DK142290B - Method of Removing Coke Deposits from Hydrocarbon Vapor Wires. - Google Patents
Method of Removing Coke Deposits from Hydrocarbon Vapor Wires. Download PDFInfo
- Publication number
- DK142290B DK142290B DK250875AA DK250875A DK142290B DK 142290 B DK142290 B DK 142290B DK 250875A A DK250875A A DK 250875AA DK 250875 A DK250875 A DK 250875A DK 142290 B DK142290 B DK 142290B
- Authority
- DK
- Denmark
- Prior art keywords
- coke
- cyclone
- nozzle
- steam
- liters
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G9/00—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G9/14—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
- C10G9/16—Preventing or removing incrustation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B43/00—Preventing or removing incrustations
- C10B43/02—Removing incrustations
- C10B43/08—Removing incrustations with liquids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S585/00—Chemistry of hydrocarbon compounds
- Y10S585/949—Miscellaneous considerations
- Y10S585/95—Prevention or removal of corrosion or solid deposits
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Coke Industry (AREA)
- Pipeline Systems (AREA)
- Cyclones (AREA)
Description
(11) FREMLÆGGELSESSKRIFT 142290(11) PRESENTATION 142290
DANMARK «"*“« * Il “ ,j;;SDENMARK «" * "« * Il «, j ;; S
«(21) Ansøgning nr. 2508/75 (22) indleveret den 4. jun, 1975 (24) Løbedag 4. jUTl. 1975 (44) Ansøgningen fremlagt og - fremlæggelsesskriftet offentliggjort den o· OKt. 1980'(21) Application No 2508/75 (22) filed on 4 Jun 1975 (24) Race day 4 jUTl. 1975 (44) The application submitted and - the writ petition published on o · oct. 1980
DIREKTORATET FORDIRECTORATE OF
PATENT-OG VAREMÆRKEVÆSENET (30) Prioritet begæret fra denPATENT AND TRADE MARKET (30) Priority requested from it
5- jun. 1974, 476725, USJune 5 1974, 476725, US
(7i) TOSCO CORPORATION, 10100 Santa Monica Boulevard, Los AngeleB, "Californien $0067, OS.(7i) TOSCO CORPORATION, 10100 Santa Monica Boulevard, Los AngeleB, "California $ 0067, OS.
(72) Opfinder: John H. Walker, 5800 Stockdale Highway - Apt. 42 Bakers= field, Californien"93509, US.(72) Inventor: John H. Walker, 5800 Stockdale Highway - Apt. 42 Bakers = field, California "93509, US.
(74) Fuldmægtig under sagens behandling:(74) Plenipotentiary in the proceedings:
Ingeniørfirmaet Hofman-Bang & Boutard.Hofman-Bang & Boutard Engineering Company.
(54) Fremgangsmåde til fjernelse af koks af le jr Inger fra carbonhydridt= dampførende ledninger.(54) Procedure for removing coke of le jr Inger from hydrocarbon = steam conducting wires.
Opfindelsen angår en fremgangsmåde til fjernelse af koksaflej-ringer fra carbonhydriddampførende ledninger, medens der stadig passerer carbonhydriddamp igennem ledningen.The invention relates to a method for removing coke deposits from hydrocarbon vapor conduits while still passing hydrocarbon vapor through the conduit.
Ted udførelsen af carhonhydridkrakningsoperationer, såsom de, der indgår i "fluid coking"-operationer, aflejres gradvist koks eller carbon i den dampledning, som fører fra reaktionsudstyret. I sidste ende indsnævrer disse koksaflejringer i alvorlig grad strømmen af carbonhydriddampe fra reaktionszonen og får trykket i reaktionszonen til at forøges til farlige niveauer.In the performance of hydrocarbon cracking operations, such as those involved in "fluid coking" operations, coke or carbon is gradually deposited in the steam line leading from the reaction equipment. Ultimately, these coke deposits severely curtail the flow of hydrocarbon vapors from the reaction zone and cause the pressure in the reaction zone to increase to dangerous levels.
Som følge heraf må reaktoren standses, når der er opnået et farligt trykniveau, og koksaflejringen fjernes fra ledningen.As a result, the reactor must be stopped when a dangerous pressure level is reached and the coke deposition is removed from the conduit.
2 1422902 142290
Koirsaflejring på inderf laderne af udgangsledninger fra produkt-dampcyklonen i "fluid coking"-reaktorer har været et problem i nogen tid. Ted en carbonhydridkrakningsoperation, såsom "fluid coking" eller pyrolyse, fjernes produktdampene sædvanligvis ovenfra gennem en cyklon anbragt i den øvre del af reaktoren.Coir deposition on the inner liners of exit lines from the product steam cyclone in "fluid coking" reactors has been a problem for some time. In a hydrocarbon cracking operation, such as "fluid coking" or pyrolysis, the product vapors are usually removed from above through a cyclone located in the upper part of the reactor.
