[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DK175515B1 - DNA and RNA molecules derived from the western subtype of FSME virus, corresponding vectors, vaccinia expression vector, carrier bacterium, cell culture, peptide or polypeptide, preparation comprising peptides or polypeptides, 1 ... - Google Patents

DNA and RNA molecules derived from the western subtype of FSME virus, corresponding vectors, vaccinia expression vector, carrier bacterium, cell culture, peptide or polypeptide, preparation comprising peptides or polypeptides, 1 ... Download PDF

Info

Publication number
DK175515B1
DK175515B1 DK149488A DK149488A DK175515B1 DK 175515 B1 DK175515 B1 DK 175515B1 DK 149488 A DK149488 A DK 149488A DK 149488 A DK149488 A DK 149488A DK 175515 B1 DK175515 B1 DK 175515B1
Authority
DK
Denmark
Prior art keywords
dna
virus
rna
sequences
proteins
Prior art date
Application number
DK149488A
Other languages
Danish (da)
Other versions
DK149488D0 (en
DK149488A (en
Inventor
Friedrich Dorner
Walter Bodemer
Franz Xaver Heinz
Christian Kunz
Christian Mandl
Original Assignee
Baxter Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP88103003A external-priority patent/EP0284791B1/en
Application filed by Baxter Ag filed Critical Baxter Ag
Publication of DK149488D0 publication Critical patent/DK149488D0/en
Publication of DK149488A publication Critical patent/DK149488A/en
Application granted granted Critical
Publication of DK175515B1 publication Critical patent/DK175515B1/en

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

i DK 175515 B1in DK 175515 B1

Den foreliggende opfindelse angår DNA- og RNA-molekyler af den vestlige undertype af FSME-virus og polypeptider, der indkodes af disse molekyler, vektorer, en bærer, en cellekultur, et peptid eller polypeptid, et præparat af ét eller flere af disse peptider eller polypeptider, en levende vaccine, anvendelse af denne, 5 et diagnostisk middel samt en DNA- eller RNA-probe.The present invention relates to DNA and RNA molecules of the western subtype of FSME virus and polypeptides encoded by these molecules, vectors, a carrier, a cell culture, a peptide or polypeptide, a preparation of one or more of these peptides or polypeptides, a live vaccine, its use, a diagnostic agent, and a DNA or RNA probe.

Den vestlige undertype af forårssommermeningoencephalitis-(FSME)-virus er et1 medlem af familien Flaviviridae, som er sfæriske lipid-omsluttede RNA-vira (Westaway et al., Intervirology 24, 183-192,1985). Prototypen for disse vira er gul 10 feber-virus. Med hensyn til definition er alle flavivira serologisk beslægtede, hvilket er påvist ved hæmagglutinations-inhiberingstests. Ved krydsneutralisering kan familien imidlertid underopdeles i flere serocomplexer (DeMadrid og Porterfield, J.Gen.Virol. 23, 91-96, 1974), der omfatter vira, som er nærmere beslægtede med hinanden end med medlemmer af andre serocom-plexer eller med ugrupperede 15 flavivira. FSME-virus er et medlem af de såkaldte "Tick-borne" serocomplexer, hvortil også hører Louping-III-, Langat-, Omsk hæmorrhagisk feber-, Kyasanur Forest Disease- og Negishi-virus.The western subtype of the spring summer meningoencephalitis (FSME) virus is a member of the Flaviviridae family, which are spherical lipid-enclosed RNA viruses (Westaway et al., Intervirology 24, 183-192, 1985). The prototype for these viruses is yellow 10 fever virus. By definition, all flaviviruses are serologically related, as evidenced by hemagglutination inhibition tests. However, by cross-neutralization, the family can be subdivided into several serocomplexes (DeMadrid and Porterfield, J.Gen.Virol. 23, 91-96, 1974), which include viruses that are more closely related to each other than to members of other serocomplexes or to ungrouped ones. 15 flaviviruses. FSME virus is a member of the so-called "Tick-borne" serocomplexes, which also include Louping-III, Langat, Omsk hemorrhagic fever, Kyasanur Forest Disease and Negishi virus.

FSME-virusstammer kan desuden underinddeles i en vestlig (europæisk) un-20 dertype, der hovedsagelig overføres af Ixodes ricinus, og en fjernøstlig type med Ixodes persulcatus som den væsentligste overfører (Clarke, 1964, Bull. WHO 31, 45-56).Furthermore, FSME virus strains can be subdivided into a western (European) sub-type, transmitted mainly by Ixodes ricinus and a far-eastern type with Ixodes persulcatus as the major transmitter (Clarke, 1964, Bull. WHO 31, 45-56).

Denne undertypeinddeling er blevet bekræftet både ved kompetitive radioimmu-25 noassays samt peptidkortlægning under anvendelse af begrænset proteolyse af de tilsvarende strukturglycoproteiner (Heinz og Kunz, J.Gen.Virol. 57, 263-274, 1981) og ved antigenanalyser under anvendelse af monoklonale antistoffer (Heinz et al.. Virology 126, 525-537, 1983).This subtype breakdown has been confirmed both by competitive radioimmunoassays as well as peptide mapping using limited proteolysis of the corresponding structural glycoproteins (Heinz and Kunz, J.Gen.Virol. 57, 263-274, 1981) and by antigen assays using monoclonal antibodies. (Heinz et al. Virology 126, 525-537, 1983).

I 30 Modne viruspartikler indeholder kun tre strukturproteiner, der betegnes E, C og MIn 30 mature virus particles, only three structural proteins, designated E, C and M, contain

I og har omtrentlige molekylvægte på henholdsvis 50.000-60.000, 15.000 og 7.000.In and have approximate molecular weights of 50,000-60,000, 15,000 and 7,000 respectively.

Genomet af flavivira består af enkeltstrenget RNA med ca. 11.000 baser med I mRNA-polaritet med en molekylvægt på 4xl0'/46 dalton. Dette RNA danner I DK 175515 B1 sammen med C-proteinet et sfærisk nukleokapsid, der er omgivet af en lipidmem- bran, som er associeret med proteinerne E og M.The genome of flaviviruses consists of single-stranded RNA with approx. 11,000 bases of I mRNA polarity with a molecular weight of 4x10 '/ 46 daltons. This RNA, in DK 175515 B1 together with the C protein, forms a spherical nucleocapsid surrounded by a lipid membrane associated with proteins E and M.

Forsøg, hvor der anvendtes oprensede præparationer af E-proteinet, der blev 5 vundet efter solubilisering af viruset med detergenter, har vist, at E udgør det virale hæmagglutinin (dvs. at det forårsager agglutination af bestemte erythro- cytter under egnede betingelser), som efter immunisering inducerer hæmaggluti- H nationshæmmende, neutraliserende og beskyttende antistoffer samt immunitet mod infektioner med levende virulent virus (Heinz et al., Infect. Immun 33, 250- I 10 257, 1981).Experiments using purified preparations of the E protein obtained after solubilization of the virus with detergents have shown that E is the viral hemagglutinin (i.e., it causes agglutination of certain erythrocytes under suitable conditions) which after immunization, hemagglutin-H induces inhibitory, neutralizing and protective antibodies as well as immunity to live virulent virus infections (Heinz et al., Infect. Immun. 33, 250-1107, 1981).

Ud over disse strukturproteiner kan der findes flere virusspecifikke ikke-struktur- proteiner i flavivirusinficerede celler.In addition to these structural proteins, several virus-specific non-structural proteins can be found in flavivirus-infected cells.

15 Flaviviras genomorganisation er for nylig blevet bestemt ved cDNA-kloning og sekventering af gul feber-, Vestnil- og Murray Valley-encephalitisvirus (Rice et al., I Science 229, 726-733, 1985; Dalgarno et al., J.Mol.Biol. 187, 309-323, 1986; I Castle et al., Virology 147, 227-236, 1985; Castle et al., Virology 149, 10-26, I 1986; Wengler et al., Virology 147, 264-274, 1985). Ifølge disse analyser inde-Flavivira's genome organization has recently been determined by cDNA cloning and sequencing of yellow fever, West Nile and Murray Valley encephalitis virus (Rice et al., In Science 229, 726-733, 1985; Dalgarno et al., J.Mol. Biol. 187, 309-323, 1986; In Castle et al., Virology 147, 227-236, 1985; Castle et al., Virology 149, 10-26, 1986; Wengler et al., Virology 147, 264 -274, 1985). According to these analyzes,

20 holder flaviviras genom-RNA en enkelt lang åben læseramme på ca. 11.000 nukle- I20, flaviviras genome RNA maintains a single long open reading frame of ca. 11,000 Nucle- I

otider, som koder for alle struktur- og ikke-strukturproteiner.times that encode all structural and non-structural proteins.

Generne for strukturproteinerne er lokaliseret i 5'-delen af RNA'et; de omfatter ca.The genes for the structural proteins are located in the 5 'portion of the RNA; they include approx.

I 1/4 af genomet i rækkefølgen C-prM(M)-E. prM betegner et precursorprotein for M, 25 som er til stede i umodne former af flavi-vira (Shapiro et al., Virology 56, 88-94, I 1973). Den proteolytiske spaltning deraf, som sandsynligvis udføres af en cellulær protease, der findes i det endoplasmatiske retikulum, fører til dannelse af M og udgør åbenbart en sen begivenhed under virusmodningen. 1 35In 1/4 of the genome in the order C-prM (M) -E. prM represents a precursor protein for M, which is present in immature forms of flavi viruses (Shapiro et al., Virology 56, 88-94, 1973). The proteolytic cleavage thereof, likely performed by a cellular protease found in the endoplasmic reticulum, leads to formation of M and evidently constitutes a late event during virus maturation. 1 35

Det antages, at translationen af virale proteiner initieres og forløber ved det første eller muligvis det andet AUG ved 5'-enden af RNA’et, indtil den støder på en stop-kodon ved RNA’ets 3’-ende. Det formodes, at dannelsen af enkelte proteiner sker ved en række specifikke proteolytiske spaltningsbegivenheder, der omfatter både cellulære og virusspecificerede proteaser.It is believed that the translation of viral proteins is initiated and proceeds at the first or possibly the second AUG at the 5 'end of the RNA until it encounters a stop codon at the 3' end of the RNA. It is believed that the formation of single proteins occurs at a number of specific proteolytic cleavage events involving both cellular and virus-specific proteases.

DK 175515 B1 IDK 175515 B1 I

Pletnev et al. (FEBS 3660, 200, nr. 2, 317-321, 1986) har klonet bestemte frag- IPletnev et al. (FEBS 3660, 200, no. 2, 317-321, 1986) have cloned certain fragments.

menter af den fjernøstlige undertype af FSME-viruset og har påvist, at genomorga- Iments of the Far Eastern subtype of the FSME virus and have demonstrated that genome organ I

nisationen af denne undertype af FSME-viruset svarer til organisationen af dethe creation of this subtype of the FSME virus corresponds to the organization of the

ovenfor nævnte vira, men de kunne ikke klone og sekventere den samlede sekvens Iabove viruses, but they were unable to clone and sequence the entire sequence I

5 af strukturgenerne for denne undertype af FSME-viruset. Desuden har det vist sig, I5 of the structural genes for this subtype of the FSME virus. Moreover, it has been found, I

at den publicerede protein E-sekvens, som er afledt af klonen Sofjin 2, ikke varthat the published protein E sequence derived from the clone Sofjin 2 was not

korrekt, fordi der på grund af en forskydning af læserammen blev afledt en forkert Icorrect because, due to a displacement of the reading frame, a wrong I was derived

sekvens for det carboxyterminale område. Isequence for the carboxy-terminal region. IN

10 Der kendes indtil videre over 60 forskellige flavivira, og omtrent 2/3 af dem over-10 So far, over 60 different flaviviruses are known, and about 2/3 of them are transmitted.

føres ved bid fra et inficeret leddyr og udgør således "arthropode-borne" (ARBO) Iis carried by bite from an infected arthropod and thus constitutes "arthropod-borne" (ARBO) I

vira. Flere flavivira er kendte humanpato-gener, herunder gul feber-virus, Dengue- Iviruses. Several flaviviruses are known human pathogens, including yellow fever virus, Dengue-I

virus, japansk encephalitis-virus og FSME-virus (Shope; i "The Togaviruses", s. 47- Ivirus, Japanese encephalitis virus and FSME virus (Shope; in "The Togaviruses", p. 47- I

82, Academic Press, New York).82, Academic Press, New York).

15 FSME-virus er endemisk i mange europæiske lande, i Rusland og i Kina. Sygdommen er veldokumenteret i nogle centraleuropæiske lande såsom Østrig, Tjekkoslovakiet eller Ungarn, og hvert år registreres flere hundrede tilfælde, der indlægges på sygehuse, hvilket udgør et betydeligt problem for folkesundheden.15 FSME viruses are endemic in many European countries, in Russia and China. The disease is well documented in some Central European countries such as Austria, Czechoslovakia or Hungary and every year hundreds of cases are admitted to hospitals, which is a significant public health problem.

2 °

Sygdommen kan forebygges effektivt ved vaccination med en højoprenset, forma-I lin-inaktiveret helvirusvaccine (Kunz et al., J.Med.Virol. 6, 103-109, 1980), som I inducerer et immunrespons mod virusets strukturproteiner. Den betydeligste I ulempe ved denne vaccine er, at der skal håndteres store mængder af infektiøse I 25 og muligvis farlige virus-suspensioner under fremstillingen. Derfor er der behov for I omfattende og bekostelige sikkerhedsforanstaltninger.The disease can be effectively prevented by vaccination with a highly purified, forma-I lin inactivated whole virus vaccine (Kunz et al., J. Med.Virol. 6, 103-109, 1980), which induces an immune response to the virus's structural proteins. The major disadvantage of this vaccine is that large quantities of infectious I25 and possibly dangerous virus suspensions must be handled during manufacture. Therefore, comprehensive and costly security measures are needed.

I Det var derfor et formål med den foreliggende opfindelse at tilvejebringe midler til I fremstilling af en vaccine for at afhjælpe ovennævnte ulemper.It is therefore an object of the present invention to provide means for preparing a vaccine to alleviate the aforementioned disadvantages.

I 30 I Ved den foreliggende opfindelse løses denne opgave ved, at der tilvejebringes et I DNA-molekyle, som omfatter DNA afledt fra den vestlige undertype af FSME-virus, I hvilket DNA koder for mindst en del af mindst ét protein valgt fra gruppen bestå- I ende af proteinerne C, prM, M eller E af den vestlige undertype af FSME-virus.In the present invention, this task is solved by providing an I DNA molecule comprising DNA derived from the western subtype of FSME virus, in which DNA encodes at least a portion of at least one protein selected from the group consisting of - At the end of proteins C, prM, M or E of the western subtype of FSME virus.

I 35 I DK 175515 B1 Η H Det beskrevne DNA-molekyle svarer til det enkeltstrengede RNA af den vestlige un- H dertype af FSME-virus og er egnet til at tilvejebringe genetisk information til H ekspression af et polypeptid, som kan være proteinerne C, prM, M eller E af den vestlige undertype af FSME-virus, alene eller i kombination som beskrevet ovenfor, H 5 eller dele af ét eller flere af ovennævnte proteiner, som med held kan anvendes H inden for diagnose, terapi eller profylakse.I 35 I DK 175515 B1 Η H The described DNA molecule corresponds to the single stranded RNA of the westernmost type of FSME virus and is suitable for providing genetic information for H expression of a polypeptide which may be the proteins C, prM, M, or E of the Western subtype of FSME virus, alone or in combination as described above, H5, or portions of one or more of the above proteins, which can be successfully used in H in diagnosis, therapy or prophylaxis.

Endvidere kan selve DNA-molekylet ifølge opfindelsen eller dele deraf anvendes til forskellige formål, hvilket beskrives nærmere nedenfor.Furthermore, the DNA molecule of the invention or parts thereof may be used for various purposes, as will be described in more detail below.

I 10 H DNA-molekylet ifølge opfindelsen kan anvendes som et helt molekyle, hvis sekvens H koder for strukturproteinerne af den vestlige undertype af FSME-virus, fortrinsvis som vist i fig. 1. Den DNA-sekvens, der er vist i fig. 1, udviser det klonede genom af den vestlige undertype af FSME-virus svarende til det RNA-molekyle, som er 15 indeholdt i den naturligt forekommende vestlige undertype af FSME-virus. Den DNA-sekvens, der er vist i fig. 1, omfatter området for strukturproteinerne og det 5'-ikke-translaterede område. Den undersøgte DNA-sekvens har kun én åben læse- I ramme; de aminoterminale startpunkter for proteinerne C, prM, M og E samt I grænserne for klonerne A5 og Pl-1 er vist med pile.In the 10 H DNA molecule of the invention can be used as a whole molecule whose sequence H encodes the structural proteins of the western subtype of FSME virus, preferably as shown in FIG. 1. The DNA sequence shown in FIG. 1, the cloned genome of the western subtype of FSME virus exhibits the RNA molecule contained in the naturally occurring western subtype of FSME virus. The DNA sequence shown in FIG. 1, comprises the region of the structural proteins and the 5 'untranslated region. The DNA sequence examined has only one open reading frame; the amino terminal starting points of proteins C, prM, M and E as well as the I boundaries of clones A5 and P1-1 are shown by arrows.

I Som en foretrukken udførelsesform for opfindelsen tilvejebringes DNA-molekyler, I der koder for et enkelt af stfukturproteinerne af den vestlige undertype af FSME- I virus, dvs. for hele C-, prM-, M- eller E-proteinet. De respektive dele af DNA-mole- I kylet ifølge opfindelsen kan anvendes direkte i egnede ekspressionssystemer til I 25 fremstilling af et af de ønskede ovenfor omtalte strukturproteiner.As a preferred embodiment of the invention, DNA molecules are provided which encode a single of the Western protein subtype of FSME-I virus, i.e. for the entire C, prM, M or E protein. The respective portions of the DNA molecule of the invention can be used directly in suitable expression systems to prepare any of the desired structural proteins mentioned above.

I Det er et foretrukket formål med opfindelsen at tilvejebringe en del af det DNA- molekyle, der i det mindste koder for området af en anti-gendeterminant for et af I strukturproteinerne fra den vestlige undertype af FSME-virus, til fremstilling af 30 diagnostisk, terapeutisk eller profylaktisk virksomme midler. Det er velkendt, at områder med proteinets antigendeterminanter er ansvarlige for induktionen af et antistofrespons. Derfor behøver man ikke nødvendigvis anvende alle de proteiner, hvorom det er kendt, at de har antigene egenskaber, men man kan nøjes med at anvende disse proteiners antigendeterminantområde. Det er kendt, at en sekvens 35 på kun nogle få aminosyrer i nogle tilfælde kan fungere som antigen og forårsage DK 175515 B1 5 et antistofrespons. Det kan derfor være tilstrækkeligt til fremstilling af en vaccine at tilvejebringe en DNA-sekvens, som kun koder for de aminosyrer, der udviser funktioner som antigendeterminant. Der foretrækkes en DNA-sekvens, der koder for antigendeterminantområderne for E-strukturproteinet af den vestlige undertype 5 af FSME-virus.It is a preferred object of the invention to provide a portion of the DNA molecule encoding at least the region of an antigenic determinant of one of the structural proteins of the western subtype of FSME virus for the production of diagnostic, therapeutically or prophylactically active agents. It is well known that regions of the protein's antigenic determinants are responsible for the induction of an antibody response. Therefore, not all the proteins for which they are known to have antigenic properties are necessarily used, but the antigenic determinant range of these proteins may be sufficient. It is known that in some cases a sequence 35 of only a few amino acids can act as antigen and cause an antibody response. Therefore, it may be sufficient to produce a vaccine to provide a DNA sequence which encodes only those amino acids that exhibit antigenic determinant functions. A DNA sequence encoding the antigenic determinant regions of the E-structural protein of the western subtype 5 of FSME virus is preferred.

Der findes to måder, hvorpå DNA-molekylet ifølge opfindelsen kan fremstilles. Én mulighed, hvorved DNA-molekylet kan fremstilles, er først at ekstrahere det virale RNA fra den vestlige undertype af FSME-virus og derefter at oprense RNA-moleky-10 let, efterfulgt af transkription af denne RNA-matrix i et DNA-molekyle under anvendelse af omvendt transkriptase. En anden mulighed er at syntetisere DNA-molekylet ifølge opfindelsen kemisk, så snart DNA-sekvensen er kendt.There are two ways in which the DNA molecule of the invention can be prepared. One possibility by which the DNA molecule can be prepared is to first extract the viral RNA from the western subtype of FSME virus and then to purify the RNA molecule, followed by transcription of this RNA matrix into a DNA molecule under use of reverse transcriptase. Another option is to chemically synthesize the DNA molecule of the invention as soon as the DNA sequence is known.

Som en foretrukken udførelsesform omfatter opfindelsen DNA-molekyler, der hy-15 bridiserer med de i hovedkravet omhandlede DNA-molekyler under stringente betingelser. DNA-molekyler af denne foretrukne art kan også kode for peptider, der er i stand til at fremkalde et antistofrespons, og desuden er disse DNA-molekyler egnede som DNA-prober.As a preferred embodiment, the invention comprises DNA molecules that hybridize with the DNA molecules of the main claim under stringent conditions. DNA molecules of this preferred kind may also encode peptides capable of eliciting an antibody response, and in addition, these DNA molecules are useful as DNA probes.

20 Den foreliggende opfindelse omfatter udtrykkeligt alle de DNA-sekvenser, der afviger fra de her omhandlede DNA-molekyler, og som er frembragt ved degenerering af den genetiske kode og/eller mutationer og/eller transpositioner, men som stadig koder for et protein med de væsentlige antigene egenskaber af i det mindste ét protein valgt fra gruppen bestående af proteinerne C, prM, M eller E af 25 den vestlige undertype af FSME-virus. Af ovennævnte grunde kan en DNA-sekvens, der er forskellig fra den i fig. 1 viste, i høj grad afvige fra DNA-molekyler, som er fremstillet, isoleret og oprenset i form af cDNA ved hjælp af omvendt transkriptase fra en RNA-matrix af den vestlige undertype af FSME-virus. Ikke desto mindre er de proteiner, der indkodes af dette DNA-molekyle, alligevel de samme.The present invention expressly encompasses all of the DNA sequences that differ from the DNA molecules of the present invention, which are produced by degeneration of the genetic code and / or mutations and / or transpositions, but still encode a protein having the essential antigenic properties of at least one protein selected from the group consisting of proteins C, prM, M or E of the western subtype of FSME virus. For the above reasons, a DNA sequence different from that of FIG. 1, to a large extent diverge from DNA molecules made, isolated and purified in the form of cDNA by reverse transcriptase from an Western matrix of the FSME virus subtype. Nevertheless, the proteins encoded by this DNA molecule are still the same.

30 I en foretrukken udførelsesform for opfindelsen kan DNA-molekylerne ifølge opfindelsen kombineres med yderligere DNA-sekvenser.In a preferred embodiment of the invention, the DNA molecules of the invention can be combined with additional DNA sequences.

