DE69802417T2 - Katalytisches verfahren mit diolefinen mit verbesserter olefin-ausbeute - Google Patents
Katalytisches verfahren mit diolefinen mit verbesserter olefin-ausbeuteInfo
- Publication number
- DE69802417T2 DE69802417T2 DE69802417T DE69802417T DE69802417T2 DE 69802417 T2 DE69802417 T2 DE 69802417T2 DE 69802417 T DE69802417 T DE 69802417T DE 69802417 T DE69802417 T DE 69802417T DE 69802417 T2 DE69802417 T2 DE 69802417T2
- Authority
- DE
- Germany
- Prior art keywords
- process according
- range
- diolefin
- zeolite
- hydrocarbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 30
- 150000001336 alkenes Chemical class 0.000 title description 24
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 title description 9
- 230000003197 catalytic effect Effects 0.000 title description 6
- 239000003054 catalyst Substances 0.000 claims description 47
- 229930195733 hydrocarbon Natural products 0.000 claims description 41
- 150000002430 hydrocarbons Chemical class 0.000 claims description 41
- 150000001993 dienes Chemical class 0.000 claims description 36
- 239000010457 zeolite Substances 0.000 claims description 32
- 239000004215 Carbon black (E152) Substances 0.000 claims description 30
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 24
- 239000005977 Ethylene Substances 0.000 claims description 24
- 238000006243 chemical reaction Methods 0.000 claims description 23
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 22
- 229910021536 Zeolite Inorganic materials 0.000 claims description 19
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 19
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 19
- 238000005336 cracking Methods 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 11
- -1 offretite Inorganic materials 0.000 claims description 11
- 241000282326 Felis catus Species 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 230000002378 acidificating effect Effects 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 3
- GNKTZDSRQHMHLZ-UHFFFAOYSA-N [Si].[Si].[Si].[Ti].[Ti].[Ti].[Ti].[Ti] Chemical compound [Si].[Si].[Si].[Ti].[Ti].[Ti].[Ti].[Ti] GNKTZDSRQHMHLZ-UHFFFAOYSA-N 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- UNYSKUBLZGJSLV-UHFFFAOYSA-L calcium;1,3,5,2,4,6$l^{2}-trioxadisilaluminane 2,4-dioxide;dihydroxide;hexahydrate Chemical compound O.O.O.O.O.O.[OH-].[OH-].[Ca+2].O=[Si]1O[Al]O[Si](=O)O1.O=[Si]1O[Al]O[Si](=O)O1 UNYSKUBLZGJSLV-UHFFFAOYSA-L 0.000 claims description 3
- 229910052676 chabazite Inorganic materials 0.000 claims description 3
- 229910052675 erionite Inorganic materials 0.000 claims description 3
- 239000012013 faujasite Substances 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910001683 gmelinite Inorganic materials 0.000 claims description 3
- 229910052680 mordenite Inorganic materials 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- JEWHCPOELGJVCB-UHFFFAOYSA-N aluminum;calcium;oxido-[oxido(oxo)silyl]oxy-oxosilane;potassium;sodium;tridecahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.O.[Na].[Al].[K].[Ca].[O-][Si](=O)O[Si]([O-])=O JEWHCPOELGJVCB-UHFFFAOYSA-N 0.000 claims description 2
- 229910001657 ferrierite group Inorganic materials 0.000 claims description 2
- 229910052677 heulandite Inorganic materials 0.000 claims description 2
- 125000004817 pentamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 claims description 2
- 229910001743 phillipsite Inorganic materials 0.000 claims description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 claims description 2
- PRBHEGAFLDMLAL-UHFFFAOYSA-N 1,5-Hexadiene Natural products CC=CCC=C PRBHEGAFLDMLAL-UHFFFAOYSA-N 0.000 description 9
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical compound C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 description 9
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 8
- 238000004523 catalytic cracking Methods 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000009835 boiling Methods 0.000 description 4
- UVJHQYIOXKWHFD-UHFFFAOYSA-N cyclohexa-1,4-diene Chemical compound C1C=CCC=C1 UVJHQYIOXKWHFD-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 3
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 238000004227 thermal cracking Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 238000009533 lab test Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- AEVWQAYEQBFERA-UHFFFAOYSA-N hepta-1,2,3-triene Chemical compound CCCC=C=C=C AEVWQAYEQBFERA-UHFFFAOYSA-N 0.000 description 1
- KUQWZSZYIQGTHT-UHFFFAOYSA-N hexa-1,5-diene-3,4-diol Chemical compound C=CC(O)C(O)C=C KUQWZSZYIQGTHT-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910001387 inorganic aluminate Inorganic materials 0.000 description 1
- 229910052909 inorganic silicate Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical compound CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/20—C2-C4 olefins
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
- Die Erfindung betrifft ein Verfahren zur Erhöhung der Ausbeuten von Ethylen und Propylen in einem katalytischen Verfahren durch die Verwendung von Diolefinen im Einsatzmaterial von einem katalytischen Verfahren.