Da disse dampe, som forlader reaktionszonen, er ved eller nær ved deres dug- eller kondensationspunkt, vil de kondenseres på enhver køligere overflade. Dette gælder sædvanligvis overfladerne i dampledninger, som fører dampene fra reaktionszonen til ekstraudstyr, såsom en fraktionator. Denne kondensation og efterfølgende koksaflejring er særlig alvorlig på overflader med temperaturer på fra omkring 370 til omkring 540° 0. Den kontinuerte aflejring af koks i disse produktoverføringsledninger får trykfaldet til at forøges til uantagelige niveauer, som kræver lukning og rensning som bemærket ovenfor.Since these vapors leaving the reaction zone are at or near their dew point or condensation point, they will condense on any cooler surface. This usually applies to the surfaces of steam lines which carry the vapors from the reaction zone to extras such as a fractionator. This condensation and subsequent coke deposition is particularly severe on surfaces with temperatures of from about 370 to about 540 ° 0. The continuous deposition of coke in these product transfer lines causes the pressure drop to increase to unacceptable levels requiring closure and purification as noted above.
I "fluid coking"-anlæg har en foreslået løsning været at indsprøjte findelte varme kokspartikler i den dispergerede fase for at forhindre koksaflejring og kondensation ved opvarmning af dampene og bortskrubning af af lejret koks fra cyklonen. Denne metode har været i udstrakt anvendelse. Imidlertid har den vist sig vanskelig at gennemføre og har ikke fuldstændigt kunnet fjerne koksaflejring i cyklonudgangsdysen. Andre metoder er blevet foreslået til at fjerne koksaflejring i udstrømningsdysen og dampoverføringsledningeme under driften. I beskrivelsen til USA-patent nr. 2 934 489 er det foreslået at injicere en kontrolleret lille mængde oxygenholdig gas i cyklonen for at forbrænde en del af produktdampene med det formål at hæve temperaturen af udtømningsledningernes indre overflader, således at koksaflejring forhindres. Denne procedure er ikke ønskelig, da forbrændingsprodukter træder ind i carbonhydridstrømmen. I beskrivelsen til USA-patent nr. 2 326 525 er det foreslået positivt at forhindre opbygningen af koksaflejringer i dampledninger ved periodisk at tvinge et patronstempel forsynet med roterende sprøjtedyser igennem aflejringen af materiale i dampledningen, medens der sprøjtes olie under tryk af størrelsesordenen 105 -140 kp/cm i en mængde af fra omkring 284 til omkring 568 liter pr. minut igennem hver af fire dyser. Patronstemplet eller "støderen" anvendes til at skubbe igennem tjæreagtige materialer eller opbryde hærdnet koks. Ved at tilføre olien under sådanne tryk og i sådanne mængder er det muligt at vaske de tjæreagtige 3 142290 eller bløde aflejringer fra dampstigrøret og at skrubbe væggene fri for koksaflejringer, som kan være blevet bagt deraf. Operationen gennemføres en eller to gange om dagen i 2 - 3 minutter. Denne metode ville ikke være tilfredsstillende til kommercielle "fluid coking"- eller pyrolyseoperationer i stor målestok, fordi sådanne mængder sprøjteolie, når de injiceres i cyklonudstrømningsdysen, alvorligt ville forstyrre forkoksnings-eller pyrolyseoperationeme ved at afdestillere store mængder dampe ind i dampledningen. Dette ville igen alvorligt forstyrre forkoksningsoperationen ved at frembringe en væsentlig trykforøgelse i reaktoren og fraktioneringsudstyret. En sådan trykforøgelse kunne medføre standsning af reaktoren og skade på fraktioneringsudstyret. For at undgå denne situation måtte tilførselshastigheden til reaktoren reduceres væsentligt for at kompensere for det tilførte dampvolumen til fraktionatoren. At skulle udføre en sådan cyklisk operation med en hyppighed på en eller to gange hver 24 timer ville være højst uønskeligt ud fra et betjeningssynspunkt. Sådanne svære fluktuationer ville ikke blot skade reaktoren, men også alt raffineringsudstyr efter denne.In "fluid coking" systems, a suggested solution has been to inject finely divided hot coke particles into the dispersed phase to prevent coke deposition and condensation by heating the vapors and scraping off of stored cocks from the cyclone. This method has been widely used. However, it has proved difficult to implement and has not been able to completely remove coke deposition in the cyclone exit nozzle. Other methods have been proposed to remove coke deposition in the effluent nozzle and steam transfer lines during operation. In the disclosure of U.S. Patent No. 2,934,489, it is proposed to inject a controlled small amount of oxygen-containing gas into the cyclone to burn a portion of the product vapors for the purpose of raising the temperature of the interior surfaces of the discharge lines so as to prevent coke deposition. This procedure is not desirable as combustion products enter the hydrocarbon stream. In U.S. Pat. No. 2,326,525, it is proposed to positively prevent the build-up of coke deposits in steam pipes by periodically forcing a cartridge plunger provided with rotary spray nozzles through the deposition of material in the steam pipe while spraying oil of the order of 105-140. kp / cm in an amount of from about 284 to about 568 liters per liter. per minute through each of four nozzles. The cartridge piston or "bumper" is used to push through tar-like materials or break hardened coke. By applying the oil under such pressures and in such quantities, it is possible to wash the tar-like or soft deposits from the steam riser and scrub the walls free of coke deposits which may have been baked therefrom. The operation is performed once or twice a day for 2 - 3 minutes. This method would not be satisfactory for large-scale commercial "fluid coking" or pyrolysis operations because such amounts of spray oil when injected into the cyclone effluent nozzle would seriously interfere with coking or pyrolysis operations by distilling large quantities of vapor into the steam line. This, in turn, would seriously interfere with the coking operation by producing a substantial increase in pressure in the reactor and fractionation equipment. Such pressure increase could cause the reactor to shut down and damage to the fractionation equipment. To avoid this situation, the feed rate to the reactor had to be substantially reduced to compensate for the vapor volume supplied to the fractionator. Having to perform such a cyclic operation at a frequency of once or twice every 24 hours would be highly undesirable from a service point of view. Such severe fluctuations would not only damage the reactor but also all refining equipment thereafter.