I Disse yderligere sekvenser kan muliggøre replikation og ekspression af DNA- 35 molekylet i en cellekultur. Til dette formål stammer de vigtigste DNA-sekvenser fra I DK 175515 B1 Η H enhancere, promotorer, polyadenyleringssignaler og splejsningssignaler. Disse yderligere DNA-sekvenser kan kombineres med DNA-molekylerne ifølge opfindel- sen ved standardmetoder, som er kendte for fagfolk.These additional sequences may enable replication and expression of the DNA molecule in a cell culture. To this end, the major DNA sequences originate from I DK 175515 B1 Η H enhancers, promoters, polyadenylation signals and splicing signals. These additional DNA sequences can be combined with the DNA molecules of the invention by standard methods known to those skilled in the art.

5 De fordele, der er nævnt ovenfor for DNA-molekylerne ifølge opfindelsen, gælder ligeledes for RNA-molekyler. RNA-molekyler ifølge opfindelsen er ejendommelige ved, at de er afledt fra RNA fra den vestlige undertype af FSME-virus og koder for iThe advantages mentioned above for the DNA molecules of the invention also apply to RNA molecules. RNA molecules of the invention are peculiar in that they are derived from RNA from the Western subtype of FSME virus and encode

det mindste en del af i det mindste ét protein valgt blandt proteinerne C, prM, Mat least a portion of at least one protein selected from the proteins C, prM, M

H eller E af den vestlige undertype af FSME-virus. RNA-molekylet er især et sådant, 10 som omfatter hele den RNA-sekvens, der koder for strukturproteinerne, fortrinsvis som vist i fig. 2. En særlig foretrukken variant går ud på, at det koder for ét af de proteiner, der er valgt blandt proteinerne C, prM, M eller E af den vestlige under- type af FSME-virus, eller at det koder for i det mindste et område fra en antigen-H or E of the western subtype of FSME virus. In particular, the RNA molecule is one which encompasses the entire RNA sequence encoding the structural proteins, preferably as shown in FIG. 2. A particularly preferred variant is that it encodes one of the proteins selected from proteins C, prM, M, or E of the western subtype of FSME virus, or that it encodes at least one an area from an antigen

- determinant for ét af de proteiner, der er valgt blandt proteinerne C, prM, M eller E- determinant of one of the proteins selected from proteins C, prM, M or E

15 af den vestlige undertype af FSME-virus, fortrinsvis E-proteinet.15 of the western subtype of FSME virus, preferably the E protein.

RNA-molekyler ifølge opfindelsen kan fås ved isolering og oprensning af RNA fra den vestlige undertype af FSME-virus eller ved rekombinant-RNA/DNA-teknikker.RNA molecules of the invention can be obtained by isolating and purifying RNA from the western subtype of FSME virus or by recombinant RNA / DNA techniques.

Endvidere omfatter opfindelsen ikke blot RNA-molekyler, der er vundet ved 20 oprensning af den vestlige undertype af FSME-virus, men også RNA-molekyler, der I er vundet ved transkription af isoleret og oprenset virus-RNA i DNA ved hjælp af omvendt transkriptase og efterfølgende transkription af det således vundne DNA i I RNA. En særlig foretrukken variant i et RNA-molekyle, som er ejendommeligt ved, I at dets komplementære streng under stringente betingelser hybridiserer med et 25 RNA-molekyle som ovenfor angivet.Furthermore, the invention encompasses not only RNA molecules obtained by purifying the western subtype of FSME virus, but also RNA molecules obtained by transcription of isolated and purified viral RNA into DNA by reverse transcriptase. and subsequent transcription of the DNA thus obtained into I RNA. A particularly preferred variant of an RNA molecule, which is characterized in that its complementary strand hybridizes under stringent conditions to an RNA molecule as set forth above.

I Ved den foreliggende opfindelse tilvejebringes ikke blot de ovenfor beskrevne DNA- I og RNA-molekyler, men også vektorer, der som insertion omfatter de omhandlede DNA- eller RNA-molekyler, idet vektoren er valgt blandt plasmider, vira og cosmi- I 30 der. Det er kendt for fagfolk, at vektorerne ifølge opfindelsen kan omfatte DNA- I sekvenser, der styrer replikationen og ekspressionen af de indsatte RNA- eller DNA-sekvenser, såsom fx promotorer, enhancere, etc.In the present invention, not only the above-described DNA-I and RNA molecules are provided, but also vectors comprising the insertion of the subject DNA or RNA molecules, the vector being selected from plasmids, viruses and cosmic cells. . It is known to those skilled in the art that the vectors of the invention may comprise DNA sequences which control the replication and expression of the inserted RNA or DNA sequences such as, for example, promoters, enhancers, etc.

I Et i litteraturen godt beskrevet og egnet plasmid til kloning af de omhandlede DNA- I 35 sekvenser er plasmidet pBR322. Dette plasmid indeholder en DNA-sekvens, der DK 175515 B1 7 koder for et protein valgt blandt proteinerne C, prM, M eller E af den vestlige undertype af FSME-virus eller dele deraf.In a well-described and suitable plasmid for cloning of the DNA sequences, plasmid is pBR322. This plasmid contains a DNA sequence that encodes a protein selected from proteins C, prM, M or E of the western subtype of FSME virus or parts thereof.

Et foretrukket, på den ovennævnte måde fremstillet plasmid er plasmidet A5, der 5 er vist i fig. 5. Plasmidet A5 er afledt fra plasmidet pBR322 og indeholder den DNA-sekvens, der koder for E-proteinet. Et andet foretrukket plasmid er plasmidet Pl-1.A preferred plasmid prepared in the above manner is plasmid A5 shown in FIG. 5. Plasmid A5 is derived from plasmid pBR322 and contains the DNA sequence encoding the E protein. Another preferred plasmid is the plasmid P1.

De omtalte foretrukne plasmider er deponeret i Deutsche Sammlung von Mikroorganismen i henhold til Budapest-traktaten og har følgende deponeringsnumre: 10 a) plasmidet A5 i E. coii HB101: DSM 4382 I b) plasmidet Pl-1 i E. coli HB101: DSM 4383 I 15 Ved at gå ud fra det beskrevne plasmid A5 kan der ifølge en foretrukken udfø- I relsesform for opfindelsen fremstilles insertionsplasmider, der indeholder dele af I den i plasmidet A5 klonede DNA-sekvens af FSME-virus, idet disse »nsertions- I plasmider indeholder den fremmede genetiske information på en sådan måde, at I den ved homolog rekombination overfører DNA-sekvensen for E-proteinet eller dele I 20 deraf til et Hindlll J-fragment af vacciniavirus. Underfragmenter af plasmidet A5 I skæres med forskellige restrik-tions-endonukleaser og klones i insertionsplasmider- I ne, hvilket fx giver former af E-proteinet, som enten kan eller ikke kan indeholde I hydrofobe aminosyresekvenser, dvs. signal- og membranforankringssekvenser.The preferred plasmids referred to are deposited in the Deutsche Sammlung von Microorganism according to the Budapest Treaty and have the following deposit numbers: 10 a) plasmid A5 in E. coli HB101: DSM 4382 I b) plasmid Pl-1 in E. coli HB101: DSM 4383 By starting from the described plasmid A5, according to a preferred embodiment of the invention, insertion plasmids containing parts of the DNA sequence of the FSME virus cloned into plasmid A5 can be prepared, these insertion plasmids contains the foreign genetic information in such a way that, by homologous recombination, it transfers the DNA sequence of the E protein or parts I 20 thereof to a HindIII J fragment of vaccinia virus. Sub-fragments of plasmid A5I are cut with various restriction endonucleases and cloned into the insertion plasmids, for example, giving forms of the E protein which may or may not contain in hydrophobic amino acid sequences, i.e. signal and membrane anchoring sequences.

I Rekombinante vira med integreret protein E-DNA kan isoleres fra plaques. Inte- I 25 gration af de FSME-DNA-sekvenser, der koder for ønskede dele af E-proteinet, I bekræftes ved skæring med egnede restriktionsendonukleaser og ved hybridisering I med 32P-mærket FSME cRNA og er synligt ved, at der kan påvises et karakteristisk I Hindlll J-fragment fra vaccinia. 1 30 Tre eksempler på plasmider, der er egnet til udførelse af rekombination i vacci- I niavira, er plasmiderne pSCll-Hl, som indeholder Haell-fragmentet af det klonede I FSME-DNA, plasmidet pSCll-F41, som indeholder FnuDII-fragmentet af det klone- I de FSME-DNA, samt plasmidet pSCll-P6, som indeholder PvuII-fragmentet af det I klonede FSME-DNA. De beskrevne plasmider er vist i fig. 7. Udgangsplasmidet I 35 pSCll er deponeret i Deutsche Sammlung von Mikroorganismen i henhold til I DK 175515 B1In Recombinant viruses with integrated protein E-DNA can be isolated from plaques. Integration of the FSME DNA sequences encoding desired portions of the E protein, I is confirmed by cutting with suitable restriction endonucleases and by hybridization I with 32P-labeled FSME cRNA and is visible by detection of a characteristic of HindIII J fragment from vaccinia. Three examples of plasmids suitable for carrying out recombination in vaccinia viruses are the plasmids pSC11-H1 containing the Haell fragment of the cloned I FSME DNA, the plasmid pSC11-F41 containing the FnuDII fragment of the cloned FSME DNA, as well as the plasmid pSC11-P6, which contains the PvuII fragment of the cloned FSME DNA. The plasmids described are shown in FIG. 7. The starting plasmid I 35 pSC11 is deposited in the Deutsche Sammlung von Microorganism according to I DK 175515 B1

I 8 II 8 I

Budapest-traktaten i E. coli med deponeringsnummeret DSM 4381.Budapest Treaty in E. coli with the deposit number DSM 4381.

H De beskrevne insertionsplasmider anvendes fortrinsvis til insertion af de ønskede sekvenser i vaccinia-ekspressionsvektorer. Således er et foretrukket aspekt af 5 opfindelsen en vaccinia-ekspressionsvektor, som ved homolog rekombination indeholder DNA-sekvenser for E-proteinet, fortrinsvis fra DNA-sekvenser indsat i et plasmid ifølge et hvilket som helst af kravene 22-25, og at den er i stand til at udtrykke protein E eller dele deraf, der indeholder de til de omtalte DNA-sekvenser svarende amino-syresekvenser.H The described insertion plasmids are preferably used for insertion of the desired sequences into vaccinia expression vectors. Thus, a preferred aspect of the invention is a vaccinia expression vector which, by homologous recombination, contains DNA sequences for the E protein, preferably from DNA sequences inserted into a plasmid according to any one of claims 22-25, and capable of expressing protein E or portions thereof containing the amino acid sequences corresponding to said DNA sequences.

I 10I 10

Som bærer for sekvenserne kan der også anvendes bakterier. En foretrukken bak- terie er Salmonella typhi.As a carrier for the sequences, bacteria can also be used. A preferred bacterium is Salmonella typhi.

Vektorerne og bærerne ifølge opfindelsen er fortrinsvis indeholdt i cellekulturer, i 15 hvilke ekspressionen af de polypeptider, som indkodes af RNA- eller DNA-sekven- I serne ifølge opfindelsen, si vidt muligt finder sted under native betingelser, idet I cellekulturen fortrinsvis er en pattedyrcellekultur. Ved anvendelse af en pattedyr- cellekultur tilvejebringes de mest foretrukne betingelser for ekspressionen af et polypeptid, som skal anvendes som vaccine.The vectors and carriers of the invention are preferably contained in cell cultures in which the expression of the polypeptides encoded by the RNA or DNA sequences of the invention takes place as far as possible under native conditions, with the cell culture being preferably a mammalian cell culture. . Using a mammalian cell culture, the most preferred conditions are provided for the expression of a polypeptide to be used as a vaccine.

I 20 - I Særlig egnede cellekulturer til ekspression af de ønskede peptider eller polypep- I tider er Vero-cellekulturer eller hønsefoster-fibroblastcellekulturer, som indeholder I en vaccinia-ekspressionsvektor som beskrevet ovenfor, idet der udtrykkes de 1 I proteiner, som svarer til de i vaccinia-ekspressionsvektorerne indeholdte DNA- I 25 sekvenser. De rekombinante vacciniavira kan analyseres for tilstedeværelsen af det indsatte FSME-DNA ved Southern Blot-hybridisering.I 20 - I Particularly suitable cell cultures for expression of the desired peptides or polypeptides are Vero cell cultures or chicken fetal fibroblast cell cultures containing I a vaccinia expression vector as described above, expressing the 1 I proteins corresponding to the in the vaccinia expression vectors contained DNA-I sequences. The recombinant vaccinia viruses can be assayed for the presence of the inserted FSME DNA by Southern Blot hybridization.

I Ifølge opfindelsen tilvejebringes peptider eller polypeptider, der omfatter amino- I syresekvenser, som indkodes af en hvilken som helst af de ovenfor nævnte nukle- I 30 otidsekvenser. Fordelene ved tilvejebringelsen af disse peptider eller polypeptider I er de samme som de ovenfor nævnte fordele for DNA- og RNA-molekylerne. 2 2In accordance with the invention, there are provided peptides or polypeptides comprising amino acid sequences encoded by any of the above mentioned nucleotide sequences. The advantages of providing these peptides or polypeptides I are the same as the aforementioned advantages for the DNA and RNA molecules. 2 2

Aminosyresekvenserne af peptiderne eller polypeptiderne ifølge opfindelsen svarer til de DNA- eller RNA-sekvenser, som er beskrevet ovenfor, og er fortrinsvis den I 35 aminosyresekvens, der er vist i fig. 3.The amino acid sequences of the peptides or polypeptides of the invention correspond to the DNA or RNA sequences described above and are preferably the amino acid sequence shown in FIG. Third

DK 175515 B1 9DK 175515 B1 9

Med de ovenfor beskrevne plasmider pSCll-Hl, pSCll-F41 og pSCll-P6 kan ekspressionen af de proteiner, der specificeres af dem, fortrinsvis udføres efter rekombination i tilsvarende vaccinia-ekspressionsvektorer.With the plasmids pSC11-H1, pSC11-F41 and pSC11-P6 described above, the expression of the proteins specified by them can preferably be performed after recombination in corresponding vaccinia expression vectors.

55

Selv om det er foretrukket at fremstillet peptiderne eller polypeptiderne ifølge opfindelsen ved ekspression af én af nukleotidsekvenserne ifølge opfindelsen, især i en cellekultur som ovenfor beskrevet, er det også muligt at syntetisere peptiderne eller polypeptiderne ifølge opfindelsen kemisk.While it is preferred that the peptides or polypeptides of the invention be prepared by expression of one of the nucleotide sequences of the invention, especially in a cell culture as described above, it is also possible to chemically synthesize the peptides or polypeptides of the invention.

1010

Peptiderne eller polypeptiderne ifølge opfindelsen er fortrinsvis indeholdt i et præparat, som kan anvendes inden for det medicinske område.The peptides or polypeptides of the invention are preferably contained in a composition which can be used in the medical field.

DNA- og RNA-sekvenserne ifølge opfindelsen kan også fortrinsvis anvendes til 15 fremstilling af en levende vaccine; det foretrækkes især, at DNA-sekvenserne kombineres med DNA fra vacciniavirus, som er godt etableret som levende vaccine.The DNA and RNA sequences of the invention may also preferably be used to prepare a live vaccine; it is especially preferred that the DNA sequences be combined with DNA from vaccinia virus, which is well established as a live vaccine.

Det foretrækkes især, at vaccinen indeholder en vaccinia-ekspressionsvektor som ovenfor defineret. På den anden side kan der fremstilles en vaccine, som indeholder et præparat, der omfatter ét eller flere af de peptider eller polypeptider, 20 som indkodes af DNA- eller RNA-sekvenserne ifølge opfindelsen.It is particularly preferred that the vaccine contains a vaccinia expression vector as defined above. On the other hand, a vaccine may be prepared containing a composition comprising one or more of the peptides or polypeptides encoded by the DNA or RNA sequences of the invention.

En yderligere foretrukken anvendelse af vacciner, der indeholder antigene peptider eller polypeptider, er til fremstilling af specifikke immunoglobuliner på en måde, som er kendt for fagfolk.A further preferred use of vaccines containing antigenic peptides or polypeptides is to prepare specific immunoglobulins in a manner known to those skilled in the art.

2525

Præparatet indeholdende ét eller flere af peptiderne eller polypeptiderne ifølge opfindelsen kan også anvendes som diagnostisk middel.The composition containing one or more of the peptides or polypeptides of the invention may also be used as a diagnostic agent.

DNA- eller RNA-sekvenserne ifølge opfindelsen er også egnede som prober til iden-30 tificeringsformål.The DNA or RNA sequences of the invention are also suitable as probes for identification purposes.

Opfindelsen forklares nærmere ved følgende detaljerede beskrivelse.The invention is further explained by the following detailed description.

En foretrukken udførelsesform for opfindelsen er vist på tegningen, hvor 35 I DK 175515 B1 10 H fig. 1 viser DNA-sekvensen af det klonede genom af den vestlige undertype af FSME-virus, omfattende strukturområdet og det 5'-ikke-translaterede område. De aminoterminale startpunkter for proteinerne C, prM (M) og E samt grænserne for klonerne A5 og Pl-1 er vist med pile.A preferred embodiment of the invention is shown in the drawing, in which FIG. Figure 1 shows the DNA sequence of the cloned genome of the western subtype of FSME virus, comprising the structural region and the 5 'untranslated region. The amino terminal starting points of proteins C, prM (M) and E as well as the boundaries of clones A5 and P1-1 are shown by arrows.

I .I.

Fig. 2 viser RNA-sekvensen af genomet af den vestlige undertype af FSME-virus, som koder for strukturproteiner. De aminoterminale startpunkter for proteinerne C, prM (M) og E er vist med pile.FIG. Figure 2 shows the RNA sequence of the Western subtype of FSME virus encoding structural proteins. The amino terminal starting points of proteins C, prM (M) and E are shown by arrows.

10 Fig. 3 viser aminosyresekvensen af strukturproteinerne af den vestlige undertype af FSME-virus, således som den er afledt af den i fig. 1 viste DNA-sekvens. NH2- terminalerne af de forskellige proteiner er vist med pile.FIG. 3 shows the amino acid sequence of the structural proteins of the western subtype of FSME virus, as derived from the one shown in FIG. 1. The NH2 terminals of the various proteins are shown by arrows.

Fig. 4 viser et fotografi af en agarosegelelektroforese af plasmider, som indeholder 15 insertioner, der er specifikke for den vestlige undertype af FSME-virus, efter skæ- I ring med restriktionsenzymet Smal (bane 2-6). Det øverste bånd repræsenterer I plasmid-DNA’et (4363 bp), det underste bånd specifikke insertions-DNA'er (i om- I rådet fra 2000 til 3500 bp). DNA-markøren i banerne 1 og 7 svarer til 23130, 9416, 6557, 4361, 2322, 2027, 564 og 125 basepar (ovenfra og nedefter).FIG. 4 shows a photograph of an agarose gel electrophoresis of plasmids containing 15 insertions specific for the western subtype of FSME virus, after cutting with the restriction enzyme SmaI (lanes 2-6). The top band represents the plasmid DNA (4363 bp), the bottom band specific insertion DNA (in the range 2000 to 3500 bp). The DNA marker in lanes 1 and 7 corresponds to 23130, 9416, 6557, 4361, 2322, 2027, 564 and 125 base pairs (top and bottom).

20 I Fig. 5 viser plasmidet A5, der er afledt af plasmidet pBR322, og hvor der er vist I restriktionsendonuklease-skæringssteder af udvalgte underfragmenter, idet de I tilsvarende områder, der koder for FSME-protein E, er vist. Pilen viser transkrip- tionsretningen for genomisk RNA.In FIG. Figure 5 shows plasmid A5 derived from plasmid pBR322 and shown in restriction endonuclease intersection sites of selected sub-fragments, showing the corresponding regions encoding FSME protein E. The arrow shows the transcriptional direction of genomic RNA.

I 25 I Fig· 6 viser insertionsplasmidet pSCll, i hvilket er indeholdt et enkelt Smal-inser- I tionssted, vacciniapromotoren, det prokaryote lacZ-gen og vaccinia-TK-rekombi- I nationssekvenser.In Fig. 6, the insertion plasmid shows pSC11, which contains a single SmaI insertion site, the vaccinia promoter, the prokaryotic lacZ gene and vaccinia TK recombination sequences.

I 30 Fig. 7 viser tre konkrete eksempler på FSME-insertionsplasmider til in wVo-rekom- I bination i en vaccinia-ekspressionsvektor. Det unikke Smal-sted ved nukleotid I 6500 er vist i hvert plasmid.In FIG. Figure 7 shows three concrete examples of FSME insertion plasmids for in vivo Recombination in a vaccinia expression vector. The unique SmaI site at nucleotide I 6500 is shown in each plasmid.

I Den første base i de FSME-virusspecifikke sekvenser er i hvert af de viste plas- I 35 mider nukleotidet 6503.In the first base of the FSME virus-specific sequences, in each of the plasmids shown, the nucleotide is 6503.

DK 175515 B1 11DK 175515 B1 11

Fig. 8 viser karakteristika for de subklonede FSME-virusspecifikke sekvenser. IFIG. 8 shows the characteristics of the subcloned FSME virus specific sequences. IN

Translationsiniteringskodonerne samt hydrofobe og hydrofile aminosyreområder, der er afledt fra en hydropatiplot, er vist. Disse områder blev identificeret ved 5 hjælp af et IBI-Pustell-computerprogram.The translation initiation codons, as well as hydrophobic and hydrophilic amino acid regions derived from a hydropathy plot, are shown. These areas were identified by 5 using an IBI-Pustell computer program.

Hydrofobe sekvenser er angivet med □, de hydrofile sekvenser med .Hydrophobic sequences are indicated by □, the hydrophilic sequences.

Fig. 9 viser det fysiske kort over FSME-insertionsplasmider samt påvisning af de 10 plasmid-DNA-fragmenter, der indeholder FSME-specifikke sekvenser. I A) ses den med ethidiumbromid farvede agarosegel med DNA-fragmenterne, og i B) er vist resultatet af Southern Blot-hybridisering med en "FSME-Riboprobe".FIG. Figure 9 shows the physical map of FSME insertion plasmids as well as detection of the 10 plasmid DNA fragments containing FSME-specific sequences. In A) the ethidium bromide stained agarose gel is seen with the DNA fragments and in B) the result of Southern Blot hybridization with an "FSME Riboprobe" is shown.