- Die thermische und katalytische Umwandlung von Kohlenwasserstoff zu Olefinen ist ein wichtiges industrielles Verfahren, das jährlich Milliarden Pfund an Olefinen produziert. Aufgrund des großen Produktionsumfangs ergeben kleine Verbesserungen des Betriebswirkungsgrades signifikante Profite. Katalysatoren spielen eine wichtige Rolle bei der selektiveren Umwandlung von Kohlenwasserstoffen zu Olefinen.
- Besonders wichtige Katalysatoren werden unter den natürlichen und synthetischen Zeolithen gefunden. Zeolithe sind komplexe kristalline Alumosilikate, die Netzwerke von AlO&sub4; und SiO&sub4; Tetrahedern bilden, die über gemeinsame Sauerstoffatome miteinander verbunden sind. Die negative Ladung der Tetraheder wird durch den Einschluss von Protonen oder Kationen, wie Alkali- oder Erdalkalimetallionen, ausgeglichen. Die Zwischenräume oder Kanäle, die durch das kristalline Netzwerk gebildet werden, erlauben die Verwendung von Zeolithen als Molekularsiebe in Trennungsverfahren. Die Fähigkeit der Zeolithe zur Adsorption von Materialien gestattet auch deren Verwendung als Katalysatoren. Es gibt eine große Zahl sowohl von natürlichen als auch synthetischen Zeolithstrukturen. Die große Breite dieser Strukturen wird beim Betrachten des Werkes "Atlas of Zeolite Structures Types" [Atlas von Zeolithstrukturtypen] von W. M. Meier, D. H. Olson und C. H. Baerlocher (4. Auflage, Butterworths/Intl. Zeolite Assoc. [1996]) begreiflich. Es wurde gefunden, dass Zeolith enthaltende Katalysatoren beim Cracken von Kohlenwasserstoffen zu Ethylen und Propylen, den hauptsächlichen Olefinen, aktiv sind. Von besonderem Interesse sind die ZSM-5-Zeolithe, die im US-Pat. Nr. 3,702,886 beschrieben und beansprucht werden, und ZSM-11, das in dem US-Pat. Nr. 3,709,979 beschrieben wird, und die zahlreichen Varianten dieser Katalysatoren, die in späteren Patenten offenbart und beansprucht werden.
- Es besteht ein ständiger Bedarf an einer Verbesserung der Ausbeute bei der Umwandlung von Kohlenwasserstoffen zu Ethylen und Propylen und insbesondere an einer Erhöhung der Ausbeuten von Propylen relativ zu Ethylen bei der katalytischen Kohlenwasserstoffverarbeitung. Mit zunehmender Erschöpfung der globalen Ölquellen wird die Notwendigkeit zu einer verbesserten Ausbeute zunehmend wichtig. Obwohl es viele Versuche gegeben hat, hat der Stand der Technik bisher die Notwendigkeit zu einer verbesserten Ausbeute nicht befriedigt. Die vorliegende Erfindung stellt eine verbesserte Umwandlung von Kohlenwasserstoffen zu leichten Olefinen und insbesondere zu Propylen durch die bewusste Bereitstellung von Diolefinen in dem Kohlenwasserstoffeinsatzmaterial zur Verfügung, das der katalytischen Umwandlung unterworfen wird. Wie man sehen kann, führt der Stand der Technik von der beanspruchten Erfindung weg und zeigt bestenfalls eine Aufrechterhaltung der Ethylenausbeute.