Formålet for den foreliggende opfindelse er derfor at angive en fremgangsmåde til fjernelse under driften af koksaflejringer fra dampcyklonudstrømningsdyser og carbonhydriddampledninger uden skadelig virkning på "fluid coking"- eller pyrolysereaktionen, reaktoren og ekstra udstyr og efterfølgende raffineringsudstyr.The object of the present invention is therefore to provide a method of removal during operation of coke deposits from steam cyclone effluent nozzles and hydrocarbon vapor pipes without detrimental effect on the fluid coking or pyrolysis reaction, reactor and additional equipment and subsequent refining equipment.
Dette opnås ved fremgangsmåden ifølge opfindelsen, som er ejendommelig ved det i krav 1*s kendetegnende del anførte.This is achieved by the method according to the invention, which is characterized by the characterizing part of claim 1 *.
Det har ifølge opfindelsen vist sig, at for et 834 m^/d "fluid coking "-anlæg vil en relativt lille mængde koldt vand, fortrinsvis mellem 113 og 152 liter pr. minut, tilført ved et tryk på over cir-ka 350 kp/cm , give koksaflejringen et termisk chok, bryde den i stykker og blæse stykkerne ud fra dysen uden skadelig virkning på forkoksnings- eller pyrolyseoperationen. Mængden af vand vil variere noget, afhængigt af anlæggets størrelse, men vandmængden må være tilstrækkelig til at frembringe en pludselig, hurtig ændring i kokstemperaturen. Det er ønskeligt at reducere damptilførselsmængden til "fluid coking"-anlægget under indsprøjtningsperioden med 4 142290 en mængde, som er tilnærmelsesvis lig med det volumen vand, som vil fordampes under indsprøjtningsoperationen. Den ovenstående procedure er blevet gennemført med held i stor målestok på et 834 m^/d "fluid coking"-anlæg, som hidtil havde måttet standses for manuelt at fjerne koksaflejringer fra cyklonudstrømningsdysen. Ved forsøg udført på dette anlæg gennemføres af koksningsoperationen under driften på fra omkring 30 til omkring 6o minutter ved 4-6 måneders intervaller.It has been found, according to the invention, that for a 834 m 2 / d fluid coking plant a relatively small amount of cold water, preferably between 113 and 152 liters per per minute, applied at a pressure exceeding about 350 kp / cm, give the coke deposit a thermal shock, break it, and blow the pieces out of the nozzle without detrimental effect on the coking or pyrolysis operation. The amount of water will vary somewhat depending on the size of the plant, but the amount of water must be sufficient to produce a sudden, rapid change in the boiling temperature. It is desirable to reduce the amount of steam supply to the "fluid coking" plant during the injection period by an amount approximately equal to the volume of water which will evaporate during the injection operation. The above procedure has been successfully performed on a large scale on an 834 m 2 / d fluid coking plant which had hitherto had to be stopped to manually remove coke deposits from the cyclone outflow nozzle. Experiments conducted at this plant are carried out by the coking operation during operation of from about 30 to about 6 minutes at 4-6 month intervals.