A) Bane 1 λ DNA skåret med Hindlll som størrelsesmarkør 15 Bane 2 pSCll DNA skåret med PvulA) Lane 1 λ DNA cut with Hindlll as size marker 15 Lane 2 pSCll DNA cut with Pvul

Bane 3 pSCll-P6 DNA skåret med Pvul Bane 4 pSCll-P6 DNA skåret med BamHI Bane 5 pSCll DNA skåret med BamHI Bane 6 pSCll-F41 DNA skåret med BamHI 20 Bane 7 pSCll-F41 DNA skåret med EcoRILane 3 pSCll-P6 DNA cut with Pvul Lane 4 pSCll-P6 DNA cut with BamHI Lane 5 pSCll DNA cut with BamHI Lane 6 pSCll-F41 DNA cut with BamHI 20 Lane 7 pSCll-F41 DNA cut with EcoRI

Bane 8 pSCl 1 DNA skåret med EcoRILane 8 pSCl 1 DNA cut with EcoRI

B) Efter hybridisering blev der påvist fragmenter indeholdende FSME-sekvenser ved 25 2,585 kb i bane 3 0,919 kb i bane 4 1,019 kb i bane 6 1,879 kb i bane 7 30B) Following hybridization, fragments containing FSME sequences were detected at 2.585 kb in lane 3 0.919 kb in lane 4 1.019 kb in lane 6 1.879 kb in lane 7

Disse fragmenter er forventet ud fra kloningen (se fig. 7). DNA i banerne 1, 2, 5 og 8 hybridiserer ikke, da det kun drejer sig om lambda DNA eller rent pSCll plas-mid-DNA.These fragments are expected from the cloning (see Fig. 7). DNA in lanes 1, 2, 5 and 8 does not hybridize as it is only lambda DNA or pure pSC11 plasmid DNA.

I DK 175515 B1In DK 175515 B1

I II I

Fig. 10 viser en Slot Blot-hybridisering til påvisning af FSME-vacciniavirusrekom- IFIG. 10 shows a Slot Blot hybridization for detection of FSME vaccinia virus recom

binanter. Ikke-inficerede celler, celler, som var inficeret med virusrekombinanten Irecombinants. Uninfected cells, cells infected with the virus recombinant I

H vSC8 (Dr. Moss), og celler, der var inficeret med 4 enkeltisolater fra virusrekombi- IH vSC8 (Dr. Moss), and cells infected with 4 single isolates from virus recombination

nanten P6, blev overført til nitrocellulosefilter og hybridiseret med 32P-mærket Inante P6, was transferred to nitrocellulose filter and hybridized with 32 P-labeled I

I 5 pSCll DNA (nick-repair) i A eller med en FSME-specifik "Riboprobe" i B. Der IIn 5 pSC11 DNA (nick-repair) in A or with an FSME-specific "Riboprobe" in B.

blev ikke fundet signaler med celler, der ikke var inficeret. Det rekombinante virus Ino signals were found with cells that were not infected. The recombinant virus I

vSC8 hybridiserer med pSCll på grund af TK-sekvenserne. Den FSME-specifikke IvSC8 hybridizes with pSC11 due to the TK sequences. The FSME-specific I

"Riboprobe" førte med vSC8 dog som forventet ikke til noget positivt signal. Celler, IHowever, as expected, "Riboprobe" did not produce a positive signal with vSC8. Cells, I

der var inficeret med enkeltisolater af virusrekombinanten P6 (1-4), udviser Iinfected with single isolates of the viral recombinant P6 (1-4), exhibit I

10 hybridisering både med "Riboproben" (på grund af FSME-sekvensen) og med I10 hybridization both with the "Riboprobe" (due to the FSME sequence) and with I

H pSCll DNA (på grund af TK-sekvensen). IH pSC11 DNA (due to the TK sequence). IN

Fig. 11 viser DNA-fragmentmønstre, der blev vundet efter skæring med Hindlll fra IFIG. 11 shows DNA fragment patterns obtained after cutting with HindIII from I

virion-DNA fra vildtypevirus og fra vacciniavirus-FSME-rekombinanter. Det fremgår, 15 at Hindlll J-fragmentet under rekombi-nationsprocessen forsvinder i skærings-wild-type virus virion DNA and from vaccinia virus FSME recombinants. It can be seen that during the recombination process, the HindIII J fragment disappears in the cutting medium.

I mønstret fra DNA fra virus-rekombinanterne. Det oprindelige Hindlll J-fragment IIn the pattern of DNA from the virus recombinants. The original HindIII J fragment I

I med en størrelse på ca. 5 kb forekommer kun i bane 6 i agarosegelen. Alle andre DNA-præparationer indeholder ikke Hindlll J-fragmentet.I with a size of approx. 5 kb occurs only in lane 6 of the agarose gel. All other DNA preparations do not contain the HindIII J fragment.

I 20 Bane 1 λ DNA skåret med BstEII som længdestandard I Bane 2 DNA fra FSME-rekombinanten F41 (insertionsplasmid pSCll-F41) I Bane 3 DNA fra FSME-rekombinanten P6 (insertionsplasmid pSCll-P6)In 20 Lane 1 λ DNA cut with BstEII as the length standard I Lane 2 DNA from the FSME recombinant F41 (insertion plasmid pSCll-F41) In Lane 3 DNA from the FSME recombinant P6 (insertion plasmid pSC11-P6)

Bane 4 DNA fra virusrekombinanten PI (insertionsplasmid pSCll)Lane 4 DNA from the virus recombinant PI (insertion plasmid pSC11)

Bane 5 DNA fra virusrekombinanten vSC8 25 Bane 6 DNA fra virioner fra vildtypestammen WR.Lane 5 DNA from the viral recombinant vSC8 25 Lane 6 DNA from virions from the wild-type strain WR.

I Fig. 12 viser en påvisning af FSME-specifikke sekvenser i Hindlll DNA-fragmenter I fra virusrekombinanter ved hybridisering med en 32P-maerket FSME "Riboprobe" · ” (A). Som kontrol blev samme filter hybridiseret endnu en gang med et 32P-(nick- | I 30 repair)-mærket pSCll plasmid-DNA (B).In FIG. 12 shows a detection of FSME-specific sequences in HindIII DNA fragments I from virus recombinants by hybridization with a 32P-labeled FSME "Riboprobe" (A). As a control, the same filter was hybridized again with a 32P (nickel | I 30 repair) labeled pSC11 plasmid DNA (B).

I A) Den FSME-specifikke "Riboprobe" hybridiserer udelukkende med DNAIn A) The FSME-specific "Riboprobe" hybridizes exclusively with DNA

I fra virusrekombinanten F41 i banerne 1, 2 og 3 og med DNA fra rekom- I binanten P6 i bane 7. Der kan hverken fastslås hybridisering med rekom- DK 175515 B1 13 binanten PI i banerne 4, 5 og 6 eller med DNA fra rekombinanten vSC8 i bane 8 og DNA fra ikke-inficerede celler I bane 9.I from the virus recombinant F41 in lanes 1, 2 and 3 and with DNA from the recombinant P6 in lane 7. Neither hybridization can be ascertained with the recombinant PI in lanes 4, 5 and 6 or with DNA from the recombinant vSC8 in lane 8 and DNA from uninfected cells in lane 9.

B) Det radioaktivt mærkede pSCll DNA hybridiserer med alle DNA-præpa-5 rationer, der blev påvist med den FSME-specifikke "Riboprobe". Dette kan forklares ved, at pSCll DNA har de vaccinia-TK-sekvenser, der er nødvendige til rekombinationen. Dette pSCll plasmid-DNA hybridiserer imidlertid af denne grund også med DNA fra rekombinanten PI i banerne 4, 5 og 6 samt med DNA fra rekombinanten vSC8 i bane 8. DNA fra ikke-inficerede 10 celler hybridiserer ikke (bane 9).B) The radiolabeled pSC11 DNA hybridizes to all DNA preparations detected with the FSME-specific "Riboprobe". This can be explained by the fact that pSC11 DNA has the vaccinia TK sequences necessary for the recombination. However, for this reason, this pSC11 plasmid DNA also hybridizes with DNA from recombinant PI in lanes 4, 5 and 6 as well as with DNA from recombinant vSC8 in lane 8. DNA from uninfected 10 cells does not hybridize (lane 9).

Fig. 13 viser en Western Blot-analyse af FSME-specifikt protein i ekstrakter fra Vero-celler, som blev inficeret med virusrekombinanten P6. Proteinerne blev adskilt i en 15% polyacrylamidgel og præpareret til Western Blot ved standardmetoder.FIG. Figure 13 shows a Western Blot analysis of FSME-specific protein in extracts from Vero cells infected with the viral recombinant P6. The proteins were separated in a 15% polyacrylamide gel and prepared for Western Blot by standard methods.

15 Som kontrol blev proteinerne fra disse inficerede celler inkuberet med et negativt humanserum (bane 1 og 3). Med et positivt humanserum, som indeholder antistoffer mod FSME-virus, kunne der påvises det forventede FSME-specifikke antigen med en størrelse på ca. 38.000 D i banerne 2 og 4. Signalerne i banerne 1 og 3, som blev opnået med det negative serum, ser ud til at være uspecifikke.As a control, the proteins from these infected cells were incubated with a negative human serum (lanes 1 and 3). With a positive human serum containing antibodies to FSME virus, the expected FSME-specific antigen with a size of approx. 38,000 D in lanes 2 and 4. The signals in lanes 1 and 3 obtained with the negative serum appear to be nonspecific.

20 DNA'et ifølge den foreliggende opfindelse fremstilles, og sekvensen bestemmes, ved følgende generelle fremgangsmåde: Først ekstraheres viralt RNA fra den vestlige undertype af FSME-virus eller fra 25 celler inficeret med den vestlige undertype af FSME-virus. Under anvendelse af dette RNA som matrix syntetiseres et dobbeltstrenget cDNA, fx under anvendelse af omvendt transkriptase. Ved rekombinant-DNA-teknikker indsættes dette cDNA i et vektor-DNA såsom Escherichia coli plasmid-DNA for at få et rekombinant plasmid. Der benyttes rekombinante plasmider til at transformere egnede værtsceller 30 såsom fx E. coli stamme HB101 til amplifikation af plasmiderne eller til ekspression af de tilsvarende proteiner. Enkelte kolonier med insertionsholdige plasmider identificeres ved plasmid-minipræparationsmetoden ifølge Birnboim og Doly (Nucleic Acids Research 7, 1195-1204, 1979). Basesekvensen af det DNA, der er specifikt for den vestlige undertype af viruset, og som findes i det rekombinanteThe DNA of the present invention is prepared and the sequence determined by the following general procedure: First, viral RNA is extracted from the western subtype of FSME virus or from 25 cells infected with the western subtype of FSME virus. Using this RNA as a matrix, a double-stranded cDNA is synthesized, e.g., using reverse transcriptase. By recombinant DNA techniques, this cDNA is inserted into a vector DNA such as Escherichia coli plasmid DNA to obtain a recombinant plasmid. Recombinant plasmids are used to transform suitable host cells, such as, for example, E. coli strain HB101, for amplification of the plasmids or for expression of the corresponding proteins. Single colonies with insert-containing plasmids are identified by the plasmid mini-preparation method of Birnboim and Doly (Nucleic Acids Research 7, 1195-1204, 1979). The base sequence of the DNA specific for the western subtype of the virus found in the recombinant

I DK 175515 B1 II DK 175515 B1 I

I II I

I plasmid, bestemmes ved en hurtig DNA-sekventeringsmetode såsom ved dideoxy- IIn plasmid, is determined by a rapid DNA sequencing method such as by dideoxy-I

I kædeterminationsmetoden. IIn the chain termination method. IN

I En detaljeret beskrivelse af fremgangsmåden til fremstilling af cDNA, rekombinante II A detailed description of the method for producing cDNA, recombinant I

I 5 plasmider, celler, som er transformeret med disse plasmider, og bestemmelse af IIn 5 plasmids, cells transformed with these plasmids, and determination of I

I nukleotidsekvensen er som følger: først kan viralt RNA fra den vestlige undertype IIn the nucleotide sequence is as follows: first, viral RNA from the western subtype I

I af FSME-virus fås ud fra oprenset virus. Til dette formål kan den vestlige undertype II of FSME virus is obtained from purified virus. To this end, the western subtype I

af FSME-virus dyrkes i primære hønsefosterceller, koncentreres ved ultracentrifu- Iof FSME virus is grown in primary chicken fetal cells, concentrated by ultracentrifuge.

gering og oprenses ved to cykler af saccharosedensitetsgradientacentrifugering. Iand purified by two cycles of sucrose density gradient centrifugation. IN

10 Efter solubilisering af proteinerne med SDS i nærværelse af proteinase K og I10 After solubilization of the proteins with SDS in the presence of proteinase K and I

I RNAse-inhibitor, fx ved inkubation i 1 time ved 37°C, ekstraheres RNA’et fx med IFor example, in RNAse inhibitor, for example, by incubation for 1 hour at 37 ° C, the RNA is extracted with

phenol og udfældes med ethanol. Under anvendelse af dette RNA som matrix I syntetiseres det med virus-RNA’et komplementære DNA derefter in vitro ved hjælp af omvendt transkriptase (fx fra ’’Avian Myeloblastosis"-virus) ved fremgangsmå- 15 den ifølge Gubier og Hofmann (Gene 25, 263-269, 1983). Under anvendelse af primere såsom hexanukleotidprimere, der fås ud fra kalvethymus-DNA, inkuberesphenol and precipitated with ethanol. Using this RNA as matrix I, the complementary DNA of the viral RNA is then synthesized in vitro by reverse transcriptase (e.g., from the "Avian Myeloblastosis" virus) by the method of Gubier and Hofmann (Gene 25, 263-269, 1983) Using primers such as hexanucleotide primers derived from calf thymus DNA are incubated

I det virale RNA under egnede betingelser, fx som beskrevet i håndbogen "cDNAIn the viral RNA under suitable conditions, eg as described in the manual "cDNA

Synthesis System" fra Amersham (England), med en omvendt transkriptase sam- I men med desoxyadenosintriphosphat (dATP), desoxythymidintriphosphat (dTTP), I 20 desoxyguanosintriphosphat (dGTP) og desoxycytidintriphosphat (dCTP) som sub-Synthesis System "from Amersham (England), with a reverse transcriptase together with deoxyadenosine triphosphate (dATP), desoxythymidine triphosphate (dTTP), I deoxyguanosine triphosphate (dGTP) and desoxycytidine triphosphate (dCTP) as

I strater. Det således vundne cDNA.RNA-hybrid behandles derefter med RNAse HIn streets. The cDNA.RNA hybrid thus obtained is then treated with RNAse H

under bestemte betingelser, under hvilke der produceres "nicks" i RNA’et fra hy-under certain conditions under which "nicks" are produced in the RNA from

I bridmolekylet. Derefter kan der anvendes E. coli DNA-polymerase I for at erstatte IIn the bridging molecule. Then, E. coli DNA polymerase I can be used to replace I

RNA-strengen effektivt, idet det nick-behandlede RNA tjener som primer. Det 25 således vundne dobbeltstrengede DNA (dsDNA) deproteiniseres ved phenol- I chloroform-ekstraktion og udfældes med ethanol, og tilbageblevne RNA-fragmenter I fjernes ved behandling med RNAse (fx i TE-puffer, 30 minutter ved 37°C).The RNA strand effectively, with the nick-treated RNA serving as a primer. The thus-obtained double-stranded DNA (dsDNA) is deproteinized by phenol-I chloroform extraction and precipitated with ethanol, and residual RNA fragments I are removed by treatment with RNAse (e.g., in TE buffer, 30 minutes at 37 ° C).

Kloning af dsDNA'et udføres fx under anvendelse af syntetiske adaptorer. Til detteCloning of the dsDNA is performed, for example, using synthetic adapters. For this

I 30 formål behandles dsDNA’et med Klenow-fragmentet fra E. coli DNA-polymerase IFor purposes, the dsDNA is treated with the Klenow fragment of E. coli DNA polymerase I

under hensigtsmæssige betingelser (Maniatis et al., Molecular Cloning, CSH 1982) I for at tilvejebringe et maksimalt antal stumpe ender, der kan klones, efterfulgt af I phenolekstraktioner til deproteiniseringen. Det stumpendede dsDNA phosphoryle- res ved 5’-enden med polynukleotidkinase ifølge standardmetoder (Maniatis et al., I 35 Molecular Cloning, 1982). Det phosphorylerede dsDNA inkuberes under hensigts- DK 175515 B1 15 mæssige betingelser med BamHI-Smal-adaptorer i nærværelse af DNA-ligase. Reaktionsblandingen anbringes på en 1% agarosegel og adskilles, og forskellige størelsesområder af med adaptorer forbundet cDNA skæres ud af gelen og oprenses, fx ved elektroeluering. Det således vundne DNA phosphoryleres på riy 5 med polynukleotidkinase som beskrevet ovenfor. På den anden side skæres det plasmid-DNA, der skal anvendes som vektor-DNA, fx E. coli plasmid pBR322-DNA, med restriktionsendonukleasen BamHI og dephosphoryleres under anvendelse af bakteriel alkalisk phosphatase. Det syntetiske dsDNA, der indeholder BamHI-adaptorer ved begge ender, og det BamHI-skårne vektor-DNA inkuberes under 10 hensigtsmæssige betingelser for at tillade hybridisering af komplementære sekvenser ved enderne af begge DNA-molekylerne og ligeres med T4-DNA-ligase.under appropriate conditions (Maniatis et al., Molecular Cloning, CSH 1982) I to provide a maximum number of clumpable ends that can be cloned, followed by I phenol extractions for the deproteinization. The blunt-ended dsDNA is phosphorylated at the 5 'end by polynucleotide kinase according to standard methods (Maniatis et al., In Molecular Cloning, 1982). The phosphorylated dsDNA is incubated under appropriate conditions with Bam HI-SmaI adapters in the presence of DNA ligase. The reaction mixture is placed on a 1% agarose gel and separated, and various size ranges of cDNA associated with adapters are cut out of the gel and purified, for example by electroelution. The DNA thus obtained is phosphorylated on rI5 with polynucleotide kinase as described above. On the other hand, the plasmid DNA to be used as a vector DNA, for example, E. coli plasmid pBR322 DNA, is cut with the restriction endonuclease BamHI and dephosphorylated using bacterial alkaline phosphatase. The synthetic dsDNA containing BamHI adapters at both ends and the BamHI cut vector DNA are incubated under appropriate conditions to allow hybridization of complementary sequences at the ends of both DNA molecules and ligated with T4 DNA ligase.

Det rekombinante DNA-molekyle anvendes derefter til at transformere en kompetent E. co//-stamme (fx E. coli HB101) som beskrevet af Maniatis et al.The recombinant DNA molecule is then used to transform a competent E. coli strain (e.g., E. coli HB101) as described by Maniatis et al.

(Molecular Cloning, CSH, 1982). Det benyttede vektor-DNA indeholder to gener, 15 der meddeler resistens over for henholdsvis ampicillin og tetracydin. Ved den anvendte kloningsmetode ødelægges tetracydinresistensgenet. Til selektion af rekombinanter, der sandsynligvis indeholder virusspecifikke insertioner, dyrkes de transformerede bakterier i nærværelse af ampicillin og analyseres derpå for tetracyclinfølsomhed. Plasmider fra tetracyclinfølsomme kolonier isoleres ved 20 plasmidinipræparationsmetoden (Birnboim og Doly, Nucleic Acids Research 7, 1195-1204, 1979), og størrelsen af insertionerne analyseres ved restriktionsenzymanalyse under anvendelse af Smal og adskillelse af de vundne fragmenter på 1% agarosegeler. 1 2 3 4 5 6 7 8 9 10 11 ___ _ - --—— -—^^(Molecular Cloning, CSH, 1982). The vector DNA used contains two genes that confer resistance to ampicillin and tetracydine, respectively. By the cloning method used, the tetracydine resistance gene is destroyed. For selection of recombinants likely to contain virus-specific insertions, the transformed bacteria are grown in the presence of ampicillin and then analyzed for tetracycline sensitivity. Plasmids from tetracycline-sensitive colonies are isolated by the plasmidine preparation method (Birnboim and Doly, Nucleic Acids Research 7, 1195-1204, 1979), and the size of the insertions is analyzed by restriction enzyme analysis using SmaI and separation of the obtained fragments on 1% agarose gels. 1 2 3 4 5 6 7 8 9 10 11 ___ _ - --—— -— ^^

Disse insertioners basesekvens bestemmes ved dideoxykædeterminationsmetoden 2 ifølge Sanger et al. (Proc. Natl. Acad. Sci. USA 74, 5463-5467, 1977). Den vundne 3 sekvens undersøges for homologier med allerede kendte sekvenser af andre 4 flavivira (Rice et al., Science 229, 726-733, 1985; Dalgarno et al., J. Mol. Biol. 187, 5 309-323, 1986; Castle et al., Virology 147, 227-236, 1985; Castle et al., Virology 6 149, 10-26, 1986; Wengler et al., Virology 147, 264-274, 1985; Pletnev et al., 7 FEBS 3660 200, nr. 2, 317-321, 1986) ved hjælp af computerprogrammer for at 8 lokalisere den undersøgte sekvens i den samlede sekvens af det genomiske RNA.The base sequence of these insertions is determined by the dideoxy chain termination method 2 of Sanger et al. (Proc. Natl. Acad. Sci. USA 74, 5463-5467, 1977). The won 3 sequence is examined for homologies with already known sequences of other 4 flaviviruses (Rice et al., Science 229, 726-733, 1985; Dalgarno et al., J. Mol. Biol. 187, 5,309-323, 1986; Castle et al., Virology 147, 227-236, 1985; Castle et al., Virology 6 149, 10-26, 1986; Wengler et al., Virology 147, 264-274, 1985; Pletnev et al., 7 FEBS 3660 200, No. 2, 317-321, 1986) using computer programs to locate the examined sequence in the overall sequence of the genomic RNA.

99

Fig. 1 viser den fuldstændige nukleotidsekvens og fig. 3 den tilsvarende amino- 10 syresekvens af det strukturelle område af den vestlige undertype af FSME-virus- 11 genomet.FIG. 1 shows the complete nucleotide sequence and FIG. 3 shows the corresponding amino acid sequence of the structural region of the western subtype of the FSME virus genome.

I DK 175515 B1 II DK 175515 B1 I

I 16 II 16 I

I De nøjagtige aminoterminaler af E og M bestemmes ved N-terminale aminosyre- II The exact amino terminals of E and M are determined by N-terminal amino acid I

I sekvensanalyser, fx under anvendelse af den manuelle fremgangsmåde, der er IIn sequence analyzes, for example, using the manual method that is I

I beskrevet af Chang et al. (FEBS Letters 93, 205-214, 1978). Til dette formål iso- IIn described by Chang et al. (FEBS Letters 93, 205-214, 1978). For this purpose, iso- I

I 5 leres E-proteinet, fx ved præparativ SDS-PAGE, elektroelueres fra gelen og under- IIn 5, the E protein, for example by preparative SDS-PAGE, is electroeluted from the gel and sub-eluted.

