleiter dar, bei denen die Isolatorschicht einer gas-, temperatur-, feuchtigkeits-, druck- oder rauchempfindlichen Isolatorschicht Al, z. B. aus einer PVF2 (Polyvinyldifluorid)-Schicht, entspricht. Dabei wird die Vorspannung an der Gate-Elektrode EG etwa auf den Schwellenwert für die Leitfähigkeit zwischen Source-Elektrode Es und Drain-Elektrode ED eingestellt. Bei Einwirkung von Umgebungsbedingungen ändert sich diese Leitfähigkeit.FIG. 4 shows, as a high-resistance sensor F, a semiconductor element, for example a MOSFET, a MOS capacitance or a Schottky diode with a gas, temperature, moisture, smoke or pressure-sensitive active layer A1. For example, a pressure and temperature sensitive MOSFET structure is known as POSFET ("Science" 200 [1978], p. 1371), in which the active layer AI consists of polarized polyvinylidene fluoride. Another example is the "charge flow" transistor (CFT, "IEEE of Solid-State Circuitsa, vol. SC-14 [1979], p. 753), in which the active layer consists of poly (p-aminophenylacetylene) , the characteristic of which changes as a function of moisture, and which is applied to a silicon dioxide layer SIO. Another example is the hydrogen-sensitive MOSFET structure, in which the active layer AI consists of palladium metal ("Vacuum" 27 [1976], p. 245). Sensors of the type described thus represent high-resistance controllable semiconductors in which the insulator layer of a gas, temperature, moisture, pressure or smoke-sensitive insulator layer Al, for. B. from a PVF 2 (polyvinyl difluoride) layer corresponds. The bias voltage at the gate electrode EG is set approximately to the threshold value for the conductivity between the source electrode Es and the drain electrode ED. This conductivity changes when exposed to ambient conditions.

Weiterhin sind die verwendeten elektrisch-optischen Wandler nicht auf das dargestellte Beispiel mit einem Flüssigkristall beschränkt, sondern es können auch andere solcher Elemente benützt werden. Beispielsweise zeigt Figur 5 einen elektrisch-optischen Wandler mit elektrisch steuerbarer Strahlungsablenkung, beispielsweise vom LiNb03-Typ. Ein solcher Wandler T weist einen Chip EO auf, der die Eigenschaft hat, daß bei Anlegen einer elektrischen Spannung U das über einen Lichtleiter L4 eingestrahlte Licht in Abhängigkeit von der Spannung in verschiedener Richtung abgelenkt wird. Der die Strahlung abnehmende Lichtleiter L2 ist nun an einer Stelle angeordnet, die einer Ausgangsspannung des Sensorelementes F und somit einer Eingangsspannung U des Wandlers entspricht, bei welcher eine Alarmmeldung erfolgen soll.Furthermore, the electrical-optical converters used are not limited to the example shown with a liquid crystal, but other such elements can also be used. For example, FIG. 5 shows an electrical-optical converter with electrically controllable radiation deflection, for example of the LiNb0 3 type. Such a converter T has a chip EO, which has the property that when an electrical voltage U is applied, the light irradiated via an optical fiber L 4 is deflected in different directions depending on the voltage. The light guide L 2 which absorbs the radiation is now arranged at a point which corresponds to an output voltage of the sensor element F and thus an input voltage U of the converter at which an alarm message is to be given.

Figur 6 zeigt einen elektro-optischen Wandler, in welchem der Strahlengang im Luftraum zwischen den beiden Lichtleitern L4, L2 durch ein piezo-elektrisches Element PB, beispielsweise durch eine mehrschichtige, als »Bimorph-Struktur bekanntgewordene Polyvinyldifluorid (PVF2)-Struktur verändert wird, die in einer Lükke zwischen den mit einem Mantel CL bedeckten Lichtleitern L4 und L2 angeordnet ist und auf beiden Außenseiten mit Elektroden EL versehen ist.FIG. 6 shows an electro-optical converter in which the beam path in the air space between the two light guides L 4 , L 2 through a piezoelectric element PB, for example through a multilayer polyvinyl difluoride (PVF 2 ) structure which has become known as a »bimorph structure is changed, which is arranged in a gap between the light guides L 4 and L 2 covered with a cladding CL and is provided on both outer sides with electrodes EL.