Fremgangsmåden ifølge opfindelsen skal i det følgende beskrives nærmere i forbindelse med et konventionelt 834 m^/d "fluid coking"-anlæg. Et sådant anlæg inkluderer en reaktor med en cyklonseparator, hvorigennem de krakkede carbonhydriddampe føres for at fjerne tjærepartikler, før dampene træder ind i en fraktionator. "Fluid coking"-reaktorer arbejder almindeligvis ved tryk på mindre p end 3,5 kp/cm . Denne bestemte reaktor drives normalt ved et p tryk på mindre end 1,4 kp/cm , idet det maksimale reaktortryk Λ er omkring 1,75 kp/cm . Trykfaldet igennem en ren cyklon er nor- p malt fra omkring 0,07 til omkring 0,28 kp/cm . Efterhånden som der sker koksaflejring i cyklonudstrømningsdysen, får dette p trykfald lov til at stige til omkring 0,7 - 0,84 kp/cm , ved hvilket tidspunkt koks aflejringen må fjernes for at undgå for højt tryk i reaktoren. Når således trykfaldet forøges til omkring 0,70 - 0,84 kp/cm , indsættes en lanse igennem en dyse i siden af reaktorvæggen og ind i dampcyklonudstrømningsdysen. lansen indeholder to små over for hinanden liggende huller, hvorigennem vandstrålen rettes mod koksaflejringen på udstrømningsdysens inderflader. Disse huller er fortrinsvis skråtstillet imod enden af lansen i en vinkel på omkring 5°, således at koksstykkerne blæses ud af dysen i retningen af den normale carbonhydrid-dampstrøm. Før indsprøjtningen af vand formindskes begtilførselshastigheden til reaktoren med cirka 119 m^d, og dampmængderne reduceres noget for at kompensere for det volumen fordampet vand, som skal føres ovenud til fraktionatoren. Vand ved en temperatur på fra omkring 10 til omkring 21° C tilføres lansen under tryk. Vandmængden og trykket forøges, indtil der er nået en vandmængde på 113 - 152 liter pr. minut og et tryk på fra omkring 420 til omkring 490 kp/cm , til hvilket tidspunkt koksaflejringen vil brydes op og blæses ud fra dysen. Så snart koksaflejringen er fjernet, vil der bemærkes et hurtigt fald i cyklon-tryktabet, og tryktabet vil vende tilbage til sit normale drifts- 2 142290 5 område af størrelsesordenen 0,07 - 0,28 kp/cm . Lansen trækkes derpå ud, og forkoksningsoperationen bringes tilbage til det normale. De følgende eksempler tjener til bedre at belyse fremgangsmåden ifølge opfindelsen anvendt på et 834 nrVd "fluid coking"-an-leeg.The process according to the invention will be described in the following in connection with a conventional 834 m 2 / d fluid coking plant. Such a plant includes a reactor with a cyclone separator through which the cracked hydrocarbon vapors are passed to remove tar particles before the vapors enter a fractionator. "Fluid coking" reactors generally operate at pressures of less than 3.5 kp / cm. This particular reactor is usually operated at a pressure of less than 1.4 kp / cm, with the maximum reactor pressure Λ being about 1.75 kp / cm. The pressure drop through a clean cyclone is normally from about 0.07 to about 0.28 kp / cm. As coke deposition occurs in the cyclone effluent nozzle, this pressure drop is allowed to increase to about 0.7 - 0.84 kp / cm, at which point the coke deposition must be removed to avoid excessive pressure in the reactor. Thus, when the pressure drop is increased to about 0.70 - 0.84 kp / cm, a lance is inserted through a nozzle into the side of the reactor wall and into the steam cyclone outflow nozzle. the lance contains two small opposite holes through which the jet of water is directed to the coke deposit on the inner surfaces of the outflow nozzle. These holes are preferably inclined towards the end of the lance at an angle of about 5 ° so that the coke pieces are blown out of the nozzle in the direction of the normal hydrocarbon vapor stream. Prior to the injection of water, the feed rate to the reactor is reduced by about 119 m 2 d and the vapor volumes are somewhat reduced to compensate for the volume of evaporated water to be fed above the fractionator. Water at a temperature of from about 10 to about 21 ° C is applied to the lance under pressure. The volume of water and the pressure is increased until a volume of 113 - 152 liters per liter is reached. per minute and a pressure of from about 420 to about 490 kp / cm, at which time the coke deposition will break up and blow out from the nozzle. As soon as the coke deposition is removed, a rapid decrease in the cyclone pressure loss will be noticed and the pressure loss will return to its normal operating range of the order of 0.07 - 0.28 kp / cm. The lance is then pulled out and the coking operation is brought back to normal. The following examples serve to better illustrate the process of the invention applied to an 834 noVd fluid coking plant.
EKSEMPEL 1 "Fluid coking"-anlægget blev kørt med en begtilførsel på omkring 754 m^/d med et cyklontrykfald på 0,636 kp/cm2. Den i den følgende tabel angivne trinfølge blev anvendt til med held at reducere trykfaldet til 0,274 kp/cm2:EXAMPLE 1 The "fluid coking" plant was run at a feed rate of about 754 m 2 / d with a cyclone pressure drop of 0.636 kp / cm 2. The step sequence given in the following table was used to successfully reduce the pressure drop to 0.274 kp / cm 2:
TABEL ITABLE I
Tid Aggregatbetingelser og procedurer 9.00 Aggregatbetingelser:Time Unit conditions and procedures 9.00 Unit conditions:
Begtilførsel 518 m^/dInput 518 m ^ / d
Nedre omrøringsdamp 1195 kg/hLower agitation steam 1195 kg / h
Destillationsdamp 1020 kg/h Løftedamp for varm koks 946 kg/hDistillation steam 1020 kg / h Lift steam for hot coke 946 kg / h
Cyklon Δ P 0,432 kp/cm2Cyclone Δ P 0.432 kp / cm2
Reaktortryk 0,844 kp/cm2 9.13 Lansen indsættes med en vandstrøm på 22,7 liter/min.Reactor pressure 0.844 kp / cm2 9.13 The lance is inserted with a flow of 22.7 liters / min.