I kastes en N-terminal sekvensanalyse. Den resulterende sekvens er Ser-Arg-Cys, IYou throw in an N-terminal sequence analysis. The resulting sequence is Ser-Arg-Cys, I

I og derfor ligger aminoterminalen for E i nøjagtig den samme position som andre IIn and therefore the amino terminal of E is in exactly the same position as other I

I flaviviras, dvs. to aminosyrer før den første velbevarede cysteinrest (fig. 3). IIn flaviviras, ie. two amino acids before the first well-preserved cysteine residue (Fig. 3). IN

I 10 Der kan anvendes følgende metode for at bestemme M-proteinets aminoterminal. II The following method can be used to determine the amino terminal of the M protein. IN

I Oprenset virus solubiliseres med et ikke-ionisk detergent (fx Triton X 100), og pro- IPurified virus is solubilized with a nonionic detergent (e.g., Triton X 100) and pro-I

I teincomplexer, der indeholder E og M, udvindes ved densitetsgradientcentrifu- IIn complexes containing E and M, density gradient centrifuge is recovered

I gering i en detergentfri saccharosegradient (Heinz og Kunz, J. Gen. Virol. 49, 125- ILow in a detergent-free sucrose gradient (Heinz and Kunz, J. Gen. Virol. 49, 125-1

I 132, 1980). Sekvensanalyse af disse proteincomplexer fører til følgende dobbelt- II 132, 1980). Sequence analysis of these protein complexes leads to the following double I

I 15 sekvens: IIn sequence: I

I Ser-Arg-Cys- IIn Ser-Arg-Cys-I

I Ser-Val-Leu- IIn Ser-Val-Leu- I

idet Ser-Arg-Cys svarer til sekvensen af E, og Ser-Val-Leu udgør den aminotermi- Iwherein Ser-Arg-Cys corresponds to the sequence of E, and Ser-Val-Leu is the amino term I

20 nåle ende af M-proteinet. Disse terminaler er angivet i de i fig. 1 og 3 viste sekven- I20 needles end of the M protein. These terminals are indicated in the FIGS. 1 and 3

I ser. IYou see. IN

I Den foreliggende opfindelse tilvejebringer således for første gang nukleotidsekven- IThus, for the first time, the present invention provides nucleotide sequence I

sen af 5'-området af den vestlige undertype af FSME-virusgenomet, herunder de Ithe late 5 'region of the western subtype of the FSME virus genome, including those I

I 25 sekvenser, der koder for strukturproteiner, og som følge heraf tilvejebringer den IIn 25 sequences encoding structural proteins, and as a result, it provides I

desuden disse strukturproteiners aminosyresekvenser. Iin addition, the amino acid sequences of these structural proteins. IN

I Basesekvensen vist i fig. 1 er et foretrukket eksempel på et DNA, der koder for po- IIn the base sequence shown in FIG. 1 is a preferred example of a DNA encoding pol I

I lypeptider med egenskaberne af strukturproteiner af den vestlige undertype af IIn lypeptides with the properties of the structural proteins of the western subtype of I

I 30 FSME-virus. Ifølge degenereringen af den genetiske kode kan den samme amino- IIn 30 FSME viruses. According to the degeneracy of the genetic code, the same amino- I

I syresekvens også indkodes af andre basetripletter end dem, der er vist i figuren. IAcid sequence is also encoded by base triplets other than those shown in the figure. IN

I Den foreliggende opfindelse angår også sekvenser, der er ændret ved mutation, IIn the present invention, sequences altered by mutation also relate to I

I transposition og degradation, men som ikke desto mindre koder for en amino- IIn transposition and degradation, but which nevertheless encode an amino I

DK 175515 B1 17 syresekvens, der stadig udviser.de for strukturproteinerne væsentlige antigene karakteristika.DK 175515 B1 17 acid sequence which still exhibits essential antigenic characteristics for the structural proteins.

Desuden angår den foreliggende opfindelse ikke blot nøjagtig den samme 5 aminosyresekvens som den, der er vist i fig. 3, og som kun er et eksempel på en sekvens af et naturligt isolat af den vestlige undertype af FSME-virus. Det er et velkendt faktum, at genomerne af RNA-vira er underkastet højere mutationsfrekvenser end de, der er fundet for DNA-vira eller cellulære gener, som følge af den større fejlhyppighed hos RNA-polymeraser og manglen på en korrektionsmeka-10 nisme (Holland et al., Science 215, 1577-1585, 1982; Reanney, Ann. Rev.Furthermore, the present invention not only relates to exactly the same 5 amino acid sequence as that shown in FIG. 3, which is just one example of a sequence of a natural isolate of the western subtype of FSME virus. It is a well-known fact that the genomes of RNA viruses are subject to higher mutation rates than those found for DNA viruses or cellular genes, due to the greater frequency of RNA polymerases and the lack of a correction mechanism (Netherlands). et al., Science 215, 1577-1585, 1982; Reanney, Ann.

Microbiol. 36, 47-73, 1982). Afhængigt af virusets karakteristika kan disse mutationer føre til en hurtig udvikling af en ny virustype som følge af antigendrift, således som det er tilfældet med influenzavirus (Both et al. i: "The Origin of Pandemic Influenza viruses", W.G. Laver (red.), Elsevier, 1983). Pa den anden side kan 15 RNA-vira være mere stabile med hensyn til deres antigenstruktur under naturlige økologiske betingelser, formodentlig som følge af funktionelle tvangsmekanismer, der ikke tillader nogle vidtgående strukturelle ændringer i antigenaktive proteiner.Microbiol. 36, 47-73, 1982). Depending on the characteristics of the virus, these mutations can lead to the rapid development of a new virus type due to antigen drift, as is the case with influenza viruses (Both et al. In "The Origin of Pandemic Influenza Viruses" , Elsevier, 1983). On the other hand, 15 RNA viruses may be more stable with respect to their antigenic structure under natural ecological conditions, presumably due to functional coercive mechanisms that do not allow for far-reaching structural changes in antigen-active proteins.

Ikke desto mindre skal der tages hensyn til en vis grad af variation, og dette kan påvises ved sekvenssammenligninger mellem forskellige naturlige isolater.Nevertheless, some degree of variation must be taken into account, and this can be demonstrated by sequence comparisons between different natural isolates.

2020

Dette kan fx udføres ved sekventering af RNA fra forskellige isolater under anvendelse af dideoxykædeterminationsmetoden med syntetiske oligonukleotider som primere, som er fremstillet ifølge den i fig. 1 viste sekvens af prototype-isolatet. 1This can be done, for example, by sequencing RNA from different isolates using the dideoxy chain termination method with synthetic oligonucleotides as primers prepared according to the 1 shows the sequence of the prototype isolate. 1

Analyse af sådanne forskellige isolaters nukleotidsekvenser, som svarer til E-proteinet, har vist forskelligartede nukleotider. Følgende nukleotidudskiftninger blev fundet i RNA fra et naturligt isolat (ZZ-9) i sammenligning med Neudorfi:Analysis of the nucleotide sequences of such different isolates corresponding to the E protein has shown diverse nucleotides. The following nucleotide replacements were found in RNA from a natural isolate (ZZ-9) in comparison with Neudorfi:

I DK 175515 B1 II DK 175515 B1 I

I 18 II 18 I

I Position af FSME ZZ-9 Aminosyre- IIn Position of FSME ZZ-9 Amino Acid I

I nukleotidet udskiftning IIn the nucleotide replacement I

I 2375. A U Thr -- Ser II 2375. A U Thr - Ser I

I 23A7 U C II 23A7 U C I

I 2323 AG II 2323 AG I

I 2317 AG II 2317 AG I

I 2281 C U II 2281 C U I

I 2266 U C II 2266 U C I

I 2263 AG II 2263 AG I

I 2021 C U — II 2021 C U - I

I 1876 C U II 1876 C U I

I 1868 A G Met -- ValI 1868 A G Met - Val

I 1773 C U Ala — Val II 1773 C U Ala - Val I

I 1668 A G Glu — Gly II 1668 A G Glu - Gly I

I 1663 C U II 1663 C U I

I 1661 A G Asn -- Asp II 1661 A G Asn - Asp I

I 1660 C U II 1660 C U I

I 1 A72 U C II 1 A72 U C I

I 1451 A G Ile — Val II 1451 A G Ile - Val I

I 1 3A8 C U II 1 3A8 C U I

I 1 11A u C II 1 11A u C I

I 1111 u c II 1111 u c I

I 1090 C U II 1090 C U I

I 1 0 A 8 u c II 1 0 A 8 u c I

I 99A U C II 99A U C I

DK 175515 B1 19DK 175515 B1 19

De iagttagne udskiftninger er et udtryk for den naturlige variationsgrad af FSME-viruset, der ikke fører til en ny serotype. Sekvenshomologier mellem E-proteiner-ne af flavivira, der ikke tilhører samme serocomplex, ligger i området 40-50%, fx 44,4% homologi mellem YF- og MVE-virus, og i området 70-80% blandt medlem-5 mer af samme flavivirus-serocomplex, fx 77,1% homologi mellem WN- og MVE-virus.The observed replacements are an expression of the natural degree of variation of the FSME virus that does not lead to a new serotype. Sequence homologies between the E proteins of flaviviruses that do not belong to the same serocomplex are in the range 40-50%, e.g., 44.4% homology between YF and MVE virus, and in the range 70-80% among members. of the same flavivirus serocomplex, e.g., 77.1% homology between WN and MVE virus.

En sammenligning mellem de publicerede nukleotidsekvenser af den fjernøstlige undertype (Pletnev et al., FEBS 3660 200, nr. 2, 317-321, 1986) og den vestlige 10 undertype udviste en homologi på omtrent 85%.A comparison between the published nucleotide sequences of the far eastern subtype (Pletnev et al., FEBS 3660 200, no. 2, 317-321, 1986) and the western subtype showed a homology of about 85%.

Alle sekvenser, der udviser små variationer i forhold til prototype-sekvenserne, således som de optræder i andre naturlige isolater af den vestlige undertype af FSME-virus, er omfattet af den foreliggende opfindelse. Sådanne variationer kan 15 desuden opnås ved in v/'tro-modifikation af nukleinsyrerne. Opfindelsen omfatter derfor alle sekvenser, der hybridiserer under stringente betingelser, fx ved mindst 90% nukleotidsekvenshomologi med de tilvejebragte sekvenser eller dele af sekvenser, der fortrinsvis koder for proteiner eller peptider med de væsentlige karakteristika for antigendeterminanter for strukturproteiner af den vestlige underty-20 pe af FSME-virus.All sequences exhibiting small variations in relation to the prototype sequences, as they appear in other natural isolates of the western subtype of FSME virus, are encompassed by the present invention. Moreover, such variations can be obtained by in vitro modification of the nucleic acids. Therefore, the invention encompasses all sequences that hybridize under stringent conditions, e.g., at least 90% nucleotide sequence homology to the provided sequences or portions of sequences that preferably encode proteins or peptides having the essential characteristics of antigenic determinants of structural proteins of the western subtype of FSME virus.

Det er kendt for fagfolk at indsætte det tilvejebragte DNA eller dele deraf i egnede vektorer og at anvende de rekombinante vektorer til transformation af egnede celler, enten til amplifikation af DNA’et eller for at opnå ekspression af de tilsvarende 25 proteiner. Egnede værter, vektorer og betingelser for disse operationer er velkendte for fagfolk. Der findes mange publikationer, der beskriver syntesen af fremmede proteiner ved hjælp af rekombinant DNA-teknologi (en oversigt gives fx i "Maximizing Gene Expression" (Reznikoff og Gold, red.), Butterworths, 1986;It is known to those skilled in the art to insert the provided DNA or portions thereof into suitable vectors and to use the recombinant vectors for transformation of suitable cells, either to amplify the DNA or to obtain expression of the corresponding proteins. Suitable hosts, vectors and conditions for these operations are well known to those skilled in the art. There are many publications describing the synthesis of foreign proteins by recombinant DNA technology (an overview is given, for example, in "Maximizing Gene Expression" (Reznikoff and Gold, ed.), Butterworths, 1986;

Harris, Gen. Eng. 4, 127-183 (Williamson, red.), Academic Press, 1983; Wetzel og 30 Goeddel, The Peptides 5, 1-64, 1983). Ved disse fremgangsmåder kan der udtrykkes proteiner, der er indkodet af klonet DNA, enten i bakterier, i gær eller i pattedyrceller. Det er endvidere almindeligt kendt at anvende sådanne udtrykte proteiner som vacciner til immuniseringsformål (Valenzuela et al., Nature 298, 347-350, 1982; McAleer et al., Nature 307, 178-180, 1984) eller som diagnostiske 35 antigener.Harris, Gen. Meadow. 4, 127-183 (Williamson, ed.), Academic Press, 1983; Wetzel and 30 Goeddel, The Peptides 5, 1-64, 1983). By these methods, proteins encoded by cloned DNA can be expressed either in bacteria, in yeast or in mammalian cells. Furthermore, it is well known to use such expressed proteins as vaccines for immunization purposes (Valenzuela et al., Nature 298, 347-350, 1982; McAleer et al., Nature 307, 178-180, 1984) or as diagnostic antigens.

I DK 175515 B1 II DK 175515 B1 I

I 20 II 20 I

I Fremmede DNA- eller RNA-sekvenser kan også indføres i genomerne af levende IIn foreign DNA or RNA sequences can also be introduced into the genomes of living I

I vira, hvorved der dannes rekombinante vira, som kan anvendes som levende IIn viruses, forming recombinant viruses which can be used as living I

I vaccine (oversigtsartikel af Mackett og Smith, J. Gen. Virol. 67, 2067-2082, 1986). IIn Vaccine (review article by Mackett and Smith, J. Gen. Virol. 67, 2067-2082, 1986). IN

I II I

I Ligeledes kan en kombination af forskellige gener, der fx er afledt fra forskellige ILikewise, a combination of different genes derived, for example, from different I

I vira, samtidig udtrykkes ved rekombinant DNA-teknologi og anvendes til vaccina- IIn viruses, simultaneously expressed by recombinant DNA technology and used for vaccine I

tion (Perkus et al., Science 229, 981-984, 1985). Opfindelsen omfatter således alle Ition (Perkus et al., Science 229, 981-984, 1985). The invention thus encompasses all of the following

kombinationer af sekvenser af de tilvejebragte sekvenser med andre sekven-ser Icombinations of sequences of the sequences provided with other sequences I

I 10 såsom fx gener, der koder for andre proteiner, eller sekvenser, der bidrager til II 10, such as, for example, genes encoding other proteins, or sequences that contribute to I

I ekspression af proteinerne, såsom fx promotorer, enhancere, polyadenylerings- IIn expression of the proteins, such as, for example, promoters, enhancers, polyadenylation I

I eller splejsningssignaler. IIn or splice signals. IN

I Det er kendt for fagfolk, at man ikke nødvendigvis skal anvende hele de naturligt IIt is known to those skilled in the art that one does not necessarily have to use all of them naturally

I 15 forekommende proteiner til immuniseringen eller diagnostiske formål (Lerner, IIn proteins present for immunization or diagnostic purposes (Lerner, I

I Nature 299, 592-596, 1982; Arnon, TIBS 11, 521-524, 1986). I tilfælde af den IIn Nature 299, 592-596, 1982; Arnon, TIBS 11, 521-524, 1986). In the case of the I

I vestlige undertype af FSME-virus E-proteinet er det fx påvist, at der ved immuni- IFor example, in the western subtype of the FSME virus E protein, it has been shown that

I sering med et proteolytisk fragment på 9000 dalton kan induceres hæmagglutina- ISeration with a proteolytic fragment of 9000 daltons can be induced by hemagglutinase I

I tionshæmmende og neutraliserende antistoffer, hvilket fragment også reagerer IIn anti-ionizing and neutralizing antibodies, which fragment also reacts

I 20 med polyklonale immunsera, der er vundet ved immunisering med hele det natur- IIn 20 with polyclonal immune sera obtained by immunization with all natural I

I lige protein (Heinz et al., J. Gen. Virol. 65, 1921-1929, 1984). Andre proteolytiske IIn straight protein (Heinz et al., J. Gen. Virol. 65, 1921-1929, 1984). Other proteolytic I

I fragmenter kan også være egnede til immunisering eller diagnostiske formål. IIn fragments may also be suitable for immunization or diagnostic purposes. IN

I Proteiner eller dele af proteiner, der anvendes som vacciner eller diagnostiske IProteins or parts of proteins used as vaccines or diagnostics

25 midler, kan ikke kun fremstilles ved rekombinant-DNA-teknologier som beskrevet I25 agents can not only be prepared by recombinant DNA technologies as described in I

I ovenfor, men den ved den foreliggende opfindelse tilvejebragte sekvensinformation IIn the above, however, the sequence information I provided by the present invention

I kan også danne grundlag for den kemiske syntese af oligopeptider. Inden for dette IYou can also form the basis for the chemical synthesis of oligopeptides. Within this

I område findes der megen litteratur: syntetiserede peptider er blevet fremstillet IIn the area there is much literature: synthesized peptides have been produced

I svarende til DNA-sekvenser, der koder for mange forskellige proteiner, og disse er IIn accordance with DNA sequences encoding many different proteins, these are I

I 30 blevet anvendt til en række formål såsom fx molekylærbiologiske og immunolo- II have been used for a variety of purposes such as, for example, molecular biology and immunology

I iske undersøgelser (Lerner et al., Cell 23, 309-310, 1981; Lerner, Nature 299, 592- IIn icy studies (Lerner et al., Cell 23, 309-310, 1981; Lerner, Nature 299, 592-1

i Ii

I 596, 1982) eller vaccinationer (Shinnick et al., Ann. Rev. Microbiol. 37, 425-446, IIn 596, 1982) or vaccinations (Shinnick et al., Ann. Rev. Microbiol. 37, 425-446, I

I 1983; DiMarchi et al., Science 232, 639-641, 1986). Fremstilling og anvendelse af IIn 1983; DiMarchi et al., Science 232, 639-641, 1986). Preparation and Use of I

I peptider eller kombinationer af peptider, der svarer til de ved den foreliggende IIn peptides or combinations of peptides similar to those of the present I

I 35 opfindelse tilvejebragte sekvenser, udgør derfor en del af den kendte teknik. ISequences provided in the invention, therefore, form part of the prior art. IN

DK 175515 B1 21DK 175515 B1 21

Det er desuden kendt for fagfolk at anvende de nukleinsyrer og sekvenser, der er tilvejebragt ved den foreliggende opfindelse, til fremstilling af hybridiseringsprober, fx til bestemmelse af virus-RNA i skovflåter eller legemsvæsker (Meinkoth og Wahl, S Anal. Biochem. 138, 267-284, 1984; Kulski og Norval, Arch. Virol. 83, 3-15, 1985).In addition, it is known to those skilled in the art to use the nucleic acids and sequences provided by the present invention for the production of hybridization probes, e.g., for the determination of viral RNA in forest rafts or body fluids (Meinkoth and Wahl, S Anal. Biochem. 138, 267 -284, 1984; Kulski and Norval, Arch. Virol. 83, 3-15, 1985).

Disse kan enten fremstilles ved rekombinant-DNA-teknologier eller ved kemisk syntese af oligonukleotider, som svarer til de tilvejebragte sekvenser.These can be produced either by recombinant DNA technologies or by chemical synthesis of oligonucleotides corresponding to the sequences provided.

Opfindelsen belyses ved nedenstående eksempler.The invention is illustrated by the following examples.

10 EKSEMPEL 1EXAMPLE 1

Propagering og oprensning af FSME-virus .15Propagation and Purification of FSME Virus .15

En 10% suspension af musehjerner inficeret med den vestlige undertype af FSME-virus blev anvendt til infektion af primære hønsefostercelle-enkeltlagskulturer, der blev holdt i med 15 mM HEPES og 15 mM EPPS ved pH 7,6 pufret minimalmedium (MEM). Efter 40 timers inkubation ved 37°C blev remanensen klaret i 30 minutter 20 ved 4°C og 10.000 x g, og viruset blev pelleteret ved 3 timers ultracentrifugering ved 4°C og 50.000 x g. Viruset blev derpå resuspenderet i et hensigtsmæssigt volumen TAN-puffer (0,05 M triethanolamin, 0,1 M NaCI, pH 8,0) og i 110 minutter underkastet en zonal-(rate-zonal) centrifugering i en 5-20% (w/w) saccharose-densitetsgradient ved 170.000 x g ved 4°C. Virus-toppen blev lokaliseret ved scan-25 ning af gradienten ved 254 nm og blev underkastet en ligevægts-densitetsgra-dientcentrifugering i en 20-50% (w/w) saccharosegradient i 18 timer ved 4°C og 150.000 x g. Virustoppen blev dialyseret mod TAN-puffer, pH 8,0, for at fjerne overskydende saccharose.A 10% suspension of mouse brains infected with the western subtype of FSME virus was used to infect primary chicken embryonic single-layer cultures maintained with 15 mM HEPES and 15 mM EPPS at pH 7.6 buffered minimal medium (MEM). After 40 hours of incubation at 37 ° C, the residue was clarified for 30 minutes 20 at 4 ° C and 10,000 xg, and the virus was pelleted by 3 hours ultracentrifugation at 4 ° C and 50,000 xg. The virus was then resuspended in an appropriate volume of TAN. buffer (0.05 M triethanolamine, 0.1 M NaCl, pH 8.0) and subjected to a zonal (rate-zonal) centrifugation in a 5-20% (w / w) sucrose density gradient at 170,000 xg for 110 minutes at 4 ° C. The virus peak was located by scanning the gradient at 254 nm and was subjected to an equilibrium density gradient centrifugation in a 20-50% (w / w) sucrose gradient for 18 hours at 4 ° C and 150,000 x g. dialyzed against TAN buffer, pH 8.0, to remove excess sucrose.