Figur 7 zeigt als weiteres Beispiel einen elektro-optischen Wandler, in welchem der Strahlengang im Luftraum zwischen den beiden Lichtleitern L4, L2 durch einen elektrostatischen Halbleiter-Schalter SI verändert wird. In diesem wird beispielsweise eine Silizium-Oxidschicht SIO durch eine angelegte Spannung V1, V2 zwischen den Elektroden EL in den Strahlengang bewegt. Dieses Element SIO-EL wirkt zusätzlich als Bimetall, so daß ein damit versehener Brandmelder sowohl rauch- wie auch temperaturempfindlich ist. Der Halbleiter-Schalter kann auch wie die in der Uhrentechnik verwendeten Schrittmotoren aufgebaut sein.FIG. 7 shows, as a further example, an electro-optical converter in which the beam path in the air space between the two light guides L 4 , L 2 is changed by an electrostatic semiconductor switch SI. In this, for example, a silicon oxide layer SIO is moved into the beam path by an applied voltage V 1 , V 2 between the electrodes EL. This element SIO-EL also acts as a bimetal, so that a fire detector provided with it is sensitive to both smoke and temperature. The semiconductor switch can also be constructed like the stepper motors used in clock technology.

Auf die beschriebene Weise läßt sich eine Meldeeinheit schaffen, bei der sowohl die Übertragung der zum Betrieb des Sensorelementes erforderlichen Leistung als auch die Signalübermittlung zurück zur Auswerteeinheit auf rein optischem Wege erfolgt. Dabei ist die Auswahl der Sensorelemente keineswegs auf die erwähnten Bauteile beschränkt, sondern es können beliebige, mit besonderem Vorteil hochohmige Fühler für beliebige Zustandsgrößen benützt werden, z. B. dünne Schichten, Halbleiter, insbesondere hochohmige Transistoren vom MOS-Typ, oder piezoelektrische Elemente, die ihre Eigenschaften unter dem Einfluß der Umgebungsbedingungen ändern und beispielsweise auf ein Brandphänomen reagieren.In the manner described, a signaling unit can be created in which both the transmission of the power required to operate the sensor element and the signal transmission back to the evaluation unit take place in a purely optical way. The selection of the sensor elements is by no means limited to the components mentioned, but any, with particular advantage high-resistance sensors for any state variables can be used, for. B. thin layers, semiconductors, in particular high-resistance transistors of the MOS type, or piezoelectric elements that change their properties under the influence of the ambient conditions and react, for example, to a fire phenomenon.

Figur 8 zeigt den konstruktiven Aufbau einer als Ionisationsbrandmelder ausgebildeten Meldeeinheit, die nach dem anhand der Figuren 2 und 3 erläuterten Funktionsprinzip arbeitet. Dabei kann der Aufbau der lonisationskammern beispielsweise gemäß schweizerischem Patent 551 057 oder US-PS 3 908 957 ausgeführt sein.FIG. 8 shows the structural design of a detection unit designed as an ionization fire detector, which operates according to the functional principle explained with reference to FIGS. The ionization chambers can be constructed, for example, according to Swiss patent 551 057 or US Pat. No. 3,908,957.