9.15 5-7,5 cm inde i cyklonudgangsdysen, 113 liter/min. ved 316 kp/cm2, 1,05 kp/cm2 reaktortryk, 0,457 kp/cm2 cyklon Δ P.9.15 5-7.5 cm inside the cyclone exit nozzle, 113 liters / min. at 316 kp / cm2, 1.05 kp / cm2 reactor pressure, 0.457 kp / cm2 cyclone Δ P.
9.20 10 cm inde i dysen, lansen roteres, 133 liter/min. ved 457 kp/cm2.9.20 10 cm inside the nozzle, the lance is rotated, 133 liters / min. at 457 kp / cm2.
9.53 7,5 cm inde i dysen, roteres, 133 liter/min. ved 457 p kp/cm .9.53 7.5 cm inside the nozzle, rotated, 133 liters / min. at 457 p kp / cm.
10.06 23 cm ind og ud, lansen roteres, 133 liter/min. ved 457 kp/cm2.10.06 23 cm in and out, the lance is rotated, 133 liters / min. at 457 kp / cm2.
2 10.14 18 cm inde i dysen, 133 liter/min. ved 457 kp/cm .2 10.14 18 cm inside the nozzle, 133 liters / min. at 457 kp / cm.
2 10.56 23 cm inde i dysen, 133 liter/min. ved 457 kp/cm .2 10.56 23 cm inside the nozzle, 133 liters / min. at 457 kp / cm.
6 1422906 142290
Tid Aggregatbetingelser og -procedurer 10.59 28 cm inde i dysen, lansen roteres.Time Unit conditions and procedures 10.59 28 cm inside the nozzle, the lance is rotated.
11.06 Man følte en forhindring forsvinde.11.06 An obstacle was felt to disappear.
11.09 33 cm, noget gav efter, den roterende lanse følte for hindring 35,5 cm inde i dysen.11.09 33 cm, something gave in, the rotating lance felt for obstruction 35.5 cm inside the nozzle.
11.12 41 cm inde i dysen, noget gav efter.11.12 41 cm inside the nozzle, something yielded.
11.16 35,5 cm inde i dysen, masser af stumper ramte lansen.11.16 35.5 cm inside the nozzle, lots of bits hit the lance.
11.20 0,176 kp/cm^ i cyklon 4 P, nu i Ϊ tah. 0,218 kp/cm^, store stumper ramte køletårnets væg.11.20 0.176 kp / cm ^ in cyclone 4 P, now in Ϊ tah. 0.218 kp / cm ^, large chunks hit the wall of the cooling tower.
11.35 Bevæges 28 - 43 cm roterende med lansen i nedad-stilling.11.35 Moves 28 - 43 cm rotating with the lance in the down position.
11.40 51 cm inde.11.40 51 cm inside.
11.49 Ud i tomgang.11.49 Out at idle.
o 12.02 135 liter/min. Yed 457 kp/cm 35,5-41 cm rotering og sondering med lansen.o 12.02 135 liters / min. Yed 457 kp / cm 35.5-41 cm lance rotation and probing.
12.17 Bevæges ud, idet lansen roteres.12.17 Moves out as the lance is rotated.
12.18 Ud og i tomgang.12.18 Out and idle.
6.00 Begtilførsel: 747 m^/d, cyklon & P: 0,274 kp/cm^.6.00 Input: 747 m 2 / d, cyclone & P: 0.274 kp / cm 2.
Ud fra de ovenstående data er det klart, at koksen ikke kunne fjernes med held, før vandstrømmen nåede omkring 133 liter pr.From the above data, it is clear that the coke could not be removed successfully until the water flow reached about 133 liters per liter.
p minut ved 457 kp/cm .per minute at 457 kp / cm.
EKSEMPEL 2EXAMPLE 2
Dette eksempel giver en tidstabel over en anden afkoksningsope-ration udført tilnærmelsesvis 4 måneder efter den foregående afkoksningsoperation.This example provides a time table of another coking operation performed approximately 4 months after the previous coking operation.
TABEL· 2TABLE · 2
Tid Aggregatbetingelser og procedure 10.00 Aggregatet kører med fuld hastighed med de følgende aflæsninger : 7 142290Time Unit conditions and procedure 10.00 The unit runs at full speed with the following readings: 7 142290
Tid Aggregatbetingelser og procedureTime Aggregate conditions and procedure
Beg 787 m5/dBeg 787 m5 / d
Omrøringsdamp 1762 kg/hStirring steam 1762 kg / h
Destillationsdamp 1258 kg/h Løftedamp for varm koks 1793 kg/hDistillation steam 1258 kg / h Lift steam for hot coke 1793 kg / h
Cyklon δ E 0,598 kp/cm2Cyclone δ E 0.598 kp / cm 2
OISLAND
Reaktortryk 1,407 kp/cm 10.02 Der hegyndtes med at reducere hegtilførselen og damp- o mængderne for at opnå et reaktortryk på 1,195 kp/cm .Reactor pressure 1,407 kp / cm 10.02 The hedge feed and steam volumes were reduced to achieve a reactor pressure of 1,195 kp / cm.