- Adams, US-Patent Nr. 3,360,587, lehrt die Trennung von Ethylen von Acetylen, Butadien und anderen Verunreinigungen, die im Ausfluss der thermischen Crackung von gesättigten Kohlenwasserstoffen enthalten sind, durch Einleiten des Ausflusses in den Reaktionsstrom eines katalytischen Crackverfahrens von Schweröl, mit dem Gesamtziel der Erhöhung der Komponenten im Siedebereich von Benzin. Adams beschreibt die Rückgewinnung der Ethylenfraktion mit verringertem Acetylen- und Butadiengehalt, zeigt aber eine Abnahme im Umsatz zu Propylen. Auch hat Adams weder moderne Zeolithkatalysatoren, insbesondere die der ZSM-5- oder ZSM-11- Typen, verwendet noch hat Adams eine signifikante Zunahme von Ethylen im Vergleich zu getrennten thermischen und katalytischen Crackschritten beobachtet. Adams Ausbeutevergleich zeigte 80,9 mol (2263 Pfund) Ethylen für die getrennten Ströme im Vergleich zu 81,8 mol (2295 Pfund) Ethylen (32 Pfund, 1,3% Nettozunahme) für den Strom, bei dem Butadien und Acetylen mit der Schwerölzufuhr im katalytischen Crackvorgang vereinigt wurden. Adams betrachtete das Ergebnis als einen Erhalt des Ethylens, nicht als verbesserte Ausbeute (vgl. Adams, Spalte 7, Zeilen 24 bis 26 "... was offensichtlich zeigt, dass kein Ethylen des Pyrolyseausflusses in der katalytischen Crackzone verlorengeht."). Adams beobachtete nicht, dass die Zugabe von Diolefinen zu einem Zufuhrstrom die Umwandlung zu leichten Olefinen, einschließlich Propylen, wesentlich verbessern konnte.
- Die Stabilität des Katalysators ist ein wichtiger Faktor bei der Gesamtausbeute. Bei Raffinationsvorgängen wird Rohöl fraktioniert, um Einsatzmaterial für weitere Behandlungen zu produzieren. Die so hergestellten Ströme werden oft als "jungfräuliche" Ströme bezeichnet, wenn sie ohne weitere Bearbeitung verwendet werden. Da der Bedarf an Kohlenwasserstoffen mit geringem Molekulargewicht den Bedarf an Strömen mit hohem Molekulargewicht übertrifft, werden viele Fraktionen mit hohem Molekulargewicht durch thermisches oder katalytisches Cracken zu Strömen mit geringem Molekulargewicht gecrackt. Diese "gecrackten" Ströme weisen den gleichen Siedebereich und die gleichen Hauptkomponenten auf, wie die "jungfräulichen" Ströme der gleichen Benennung, wie z. B. "leichtes Cat-Naphtha" (light cat naphtha, LCN), das ein katalytisch gecracktes Naphtha bezeichnet, und leichtes jungfräuliches Naphtha (light virgin naphtha, LVN). Obwohl diese Ströme ähnliche Siedebereiche aufweisen und einige gleiche Komponenten enthalten, zeigen sie oft ein ziemlich unterschiedliches Verhalten bei Raffinationsvorgängen. Zum Beispiel ist seit langem bekannt, dass die Katalysatorlebensdauer beim Zeolithcracken beim Verarbeiten von LVN-Strömen wesentlich größer ist als beim Verarbeiten von gecrackten Strömen wie LCN. Auf der anderen Seite zeigen LCN-Ströme häufig eine höhere anfängliche Umwandlung zu Ethylen und Propylen. Die vorliegende Erfindung stellt ein Verfahren zur Erhöhung der LVN-Ausbeuten auf Höhen, die den mit LCN erhaltenen entsprechen, zur Verfügung, während der bei LCN beobachtete Verlust der Katalysatorstabilität verzögert wird.
- Zusammenfassend setzt der Stand der Technik die Suche nach einer verbesserten Ausbeute von leichten Olefinen fort, aber das Verfahren der vorliegenden Erfindung wurde zuvor nicht erkannt.