Der Brandmelder enthält eine äußere lonisationskammer8 und eine innere lonisationskammer 9, die auf den beiden Seiten einer elektrisch isolierenden Trägerplatte 10 angeordnet sind. Die erste, als Sensorelement dienende lonisationskammer 8 weist eine als Metallgitter ausgebildete Außenelektrode 11 auf, durch die Luft in das Kammerinnere eindringen kann. Die Außenelektrode der anderen, als Referenzkammer dienenden lonisationskammer 9 ist dagegen mit einer weitgehend luftundurchlässigen Metallhaube 13 als Außenelektrode ausgerüstet. Als Gegenelektroden dienen in den Kammern 8 und 9 jeweils eine Metallscheibe 12 und 14, die mit einem metallischen Stempel 15 leitend miteinander verbunden sind und die jeweils eine radioaktive Quelle 16 und 17 zur Ionisierung des Kammerinneren tragen. Liegt eine elektrische Spannung zwischen den Außenelektroden 11 und 13, so fließt daher ein bestimmter Ionenstrom durch die seriegeschalteten lonisationskammern 8 und 9, d. h. zwischen den Elektroden 11 und 12 sowie 13 und 1 4, wobei sich am Verbindungspunkt 15 ein bestimmtes Potential U einstellt. Sobald Rauch in die luftzugängliche lonisationskammer 8 eindringt, ändert sich deren elektrischen Widerstand und damit ebenfalls der Ionenstrom und das Potential U am Verbindungspunkt 15.The fire detector contains an outer ionization chamber 8 and an inner ionization chamber 9, which are arranged on the two sides of an electrically insulating carrier plate 10. The first ionization chamber 8, which serves as a sensor element, has an outer electrode 11 designed as a metal grid, through which air can penetrate into the interior of the chamber. The outer electrode of the other ionization chamber 9 serving as a reference chamber, on the other hand, is equipped with a largely air-impermeable metal hood 13 as the outer electrode. A metal disk 12 and 14, which are conductively connected to one another with a metallic stamp 15 and which each carry a radioactive source 16 and 17 for ionizing the interior of the chamber, serve as counter electrodes in the chambers 8 and 9. If there is an electrical voltage between the outer electrodes 11 and 13, a certain ion current therefore flows through the series-connected ionization chambers 8 and 9, ie between the electrodes 11 and 12 and 13 and 14, a certain potential U being established at the connection point 15. As soon as Smoke penetrates into the air-accessible ionization chamber 8, its electrical resistance changes and thus also the ion current and the potential U at the connection point 15.

Die Trägerplatte 10 ist in einem Gehäuse 20 montiert, das eine Basisplatte 21, ein daran anschließendes Zylinderteil 22 und einen Deckel 23 aufweist. Dabei ist zwischen Zylinderteil 22 und Deckel 23 eine ringförmige Öffnung 24 zum Eintritt der Luft in die rauchempfindliche lonisationskammer 8 vorgesehen.The carrier plate 10 is mounted in a housing 20 which has a base plate 21, an adjoining cylinder part 22 and a cover 23. In this case, an annular opening 24 is provided between the cylinder part 22 and cover 23 for the air to enter the smoke-sensitive ionization chamber 8.

Das Gehäuse 20 ist mit einem Sockelteil 30 verbindbar, der beispielsweise an der Raumdekke befestigt ist. Diese Verbindung kann beispielsweise mit einem Schnappverschluß erfolgen, wobei Vorsprünge 26 mehrerer am Gehäuse 20 vorgesehener Schnappfedern 25 über einen ringförmigen Steg 31 am Sockelteil 30 gleiten und sich dort verriegeln.The housing 20 can be connected to a base part 30 which is fastened, for example, to the room ceiling. This connection can be made, for example, with a snap lock, with projections 26 of a plurality of snap springs 25 provided on the housing 20 sliding over an annular web 31 on the base part 30 and locking there.

Der Sockelteil 30 ist über Lichtleiter Li und L2 mit einer zentralen Auswerteeinheit verbunden. Diese Lichtleiter enden in einem Stecker S1 auf der Unterseite des Sockelteiles 30. Die Basisplatte 21 enthält als Gegenstück eine dazu passende Lichtleiterbuchse S2. Lichtleiterverbindungen dieser Art sind im Handel erhältlich und bekannt. Aus der Vielzahl der Veröffentlichungen seien die europäischen Patentpublikationen 6 662 und 8 709 genannt. Beispielsweise kann dafür ein »Connector« C-21 der Hughes Aircraft Co. verwendet werden.The base part 30 is connected to a central evaluation unit via light guides Li and L 2 . These light guides end in a plug S 1 on the underside of the base part 30. The base plate 21 contains a matching light guide socket S 2 as a counterpart. Light guide connections of this type are commercially available and known. European patent publications 6 662 and 8 709 are mentioned from the large number of publications. For example, a "Connector" C-21 from Hughes Aircraft Co. can be used for this.