2 11.45 Aggregatet stabiliseret ved 1,195 kp/cm reaktortryk; aflæsninger:2 11.45 The unit stabilized at 1,195 kp / cm reactor pressure; Readings:
Beg 685 m^/dBeg 685 m ^ / d
Omrøringsdamp 1566 kg/hStirring steam 1566 kg / h
Destillationsdamp 1057 kg/h Løftedamp for varm koks 1537 kg/hDistillation steam 1057 kg / h Lift steam for hot coke 1537 kg / h
Damp gennem ledning for store koks- 363 kg/h til 0 stykker, reduceretSteam through conduit for large coke- 363 kg / h to 0 pieces, reduced
Cyklon δ P 0,520 kp/cm2 13.20 Begyndte at fjerne prop til indsætning af lansen.Cyclone δ P 0.520 kp / cm2 13.20 Started removing plug for insertion of lance.
13.48 lanse på plads parat til at åhne den varme vandventil.13.48 lance in place ready to open the hot water valve.
13.53 Lansen indeni ventilen, vand startet med 18,9 liter/min. Cyklon δ E kortvarigt faldet 0,07 kp/cm og vendt tilbage til 0,520 kp/cm2.13.53 The lance inside the valve, water started at 18.9 liters / min. Cyclone δ E briefly decreased 0.07 kp / cm and returned to 0.520 kp / cm2.
13.55 45,4 liter/min., 35>2 kp/cm2. Nu ved dysens spids.13.55 45.4 liters / min, 35> 2 kp / cm2. Now at the tip of the nozzle.
13.56 Nu omkring 5,1 cm inde i dysen. Cyklon δ E forøges til 0,556 kp/cm2.13.56 Now about 5.1 cm inside the nozzle. Cyclone δ E increases to 0.556 kp / cm 2.
13.57 Vandstrømmen forøget til 56,8 liter/min. og 70,3 kp/cm2.13.57 Water flow increased to 56.8 liters / min. and 70.3 kp / cm 2.
pp
Reaktortryk nu 1,407 kp/cm . Lansen roteres 5,1 cm inde i dysen.Reactor pressure now 1,407 kp / cm. The lance is rotated 5.1 cm inside the nozzle.
2 14.00 Vandstrømmen forøges til 90,8 liter/min. og 176 kp/cm omkring 5,1 cm inde i dysen. Pludseligt fald i cyklon Δ P til 0,354 kp/cm2. Reaktortryk nu nede på 1,267 kp/cm . Operatørerne nærmest køletårnet rapporterer, at de ingen lyde har hørt.2 14.00 The water flow increases to 90.8 liters / min. and 176 kp / cm about 5.1 cm inside the nozzle. Sudden decrease in cyclone Δ P to 0.354 kp / cm2. Reactor pressure now down to 1,267 kp / cm. The operators closest to the cooling tower report that they have heard no sounds.
2 14.02 Vandstrømmen forøges til 117 liter/min. og 246 kp/cm .2 14.02 The flow of water is increased to 117 liters / min. and 246 kp / cm.
Roteres ved indgangen.Rotated at the entrance.
8 1422908 142290
Tid Aggregatbetingelser og procedure 14.03 125 liter/min. og 317 kp/cm2.Time Unit conditions and procedure 14.03 125 liters / min. and 317 kp / cm 2.
14.Ο6 133 liter/min. og 387 kp/cm2 stadig Ted indgangen.14.Ο6 133 liters / min. and 387 kp / cm2 still the Ted entrance.
14.07 Bevæges 10,2 cm ind. Stigetromleniveauet meget højt. Begtilførselen reduceres til 608 m^/d for at korrigere niveauet.14.07 Moves 10.2 cm in. The ladder drum level is very high. Beginning is reduced to 608 m 2 / d to correct the level.
14.08 Operatørerne rapporterer at høre stumper ramme væggen, men ingen ændring i Δ P.14.08 Operators report hearing blasts hit the wall, but no change in Δ P.
14.09 Bevæges ind i dysen i alt 15,3 cm. Hører en anden· stump14.09 Moves into the nozzle a total of 15.3 cm. Hear another · blunt
OISLAND
ramme væggen. Pludseligt fald i ^ P til 0,204 kp/cm . Reaktortrykket nu 1,054 kp/cm . Operatører foretager korrektioner for at forøge reaktortrykket.hit the wall. Sudden drop in ^ P to 0.204 kp / cm. The reactor pressure is now 1.054 kp / cm. Operators make corrections to increase reactor pressure.
p 14.11 136 liter/min. og 422 kp/cm vand. Bevæges i alt 19,1 cm ind. 22,9 cm til bagvæggen.p 14.11 136 liters / min. and 422 kp / cm of water. Moves in a total of 19.1 cm. 22.9 cm to the back wall.