30 EKSEMPEL 2EXAMPLE 2

Fremstilling af viralt RNAPreparation of Viral RNA

100 ug oprenset virus blev fortyndet i 400 μΙ af en proteinase K-reaktionspuffer 35 (10 M Tris, pH 7,8, 5 mM EDTA, 0,5% w/v SDS). Proteinase K blev tilsat til en I DK 175515 B1100 µg of purified virus was diluted in 400 μΙ of a proteinase K reaction buffer 35 (10 M Tris, pH 7.8, 5 mM EDTA, 0.5% w / v SDS). Proteinase K was added to a I DK 175515 B1

I 22 II 22 I

I slutkonceritration på 200 fig/ml, og blandingen blev inkuberet i 1 time ved 37°C. IAt final concentration of 200 µg / ml and the mixture was incubated for 1 hour at 37 ° C. IN

Derefter blev opløsningen deproteiniseret ved to ganges ekstraktion med samme IThen, the solution was deproteinized by twice extraction with the same I

volumen (400 μΙ) phenol og én gangs ekstraktion med chloroform/isoamylalkohol Ivolume (400 μΙ) of phenol and one-time extraction with chloroform / isoamyl alcohol I

(24:1). Derefter blev der tilsat 26 μΙ af en 3 M natriumacetatopløsning, og RNA'et I(24: 1). Then, 26 μΙ of a 3 M sodium acetate solution was added and the RNA I

5 blev udfældet med 2,5 volumen ethanol. Før den videre anvendelse blev en alikvot I5 was precipitated with 2.5 volumes of ethanol. Prior to its further use, an aliquot I

af RNA’et denatureret med glyoxal og adskilt på en 1% agarosegel for at kontrol- Iof the RNA denatured with glyoxal and separated on a 1% agarose gel to control I

lere udbyttet og kvaliteten af præparationen. Iclay yield and quality of preparation. IN

I EKSEMPEL 3 I 10In Example 3 I 10

Syntese af dobbeltstrenget cDNASynthesis of double-stranded cDNA

5 μg ethanoludfældet RNA blev resuspenderet i 40 μg af en enkeltstrenget syntese- puffer (Amersham, GB), som indeholdt 5 pg af en "Random',-oligonukleotidprimer, 15 opvarmet i 1 minut til 70°C og derpå langsomt afkølet til stuetemperatur. Alle Fire H desoxynukleotid-triphosphater blev tilsat til en slutkoncentration på 1 mM.5 µg of ethanol-precipitated RNA was resuspended in 40 µg of a single-stranded synthesis buffer (Amersham, GB) containing 5 µg of a "Random" oligonucleotide primer, heated for 1 minute to 70 ° C and then slowly cooled to room temperature. All Four H desoxynucleotide triphosphates were added to a final concentration of 1 mM.

I Desuden blev 5 enheder human placenta-ribonukleaseinhibitor og 10 μΟ α-32Ρ dCTP sat til blandingen. Enkeltstrengsyntesen blev igangsat ved tilsætning af 100 enheder omvendt transkriptase (Amersham) og udført i 2 timer ved 42°C.In addition, 5 units of human placental ribonuclease inhibitor and 10 μΟ α-32Ρ dCTP were added to the mixture. Single strand synthesis was initiated by the addition of 100 units of reverse transcriptase (Amersham) and performed for 2 hours at 42 ° C.

I 20 Derefter blev reaktionsblandingen anbragt på is, og reagenserne til dobbeltstreng- I syntesen blev tilsat i følgende rækkefølge: 93,5 μΙ af en dobbeltstrengsyntesepuffer I (Amersham, GB), 4 enheder ribonukleasé H, 23 enheder E. coli DNA-polymerase og vand til et slutvolumen på 250 μΙ. Dobbeltstrengsyntesen blev udført ved I successive inkubationer ved 12°C og 22°C (hver gang 2 timer) og standset vedThen, the reaction mixture was placed on ice and the reagents for the double strand synthesis were added in the following order: 93.5 μΙ of a double strand synthesis buffer I (Amersham, GB), 4 units of ribonuclease H, 23 units of E. coli DNA polymerase and water to a final volume of 250 μΙ. The double strand synthesis was performed by successive incubations at 12 ° C and 22 ° C (every 2 hours) and stopped at

I 25 20 minutters opvarmning af opløsningen ved 70°C. Det dobbeltstrengede cDNAFor 20 minutes, warm the solution at 70 ° C. The double-stranded cDNA

I blev inkuberet med 10 enheder T4-DNA-polymerase i 30 minutter ved 37°C for at få stumpe ender. Endelig blev cDNA’et oprenset ved phenol- og chloroformekstrak- tioner og udfældet med 2 volumen ethanol.You were incubated with 10 units of T4 DNA polymerase for 30 minutes at 37 ° C to obtain blunt ends. Finally, the cDNA was purified by phenol and chloroform extractions and precipitated with 2 volumes of ethanol.

I 30 EKSEMPEL 4 I AdaptorligationEXAMPLE 4 I Adapter ligation

I cDNA’et blev behandlet med polynukleotidkinase i nærværelse af 2 mM ATPThe cDNA was treated with polynucleotide kinase in the presence of 2 mM ATP

I 35 (Maniatis et al., Molecular Cloning, CSH 1982) for at sikre, at alle 5’-ender var DK 175515 B1 23 phosphoryleret og således kunne ligeres. BamHI-Smal-adaptorer blev leveret af Pharmacia. Disse adaptorer havde en S'-udragende, med BamHI kompatibel udragende (sticky) ende og en stump ende, og de indeholdt det fuldstændige Smalgenkendelsessted inden for deres sekvens. Først havde kun den stumpe ende en 5 5’-phosphatgruppe og kunne ligeres, mens den udragende ende var dephospho-ryleret. 5 ug af disse adaptorer blev blandet med cDNA'et i 20 μΙ af ligationspufferen (50 mM Tris, pH 7,5, 5 mM MgC^, 5 mM DTT, 1 mM ATP). Reaktionen blev katalyseret med T4-DNA-ligase (New England Biolabs) i en overnatsreaktion ved 14°C.I 35 (Maniatis et al., Molecular Cloning, CSH 1982) to ensure that all 5 'ends were phosphorylated and thus could be ligated. BamHI-SmaI adapters were provided by Pharmacia. These adapters had an S 'protruding, with BamHI compatible protruding (sticky) end and a blunt end, and they contained the complete Narrow Recognition site within their sequence. First, only the blunt end had a 5 'phosphate group and could be ligated, while the protruding end was dephosphorylated. 5 µg of these adapters were mixed with the cDNA in 20 μΙ of the ligation buffer (50 mM Tris, pH 7.5, 5 mM MgC 2, 5 mM DTT, 1 mM ATP). The reaction was catalyzed with T4 DNA ligase (New England Biolabs) in an overnight reaction at 14 ° C.

10 EKSEMPEL 5EXAMPLE 5

Størrelsesadskillelse af cDNA'et 15 cDNA'et blev adskilt pi en 1% lavtsmeltende agarosegel. Forskellige størrelsesklasser blev skåret ud af gelen, og DNA'et blev ved standardmetoder ekstraheret fra agarosen med varm phenol. På trods af den ringe mængde tilgængeligt DNA, som knap kunne detekteres ved farvning med ethidiumbromid, kunne ekstraktionsforløbet let følges ved hjælp af den i cDNA'et inkorporerede radioaktive mærkning.Size separation of the cDNA The cDNA was separated on a 1% low melting agarose gel. Various size classes were excised from the gel and the DNA was extracted from standard phenol agarose by standard methods. Despite the small amount of available DNA which could hardly be detected by staining with ethidium bromide, the extraction process could be easily followed by the radioactive labeling incorporated into the cDNA.

20 Størrelsesadskillelsestrinnet muliggjorde selektiv kloning af store cDNA-fragmenter og tjente desuden til at adskille cDNA'et fuldstændigt fra ikke-ligerede adaptormo-lekyler.The size separation step enabled selective cloning of large cDNA fragments and further served to completely separate the cDNA from non-ligated adapter molecules.

EKSEMPEL 6 25EXAMPLE 6 25

Kloning i et bakterielt plasmidCloning into a bacterial plasmid

De BamHI-kompatible ender af cDNA'et fra forskellige størrelsesklasser blev phosphoryleret med polynukleotidkinase, og deproteinisering blev udført ved 30 phenol- og chloroformekstraktioner. Derpå blev DNA'et udfældet med 2 volumen ethanol og resuspenderet i et lille volumen vand. 20-30 ng af cDNA'et blev blandet med 100 ng af Escherichia co//-plasmidet pBR322, som var blevet lineariseret og dephosphoryleret ved BamHI-skæring, for at forhindre selvligation. Disse to komponenter blev ligeret med T4-DNA-ligase i 5 μΙ af ligationspufferen (se ovenfor) i en 35 overnatsreaktion ved 16°C. Næste dag blev ligationsblandingen fortyndet femThe BamHI-compatible ends of the cDNA from different size classes were phosphorylated with polynucleotide kinase and deproteinization was performed by 30 phenol and chloroform extractions. The DNA was then precipitated with 2 volumes of ethanol and resuspended in a small volume of water. 20-30 ng of the cDNA was mixed with 100 ng of the Escherichia co // plasmid pBR322, which had been linearized and dephosphorylated by BamHI cutting to prevent self-ligation. These two components were ligated with T4 DNA ligase in 5 μΙ of the ligation buffer (see above) in a 35 overnight reaction at 16 ° C. The next day, the ligation mixture was diluted five

I DK 175515 B1 II DK 175515 B1 I

I 24 II 24 I

I gange med vand og derefter anvendt direkte til at transformere E. coli HB101- IIn water passages and then used directly to transform E. coli HB101-I

I celler. Kompetente bakterier blev leveret af BRL (Maryland, USA) og transformeret IIn cells. Competent bacteria were supplied by BRL (Maryland, USA) and transformed I

I med 5 μΙ af den fortyndede ligationsblanding som anbefalet af fabrikanten. Efter IIn with 5 μΙ of the diluted ligation mixture as recommended by the manufacturer. After I

I udpladning på ampicillinholdige agarplader blev der typisk vundet flere hundrede IPlating on ampicillin-containing agar plates typically yielded several hundred I

I 5 transformerede celler. IIn 5 transformed cells. IN

I EKSEMPEL 7 . IIn Example 7. IN

I Identificering af insertionsholdige plasmider IIdentification of insert-containing plasmids I

I 10 II 10 I

I Enkelte ampicillinresistente kolonier blev udstrøget på tetracyclinholdige agarpla- IIn Single ampicillin-resistant colonies, were coated on tetracycline-containing agarplate.

I der. For omtrent 5% af de testede kolonier blev der fastslået følsomhed over for IIn there. For approximately 5% of the colonies tested, sensitivity to I was established

I tetracyclin. Disse blev anvendt til inokulation af 2 ml ampicillinholdige LB-medier IIn tetracycline. These were used to inoculate 2 ml of ampicillin-containing LB media I

og inkuberet natten over ved 37°C i et rysteapparat ved 220 omdr./minut. Den Iand incubated overnight at 37 ° C in a shaker at 220 rpm. The I

I 15 næste dag blev der udført en plasmid-hurtigpræparation ifølge en standardmetode IFor the next day, a plasmid rapid preparation was performed according to standard method I

I (Birnboim og Doly, Nucleic Acids Research 7, 1195-1204, 1979). Plasmiderne blev II (Birnboim and Doly, Nucleic Acids Research 7, 1195-1204, 1979). The plasmids became I

I skåret med restriktionsenzymet Smal og analyseret på 1% agarosegeler (fig. 4).In the cut with the restriction enzyme Smal and analyzed on 1% agarose gels (Fig. 4).

I På denne måde blev der identificeret 21 plasmider, der indeholdt insertioner i I størrelsesområdet 2000-3500 bp.In this way, 21 plasmids containing insertions in the size range 2000-3500 bp were identified.

I 20 j EKSEMPEL 8 I Foreløbig karakterisering af insertionerne I 25 Insertionsholdige plasmider blev fremstillet i stor målestok ved en standardmetode (Maniatis et al., Molecular Cloning, CSH, 1982) og oprenset ved ethidiumbromid- I densitetsgradientcentrifugering. Ca. 500 ng af plasmid-DNA'erne blev skåret med en række restriktionsenzymer og analyseret på 1% agarosegeler. Således opnåe- I des karakteristiske båndmønstre for hvert plasmid, hvilket muliggjorde en første I 30 forudsigelse af, hvilke insertioner der kunne indeholde overlappende eller for- I skellige sekvensområder.EXAMPLE 8 I Preliminary characterization of the insertions I 25 Insert-containing plasmids were prepared on a large scale by a standard method (Maniatis et al., Molecular Cloning, CSH, 1982) and purified by ethidium bromide I density gradient centrifugation. Ca. 500 ng of the plasmid DNAs were cut with a variety of restriction enzymes and analyzed on 1% agarose gels. Thus, characteristic band patterns for each plasmid were obtained, which allowed an initial prediction of which insertions could contain overlapping or different sequence regions.

I 35 25 DK 175515 B1 EKSEMPEL 9EXAMPLE 9

Sekvensanalyse af insertionerne i klonen A5 5 Et af de insertionsholdige plasmider med betegnelsen plasmid A5 blev skåret med Smal og adskilt på en 0,7% agarosegel. Det bånd, der repræsenterer hele inserti-onen, blev skåret ud af gelen, og DNA’et blev oprenset ud fra agarosen ved elek-troeluering. Det isolerede fragment blev skåret ved forskellige reaktioner med hyppigt skærende restriktionsenzymer, der danner stumpe ender, såsom fx Rsal, Alul 10 og Haelll. Den dobbeltstrengede form af bakteriofagen M13mp8 blev skåret med Smal og dephosphoryleret. Blandingerne af DNA-fragmenter blev deproteiniseret, udfældet og ligeret med M13-vektoren som beskrevet ovenfor. Transformation af E. coli JM105-celler, identificering af rekombinante fager ved farveselekti-onsmetoden og fremstilling af enkeltstrenget DNA blev udført ved standardmeto-15 der. Der blev udvalgt enkelte kloner, der blev sekventeret ved dideoxysekvente-ringsmetoden beskrevet af Sanger et al. (Proc. Natl. Acad. Sci. USA 74, 5463-5467, 1977). Som primer benyttedes almindeligvis den kommercielt tilgængelige M13-universalprimer. Således blev sekvensen af et stort antal forskellige fragmenter af klonen A5 bestemt, hvilket sluttelig førte til den samlede DNA-sekvens af 20 denne klon. Ved sammenligning af denne sekvens med publicerede genomsekven-ser af forskellige flavivira blev det fastslået, at A5 indeholder det område af det virale genom, der koder for strukturproteinerne C, M og E med undtagelse af den aminoterminale halvdel af C-proteinet. Den nøjagtige lokalisering af A5 er vist i fig. 1.Sequence analysis of the insertions in clone A5 5 One of the insert-containing plasmids designated plasmid A5 was cut with SmaI and separated on a 0.7% agarose gel. The band representing the entire insert was cut out of the gel and the DNA was purified from the agarose by electroelution. The isolated fragment was cut by various reactions with frequently intersecting restriction enzymes forming blunt ends such as, for example, Rsal, Alul 10 and Haelll. The double-stranded form of the bacteriophage M13mp8 was cut with SmaI and dephosphorylated. The mixtures of DNA fragments were deproteinized, precipitated and ligated with the M13 vector as described above. Transformation of E. coli JM105 cells, identification of recombinant phages by the color selection method, and preparation of single-stranded DNA was performed by standard methods. Single clones were sequenced by the dideoxy sequencing method described by Sanger et al. (Proc. Natl. Acad. Sci. USA 74, 5463-5467, 1977). As the primer, the commercially available M13 universal primer was commonly used. Thus, the sequence of a large number of different fragments of the clone A5 was determined, ultimately leading to the overall DNA sequence of this clone. By comparing this sequence with published genome sequences of different flaviviruses, it was determined that A5 contains the region of the viral genome encoding the structural proteins C, M and E with the exception of the amino-terminal half of the C protein. The exact location of A5 is shown in FIG. First

25 EKSEMPEL 10 cDNA-syntese under anvendelse af en FSME-virusspecifik primer 30 Der blev anvendt en FSME-virusspecifik primer for at konstruere en cDNA-klon, der indeholdt hele 5'-området af det virale genom, herunder den samlede sekvensinformation om C-proteinet, samt det meste af det ikke-translaterede 5’-lederområ-de. Denne oligonukleotidprimer bestod af 14 nukleotider, der er komplementære med et område i FSME-genomet, som koder for de C-terminale aminosyrer i E-35 proteinet. Fremstilling af viralt RNA og syntese af dobbeltstrenget cDNA blev ud-EXAMPLE 10 cDNA Synthesis Using an FSME Virus Specific Primer An FSME virus specific primer was used to construct a cDNA clone containing the entire 5 'region of the viral genome, including the complete sequence information on C protein, as well as most of the untranslated 5 'leader region. This oligonucleotide primer consisted of 14 nucleotides complementary to a region of the FSME genome encoding the C-terminal amino acids of the E-35 protein. Preparation of viral RNA and synthesis of double-stranded cDNA was performed.

I DK 175515 B1 II DK 175515 B1 I

I 26 II 26 I

ført i det væsentlige som beskrevet ovenfor med den undtagelse, at der denne Iconducted essentially as described above with the exception that this I

gang kun anvendtes 1 ug RNA og 0,5 ug af den syntetiske oligonukleotidprimer PI. Ionce only 1 µg of RNA and 0.5 µg of the synthetic oligonucleotide primer PI were used. IN

Til slut blev inkubationstiderne for dobbeltstrengsyntesen og T4-DNA- IFinally, the incubation times for the double strand synthesis and T4 DNA were I

H polymerasebehandlingen reduceret ti! henholdsvis 1 time og 3 minutter. IH the polymerase treatment reduced to ten! 1 hour and 3 minutes respectively. IN

I 5 I EKSEMPEL 11I EXAMPLE 11

Kloning i bluescript-vektoren under anvendelse af EcoRI-linkere 10 Ved at gå ud fra de på dette tidspunkt i forskningen forhåndenværende informati- oner kunne det antages, at hele det strukturelle område ikke indeholdt nogenCloning in the bluescript vector using EcoRI linkers 10 Using the information available at this time in the research, it could be assumed that the entire structural area contained no

EcoRI-genkendelsessteder. Derfor kunne der anvendes syntetiske EcoRI-linkere (New England Biolabs) til kloningsprocessen. Ca. 1 pg cDNA blev ligeret med 1 pg ] linker-DNA i 6 timer ved 14°C under anvendelse af T4-DNA-ligase og et puffer - 15 system som beskrevet ovenfor. Efter oprensning af blandingen ved phenol- og chloroform-ekstraktioner og ethanoludfældning blev DNA'et resuspenderet i 40 pi af en "mediumsalt" restriktionsenzympuffer (CSH-håndbog) og skåret i 3 timer med en overskydende mængde EcoRI (80 enheder) ved 37°C. Derpå blev blanding- en adskilt på en 1% agarosegel, og cDNA i størrelsesområdet 1500-2500 bp blev I 20 udvundet fra gelen ved elektroeluering.Eco RI recognition sites. Therefore, synthetic EcoRI (New England Biolabs) linkers could be used for the cloning process. Ca. 1 µg of cDNA was ligated with 1 µg of linker DNA for 6 hours at 14 ° C using T4 DNA ligase and a buffer - 15 system as described above. After purification of the mixture by phenol and chloroform extractions and ethanol precipitation, the DNA was resuspended in 40 µl of a "medium salt" restriction enzyme buffer (CSH manual) and cut for 3 hours with an excess amount of Eco RI (80 units) at 37 ° C. . Then the mixture was separated on a 1% agarose gel and cDNA in the size range 1500-2500 bp was recovered from the gel by electroelution.

I Samtidig blev den nye alsidige vektor Bluescript KS M13+ (Stratagene) skåret med I EcoRI. 100 ng af dette lineariserede plasmid blev blandet med hele cDNA-præpara- tionen, og DNA’erne blev copræcipiteret med ethanol. Plasmid-cDNA-ligationen I 25 blev udført som beskrevet ovenfor. Ligationsblandinger blev trinvis fortyndet fra to I til hundrede gange og anvendt til transformation af E. coli XL-1 blue. Transforma- I tion og identificering af insertionsholdige plasmider ved farveselektion blev udført I præcis ifølge fabrikantens instruktioner (Stratagene). Således vandtes 4 plasmider, som indeholdt insertioner med en længde på ca. 2500 bp.At the same time, the new versatile vector Bluescript KS M13 + (Stratagene) was cut with I EcoRI. 100 ng of this linearized plasmid was mixed with the entire cDNA preparation and the DNAs were coprecipitated with ethanol. Plasmid cDNA ligation I 25 was performed as described above. Ligation mixtures were gradually diluted from two I to one hundred times and used to transform E. coli XL-1 blue. Transformation and identification of insert-containing plasmids by color selection were performed exactly according to the manufacturer's instructions (Stratagene). Thus, 4 plasmids containing inserts with a length of approx. 2500 bp.