- Die vorliegende Erfindung stellt ein Verfahren zur Verbesserung der Umsetzung eines Kohlenwasserstoffeinsatzmaterials zu leichten Olefinen zur Verfügung, das das Kontaktieren eines Kohlenwasserstoffeinsatzmaterials, welches mindestens ein Diolefin in einer zur Steigerung der Umsetzung des Einsatzmaterials zu leichten Olefinen ausreichenden Konzentration enthält, mit einem katalytischen Crackkatalysator umfasst, der ein azides Zeolith enthält. Der Zeolithkatalysator kann ein natürliches oder synthetisches Zeolith sein, das die Bildung von leichten Olefinen aus Kohlenwasserstoffen fördert. Die Erfindung stellt ein Verfahren zur Verbesserung der Umsetzung eines Kohlenwasserstoffeinsatzmaterials zu Ethylen und Propylen zur Verfügung, umfassend:
- (1) Mischen eines Kohlenwasserstoffeinsatzmaterials mit einer Menge an Diolefin, wobei die Diolefinkonzentration im Bereich von 2 bis 50 Gew.-% der Mischung liegt, und
- (2) Kontaktieren der Mischung mit einem ein saures Zeolith enthaltenden Crackkatalysator.
- Bei der Ausübung mit jungfräulichen Strömen, wie leichtem jungfräulichem Naphtha, wird die Umsetzung auf Werte verbessert, die gleich oder besser sind als die mit LCN-Einsatzmaterialien beobachteten anfänglichen Ausbeuten, während der schnelle Verlust der Zeolithaktivität vermieden wird.
- "Leichtes Naphtha" bedeutet eine Kohlenwasserstoffdestillatfraktion, die im Wesentlichen C&sub5;- bis C&sub7;-Kohlenwasserstoffe enthält.
- "Jungfräuliches Naphtha oder Strom" bedeutet eine Kohlenwasserstoffdestillatfraktion, die aus Rohöl oder natürlichem Gas ohne zusätzliche Umwandlungsbehandlung erhalten wird.
- "Cat-Naphtha" bedeutet eine Kohlenwasserstoffdestillatfraktion, die durch katalytisches Cracken einer schwereren Kohlenwasserstofffraktion erhalten wird.
- "BTX" bedeutet eine Mischung, die Benzol, Toluol und Xylene enthält.
- "Diolefin" bedeutet, wie es in dieser Anmeldung verwendet wird, einen ungesättigten Kohlenwasserstoff, der mindestens zwei π-Bindungen zwischen Kohlenstoffatomen enthält. Während gewöhnlich ein Diolefin zwei Doppelbindungen aufweist, kann ein Molekül mit zusätzlichen Doppelbindungen oder mit einer oder mehreren Dreifachbindungen auch als Diolefin für Zwecke dieser Erfindung fungieren. Das alleinige Zufügen einer Doppel- oder Dreifachbindung zu einem Dien vereitelt die Verbesserung der Erfindung nicht. Zum gegenwärtigen Zeitpunkt umfasst die große Mehrzahl von möglichen Einsatzmaterialien Verbindungen mit nur zwei Doppelbindungen. Jedoch erfüllen auch ungesättigte Kohlenwasserstoffe, wie n-1,3,5-Hexadien oder n-1,4,6-Heptatrien oder Propin, ebenfalls die Erfordernisse, um als ein "Diolefin" im Sinne der Erfindung zu fungieren.
- "Leichtes Olefin" bedeutet Ethylen, Propylen oder Mischungen davon.
- "Verbesserte Umsetzung" bedeutet eine Erhöhung der Ausbeute an leichtem Olefin von mindestens 1,5% gegenüber dem Cracken des gleichen Ausgangsmaterials unter den gleichen Bedingungen mit dem gleichen Katalysator.
- "Kohlenwasserstoffausgangsmaterial" bedeutet einen Kohlenwasserstoffstrom, der einen oder mehrere Kohlenwasserstoffe mit zwei oder mehr Kohlenstoffatomen enthält, die in Fragmente zerbrochen werden sollen, die neben anderen Produkten leichte Olefine bilden.
- "Mischen eines Kohlenwasserstoffeinsatzmaterials mit einem Diolefin" bedeutet entweder das physikalische Vereinigen einer Vielzahl von Kohlenwasserstoffströmen, um einen gemischten oder vereinigten Strom zu bilden, oder das Einstellen der Kohlenwasserstoffverarbeitungsapparatur, um ein Einsatzmaterial zu produzieren, das die gewünschte Mischung an Kohlenwasserstoff und Diolefinen enthält.