14.15 Mødt koks 5,1 cm fra metallet. Hørt flere stumper og opnået en yderligere reduktion i & P på 0,014 kp/cm . Indstilling af damphastighederne tilbage til det normale.14.15 Met coke 5.1 cm from the metal. Heard several snippets and achieved a further reduction in & P of 0.014 kp / cm. Setting the steam rates back to normal.
2 14.17 Stadig ved 136 liter/min. og 422 kp/cm vand. Lansen bevæges ud af dysen. Lansen roteres.2 14.17 Still at 136 liters / min. and 422 kp / cm of water. The lance is moved out of the nozzle. The lance is rotated.
14.24 fed ventilen 45,4 liter/min.14.24 fat valve 45.4 liters / min.
14.26 Tandet standses.14.26 The tooth is stopped.
14.46 δ P 0,176 kp/cm , målingen er tilfredsstillende.14.46 δ P 0.176 kp / cm, the measurement is satisfactory.
15.10 Tilførselen forøges til det normale.15.10 The supply is increased to normal.
16.15 Aggregatet føres tilbage til de mængder, det kørte med kl. 10.00, cyklon ^ P = 0,169 kp/cm2.16.15 The unit is returned to the quantities it ran at. 10.00, cyclone P = 0.169 kp / cm 2.
Af den ovenstående tidstabel fremgår det klart, at der skete en mindre afkoksning ved omkring 176 kp/cm , men koksf jemelsen begyndte ikke med held, før der var nået en vandstrøm på 133 liter/min,' ved et tryk på omkring 387 kp/cm .From the above timetable, it is clear that a smaller decoction occurred at about 176 kp / cm, but the coke mixture did not start successfully until a water flow of 133 liters / min was reached, at a pressure of about 387 kp / cm cm.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US476725A US3920537A (en) | 1974-06-05 | 1974-06-05 | Process for on-stream decoking of vapor lines |
US47672574 | 1974-06-05 |
Publications (3)
Publication Number | Publication Date |
---|---|
DK250875A DK250875A (en) | 1975-12-06 |
DK142290B true DK142290B (en) | 1980-10-06 |
DK142290C DK142290C (en) | 1981-03-02 |
Family
ID=23892993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK250875AA DK142290B (en) | 1974-06-05 | 1975-06-04 | Method of Removing Coke Deposits from Hydrocarbon Vapor Wires. |
Country Status (10)
Country | Link |
---|---|
US (1) | US3920537A (en) |
JP (1) | JPS5738635B2 (en) |
BR (1) | BR7503511A (en) |
CA (1) | CA1047426A (en) |
DE (1) | DE2524570C2 (en) |
DK (1) | DK142290B (en) |
GB (1) | GB1479860A (en) |
NL (1) | NL166868C (en) |
NO (1) | NO147489C (en) |
SE (1) | SE396766B (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5250306A (en) * | 1975-10-22 | 1977-04-22 | Kureha Chem Ind Co Ltd | Method and apparatus for decoking |
DE3114990A1 (en) * | 1980-04-21 | 1982-02-04 | Institut Français du Pétrole, 92502 Rueil-Malmaison, Hauts-de-Seine | METHOD FOR CONVERTING HEAVY DUTY HYDROCARBON OILS TO LIGHTER FRACTIONS |
JPS6046852A (en) * | 1983-08-23 | 1985-03-13 | Kubota Ltd | Bend straightening device for centrifugal casting metallic flask |
JPS6046853A (en) * | 1983-08-23 | 1985-03-13 | Kubota Ltd | Bend straightening device for centrifugal casting metallic flask |
US4917787A (en) * | 1983-10-31 | 1990-04-17 | Union Carbide Chemicals And Plastics Company Inc. | Method for on-line decoking of flame cracking reactors |
US5028314A (en) * | 1987-02-20 | 1991-07-02 | Chevron Research Company | Hydrodesulfurization with caked catalyst removal |
IN171582B (en) * | 1987-05-25 | 1992-11-21 | Luoyang Petrochem Eng | |
US4902403A (en) * | 1987-10-30 | 1990-02-20 | Ashland Oil, Inc. | Heat treatment of exchangers to remove coke |
US4904368A (en) * | 1987-10-30 | 1990-02-27 | Ashland Oil, Inc. | Method for removal of furfural coke from metal surfaces |
CA1296280C (en) * | 1987-10-30 | 1992-02-25 | Joe D. Turner | Method for removal for furfural coke from metal surfaces |
FR2716458B1 (en) * | 1994-02-22 | 1996-04-12 | Inst Francais Du Petrole | Decoking process and device. |
US5932089A (en) * | 1997-01-24 | 1999-08-03 | Atlantic Richfield Company | Petroleum coker cooling method with minimum coke drum stress |
CA2397509C (en) * | 2002-08-12 | 2007-02-20 | Ceda International Corporation | Apparatus and method for cleaning a coker or other vessel |
US8137476B2 (en) * | 2009-04-06 | 2012-03-20 | Synfuels International, Inc. | Secondary reaction quench device and method of use |