I 30 I 35 27 DK 175515 B1 EKSEMPEL 12EXAMPLE 12

Sekvensbestemmelse af klonen Pl-1 5 Et af de insertionsholdige plasmider med betegnelsen Pl-1 blev anvendt til fremstilling af enkeltstrenget matrix-DNA. Dette blev udført ved tilføjelse af hjælper-fagen R408 til en eksponentielt voksende bakteriekultur indeholdende plasmidet Pl-1 i en M.O.I. på 20:1. Efter 8 timers inkubation ved 37°C i et rysteapparat ved 240 omdr./-minut blev den supernatant, der indeholdt fagpartikler, isoleret, og 10 enkeltstrenget Pl-l-DNA blev fremstillet ved standardmetoder. Idet det afviger fra det klassiske M13-system, tillader Bluescript-systemet fremstilling af enkeltstrenget matrix-DNA, der indeholder hele cDNA-sekvensen, og gør således den tidrøvende subkloningsproces overflødig. Sekvensbestemmelse af Pl-1 blev foretaget ved standarddideoxymetoden under anvendelse af både universal-M13-15 og syntetisk oligonukleotidprimer, som svarer til forskellige virale sekvenser, som primer. Det viste sig, at Pl-1 omfatter hele den region, der koder for strukturproteiner, og strækker sig 120 bp ud over C-proteinets startkodon. Den eksakte lokalisering af Pl-1 er også vist i fig. 1.Sequencing of the clone P1-1 One of the insert containing plasmids designated P1-1 was used to produce single stranded matrix DNA. This was done by adding helper phage R408 to an exponentially growing bacterial culture containing the plasmid Pl-1 in an M.O.I. at 20: 1. After 8 hours incubation at 37 ° C in a shaker at 240 rpm, the supernatant containing phage particles was isolated and 10 single-stranded P1-1 DNA was prepared by standard methods. Different from the classical M13 system, the Bluescript system allows the production of single-stranded matrix DNA containing the entire cDNA sequence, thus rendering the time-consuming subcloning process redundant. Sequencing of P1-1 was performed by the standard videoxymy method using both universal M13-15 and synthetic oligonucleotide primers corresponding to different viral sequences such as primers. It was found that Pl-1 encompasses the entire region encoding structural proteins and extends 120 bp beyond the C protein start codon. The exact location of P1 is also shown in FIG. First

20 EKSEMPEL 13EXAMPLE 13

Sekvensbestemmelse af forskellige naturlige isolater ved direkte sekventering af RNA’et 1 2 3 4 5 6 7 8 9 10 11Sequencing of various natural isolates by direct sequencing of the RNA 1 2 3 4 5 6 7 8 9 10 11

De for strukturproteinerne kodende sekvenser af forskellige naturlige isolater af 2 den vestlige undertype af FSME-virus blev udført ved direkte sekventering af 3 genomiske RNA'er med en modifikation af Sangers dideoxymetode, der i det 4 væsentlige er beskrevet af Zimmern og Kaesberg (Proc. Natl. Acad. Sci. USA 75, 5 4257-4261, 1978). Forskellige syntetiske oligonukleotider, der svarer til forskellige 6 steder i genomet, blev anvendt som primer. Ca. 1 ug genomisk RNA og 0,5 ug af 7 den respektive primer blev blandet i et volumen på 10 μΙ, opvarmet i 3 minutter 8 ved 65°C og derpå langsomt afkølet til 42°C. Sekventeringsreaktionen blev kata 9 lyseret med omvendt transkriptase (Amersham) i 15 minutter ved 42°C. Som 10 kontrol blev FSME-virusprototypen Neudorfl samtidig sekventeret og analyseret på 11 den samme polyacrylamidgel. Dette muliggjorde en enkel og utvetydig identifice-The sequences encoding the structural proteins of various natural isolates of 2 the western subtype of FSME virus were performed by direct sequencing of 3 genomic RNAs with a modification of Sanger's dideoxy method, essentially described by Zimmern and Kaesberg (Proc. Natl. Acad. Sci. USA 75, 5 4257-4261, 1978). Different synthetic oligonucleotides corresponding to different 6 sites in the genome were used as primers. Ca. 1 µg of genomic RNA and 0.5 µg of 7 the respective primer were mixed in a volume of 10 µΙ, heated for 3 minutes 8 at 65 ° C and then slowly cooled to 42 ° C. The sequencing reaction was kata 9 lysed with reverse transcriptase (Amersham) for 15 minutes at 42 ° C. As a control, the FSME virus prototype Neudorfl was simultaneously sequenced and analyzed on 11 the same polyacrylamide gel. This enabled a simple and unambiguous identification

DK 175515 B1 IDK 175515 B1 I

ring af sekvensvariationer i forskellige naturlige isolater. Sekvensafvigelser blev Iring of sequence variations in various natural isolates. Sequence deviations became I

fundet i positioner, som er beskrevet i beskrivelsens generelle del. Ifound in positions described in the general section of the specification. IN

EKSEMPEL 14 IEXAMPLE 14 I

Aminoterminal sekvensanalyse af virale proteiner IAmino-terminal sequence analysis of viral proteins I

1 mg oprenset vestlig undertype af FSME-virus blev underkastet SDS-PAGE ifølge I1 mg of purified Western subtype of FSME virus was subjected to SDS-PAGE according to I

Laemmli og Favre (J. Mol. Biol. 80, 575-599, 1973) på 10% acrylamidgeler. E- ILaemmli and Favre (J. Mol. Biol. 80, 575-599, 1973) on 10% acrylamide gels. E- I

10 proteinet blev lokaliseret, ved at man farvede et filterpapirblot af gelen med ami- IThe protein was localized by staining a filter paper blot of the gel with ami

dosort, og proteinet blev skåret ud af gelen og elektroelueret under anvendelse af Hdose and the protein was excised from the gel and electroeluted using H

et ISCO-eluerings-apparatur i 5 timer ved 3 W. Den N-terminale sekvensanalyse Ian ISCO elution apparatus for 5 hours at 3 W. The N-terminal sequence analysis I

blev udført ved den af Chang et al. beskrevne fremgangsmåde (FEBS Letterswas performed by that of Chang et al. described procedure (FEBS Letters

93, 205-214, 1978). Den opnåede sekvens var Ser-Arg-Cys og muliggjorde således H93, 205-214, 1978). The sequence obtained was Ser-Arg-Cys and thus enabled H

15 fastslåelse af den nøjagtige position af E-proteinet i den i fig. 3 viste sekvens. I15 to determine the exact position of the E protein in the embodiment of FIG. 3. IN

Alternativt blev der fremstillet proteincomplexer, der både indeholdt E og M, ved IAlternatively, protein complexes containing both E and M were prepared at I

solubilisering af oprensede FSME-vira af den vestlige undertype med Triton X 100, Isolubilization of purified Western subtype FSME viruses with Triton X 100, I

efterfulgt af densitetsgradientcentrifugering i detergentfrie densitetsgradienter som Ifollowed by density gradient centrifugation in detergent-free density gradients such as I

20 beskrevet af Heinz og Kunz (3. Gen. Virol. 49, 125-132, 1980). Som forventet gav I20 described by Heinz and Kunz (3rd Gen. Virol. 49, 125-132, 1980). As expected, you gave

den aminoterminale sekvensanalyse en dobbelt sekvens, nemlig Hthe amino-terminal sequence analysis a double sequence, namely H

Ser-Arg-Cys ISer-Arg-Cys I

Ser-Val-Leu. ISer-Val-Leu. IN

25 I25 I

Da det allerede var kendt, at Ser-Arg-Cys stammede fra E-proteinet, blev sekven- ISince it was already known that Ser-Arg-Cys was derived from the E protein, the sequence I

sen Ser-Val-Leu således identificeret som M’s aminoterminal (fig. 3). Ilate Ser-Val-Leu thus identified as M's amino terminal (Fig. 3). IN

30 I 1 EKSEMPEL 15 29 DK 175515 B1EXAMPLE 15 29 DK 175515 B1

Fremstilling af insertionsplasmider, der indeholder fremmede gener ved homolog rekombination i vaccinia Hindlll J-fragmentet ved kloning 5 af 5'-endesekvenser af det klonede cDNA fra FSME-virus I fig. 5 er vist et plasmid A5, der blev fremstillet på kendt vis som et pBR322-afledt plasmid. Som vist i fig. 5 indeholder plasmidet A5 den DNA-sekvens, der koder for E-proteinet fra FSME-virus. I fig. 5 er endvidere vist restriktionsendonukleaseskæ-10 ringssteder af udvalgte underfragmenter, idet de for FSME's E-protein kodende områder er angivet. Pilen viser transkriptionsretningen i det genomiske RNA.Preparation of insertion plasmids containing foreign genes by homologous recombination in the vaccinia HindIII J fragment by cloning 5 of 5 'end sequences of the cloned cDNA from FSME virus. 5 is a plasmid A5 shown in known manner as a pBR322-derived plasmid. As shown in FIG. 5, plasmid A5 contains the DNA sequence encoding the E protein of FSME virus. In FIG. 5, restriction endonuclease cutting sites of selected sub-fragments are also shown, the regions coding for FSME E protein encoding. The arrow shows the direction of transcription in the genomic RNA.

Yderligere virus- og plasmidmateriale samt de metoder, der blev anvendt til fremstilling af plasmider, som indeholder konkrete DNA-delafsnit, der koder for E-15 proteinet, er beskrevet i det følgende: 15.1. Virus- og cellekulturAdditional viral and plasmid material, as well as the methods used to produce plasmids containing specific DNA sections encoding the E-15 protein, are described below: 15.1. Virus and cell culture

En vacciniavirus-vildtypestamme WR er tilgængelig i deponeringsinstitutionen ATCC 20 med nummeret VR-119. Humane TK‘143-celler, der ikke producerer thymidinki-nase, er almindeligt tilgængelige og er deponeret i Institut Pasteur (deponeringsnummer 1-732). Vacciniavirus propageres i Veroceller ca. mellem passagerne 47 og 55. Cellerne dyrkes i MEM (minimalt essentielt medium) med 5% FCS (føtalt kalveserum), antibiotika og glutamin. Den virusstamme, der skal benyttes til re-25 kombinationen, ledes én gang gennem HAT-medium (hypoxanthin, aminopterin, thymidin) indeholdende 5% FCS for at selektere en TK+-vildtypevirus. Rekombinant TK -virus bestemmes på humane TK'143-celler, der er dyrket i MEM med 5% FCS indeholdende 25 pg/ml BUdR. Rekombinanterne kan findes ved, at celleenkeltlaget overlejres med lavtsmeltende agarose indeholdende MEM, 5% FCS, 25 μς/ιηΙ BUdR 30 samt 250 ng/ml X-gal. Cellekulturen holdes i 48-72 timer i en inkubator ved 37°C. Mængden af spontane TK'-virusmutanter bestemmes ved infektion af TK"-celle-enkeltlag i nærværelse eller fraværelse af 25 Mg/ml BUdR. Sædvanligvis kan der iagttages én mutant blandt 104 vira (Mackett et al. i "DNA cloning Vol. II, a practical approach", IRL Press, D.M. Glover (red.), 1985).A vaccinia virus wild-type strain WR is available in the ATCC 20 landfill number VR-119. Human TK'143 cells which do not produce thymidine kinase are widely available and are deposited in the Institut Pasteur (Accession number 1-732). Vaccinia virus is propagated in Verocells approx. between the passages 47 and 55. The cells are grown in MEM (minimal essential medium) with 5% FCS (fetal calf serum), antibiotics and glutamine. The virus strain to be used for the re-combination is passed once through HAT medium (hypoxanthine, aminopterin, thymidine) containing 5% FCS to select a TK + wild-type virus. Recombinant TK virus is determined on human TK'143 cells grown in MEM with 5% FCS containing 25 pg / ml BUdR. The recombinants can be found by overlaying the cell single layer with low-melting agarose containing MEM, 5% FCS, 25 μς / ιηΙ BUdR 30 and 250 ng / ml X-gal. The cell culture is kept for 48-72 hours in an incubator at 37 ° C. The amount of spontaneous TK 'virus mutants is determined by infection of single TK "cell layers in the presence or absence of 25 Mg / ml BUdR. Usually, one mutant can be observed among 104 viruses (Mackett et al. In" DNA cloning Vol. II, and a practical approach ", IRL Press, DM Glover (ed., 1985).

3535

I DK 175515 B1 II DK 175515 B1 I

I 30 II 30 I

I 15.2. Plasmider og kloningsmetoder II 15.2. Plasmids and cloning methods

I Plasmidet A5, der er vist i fig. 5, og som er et pBR322-afledt plasmid, har det viste IIn the plasmid A5 shown in FIG. 5, and which is a pBR322-derived plasmid, has the I shown

I restriktionsendonukleasekort. IIn restriction endonuclease map. IN

I . II. IN

I I fig. 6 er vist plasmidet pSCll, som indeholder E. coli lacZ-genet for "blå farve"- IIn FIG. 6 shows the plasmid pSC11, which contains the E. coli lacZ gene for "blue color" - I

I bestemmelse, de TK-flankerende sekvenser og en vacciniapromotor. Plasmidet IIn determination, the TK flanking sequences and a vaccinia promoter. Plasmid I

I pSCll er kendt og almindeligt tilgængeligt og kan især fås fra National Institute of IThe pSCll is well known and widely available and can be obtained especially from the National Institute of I

I Health. IIn Health. IN

I 10 II 10 I

I Alle de restriktionsendonukleaser, der blev anvendt til modifikationen af DNA'et, IIn all the restriction endonucleases used for the modification of the DNA, I

I blev benyttet i henhold til fabrikantens brugsanvisninger. Southern Blot-analyse og IYou were used according to the manufacturer's instructions for use. Southern Blot Analysis and I

I isolering af plasmid-DNA blev udført ved standardmetoder (Maniatis et al., IIn isolation of plasmid DNA was performed by standard methods (Maniatis et al., I

I Molecular Cloning, CSH 1982). IIn Molecular Cloning, CSH 1982). IN

I 15 II 15 I

I Radioaktivt mærkede prober blev enten vundet ved ”nick-repair"-metoder eller ved IRadioactively labeled probes were either obtained by nick-repair methods or by I

I pSP6-"Riboprobe"-metoden (Green et al., Cell 32, 681-694, 1983). IIn the pSP6 "Riboprobe" method (Green et al., Cell 32, 681-694, 1983). IN

I "Riboproben”, der blev anvendt ved den foreliggende opfindelse, blev fremstillet IIn the "Riboprobe" used in the present invention, I was prepared

I 20 ved ligation af en intern FSME-nukleotidsekvens på ca. 1,0 kb i plasmidet pSP64. II 20 by ligation of an internal FSME nucleotide sequence of ca. 1.0 kb in plasmid pSP64. IN

I Før RNA-syntesen blev påbegyndt, blev plasmidet lineariseret med EcoRI. Et typisk IBefore starting RNA synthesis, the plasmid was linearized with EcoRI. A typical I

I assay bestod af: IThe assay consisted of: I

I Tris-HCl pH 7,5 40 mM IIn Tris-HCl pH 7.5 40 mM I

I MgCl2 6 rnM II MgCl2 6 rnM I

I 25 Spermidin 2 mM II 25 Spermidine 2 mM I

I NaCl 20 mM IIn NaCl 20 mM I

I DTT 10 mM IIn DTT 10 mM I

I ATP, CTP, GTP hver 0,5 mM IIn ATP, CTP, GTP every 0.5 mM I

I Human placenta RNAse-inhibitor 20 U IIn Human placental RNAse inhibitor 20 U I

I 30 pSP64-P5 X EcoRI 2 Mg II 30 pSP64-P5 X EcoRI 2 Mg I

I o32P UTP (400 Ci/mmol) 100 /iCi IIn o32P UTP (400 Ci / mmol) 100 µCi I

I SP6 RNA-polymerase 4 U IIn SP6 RNA polymerase 4 U I

I op til et totalvoluraen på 20 μΐ IUp to a total volume of 20 μΐ I

I 35 Inkubation: 1 time ved 40°C. IIn 35 Incubation: 1 hour at 40 ° C. IN

DK 175515 B1 31DK 175515 B1 31

De nukleotider, der ikke blev indbygget, blev adskilt fra det radioaktivt mærkede cRNA ved søjlechromatografi.The nucleotides that were not incorporated were separated from the radiolabeled cRNA by column chromatography.

5 15.3. In vivo rekombinationsassay15.3. In vivo recombination assay

Infektion og transfektion:Infection and transfection:

Rekombinationer blev udført i det væsentlige som beskrevet af Mackett 10 et al. (se 15.1). Ud over humane TK'-celler kunne der også anvendes Vero-celler eller hønsefosterfibroblastceller som værtsceller. Ca. 1-3 timer før transfektionen blev cellerne inficeret med en multiplicitet af infektionen (m.o.i.) af 0,01-0,05 pfu/celle med en vildtype-WR-stamme. HEPES-pufret saltopløsning til DNA-transfektionen blev fremstillet på følgende måde: 10 x HBS indeholdende 8,18% 15 NaCI (w/v), 5,94% HEPES (w/v) samt 0,2% Na'/zZHPOV^ (w/v) blev fortyndet i 2 x HBS før brug. pH-værdien blev indstillet til nøjagtig 7,05 med IN NaOH. Pufferen blev fortyndet med 1 x HBS og steriliseret ved filtrering. Til 1 ml af dette 1 x HBS sattes en opløsning af 1-5 ug plasmid-DNA og 10-20 pg bærer-DNA (enten vacciniavirus-vildtype eller laksesperm-DNA). Især tilsætningen af bærer-DNA'et 20 syntes at være væsentlig. Den besWevne blanding blev blandet grundigt i 1 minut på en vortexblander. Derefter blev der langsomt tilsat 2 M CaC^-opløsning til en slutkoncentration på 0,125 M. Et DNA-præcipitat blev synligt efter 20-30 minutter ved 25°C. Mediet blev fjernet fra de inficerede celler, enkeltlaget blev vasket én gang med celledyrkningsmediet, og efter fjernelse af al den resterende væske blev 25 DNA-præcipitatet langsomt tilsat. 30 minutter senere blev der ved 25°C tilsat frisk medium, og cellerne blev inkuberet ved 37°C. Efter 3-4 timer blev mediet på ny fjernet og udskiftet med frisk celledyrkningsmedium. Cellerne blev sædvanligvis høstet efter 24 eller 48 timer ved afskrabning og sedimenteret ved lav hastighed, og cellepelleten blev opsamlet i et samlet volumen på 500 μΙ medium.Recombinations were performed essentially as described by Mackett 10 et al. (see 15.1). In addition to human TK 'cells, Vero cells or chicken embryo fibroblast cells could also be used as host cells. Ca. 1-3 hours before transfection, cells were infected with a multiplicity of infection (m.o.i.) of 0.01-0.05 pfu / cell with a wild-type WR strain. HEPES buffered saline solution for DNA transfection was prepared as follows: 10 x HBS containing 8.18% NaCl (w / v), 5.94% HEPES (w / v) and 0.2% Na '/ zZHPOV (w / v) was diluted in 2 x HBS before use. The pH was adjusted to exactly 7.05 with 1N NaOH. The buffer was diluted with 1 x HBS and sterilized by filtration. To 1 ml of this 1 x HBS was added a solution of 1-5 µg of plasmid DNA and 10-20 µg of carrier DNA (either vaccinia virus wild type or salmon sperm DNA). In particular, the addition of the carrier DNA 20 appeared to be substantial. The stirred mixture was thoroughly mixed for 1 minute on a vortex mixer. Then, 2 M CaCl 3 solution was slowly added to a final concentration of 0.125 M. A DNA precipitate became visible after 20-30 minutes at 25 ° C. The medium was removed from the infected cells, the single layer was washed once with the cell culture medium, and after removal of all the remaining fluid, the DNA precipitate was slowly added. Thirty minutes later, fresh medium was added at 25 ° C and the cells incubated at 37 ° C. After 3-4 hours, the medium was again removed and replaced with fresh cell culture medium. The cells were usually harvested after 24 or 48 hours at scraping and sedimented at low speed, and the cell pellet was collected in a total volume of 500 μΙ medium.

3030

Plaque-assay og oprensning af rekombinante vira:Plaque assay and purification of recombinant viruses:

Virussuspensionen blev frosset tre gange og pi ny tøet op; 60 μΙ af suspensionen blev inkuberet med 1/5 volumen 1,25% trypsin i 30 minutter ved 35 37°C. En serie på tre fortyndinger (1:10) blev sat til et konfluent enkeltlag af TK'The virus suspension was frozen three times and freshly thawed; 60 μΙ of the suspension was incubated with 1/5 volume of 1.25% trypsin for 30 minutes at 35 ° C. A series of three dilutions (1:10) was added to a confluent single layer of TK '

I DK 175515 B1 II DK 175515 B1 I

I 32 II 32 I

I 143-celler, der var dyrket i 10 cm2 plader. Efter 30-60 minutters inkubation ved IIn 143 cells grown in 10 cm 2 plates. After 30-60 minutes incubation at I

I 37°C blev mediet fjernet, og dernæst blev 3 ml af mediet tilsat 25 pg/ml brom- IAt 37 ° C, the medium was removed and then 3 ml of the medium was added 25 µg / ml bromine.

I deoxyuridin. Efter 24 eller 48 timer ved 37°C blev mediet på ny fjernet og erstattet IIn deoxyuridine. After 24 or 48 hours at 37 ° C, the medium was again removed and replaced with I

I med en agaroseoverlejring, der indeholdt 25 pg/ml bromdeoxyuridin og 125 pg/ml II with an agarose overlay containing 25 pg / ml bromodeoxyuridine and 125 pg / ml I

I 5 X-gal. Efter yderligere 24-48 timers inkubation kunne der fastslås blå plaques. IIn 5 X gal. After a further 24-48 hours of incubation, blue plaques could be detected. IN

I Enkelte af disse plaques blev taget ud og suspenderet i 500 μΙ medium. Denne IIn Some of these plaques were removed and suspended in 500 μΙ medium. This one

I virusholdige suspension blev som beskrevet ovenfor behandlet med trypsin. IIn virus-containing suspension, as described above, trypsin was treated. IN

I Plaque-oprensninger blev udført mindst to gange. IIn Plaque purifications were performed at least twice. IN

I 10 15.4. Fremstilling og karakterisering både af vildtype og rekombinant II 10 15.4. Preparation and characterization of both wild-type and recombinant I

I vaccinia-DNA IIn vaccinia DNA I

I Inficerede celler blev skrabet af 175 cm2 kolber og vasket to gange med PBS- IIn Infected cells, scrap of 175 cm 2 flasks and washed twice with PBS-I

I Ca2+/Mg2+ ved en pH-værdi på 7,4. Efter centrifugering blev cellerne resuspenderet IIn Ca 2+ / Mg 2+ at a pH of 7.4. After centrifugation, the cells were resuspended I

I 15 i 250 μΙ PBS. Gellerne blev frosset i kort tid tre gange og på ny tøet op. Et volumen IIn 15 in 250 μΙ PBS. The gels were frozen for a short time three times and thawed again. A volume I

I på 250 μΙ af en 2 x cellelyse-puffer (1% Triton X 100; 70 mM β-mercaptoethanol; II on 250 μΙ of a 2 x cell lysis buffer (1% Triton X 100; 70 mM β-mercaptoethanol; I

I 40 mM EDTA) blev tilsat, og cellerne blev lyseret i 5 minutter på is. Kernen blev IIn 40 mM EDTA) was added and the cells were lysed for 5 min on ice. The core became you

skilt fra cytoplasmaet i 1 minut ved 16.000 x g. Remanensen, der indeholdt Iseparated from the cytoplasm for 1 minute at 16,000 x g. The residue containing I

I aggregerede viruspartikler, blev overført til et nyt rør og centrifugeret i 30 minutter IIn aggregated virus particles, transferred to a new tube and centrifuged for 30 minutes I

I 20 ved 16.000 x g for at pelletere viruset. Derefter blev viruslysepuffer (10 mM Tris- IIn 20 at 16,000 x g to pellet the virus. Then virus lysis buffer (10 mM Tris-I) was added

HCI, pH 8; 1 mM EDTA; 5 mM β-mercaptoethanol; 200 mM NaCI; 1% SDS; IHCl, pH 8; 1 mM EDTA; 5 mM β-mercaptoethanol; 200 mM NaCl; 1% SDS; IN

150 pg/ml proteinase K) sat til pelleten i en mængde på 100 μΙ og inkuberet i I150 µg / ml proteinase K) added to the pellet in an amount of 100 µΙ and incubated in I

I 30 minutter ved 56°C. Nukleinsyrerne blev derefter ekstraheret 3 x med Tris-HCI- IFor 30 minutes at 56 ° C. The nucleic acids were then extracted 3x with Tris-HCl-I

I mættet phenol og dernæst genekstraheret med chloroform/isoamylalkohol (24:1).In saturated phenol and then re-extracted with chloroform / isoamyl alcohol (24: 1).

I 25 Der blev draget omsorg for, at DNA'et ikke blev udsat for nogen forskydnings- I kræfter. Nukleinsyrerne blev udfældet med 0,1 M NaCI og et 2,5 gange volumen I ethanol ved -20"C natten over. Ca. 10-20 pg af DNA'et kunne isoleres fra 107 celler. Efter centrifugering (30 minutter ved 17.000 x g) blev DNA’et opløst i et lille volumen af 20-40 μΙ HjO. DNA'et blev skåret med restriktionsendonukleasen 30 Hindlll og fragmenterne adskilt på 0,6% agarosegeler i TA-puffer (Rice et al., J. Virol. 56, 227-239, 1985).25 Care was taken to ensure that the DNA was not subjected to any shear forces. The nucleic acids were precipitated with 0.1 M NaCl and a 2.5-fold volume in ethanol at -20 ° C overnight. Approximately 10-20 µg of the DNA could be isolated from 107 cells. After centrifugation (30 minutes at 17,000 xg) ), the DNA was dissolved in a small volume of 20-40 μΙ H 2 O. The DNA was cut with the restriction endonuclease 30 HindIII and the fragments separated on 0.6% agarose gels in TA buffer (Rice et al., J. Virol. 56 , 227-239, 1985).