- Wesentliche Mengen an Ethylen und Propylen können durch das Cracken von Kohlenwasserstoffeinsatzmaterialien, wie leichtem Cat-Naphtha (LCN) oder leichtem jungfräulichem Naphtha (LVN) mit Zeolith enthaltenden Katalysatoren hergestellt werden, insbesondere solchen der ZSM-5-Gruppe. Die vorliegende Erfindung stellt ein Verfahren zur Erhöhung der Ethylen- und Propylenausbeuten zur Verfügung, das das Mischen eines mindestens ein Diolefin enthaltenen Einsatzstromes mit einem Kohlenwasserstoffstrom umfasst. Der Einsatzstrom ist vorzugsweise ein Naphthasiedebereichstrom, wie LCN oder LVN oder Mischungen dieser Ströme mit anderen Kohlenwasserstoffströmen.
- Geeignete Zeolithe zur Verwendung als Crackkatalysator liegen typischerweise in der sauren Form der natürlich vorkommenden oder synthetischen kristallinen Zeolithe vor, insbesondere solcher mit einem molaren Verhältnis von Siliciumdioxid zu Aluminiumoxid im Bereich von etwa 2,0 : 1 bis 2000 : 1.
- Im Allgemeinen ist jedes Zeolith, das höhere Kohlenwasserstoffe zu leichten Olefinen crackt und das eine verbesserte Umsetzung bei dem Zusatz eines Diolefins zu seinem Einsatzmaterial zeigt, zur Verwendung in dem Verfahren geeignet. Durch die Verwendung des einfachen Laborversuchs, der unten beschrieben wird, kann ein Fachmann schnell bestimmen, ob ein Katalysator eine verbesserte Umsetzung bei Zusatz eines Diolefins zu dem mit dem speziellen Katalysator zu crackenden Einsatzmaterial zeigt.
- Beispiele für Zeolithe, die für das beanspruchte Verfahren geeignet sind, umfassen Galliumsilikat, Zeolith-β, Zeolith-Rho, ZKS, Titansilikat, Ferrosilikat, Borsilikat, Zeolithe, die von der Linde Division von Union Carbide mit dem Buchstaben X, Y, A, L gekennzeichnet werden (diese Zeolithe werden in den US-Patenten mit den Nummern 2,882,244; 3,130,007; 3,882,243 bzw. 3,216,789 beschrieben), natürlich vorkommende kristalline Zeolithe, wie Faujasit, Chabazit, Erionit, Mazzit, Mordenit, Offretit, Gmelinit, Analcit usw., und ZSM-5 (beschrieben in US- Pat. Nr. 3,702,886).
- Vorzugsweise ist der Zeolithkatalysator aus der aus Faujasit, Chabazit, Erionit, Mordenit, Offretit, Gmelinit, Analcit, Ferrierit, Heulandit, Mazzit, Phillipsit, ZSM-5, ZSM-11, ZSM-22, ZSM-25, Galliumsilikatzeolith, Zeolith-β, Zeolith-Rho, ZK5, Titansilikat, Zeolithen mit einem molaren Verhältnis von Siliciumoxid/Aluminiumoxid im Bereich von etwa 2,0 : 1 bis 2000 : 1, Ferrosilikat und Borsilikat bestehenden Gruppe ausgewählt.
- ZSM-5-Zeolith ist besonders bevorzugt. Die Herstellung geeigneter Zeolith enthaltender Katalysatoren kann wie in den obigen Literaturangaben und zahlreichen anderen zusätzlichen, dem Fachmann bekannten Literaturangaben beschrieben erfolgen. Viele geeignete Zeolithe können von kommerziellen Lieferanten, die dem Fachmann gut bekannt sind, bezogen werden.