Wie bereits anhand von Figur 2 beschrieben, wird die über den Lichtleiter Li ankommende Strahlung über eine Verzweigung L3 auf den optisch-elektrischen Wandler 7, beispielsweise eine Solarzellen-Batterie, geleitet, die mit den beiden Außenelektroden 11 und 13 der lonisationskammern 8 und 9 verbunden ist und der Serieschaltung der beiden Kammern eine Spannung zuführt. Der die Gegenelektroden 12 und 14 verbindende Stempel 15 ist an den elektrisch-optischen Wandler T angeschlossen, welcher über die andere Verzweigung L4 des Lichtleiters L1 Strahlung erhält und dessen Rückstrahlung vom Lichtleiter L2 abgenommen und über Steckverbindung S2, S1 und den Sockelteil 30 zur Auswerteeinheit zurückgeführt wird.As already described with reference to FIG. 2, the radiation arriving via the light guide Li is directed via a branch L 3 to the optical-electrical converter 7, for example a solar cell battery, which is connected to the two outer electrodes 11 and 13 of the ionization chambers 8 and 9 is connected and the series circuit of the two chambers supplies a voltage. The plunger 15 connecting the counterelectrodes 12 and 14 is connected to the electrical-optical converter T, which receives radiation via the other branch L 4 of the light guide L 1 and whose retroreflection is removed from the light guide L 2 and via plug connection S 2 , S 1 and the Base part 30 is returned to the evaluation unit.

Ein so ausgebildeter lonisationsbrandmelder weist alle Vorteile üblicher lonisationsbrandmelder bezüglich einer optimalen Rauchempfindlichkeit und einem besonders frühzeitigen Ansprechen auf geringste Rauchspuren auf, vermeidet jedoch deren Nachteile, die mit der Notwendigkeit der Spannungsversorgung und der Signalrückleitung über elektrische Leitungen verbunden sind. Ein solcher lonisationsbrandmelder läßt sich insbesondere mit Vorteil einsetzen, wenn elektrische Störungen in den Leitungen zu erwarten sind, oder in explosionsgefährdeter Umgebung.An ionization fire detector designed in this way has all the advantages of conventional ionization fire detectors with regard to optimal smoke sensitivity and a particularly early response to the slightest trace of smoke, but avoids the disadvantages associated with the need for power supply and signal return via electrical lines. Such an ionization fire detector can be used with particular advantage when electrical interference in the lines is to be expected or in an explosive environment.

Claims (16)

1. An alarm device for signalling dangers comprising a condition sensor element (F) which upon occurrence of a dangereous condition which is to be reported alters its output voltage (U) in order to initiate giving of an alarm signal, an op- to-electrical transducer (7) receiving electromagnetic radiation through at least one radiation-conducting element (Li, L3) and thereby delivering an electrical potential for the voltage supply of the sensor element (F) and an electro-optical transducer (T), which generates an optical signal upon change of the output voltage (U) of the sensor element (F), which signal is transduced through at least one further radiation-conducting element (L2) and is evaluated for generating an alarm signal, characterized in that the electro-optical transducer (T) is constructed as a passive element.
2. Alarm device according to claim 1, characterized in that the sensor element (F) contains an element (8) which is sensitive to a combustion phenomenon.
3. Alarm device according to claim 2, characterized in that the element which is sensitive to a combustion phenomenon is constructed as an air accessible ionization chamber (8).
4. Alarm device according to claim 3, characterized in that the air accessible ionization chamber (8) is connected in series with an ionization chamber (9) which is less accessible to air and in series with output means (3, 4) of the opto-electrical transducer (7).
5. Alarm device according to any of claims 2 to 4, characterized in that the sensor element (F) is contained in a housing (20) which is accessible to the ambient air which housing (20) is removable connected with a socket portion (30) that the optical contact between the light-conducting elements (Li, L2) in the housing (20) and in the socket portion (31) is achieved by a light-conducting connection means (Si, S2) and that the opto-electrical transducer (7) and the electro-optical transducer (T) are arranged at that face of the light-conducting connection part (S2) being opposite to the socket portion (31).
6. Alarm device according to claim 5, characterized in that the opto-electrical transducer (7) and the electro-optical transducer (T) are arranged at a support plate (10) which carries at its lower face the air accessible ionization chamber (8) and at its upper face the less air accessible or smoke-insensible ionization chamber (9) which support plate (10) is arranged below a base plate (21) comprising the light-conducting connection part (S2).
7. Alarm device according to claim 4, characterized in that the connection terminal of both the ionization chambers (8,9) are connected with the gate (G) of a field-effect transistor (FET) and that the source or drain electrode of the field-effect transistor (FET) is connected with the control connection (Ro) of the electro-optical transducer (T).
8. Alarm device according to claim 1, characterized in that the sensor element (F) comprises a high-ohm semiconductor element having an active insulation layer being sensitive to gas, moisture, pressure, smoke or temperature.
9. Alarm device according to any of claims 1 to 8, characterized in that the opto-electrical transducer (7) comrises at least one solar cell.
10. Alarm device according to any of claims 1 to 9, characterized in that the electro-optical transducer (T) contains a liquid cristal device (LCD) having electrically controllable optical permeability or electrically controllable optical reflection.
11. Alarm device according to any of claims 1 to 9, characterized in that the electro-optical transducer (T) contains an element (EO) having electrically controllable radiation deflection that the element (L2) conducting back the radiation is mounted with its radiation receiving surface such that it receives radiation in the presence of a predetermined input voltage of the electro-optical transducer (T).
12. Alarm device according to any of claims 1 to 9, characterized in that the electro-optical transducer (T) is constructed as a multi-layer PVF2 bimorphous structure (PB) arrranged in a gap of the light-conducting elements (L2, 14) and being provided with two electrodes.
13. Alarm device according to any of claims 1 to 9, characterized in that the electro-optical transducer (T) is structured as an electrostatic semiconductor layer (SIO) arranged in a gap of the light-conducting elements (L2, L4) and having a layer which is movable by the action of an electrical potential and/or by the temperature.
14. Alarm device according to claim 10, characterized in that the liquid cristal device (LCD) is electrically controlled by the output voltage (U) of the sensor element (F) such that upon occurrence of an condition which is to be reported it alters its degree of optical reflection or of optical transmission.
15. Alarm device according to claim 14, characterized in that radiation is transmitted to the liquid crystal device (LCD) through an additional radiation-conducting element (L4) and that a reflecting surfache (Ro) is provided at which there is reflected the infed radiation after passing the liquid crystal element (LCD), as a function of its degree of optical reflection or of optical transmission and such reflected radiation is removed by an additional radiation-conducting element (L2).
EP80901773A 1979-12-17 1980-09-22 Danger detection device with detector Expired EP0041952B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80901773T ATE14252T1 (en) 1979-12-17 1980-09-22 HAZARD DETECTION UNIT WITH A CONDITION SENSING ELEMENT.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1113779 1979-12-17
CH11137/79 1979-12-17