35 33 DK 175515 B1 15.5. Påvisning af nukleinsyrer ved hybridisering35 33 DK 175515 B1 15.5. Detection of nucleic acids by hybridization

Southern Blot 5 Efter overførsel af DNA'et fra gelerne (30’, 0,5N NaOH og 2 x 10’, 10 x SSC/0,5 M Tris-HCI pH 7,5) til nitrocellulosefiltre blev disse bagt i 4 timer ved 80°C. Filtrene blev præhybridiseret i 6 timer ved 65°C i 5 x Denhardtopløsning (1 x Denhardt = 0,02% Ficoll, 0,02% polyvinylpyrrolidon, 0,02% BSA). De våde filtre blev forseglet i plastposer og inkuberet i 18 timer ved 43°C med hybridiseringsopløsningen og 10 den radioaktive probe. Filtrene blev vasket ved 65°C tre gange, hver gang 30' med hver gang 2 x SSC, 1 x SSC og 0,1 x SSC med 0,1% SDS og 20 mM NaP04. Efter lufttørring af filtrene blev de udsat for Kodak X-omat AR-røntgenfilm.Southern Blot 5 After transferring the DNA from the gels (30 ', 0.5N NaOH and 2x10', 10x SSC / 0.5M Tris-HCl pH 7.5) to nitrocellulose filters, they were baked for 4 hours at 80 ° C. The filters were prehybridized for 6 hours at 65 ° C in 5 x Denhardt solution (1 x Denhardt = 0.02% Ficoll, 0.02% polyvinylpyrrolidone, 0.02% BSA). The wet filters were sealed in plastic bags and incubated for 18 hours at 43 ° C with the hybridization solution and the radioactive probe. The filters were washed at 65 ° C three times, each time 30 'with each time 2 x SSC, 1 x SSC and 0.1 x SSC with 0.1% SDS and 20 mM NaPO 4. After air-drying the filters, they were exposed to Kodak X-omat AR X-ray film.

En ”Riboprobe”-vektor (pSP6), der indeholdt et FSME-fragment fra det i fig. 5 viste 15 plasmid A5, blev anvendt til fremstilling af en FSME-virusspecifik "Riboprobe”. Radioaktivt maérket cRNA blev blandet med en hybridiseringsopløsning (50% formamid, Amberlit-oprenset; 5 x SSC, 1 x Denhardtopløsning, 0,1% SDS; 100 μ9/ηηΙ sildesperm-DNA). Det samlede volumen af hybridiseringsopløsningen blev bestemt, idet 50 μΙ. 100 μΙ/cm2 filter er nødvendig til optimale hybridiseringsbetingelser.A "Riboprobe" vector (pSP6) containing an FSME fragment from the one shown in FIG. 5, plasmid A5, was used to prepare an FSME virus specific "Riboprobe". Radioactively labeled cRNA was mixed with a hybridization solution (50% formamide, Amberlit purified; 5x SSC, 1x Denhardt solution, 0.1% SDS; 100 μ9 / ηηΙ herring sperm DNA) The total volume of the hybridization solution was determined, with a 50 μΙ. 100 μΙ / cm2 filter required for optimal hybridization conditions.

20 Mængden af radioaktivt cRNA var ca. 107 cpm/ml eller ca. 106 cpm/cm2 filter. Opløsningen blev opvarmet i 5 minutter ved 65°C.The amount of radioactive cRNA was approx. 107 cpm / ml or approx. 106 cpm / cm2 filter. The solution was heated for 5 minutes at 65 ° C.

Spot Blot 25 Disse eksperimenter blev udført ifølge Mackett et al (se 15.1.) med små modifikationer. Der blev anvendt materiale fra 1/4 af de isolerede plaques til infektion af en 35 mm Petri-skål. 48 timer efter infektionen blev cellerne høstet og vasket i en puffer indeholdende 50 mM Tris, pH 7,5, og 100 mM NaCI. Endelig blev cellerne resuspenderet i 500 μΙ af denne puffer. 100 μΙ alikvoter blev i vakuum suget op på 30 nitrocellulose. Efter tørring blev filtrene, der blev gennemblødt i 0,5 M IMaOH i 3 minutter, anbragt på chromatografipapir. Derefter blev filtrene neutraliseret på papirfiltre, der var gennemvædet med 2 x SSC/1 M Tris-HCI, pH 7,5 i 3 minutter. Filtrene blev dernæst bagt i mindst 2 timer og derefter behandlet på samme mide som beskrevet ovenfor for Southern Blot-hybridiseringen. .Spot Blot 25 These experiments were performed according to Mackett et al (see 15.1.) With minor modifications. Material from 1/4 of the isolated plaques was used to infect a 35 mm Petri dish. 48 hours after infection, cells were harvested and washed in a buffer containing 50 mM Tris, pH 7.5, and 100 mM NaCl. Finally, the cells were resuspended in 500 μΙ of this buffer. 100 μΙ aliquots were vacuum-vacuumed on 30 nitrocellulose. After drying, the filters soaked in 0.5 M IMaOH for 3 minutes were placed on chromatography paper. Then, the filters were neutralized on paper filters soaked in 2 x SSC / 1 M Tris-HCl, pH 7.5 for 3 minutes. The filters were then baked for at least 2 hours and then treated in the same manner as described above for the Southern Blot hybridization. .

35 I DK 175515 B135 I DK 175515 B1

I II I

I 15.6. Proteinanalyse II 15.6. Protein Analysis I

I Vero-celler eller TK'143-celler blev inficeret med en m.o.i. på 1 pfu/celle i et samlet IIn Vero cells or TK'143 cells were infected with a m.o.i. of 1 pfu / cell in a total I

I volumen på ca. 1-2 ml/25 cm2 kolber. I nogle forsøg blev cellerne mærket med IIn volume of approx. 1-2 ml / 25 cm 2 flasks. In some experiments, the cells were labeled with I

I 5 100 μΟ 35S-methionin/ml. Når CPE var stærk, blev cellerne høstet, vasket 2 gange IIn 5 100 μΟ 35S-methionine / ml. When CPE was strong, the cells were harvested, washed 2 times I

I i PBS og til slut resuspenderet i 100 μΙ RIPA-puffer (150 mM NaCl; 10 mM Tris-HCI, II in PBS and finally resuspended in 100 μΙ RIPA buffer (150 mM NaCl; 10 mM Tris-HCl, I

I pH 7,2; 1% natriumdesoxycholat; 1% Triton X 100; 0,1% SDS; 100 pg/ml PMSF) IAt pH 7.2; 1% sodium deoxycholate; 1% Triton X 100; 0.1% SDS; 100 µg / ml PMSF) I

I (50-150 μΙ for 5 x 105 - 1,5 x 106 celler). Efter 10 minutter på is blev proberne ul- II (50-150 μΙ for 5 x 105 - 1.5 x 106 cells). After 10 minutes on ice, the probes became ul

I tralydbehandlet i 30 sekunder. Til 8 μΙ af denne proteinblanding sattes 12 μΙ af en IIn the grating for 30 seconds. To 8 μΙ of this protein mixture, 12 μΙ of an I was added

I 10 2 x kogepuffer (0,2 M DTT; 4% SDS; 0,16 M Tris-HCI, pH 6,8; 20% glycerol; 1/100 IIn 2 x boiling buffer (0.2 M DTT; 4% SDS; 0.16 M Tris-HCl, pH 6.8; 20% glycerol; 1/100 L

I volumen 5% BPB i ethanol); proteinerne blev denatureret i 10 minutter ved 100°C IIn volume 5% BPB in ethanol); the proteins were denatured for 10 minutes at 100 ° C

I og underkastet elektroforese på 15% SDS-polyacrylamidgeler (Bodemer et al., IAnd subjected to electrophoresis on 15% SDS-polyacrylamide gels (Bodemer et al., I

I Virology 103, 340-349, 1980). Proteinerne blev overført fra gelen til nitrocellulose- IIn Virology 103, 340-349, 1980). The proteins were transferred from the gel to nitrocellulose I

I filtre i en puffer indeholdende 0,192 M glycin, 0,025 M Tris, pH 8,3 og 20% IIn filters in a buffer containing 0.192 M glycine, 0.025 M Tris, pH 8.3 and 20% I

I 15 methanol ved en strømstyrke på ca. 1,5 A i 2,5 timer. Nitrocellulosefiltrene blev IIn 15 methanol at a current of approx. 1.5 A for 2.5 hours. The nitrocellulose filters became I

I derefter inkuberet i en blokeringsopløsning "NET" (0,15 M NaCl, 5 mM EDTA, IThen incubated in a blocking solution "NET" (0.15 M NaCl, 5 mM EDTA, I

I 50 mM Tris, pH 7,4, 0,05% Triton X 100, 2% BSA). Humant serum og et enzym- IIn 50 mM Tris, pH 7.4, 0.05% Triton X 100, 2% BSA). Human serum and an enzyme I

I mærket andet mod humane immunoglobuliner rettet antistof blev tilsat i NET i en IIn the second labeled antibody directed against human immunoglobulins antibody was added in NET in an I

I fortynding på 1:500 og inkuberet i 2 timer. Båndene blev vasket med NET i 3 x 10 IIn dilution of 1: 500 and incubated for 2 hours. The tapes were washed with NET in 3 x 10 L

I 20 minutter og derefter gennemvædet med TBS (20 mM Tris, pH 7,5, 0,9% NaCl, 2% IFor 20 minutes and then soaked with TBS (20 mM Tris, pH 7.5, 0.9% NaCl, 2% I

I BSA) i 3 x 10 minutter. Båndene blev fremkaldt i 50 ml TBS og det chromogene IIn BSA) for 3 x 10 minutes. The bands were developed in 50 ml of TBS and the chromogenic I

I substrat DAB og H202. IIn substrate DAB and H2 O2. IN

I 15.7. Fremstilling af insertionsplasmider II 15.7. Preparation of insertion plasmids I

I 25 II 25 I

I Med de ovenfor beskrevne materialer og metoder blev der nu fremstillet plasmider, IWith the materials and methods described above, plasmids, I, were now prepared

I der indeholder DNA-sekvenserne af E-proteinet. Først blev plasmidet A5 (fig. 5) IIn which contains the DNA sequences of the E protein. First, plasmid A5 (Fig. 5) was I

I skåret med restriktionsendonukleaseme PvuII, FnuDII og Haell. Fragmenterne IIn the cut with restriction endonucleases PvuII, FnuDII and Haell. The fragments I

I blev indsat i det unikke Smal-sted i plasmidet pSCll (fig. 6). De tre FSME- II was inserted into the unique Sma I site of plasmid pSC11 (Fig. 6). The three FSME- I

I 30 fragmenter blev isoleret fra agarosegeler ved elektroeluering og ligeret med IIn 30 fragments were isolated from agarose gels by electroelution and ligated with I

I plasmidet pSCll, idet sidstnævnte ligeledes blev lineariseret i det unikke Smal-In the plasmid pSC11, the latter also linearized in the unique Smal

I sted. Det fysiske kort over disse plasmider er vist i fig. 7. De tre fragmenter har en HInstead. The physical map of these plasmids is shown in FIG. 7. The three fragments have an H

I størrelse på 1022 bp (PvuII), 1485 bp (FnuDII) og 1553 bp (Haell). De omtalte tre IIn size of 1022 bp (PvuII), 1485 bp (FnuDII) and 1553 bp (Haell). The three mentioned

I restriktionsendonukieaser blev anvendt, fordi den nukleotidsekvens, som koder for HIn restriction endonucleases were used because the nucleotide sequence encoding H

I 35 den indre del af E-proteinet, var blevet fundet både med og uden hydrofobe IIn the inner part of the E protein, both with and without hydrophobic I had been found

35 , DK 175515 B1 signaler eller membranforankringssekvenser ved en hydropatiplot udført med et IBI Pustell computerprogram (fig. 8). Orienteringen af de indsatte protein E-sekvenser med hensyn til p 7.5 E/l vacciniapromotoren blev bestemt ved Southern Blot-analyse. Skæring af pSCll-P6-plasmidet med Pvul eller BamHI gav klart et 5 2,585 kb eller et 0,919 kb langt fragment (fig. 9A, bane 3 og 4), som begge hybridiserede med en 32P-mærket "Riboprobe" (fig. 9B, bane 3 og 4). Plasmidet pSCll-F41 kunne skæres i fragmenter med BamHI eller EcoRI; fragmenter med en størrelse på 1,019 kb eller 1,879 kb hybridiserede begge udelukkende med "Riboproben" (fig. 9B, bane 6 og 7).35, DK 175515 B1 signals or membrane anchoring sequences at a hydropathy plot performed with an IBI Pustell computer program (Fig. 8). The orientation of the inserted protein E sequences with respect to the p 7.5 E / L vaccinia promoter was determined by Southern Blot analysis. Cutting the pSC11-P6 plasmid with Pvul or BamHI clearly yielded a 2,585 kb or 0.919 kb fragment (Fig. 9A, lanes 3 and 4), both of which hybridized with a 32 P-labeled "Riboprobe" (Fig. 9B, lanes 3 and 4). The plasmid pSC11-F41 could be cut into fragments with BamHI or EcoRI; fragments with a size of 1.019 kb or 1.879 kb both hybridized exclusively with the "Riboprobe" (Fig. 9B, lanes 6 and 7).

1° 15.8. In vivo rekombination med FSME-insertionsplasmider og vildtype-vacciniavirus1 ° 15.8. In vivo recombination with FSME insertion plasmids and wild-type vaccinia virus

Vero-celleenkeltlag, der var blevet inficeret med vacciniastammen WR, blev 15 transficeret med plasmid-DNA. Efter 48-72 timer blev en stærk cytopatogen virkning synlig, og cellerne blev høstet. Viruset blev isoleret fra cellerne ved gentagen frysning og optøning samt trypsinbehandling som beskrevet. Derefter blev TK'-celleenkeltlag inficeret med denne virussuspension. Cellerne voksede i nærværelse af BUdR. Plaques under udvikling blev visualiseret under en agarose-20 overlejring indeholdende det chromogene substrat X-gal. Virusfortyndinger blev udført, således at dette gav 10-30 plaques pr. 35 mm plader. Enkelte blå plaques blev taget ud og anvendt til den videre infektion af TK'-celler til formål for en yderligere plaque-oprensning af infektionsselektionen eller af Vero-celler til analyse af virale makromolekyler.Vero cell single layers that had been infected with the vaccinia strain WR were transfected with plasmid DNA. After 48-72 hours, a strong cytopathogenic effect became visible and the cells were harvested. The virus was isolated from the cells by repeated freezing and thawing as well as trypsin treatment as described. Then, TK 'cell monolayers were infected with this virus suspension. The cells grew in the presence of BUdR. Plaques in development were visualized during an agarose-20 overlay containing the X-gal chromogenic substrate. Virus dilutions were performed to give 10-30 plaques per 35 mm plates. Single blue plaques were removed and used for the further infection of TK 'cells for purposes of further plaque purification of the infection selection or of Vero cells for the analysis of viral macromolecules.

25 15.9. Spot Blot-analyse for at finde rekombinante vira25 15.9. Spot Blot analysis to find recombinant viruses

Små prober (ca. 100 μΙ) af inficerede celleenkeltlag fra 35 mm plader eller 25 cm2 dyrkningskolber blev opdelt og hybridiseret med et "nick-repair"-mærket pSCll-30 plasmid (som ikke indeholdt FSME-sekvenser) eller med FSME^’Riboproben" (fig.Small probes (approximately 100 μΙ) of infected single cell layers from 35 mm plates or 25 cm 2 culture flasks were divided and hybridized with a nick-repair labeled pSC11-30 plasmid (which did not contain FSME sequences) or with the FSME "(fig.

10). Skin-inficerede celler udviste intet signal med begge prober. Viruset vSC8, som indeholdt lacZ-genet og TK-vacciniasekvenser, men ingen FSME-sekvenser, gav et negativt resultat med FSME-"Riboproben". Som forventet var alle celler med vira fra fire forskellige individuelle plaque-isoleringer imidlertid positive med FSME-35 og pSCll-proben.10). Skin-infected cells showed no signal with both probes. The vSC8 virus, which contained the lacZ gene and TK vaccinia sequences but no FSME sequences, gave a negative result with the FSME "Riboprobe". However, as expected, all cells with viruses from four different individual plaque isolations were positive with the FSME-35 and the pSC11 probe.

I DK 175515 B1 II DK 175515 B1 I

I 36 II 36 I

I 15.10. Analyse af DNA fra rekombinante vira II 15.10. Analysis of DNA from recombinant viruses I

I Vero-celleenkeltlag blev inficeret med en m.o.i. på 1-10 pfu/celle med plaqueop- IIn Vero cell monolayers were infected with a m.o.i. of 1-10 pfu / cell with plaque op

I 5 rensede, propagerede vacciniarekombinanter. Virus-DNA'et blev isoleret fra virus- IIn 5 purified, propagated vaccinia recombinants. The virus DNA was isolated from virus I

I partikler, der blev Qernet fra inficerede celler, og analyseret ved restriktionsendo- IIn particles nucleated from infected cells and analyzed by restriction endo-I

I nuklease-skæring samt Southern Blot-hybridisering. Det 5 kb lange Hindlll J-frag- IIn nuclease cutting as well as Southern Blot hybridization. The 5 kb HindIII J fragment

I ment fra vildtype-DNA (som vist i fig. 11, bane 6) blev erstattet med et større IInto wild-type DNA (as shown in Fig. 11, lane 6) was replaced with a larger I

I Hindlll-fragment, som bestod af det oprindelige Hindlll J-fragment og de DNA- IIn HindIII fragment, which consisted of the original HindIII J fragment and the DNA I

I 10 sekvenser, som var blevet indsat i TK-genstedet ved in v/Vo-rekombination. vSC8- IIn 10 sequences that had been inserted into the TK gene site by in v / Vo recombination. vSC8- I

I viruset indeholdt et 3,5 kb langt lacZ-gen, og Hindlll J-fragmentet vandrede såle- IThe virus contained a 3.5 kb lacZ gene and the HindIII J fragment migrated to the

I des ved en størrelse på ca. 8,5 kb (fig, 11, bane 5). Da større fragmenter imidlertid IThis is at a size of approx. 8.5 kb (fig. 11, lane 5). However, since larger fragments I

I ikke uden videre kunne adskilles i lavprocentsgeler, blev der udført en afsluttende IYou could not easily be separated into low percentage gels, a final I was performed

I bestemmelse af det rekombinante virus-DNA ved Southern Blot-hybridisering (fig. IIn the determination of the recombinant virus DNA by Southern Blot hybridization (Fig. I

I 15 12). Med 32P-mærkede prober kunne der ganske klart findes fragmenter, der havde II 12). Clearly, with 32P-labeled probes, fragments containing I could be found

I de størrelser, som var forudsagt ved kloningsstrategien. Det rekombinante virus, IIn the sizes predicted by the cloning strategy. The recombinant virus, I

I der blev dannet ved rekombination af pSCll-P6, havde et ubetydeligt afvigende IFormed by recombination of pSC11-P6, a negligible

I (ca. 500 bp), mindre Hindlll-fragment end "pSCll-F41"-rekombinanterne (fig. IIn (about 500 bp), smaller HindIII fragment than the "pSC11-F41" recombinants (Fig. 1

I 12A og B). DNA'er fra uinficerede celler udviste hverken hybridisering med den IIn 12A and B). DNAs from uninfected cells showed no hybridization with the I

I 20 pSCl 1 "nick-repair"-mærkede probe eller med "Riboproben” (fig. 12A og B, bane IIn 20 pSCl 1 nick-repair labeled probes or with the "Riboprobe" (Figs. 12A and B, lane I

I 9). DNA fra viruset vSC8 hybridiserede kun med den pSCll "nick-repair"-mærkede II 9). DNA from the vSC8 virus hybridized only with the pSC11 "nick-repair" labeled I

I probe på grund af den fælles TK-sekvens og lacZ-genet (fig. 12B, bane 8). FSME- IIn probe due to the common TK sequence and the lacZ gene (Fig. 12B, lane 8). FSME- I

I "Riboproben" udviste som forventet ingen hybridisering. Bade "Riboproben” og den IAs expected, the "Riboprobe" showed no hybridization. Both the "Riboprobe" and the I

I "nick-repair"-mærkede probe identificerede imidlertid "rekombinante" Hindlll J- IHowever, in "nick-repair" labeled probes, "recombinant" identified HindIII J-I

I 25 fragmenter med forskellig størrelse (fig. 12A og B, bane 1-3 og 7). DNA fra vacci- IIn 25 fragments of different sizes (Figs. 12A and B, lanes 1-3 and 7). Vaccine DNA

I niavirus, som var opstået efter rekombination med insertionsplasmidet pSCll og IIn niaviruses that had arisen after recombination with the insertion plasmid pSC11 and I

I vildtypevirus, er vist i fig. 12A og B, bane 4-6. Med "Riboproben" (fig. 12A) iagt- IIn wild-type viruses, shown in FIG. 12A and B, lanes 4-6. With the "Riboprobe" (Fig. 12A) observe- I

I toges ingen hybridisering, derimod med plasmidet pSCll (fig. 12B). IIn contrast, no hybridization was performed with the plasmid pSC11 (Fig. 12B). IN

I 30 15.11. Proteinanalyse II 30 15.11. Protein Analysis I

I Celler blev inficeret med vildtype eller rekombinante vira med en m.o.i. på 1- IIn Cells, infected with wild-type or recombinant viruses were infected with a m.o.i. of 1- I

I 10 pfu/celle. Cellerne blev mærket med 35S-methionin efter forskellige tidspunkter IIn 10 pfu / cell. The cells were labeled with 35 S-methionine at various times I

I efter infektionen, høstet og analyseret efter hinanden på denaturerende SDS-poly- II after the infection, harvested and analyzed one after the other on denaturing SDS-poly

35 acrylamidgeler. Protein E-variantmolekyler blev bestemt ved Western Blot-analyse I35 acrylamide gels. Protein E variant molecules were determined by Western Blot Assay I

Claims (38)