CN103540327B (en) * | 2012-11-22 | 2014-09-17 | 襄阳航生石化环保设备有限公司 | Automatic rotation type coke cutter |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1939112A (en) * | 1932-09-08 | 1933-12-12 | Adam J Eulberg | Process and apparatus for removing carbon from still tubes |
FR845265A (en) * | 1938-02-21 | 1939-08-17 | Bataafsche Petroleum | Hydraulic breakdown of solids, and in particular of carbonaceous deposits contained in certain vessels |
US2326525A (en) * | 1940-08-28 | 1943-08-10 | Standard Oil Co | Method of preventing deleterious coke deposits |
US2671741A (en) * | 1950-02-23 | 1954-03-09 | Texas Co | Decoking and cleaning tubular heaters |
US2934489A (en) * | 1957-04-02 | 1960-04-26 | Exxon Research Engineering Co | Heating of coker cyclone and outlet |
US3557241A (en) * | 1968-10-16 | 1971-01-19 | Exxon Research Engineering Co | Decoking of onstream thermal cracking tubes with h20 and h2 |
US3592762A (en) * | 1969-07-16 | 1971-07-13 | Signal Co Inc | Method for detecting coke build-up in fluid coker outlets and method for removing said coke |
US3732123A (en) * | 1970-12-21 | 1973-05-08 | Universal Oil Prod Co | Heater descaling |
-
1974
- 1974-06-05 US US476725A patent/US3920537A/en not_active Expired - Lifetime
-
1975
- 1975-05-29 NO NO751904A patent/NO147489C/en unknown
- 1975-05-30 GB GB23649/75A patent/GB1479860A/en not_active Expired
- 1975-06-02 CA CA228,203A patent/CA1047426A/en not_active Expired
- 1975-06-03 DE DE2524570A patent/DE2524570C2/en not_active Expired
- 1975-06-04 DK DK250875AA patent/DK142290B/en unknown
- 1975-06-04 SE SE7506367A patent/SE396766B/en not_active IP Right Cessation
- 1975-06-04 JP JP6666475A patent/JPS5738635B2/ja not_active Expired
- 1975-06-04 BR BR4500/75D patent/BR7503511A/en unknown
- 1975-06-05 NL NL7506698.A patent/NL166868C/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
GB1479860A (en) | 1977-07-13 |
SE396766B (en) | 1977-10-03 |
JPS5133769A (en) | 1976-03-23 |
CA1047426A (en) | 1979-01-30 |
DK250875A (en) | 1975-12-06 |
NL7506698A (en) | 1975-12-09 |
BR7503511A (en) | 1976-05-25 |
AU8159675A (en) | 1976-12-16 |
DK142290C (en) | 1981-03-02 |
NL166868C (en) | 1981-10-15 |
DE2524570A1 (en) | 1975-12-18 |
JPS5738635B2 (en) | 1982-08-17 |
DE2524570C2 (en) | 1982-05-19 |
NO147489C (en) | 1983-04-20 |
NO751904L (en) | 1975-12-08 |
SE7506367L (en) | 1975-12-08 |
NO147489B (en) | 1983-01-10 |
US3920537A (en) | 1975-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK142290B (en) | Method of Removing Coke Deposits from Hydrocarbon Vapor Wires. | |
SU895293A3 (en) | Method and device for cracking of heavy oils | |
US2671741A (en) | Decoking and cleaning tubular heaters | |
WO2009067288A1 (en) | Delayed coking process and apparatus | |
US7998281B2 (en) | Apparatus and method of cleaning a transfer line heat exchanger tube | |
CA1117279A (en) | Apparatus for diacritic cracking of hydrocarbon feeds | |
JPH0113515B2 (en) | ||
EP1868971B1 (en) | Solvent extraction of butadiene | |
WO2020096742A1 (en) | Delayed coker vapor line coke lancing | |
US2577254A (en) | Removing carbon and carbonaceous deposits from heat exchanger equipment | |
US2076847A (en) | Cleaning furnace tube | |
US3617478A (en) | Suppression of coke formation in a thermal hydrocarbon cracking unit | |
US2057441A (en) | Method of burning coke from heater tubes | |
US1912629A (en) | Treatment of heavy hydrocarbons | |
US1676675A (en) | Process of recovering light hydrocarbons from carbonaceous material | |
US2364492A (en) | Method of coking and cracking petroleum residues or the like | |
CN103534336B (en) | For the method preparing high VCM coke | |
US4585644A (en) | Changing oil tubes in a carbon black reactor | |
US4257778A (en) | Process for producing synthetic coking coal of high volatile matter content | |
US3996063A (en) | Method for removing coke from fluid coker outlets | |
RU2712663C1 (en) | Method and installation of coking chambers heating | |
US4917787A (en) | Method for on-line decoking of flame cracking reactors | |
JPS62246991A (en) | Thermal cracking treatment for cracked heavy fraction | |
US4334981A (en) | Coker blow down recovery system | |
US4328199A (en) | Method for producing carbon black |