Publications (2)

Publication Number Publication Date
EP0041952A1 EP0041952A1 (en) 1981-12-23
EP0041952B1 true EP0041952B1 (en) 1985-07-10

Family

ID=4370443

Family Applications (2)

Application Number Title Priority Date Filing Date
EP80901773A Expired EP0041952B1 (en) 1979-12-17 1980-09-22 Danger detection device with detector
EP80106917A Withdrawn EP0032169A1 (en) 1979-12-17 1980-11-10 Signalling arrangement operating with electromagnetic radiation

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP80106917A Withdrawn EP0032169A1 (en) 1979-12-17 1980-11-10 Signalling arrangement operating with electromagnetic radiation

Country Status (13)

Country Link
US (1) US4379290A (en)
EP (2) EP0041952B1 (en)
JP (3) JPS56501779A (en)
BE (1) BE881812A (en)
CA (1) CA1150359A (en)
DE (2) DE3070861D1 (en)
FR (1) FR2471636B1 (en)
GB (1) GB2066451B (en)
IT (1) IT1136224B (en)
NO (1) NO151801C (en)
SE (1) SE8008723L (en)
WO (1) WO1981000636A1 (en)
ZA (1) ZA807269B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014019773A1 (en) 2014-12-17 2016-06-23 Elmos Semiconductor Aktiengesellschaft Apparatus and method for distinguishing solid objects, cooking fumes and smoke by means of the display of a mobile telephone
DE102014019172A1 (en) 2014-12-17 2016-06-23 Elmos Semiconductor Aktiengesellschaft Apparatus and method for distinguishing solid objects, cooking fumes and smoke with a compensating optical measuring system