10 Tidsforløbet for syntesen af FSME-proteinerne i celler, der blev inficeret med vac-ciniavirusrekombinanter, blev bestemt ved mærkning af cellerne på forskellige tidspunkter efter infektionen i kort tid (4 timer) med 35S-methionin. Da p7.5-pro-motoren er aktiv både i en tidlig og i en sen fase af infektionscyklen, var det at forvente, at cellerne producerede FSME- proteiner på et tidligt og på et sent tids-15 punkt efter infektionen. I sammenligning hermed regulerer den sene pil-promotor syntesen af β-gal-proteinet, der har en molekylvægt på 116 Kd. Dette protein forekom derfor forholdsmæssigt sent efter infektionen. De beskrevne tidlige eller sene promotoraktiviteter gav sig udslag på tidspunktet for høst af cellerne, især når større mængder virus skulle tilvejebringes til oprensning og fremstilling af de 20 ønskede proteiner. EKSEMPEL 16 Vaccinefremstilling 25 Til fremstilling af en vaccine kan et ifølge opfindelsen fremstillet antigen fx suspenderes i ren og virksom form i en pufferopløsning og opløses i en adjuvans på kendt måde for at forbedre den immunogene aktivitet. 30The time course of synthesis of the FSME proteins in cells infected with vaccinia virus recombinants was determined by labeling the cells at different times after the infection for a short time (4 hours) with 35S-methionine. Since the p7.5 pro motor is active both in the early and late stages of the infection cycle, it was expected that the cells produced FSME proteins at an early and a late time point after infection. In comparison, the late arrow promoter regulates the synthesis of the β-gal protein having a molecular weight of 116 Kd. This protein therefore appeared relatively late after the infection. The described early or late promoter activities were evident at the time of harvesting of the cells, especially when larger amounts of virus were to be provided for purification and production of the 20 desired proteins. EXAMPLE 16 Vaccine Preparation 25 For the preparation of a vaccine, an antigen prepared according to the invention can be suspended, for example, in pure and effective form in a buffer solution and dissolved in an adjuvant in known manner to enhance immunogenic activity. 30 1. DNA-molekyle, kendetegnet ved, at det omfatter DNA stammende fra den vestlige under-35 type af FSME-virus, hvilket DNA koder for i det mindste en del af i det mindste ét I DK 175515 B1 I I 38 I I protein valgt blandt proteinerne C, prM, M eller E af den vestlige undertype af I I FSME-virus. IA DNA molecule, characterized in that it comprises DNA derived from the Western sub-type of FSME virus, which DNA encodes at least a portion of at least one protein selected from proteins C, prM, M or E of the western subtype of II FSME virus. IN 2. DNA-molekyle ifølge krav 1, I I 5 kendetegnet ved, at det omfatter hele den DNA-sekvens, der koder for I I strukturproteinerne af FSME-virus, fortrinsvis som vist i fig. 1. IDNA molecule according to claim 1, characterized in that it comprises the entire DNA sequence encoding the I I structural proteins of FSME virus, preferably as shown in FIG. 1. I 3. DNA-molekyle ifølge krav 1 eller 2, I I kendetegnet ved, at det koder for ét af de proteiner, der er valgt blandt I I 10 proteinerne C, prM, M eller E af den vestlige undertype af FSME-virus. IDNA molecule according to claim 1 or 2, characterized in that it encodes one of the proteins selected from the proteins I, 10, C, prM, M or E of the western subtype of FSME virus. IN 4. DNA-molekyle ifølge et hvilket som helst af kravene 1-3, I I kendetegnet ved, at det koder for i det mindste et område af en antigen- I I determinant for et af de proteiner, der er valgt blandt proteinerne C, prM, M eller E I I 15 af den vestlige undertype af FSME-virus, fortrinsvis E-proteinet. IDNA molecule according to any one of claims 1-3, II characterized in that it encodes at least one region of an antigen-II determinant for one of the proteins selected from proteins C, prM, M or EII 15 of the western subtype of FSME virus, preferably the E protein. IN 5. DNA-molekyle ifølge et hvilket som helst af kravene 1-4, I I kendetegnet ved, at det er vundet ved omvendt transkription med omvendt I I transkriptase ud fra et oprenset RNA-molekyle af den vestlige undertype af FSME- I I 20 virus. IDNA molecule according to any one of claims 1 to 4, characterized in that it is obtained by reverse transcription with reverse I transcriptase from a purified RNA molecule of the western subtype of FSME-I I virus. IN 6. DNA-molekyle ifølge et hvilket som helst af kravene 1-4, I I kendetegnet ved, at det fremstilles ved kemisk DNA-syntese. I I 25 7. DNA-molekyle ifølge et hvilket som helst af kravene 1-6, I I kendetegnet ved, at det hybridiserer med et DNA-molekyle ifølge et hvilket I I som helst af kravene 1-6 under stringente betingelser. IDNA molecule according to any one of claims 1-4, characterized in that it is produced by chemical DNA synthesis. A DNA molecule according to any one of claims 1-6, characterized in that it hybridizes with a DNA molecule according to any one of claims 1-6 under stringent conditions. IN 8. DNA-molekyle ifølge et hvilket som helst af kravene 1-7, I I 30 kendetegnet ved, at det omfatter DNA-sekvenser, der afviger fra DNA- I I molekylerne ifølge et hvilket som helst af kravene 1-7 som følge af degeneration af I I den genetiske kode og/eller mutationer og/eller transpositioner, men stadig koder I I for et protein med de væsentlige antigene egenskaber af i det mindste ét af de I I proteiner, som er valgt blandt proteinerne C, prM, M eller E af den vestlige under- I I 35 type af FSME-virus. I DK 175515 B1 39DNA molecule according to any one of claims 1-7, II characterized in that it comprises DNA sequences which differ from the DNA-II molecules of any one of claims 1-7 as a result of degeneration of II the genetic code and / or mutations and / or transpositions, but still encodes II for a protein having the essential antigenic properties of at least one of the II proteins selected from the proteins C, prM, M or E of the western sub-type of FSME virus. I DK 175515 B1 39 9. DNA-molekyle ifølge et hvilket som helst af kravene 1-8, kendetegnet ved, at det er kombineret med yderligere DNA-sekvenser.DNA molecule according to any one of claims 1-8, characterized in that it is combined with additional DNA sequences. 10. DNA-molekyle ifølge krav 9, kendetegnet ved, at de yderligere DNA-sekvenser tillader replication og ekspression af DNA-molekylet i en cellekultur, som omfatter sekvenser, der er valgt blandt promotorer, enhancere, polyadenyleringssignaler og spejsningssigna-ler. 10A DNA molecule according to claim 9, characterized in that the additional DNA sequences allow replication and expression of the DNA molecule in a cell culture comprising sequences selected from promoters, enhancers, polyadenylation signals, and speciation signals. 10 11. RNA-molekyle, kendetegnet ved, at det er afledt fra RNA fra den vestlige undertype af FSME-virus og koder for i det mindste en del af i det mindste ét protein valgt blandt proteinerne C, prM, M eller E af den vestlige undertype af FSME-virus. 15RNA molecule, characterized in that it is derived from RNA from the western subtype of FSME virus and encodes at least a portion of at least one protein selected from the proteins C, prM, M or E of the western subtype of FSME virus. 15 12. RNA-molekyle ifølge krav 11, kendetegnet ved, at det omfatter hele den RNA-sekvens, der koder for strukturproteinerne, fortrinsvis som vist i fig. 2.An RNA molecule according to claim 11, characterized in that it comprises the entire RNA sequence encoding the structural proteins, preferably as shown in FIG. 2nd 13. RNA-molekyle ifølge krav 11, kendetegnet ved, at det koder for ét af de proteiner, der er valgt blandt proteinerne C, prM, M eller E af den vestlige undertype af FSME-virus.RNA molecule according to claim 11, characterized in that it encodes one of the proteins selected from proteins C, prM, M or E of the western subtype of FSME virus. 14. RNA-molekyle ifølge et hvilket som helst af kravene 11-13, 25 kendetegnet ved, at det koder for i det mindste et område fra en antigen-determinant for ét af de proteiner, der er valgt blandt proteinerne C, prM, M eller E af den vestlige undertype af FSME-virus, fortrinsvis E-proteinet.RNA molecule according to any one of claims 11-13, 25, characterized in that it encodes at least one region from an antigenic determinant of one of the proteins selected from proteins C, prM, M or E of the western subtype of FSME virus, preferably the E protein. 15. RNA-molekyle ifølge et hvilket som helst af kravene 11-14, 30 kendetegnet ved, at det er vundet ved isolering og oprensning af RNA fra den vestlige undertype af FSME-virus eller ved rekombinant-RNA/DNA-teknikker. 1 RNA-molekyle ifølge krav 15, I DK 175515 B1 I I I H kendetegnet ved, at det fås ved transkription af isoleret og oprenset virus- I RNA i DNA ved hjælp af omvendt transkriptase og efterfølgende transkription af I I dette DNA i RNA. IRNA molecule according to any one of claims 11-14, 30 characterized in that it is obtained by isolating and purifying RNA from the western subtype of FSME virus or by recombinant RNA / DNA techniques. 1 RNA molecule according to claim 15, characterized in that it is obtained by transcription of isolated and purified viral I RNA in DNA by reverse transcriptase and subsequent transcription of I in this DNA in RNA. IN 17. RNA-molekyle ifølge et hvilket som helst af kravene 11-15, I kendetegnet ved, at dets komplementære streng under stringente betingel- I ser hybridiserer med et RNA-molekyle ifølge et hvilket som helst af kravene 11-15. IRNA molecule according to any one of claims 11-15, characterized in that its complementary strand under stringent conditions hybridizes with an RNA molecule according to any one of claims 11-15. IN 18. Vektor, I 10 kendetegnet ved, at den omfatter insertioner af DNA-sekvenser ifølge et hvilket som helst af kravene 1-10 eller RNA-sekvenser ifølge et hvilket som helst af kravene 11-17, idet vektoren er valgt blandt plasmider, vira og cosmider. IVector, characterized in that it comprises insertions of DNA sequences according to any one of claims 1-10 or RNA sequences according to any of claims 11-17, the vector being selected from plasmids, viruses and cosmids. IN 19. Vektor ifølge krav 18, I 15 kendetegnet ved, at den er plasmidet pBR322, som indeholder en DNA- sekvens, der koder for et protein valgt blandt proteinerne C, prM, M eller E af den vestlige undertype af FSME-virus eller dele deraf.Vector according to claim 18, 15, characterized in that it is the plasmid pBR322, which contains a DNA sequence encoding a protein selected from proteins C, prM, M or E of the western subtype of FSME virus or parts. thereof. 20. Vektor ifølge krav 19, I 20 kendetegnet ved, at den er plasmidet A5, som er vist i fig. 5, og som er deponeret i DSM med deponeringsnummeret DSM 4382.Vector according to claim 19, 20, characterized in that it is the plasmid A5 shown in FIG. 5 and which is deposited in DSM with the deposit number DSM 4382. 21. Vektor ifølge krav 19, I kendetegnet ved, at den er plasmidet Pl-1, som er deponeret i DSM med I 25 deponeringsnummeret DSM 4383.Vector according to claim 19, characterized in that it is the plasmid P1-1 deposited in DSM with the deposition number DSM 4383. 22. Vektor ifølge krav 18 eller 19, kendetegnet ved, at den er et insertionsplasmid, der ved homolog rekombi- nation overfører DNA-sekvenser for E-proteinet eller dele deraf til et Hindlll J-frag- 30 ment fra et vacciniavirus.Vector according to claim 18 or 19, characterized in that it is an insertion plasmid which, by homologous recombination, transfers DNA sequences for the E protein or parts thereof into a HindIII J fragment from a vaccinia virus. 23. Vektor ifølge krav 22, I kendetegnet ved, at den er plasmidet pSCll-Hl ifølge fig. 7, som inde- holder nukleotiderne 6503-8051 af den DNA-sekvens, som koder for E-proteinet. I 35 DK 175515 B1 41Vector according to claim 22, characterized in that it is the plasmid pSC11-H1 of FIG. 7, which contains nucleotides 6503-8051 of the DNA sequence encoding the E protein. I 35 DK 175515 B1 41 24. Vektor ifølge krav 22, kendetegnet ved, at den er plasmidet pSCll-F41 ifølge fig. 7, som indeholder nukleotiderne 6503-7998 af den DNA-sekvens, som koder for E-proteinet.Vector according to claim 22, characterized in that it is the plasmid pSC11-F41 of FIG. 7, which contains nucleotides 6503-7998 of the DNA sequence encoding the E protein. 25. Vektor ifølge krav 22, kendetegnet ved, at den er plasmidet pSCll-P6 ifølge fig. 7, som indeholder nukleotiderne 6503-7524 af den DNA-sekvens, som koder for E-proteinet.Vector according to claim 22, characterized in that it is the plasmid pSC11-P6 of FIG. 7, which contains nucleotides 6503-7524 of the DNA sequence encoding the E protein. 26. Vacciniaekspressionsvektor, 10 kendetegnet ved, at den ved homolog rekombination indeholder DNA-sekvenser for E-proteinet, fortrinsvis fra DNA-sekvenser indsat i et plasmid ifølge et hvilket som helst af kravene 22-25, og at den er i stand til at udtrykke protein E eller dele deraf, der indeholder de til de omtalte DNA-sekvenser svarende amino-syresekvenser. 15Vaccine expression vector, characterized in that it contains, by homologous recombination, DNA sequences for the E protein, preferably from DNA sequences inserted into a plasmid according to any of claims 22-25, and capable of express protein E or portions thereof containing the amino acid sequences corresponding to said DNA sequences. 15 27. Bærer, kendetegnet ved, at den omfatter insertioner af DNA-sekvenser ifølge et hvilket som helst af kravene 1-10 eller RNA-sekvenser ifølge et hvilket som helst af kravene 11-17, idet bæreren er et bakterie, fortrinsvis Salmonella typhi. 20Carrier, characterized in that it comprises insertions of DNA sequences according to any one of claims 1-10 or RNA sequences according to any of claims 11-17, the carrier being a bacterium, preferably Salmonella typhi. 20 28. Cellekultur, kendetegnet ved, at den indeholder en hvilken som helst af sekvenserne ifølge et hvilket som helst af kravene 1-17.Cell culture, characterized in that it contains any of the sequences of any one of claims 1-17. 29. Cellekultur ifølge krav 28, kendetegnet ved, at den tillader ekspression af polypeptider, der indkodes af RNA- eller DNA-sekvenserne ifølge et hvilket som helst af kravene 1-17, idet cellekulturen fortrinsvis er en pattedyr-cellekultur. 1 35Cell culture according to claim 28, characterized in that it allows expression of polypeptides encoded by the RNA or DNA sequences of any one of claims 1-17, the cell culture being preferably a mammalian cell culture. 1 35 30. Cellekultur ifølge krav 28 eller 29, kendetegnet ved, at den er en Vero-cellekultur eller en hønsefosterfibro-blastcellekultur, der indeholder en vacciniaekspressionsvektor ifølge krav 26, og i hvilken der udtrykkes den del af E-proteinet, der svarer til de indsatte DNA-sekvenser. I DK 175515 B1 I I 42 ICell culture according to claim 28 or 29, characterized in that it is a Vero cell culture or a chicken embryo fibroblast cell culture containing a vaccinia expression vector according to claim 26, wherein the portion of the E protein corresponding to the inserted is expressed. DNA sequences. I DK 175515 B1 I I 42 I 31. Peptid eller polypeptid, I I kendetegnet ved, at det omfatter en aminosyresekvens, der indkodes af en I I hvilken som helst af nukleotidsekvenserne ifølge et hvilket som helst af kravene 1- I I 17 I I 5 iA peptide or polypeptide, characterized in that it comprises an amino acid sequence encoded by any of the nucleotide sequences of any one of claims 1- 32. Peptid eller polypeptid ifølge krav 31, I I kendetegnet ved, at det fremstilles ved ekspression af én af sekvenserne I I ifølge et hvilket som helst af kravene 1-17 i et egnet ekspressionssystem. I I 10 33. Peptid eller polypeptid ifølge krav 32, I I kendetegnet ved, at det fremstilles i en cellekultur ifølge krav 30. IPeptide or polypeptide according to claim 31, characterized in that it is produced by expression of one of the sequences 11 according to any one of claims 1-17 in a suitable expression system. The peptide or polypeptide of claim 32, characterized in that it is produced in a cell culture according to claim 30. 34. Peptid eller polypeptid ifølge krav 31, I kendetegnet ved, at det syntetiseres kemisk. I I 15 IThe peptide or polypeptide of claim 31, characterized in that it is chemically synthesized. I I 15 I 35. Præparat, I I kendetegnet ved, at det omfatter ét eller flere af peptiderne eller poly- I I peptiderne ifølge et hvilket som helst af kravene 31-34. I I 20 35. Levende vaccine, I I kendetegnet ved, at den omfatter DNA-sekvenser ifølge et hvilket som I I helst af kravene 1-10 og/eller RNA-sekvenser ifølge et hvilket som helst af kravene I I 11-17. I 25 37. Levende vaccine, I kendetegnet ved, at én eller flere DNA-sekvenser ifølge et hvilket som helst I af kravene 1-10 er kombineret med vacciniavirus-DNA.Composition, characterized in that it comprises one or more of the peptides or poly-I peptides according to any one of claims 31-34. A live vaccine, characterized in that it comprises DNA sequences according to any one of claims 1-10 and / or RNA sequences according to any one of claims 11-11. 37. Live vaccine, characterized in that one or more DNA sequences according to any one of claims 1-10 are combined with vaccinia virus DNA. 38. Levende vaccine ifølge krav 37, I 30 kendetegnet ved, at den indeholder en vacciniavektor ifølge krav 26.Live vaccine according to claim 37, characterized in that it contains a vaccine vector according to claim 26. 39. Vaccine, I kendetegnet ved, at den indeholder et præparat ifølge krav 35. DK 175515 B1 4339. Vaccine, characterized in that it contains a composition according to claim 35. DK 175515 B1 43 40. Anvendelse af en vaccine ifølge et hvilket som helst af kravene 36-39 til fremstilling af specifikke immunoglobuliner.Use of a vaccine according to any one of claims 36-39 for the preparation of specific immunoglobulins. 41. Diagnostisk middel, 5 kendetegnet ved, at dét indeholder et præparat ifølge krav 35.Diagnostic agent, characterized in that it contains a composition according to claim 35. 42. DNA- eller RNA-probe, kendetegnet ved, at den hybridiserer med DNA- eller RNA-sekvenser ifølge et hvilket som helst af kravene 1-17. 1042. DNA or RNA probe, characterized in that it hybridizes to DNA or RNA sequences according to any one of claims 1-17. 10
DK149488A 1987-03-20 1988-03-18 DNA and RNA molecules derived from the western subtype of FSME virus, corresponding vectors, vaccinia expression vector, carrier bacterium, cell culture, peptide or polypeptide, preparation comprising peptides or polypeptides, 1 ... DK175515B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP87104114 1987-03-20
EP87104114 1987-03-20
EP88103003A EP0284791B1 (en) 1987-03-20 1988-02-29 DNA and RNA molecules of the western-subtype TBE virus, polypeptides coded by these molecules and their use
EP88103003 1988-02-29

Publications (3)

Publication Number Publication Date
DK149488D0 DK149488D0 (en) 1988-03-18
DK149488A DK149488A (en) 1988-09-21
DK175515B1 true DK175515B1 (en) 2004-11-15

Family

ID=26107821

Family Applications (1)

Application Number Title Priority Date Filing Date
DK149488A DK175515B1 (en) 1987-03-20 1988-03-18 DNA and RNA molecules derived from the western subtype of FSME virus, corresponding vectors, vaccinia expression vector, carrier bacterium, cell culture, peptide or polypeptide, preparation comprising peptides or polypeptides, 1 ...

Country Status (4)

Country Link
JP (1) JPS642586A (en)
AT (1) AT398782B (en)
DK (1) DK175515B1 (en)
FI (1) FI98466C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4730197B2 (en) * 2006-05-08 2011-07-20 パナソニック株式会社 High voltage transformer

Also Published As

Publication number Publication date
FI98466C (en) 1997-06-25
FI881294A0 (en) 1988-03-18
DK149488D0 (en) 1988-03-18
JPS642586A (en) 1989-01-06
AT398782B (en) 1995-01-25
ATA71388A (en) 1994-06-15
FI881294A (en) 1988-09-21
DK149488A (en) 1988-09-21
FI98466B (en) 1997-03-14

Similar Documents

Publication Publication Date Title
JP3826055B2 (en) Immunization with recombinant avipoxvirus
CA2031164C (en) Recombinant herpesvirus of turkeys and live vector vaccines derived thereof
US20030013076A1 (en) Parapoxvirus vectors
JPH11506614A (en) Recombinant raccoon poxvirus and its use as an effective vaccine against feline immunodeficiency virus infection
Zhou et al. The induction of cytotoxic T-lymphocyte precursor cells by recombinant vaccinia virus expressing human papillomavirus type 16 L1
Lee et al. Large hepatitis delta antigen in packaging and replication inhibition: role of the carboxyl-terminal 19 amino acids and amino-terminal sequences
EP0229826A1 (en) Methods and compositions useful in preventing equine influenza
Gritz et al. Generation of hybrid genes and proteins by vaccinia virus-mediated recombination: application to human immunodeficiency virus type 1 env
JPH01500161A (en) Glycoprotein of the virus causing AIDS, method for producing the glycoprotein, and vaccine
US5858373A (en) Recombinant poxvirus-feline infectious peritionitis virus, compositions thereof and methods for making and using them
JP2007254489A (en) Immunogenic composition containing recombinant attenuated poxvirus expressing htlv antigen
Sato et al. High-level expression of the Japanese encephalitis virus E protein by recombinant vaccinia virus and enhancement of its extracellular release by the NS3 gene product
JPH0365191A (en) Spheroidine isolated dna and recombinant insect pox virus expression vector
EP0284791B1 (en) DNA and RNA molecules of the western-subtype TBE virus, polypeptides coded by these molecules and their use
DK175515B1 (en) DNA and RNA molecules derived from the western subtype of FSME virus, corresponding vectors, vaccinia expression vector, carrier bacterium, cell culture, peptide or polypeptide, preparation comprising peptides or polypeptides, 1 ...
WO1994012617A1 (en) Hepatitis b virus vaccines
Gong et al. A single point mutation of Ala-25 to Asp in the 14,000-Mr envelope protein of vaccinia virus induces a size change that leads to the small plaque size phenotype of the virus
CA2591532A1 (en) Nucleic acid sequences encoding proteins capable of associating into a virus-like particle
Tuchiya et al. Characterization of rabies virus glycoprotein expressed by recombinant baculovirus
US5691170A (en) Generation of hybrid genes and proteins by virus-mediated recombination
WO1994003621A1 (en) Vector vaccines of recombinant feline herpesvirus
AU604791B2 (en) Viral vector and recombinant DNA coding, in particular, for the p25 protein of the virus that is a causal agent of aids, infected cell culture, protein obtained, vaccine and antibodies obtained
FI102835B (en) Western subtype peptides and polypeptides of FSME virus and diagnostic agents containing them
JPH07265093A (en) Production of surface antigen protein of japanese encephalitis virus using mammalian cell
SK277781B6 (en) Peptides and polypeptides, vaccines and nucleous acid

Legal Events

Date Code Title Description
PBP Patent lapsed
PUP Patent expired