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5683895U (en) * 1979-12-01 1981-07-06
US4521771A (en) * 1979-12-04 1985-06-04 Omni Devices, Inc. Combined static and dynamic image data display system
FR2528980A1 (en) * 1982-06-17 1983-12-23 Pgep IONIZATION LEVEL DETECTOR OF A GAS MEDIUM CONTROLLED BY ELECTRIC ARC
US4642471A (en) * 1982-10-11 1987-02-10 Cerberus Ag Scattered radiation smoke detector
GB2139346A (en) * 1983-03-04 1984-11-07 Univ London Optical sensor
GB2147757B (en) * 1983-10-07 1987-02-11 Gen Electric Plc Apparatus for sensing a physical property
GB8621688D0 (en) * 1986-09-09 1986-10-15 Graviner Ltd Radiation detection arrangements
US5028139A (en) * 1987-07-16 1991-07-02 Miles Inc. Readhead for reflectance measurement of distant samples
GB8906554D0 (en) * 1989-03-22 1989-05-04 Harley Phillip E Optical system for detector device
US4998096A (en) * 1989-06-26 1991-03-05 Anthony Benvenuti Multipurpose alarm device
DE4028188A1 (en) * 1990-09-05 1992-03-12 Esser Sicherheitstechnik FIRE DETECTORS WITH A SPARKLIGHT AND IONIZATION SYSTEM
GB2286667B (en) * 1994-02-15 1997-12-24 Transmould Limited Smoke detector
US6292105B1 (en) * 1998-12-23 2001-09-18 The Johns Hopkins University Thermal ionization detector
AUPQ553800A0 (en) * 2000-02-10 2000-03-02 Cole, Martin Terence Improvements relating to smoke detectors particularily duct monitored smoke detectors
CA2328539A1 (en) 2000-12-13 2002-06-13 Leonard G. D. Allen Solar powered surveillance monitor
US6900726B2 (en) * 2003-01-03 2005-05-31 Antronnix, Inc. System and method for fiber optic communication with safety-related alarm systems
KR20060126476A (en) * 2003-10-23 2006-12-07 테렌스 콜 마틴 Improvement(s) related to particle monitors and method(s) therefor
US8624745B2 (en) * 2011-03-16 2014-01-07 Honeywell International Inc. High sensitivity and high false alarm immunity optical smoke detector
CN103515475B (en) * 2012-06-29 2015-10-28 江苏瑞新科技股份有限公司 A kind of silicon photocell string is reformed mechanism and method of reforming thereof
DE102013213721B4 (en) * 2013-03-07 2015-10-22 Siemens Schweiz Ag Fire alarm system for use in a nuclear or hazardous area
FR3030750B1 (en) * 2014-12-22 2017-01-13 Finsecur OPTICAL DETECTOR OF A VALUE OF A PHYSICAL SIZE OF THE ATMOSPHERE REPRESENTATIVE OF A DANGER
RU2687141C1 (en) 2015-08-25 2019-05-07 Фенвал Контролз Оф Джэпэн, Лтд. Photoelectric smoke detector
CN109035679A (en) * 2018-08-15 2018-12-18 成都理工大学 Ad hoc network dynamic security direction board system based on technology of Internet of things
CN110500138B (en) * 2019-09-25 2024-05-24 中国矿业大学(北京) Colliery belt conflagration early warning system in pit

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619612A (en) * 1969-11-19 1971-11-09 Caterpillar Tractor Co Monitoring device for rotating systems
US3805066A (en) * 1972-08-14 1974-04-16 T Chijuma Smoke detecting device utilizing optical fibers
US3805006A (en) * 1972-10-13 1974-04-16 Gen Motors Corp Resilient electrical contact assembly
IL45331A (en) * 1973-11-26 1977-12-30 Chloride Batterijen Bv Photoelectric smoke detector
US4075512A (en) * 1975-02-04 1978-02-21 The United States Of America As Represented By The Secretary Of The Army Light pipe technique for grid pulsing
US4071753A (en) * 1975-03-31 1978-01-31 Gte Laboratories Incorporated Transducer for converting acoustic energy directly into optical energy
CH592932A5 (en) * 1976-04-01 1977-11-15 Cerberus Ag
CH592933A5 (en) * 1976-04-05 1977-11-15 Cerberus Ag
US4158144A (en) * 1976-09-17 1979-06-12 Siemens Aktiengesellschaft Circuit arrangement for the transmission of electrical supply power
GB1540907A (en) * 1976-12-07 1979-02-21 Standard Telephones Cables Ltd System for obtaining data from a plurality of condition responsive optical devices
US4143941A (en) * 1977-12-01 1979-03-13 Sperry Rand Corporation Low loss optical data terminal device for multimode fiber guide optical communication systems
US4226533A (en) * 1978-09-11 1980-10-07 General Electric Company Optical particle detector
SE413808B (en) * 1978-09-22 1980-06-23 Asea Ab METDON FOR TRANSFER OF METSIGNALS THROUGH AN OPTICAL LINK
CH634429A5 (en) * 1978-12-21 1983-01-31 Cerberus Ag Smoke detector
JPS5683895U (en) * 1979-12-01 1981-07-06

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014019773A1 (en) 2014-12-17 2016-06-23 Elmos Semiconductor Aktiengesellschaft Apparatus and method for distinguishing solid objects, cooking fumes and smoke by means of the display of a mobile telephone
DE102014019172A1 (en) 2014-12-17 2016-06-23 Elmos Semiconductor Aktiengesellschaft Apparatus and method for distinguishing solid objects, cooking fumes and smoke with a compensating optical measuring system

Also Published As

Publication number Publication date
EP0041952A1 (en) 1981-12-23
BE881812A (en) 1980-06-16
SE8008723L (en) 1981-06-18
DE3037636A1 (en) 1981-06-25
JPS56501779A (en) 1981-12-03
GB2066451B (en) 1984-11-21
JPH0241737Y2 (en) 1990-11-07
ZA807269B (en) 1982-01-27
JPS63175297U (en) 1988-11-14
IT1136224B (en) 1986-08-27
NO812765L (en) 1981-08-14
NO151801B (en) 1985-02-25
US4379290A (en) 1983-04-05
EP0032169A1 (en) 1981-07-22
WO1981000636A1 (en) 1981-03-05
FR2471636A1 (en) 1981-06-19
GB2066451A (en) 1981-07-08
JPS5694495A (en) 1981-07-30
CA1150359A (en) 1983-07-19
IT8012757A0 (en) 1980-12-16
DE3070861D1 (en) 1985-08-14
FR2471636B1 (en) 1983-12-23
NO151801C (en) 1985-06-05

Similar Documents

Publication Publication Date Title
EP0041952B1 (en) Danger detection device with detector
EP0370426B1 (en) Infrared intrusion detector
DE69935377T2 (en) Infrared / visible multispectral radiation detector
DE2425431A1 (en) ELECTRIC FIRE AND EXPLOSION DETECTOR
DE69224015T2 (en) Priority traffic optical detector
DE2500179A1 (en) ALARM
DE3530646A1 (en) AREA SECURING
DE3044944A1 (en) FIRE ALARM SYSTEM
EP0249815A1 (en) Fault arc detector device
DE2057221A1 (en) Device for detecting fire or flames
EP0338218A1 (en) Early fire detection method
EP0240783A1 (en) Event counter for an overvoltage arrester
EP2907117B1 (en) Integrated circuit for operation in an area with ionising radiation and with output possibility for damage information dependent on a dose of radiation and warning alarm and corresponding method
EP0200186B1 (en) Light barrier
DE2714130A1 (en) OPTICAL FIRE DETECTOR
DE3504945A1 (en) ARRANGEMENT FOR MEASURING THE ELECTRICAL VOLTAGE PARAMETERS OF A HIGH VOLTAGE LADDER
DE1906075B2 (en) ALARM DEVICE AND MONITORING SYSTEM FOR THEIR APPLICATION
DE69312982T2 (en) Pyroelectric device
DE4319377C2 (en) Device for decentralized measurement and / or monitoring and / or control on a high-voltage switching device
DE2434686A1 (en) SIGNAL SELECTOR FOR BASE BAND SIGNALS
EP0190547B1 (en) Device for monitoring and counting the response of a non-spark gap overvoltage arrester
EP0067313B1 (en) Smoke detector with a pulse-actuated radiation source
DE2519267A1 (en) FIRE ALARM
DE19619459C2 (en) Circuit for the detection of electromagnetic radiation
EP0014874B1 (en) Fire detector using pulsed radiation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB LI NL SE

17P Request for examination filed

Effective date: 19810228

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE FR GB LI NL SE

REF Corresponds to:

Ref document number: 14252

Country of ref document: AT

Date of ref document: 19850715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3070861

Country of ref document: DE

Date of ref document: 19850814

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860811

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870930

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890922

Ref country code: AT

Effective date: 19890922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890930

Ref country code: CH

Effective date: 19890930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900401

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19900531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 80901773.4

Effective date: 19900521