- Das Crackverfahren kann mit jeder herkömmlichen Reaktorausrüstung, Festbett-, Fließbett-, Wirbelschicht-, wie einem Riser- oder dichtem Wirbelschichtsystem, oder einem stationären Wirbelschichtsystem und einem Kohlenwasserstoffeinsatzstrom durchgeführt werden. Obwohl die folgenden Beispiele ein Festbettsystem im Labormaßstab zeigen, wird angenommen, dass bei der Ausübung der Erfindung eine zirkulierende Wirbelschicht mit Vorkehrungen zur kontinuierlichen Katalysatorregeneration eine bevorzugte Ausführungsform der Erfindung ist. Vorzugsweise wird der Katalysator bei einer Temperatur im Bereich von 500ºC bis 750ºC, besonders bevorzugt im Bereich von 550ºC bis 700ºC und am meisten bevorzugt im Bereich von 575ºC bis 625ºC kontaktiert. Das Verfahren wird vorzugsweise mit einer stündlichen Gewichtsraumgeschwindigkeit (weight hourly space velocity, WHSV) im Bereich von 0,1 h&supmin;¹ WHSV bis 100 h&supmin;¹ WHSV, besonders bevorzugt im Bereich von 1 h&supmin;¹ WHSV bis 50 h&supmin;¹ WHSV und am meisten bevorzugt im Bereich von 1 h¹&supmin; WHSV bis 30 h&supmin;¹ WHSV durchgeführt.
- Beispiele für Kohlenwasserstoffströme, die verwendet werden können, um hohe Ausbeuten an leichten Olefinen zu erhalten, umfassen dampfgecracktes Naphtha, leichtes Cat-gecracktes Naphtha, leichtes jungfräuliches Naphtha, Butene, Pentylene und Kokernaphtha. Ein bevorzugtes Einsatzmaterial ist leichtes Cat-Naphtha (LCN) oder leichtes jungfräuliches Naphtha (LVN).
- Die Diolefinkomponente kann ein oder mehrere gerade(r), verzweigte(r) oder cyclische(r), gegebenenfalls substituierte(r) Kohlenwasserstoff(e) mit zwei oder mehr Kohlenstoffatomen sein, der/die mindestens zwei π-Bindungen aufweist/-en, vorzugsweise mit 2 bis 20 Kohlenstoffatomen, besonders bevorzugt mit 2 bis 10 Kohlenstoffatomen und am meisten bevorzugt mit 4 bis 10 Kohlenstoffatomen. Die Doppelbindungen können konjugiert sein, wie in 1,3-Butadien, oder unkonjugiert wie in n-1,4-Pentadien. Eines oder mehrere Wasserstoffe des Kohlenwasserstoffs können ersetzt werden, solange der resultierende substituierte Kohlenwasserstoff die Aktivität des Katalysators nicht wesentlich verringert. Der Gewichtsprozentgehalt an Diolefinen ist eine Menge, die ausreicht, um eine Zunahme der Bildung leichter Olefine zu bewirken. Der unten beschriebene einfache Laborversuch gestattet die Bestimmung des optimalen Prozentgehalts für ein bestimmtes Diolefin oder eine bestimmte Diolefinmischung. Normalerweise wirkt das Diolefin im Bereich von 2 bis 50% und vorzugsweise im Bereich von 10 bis 20%. Einige Diolefinmischungen werden jedoch wahrscheinlich eine Erhöhung der Produktion leichten Olefins in einem Kohlenwasserstoffstrom bewirken, wenn sie in einer Menge außerhalb der Bereiche vorhanden sind.
- Viele Zeolithkatalysatoren haben eine hohe Aktivität und können in Riser-Wirbelschicht-Crackkatalysator (FCC)-Verfahren verwendet werden, die eine kontinuierliche Regeneration des Katalysators während des Betriebs der Einheit erlauben. Solche Verfahren verwenden typischerweise Katalysator zu Öl-Verhältnisse von 5-10 zu eins. Im Gegensatz dazu werden weniger aktive Zeolithe oft in Katalysatorverhältnissen von 200 bis 4000 zu 1 verwendet. Für diese hohen Katalysator zu Öl-Verhältnisse ist ein dichtes Katalysatorbett, wie ein gepacktes Bett, eine stationäre Wirbelschicht oder ein Fließbett erforderlich. Da sich auf den Katalysatoroberflächen Koks bildet, müssen die Einheiten periodisch zur Katalysatorregeneration aus dem Betrieb genommen werden. Somit weisen LCN-Ströme mit einer kürzeren nutzbaren Katalysatorlebensdauer einen betrieblichen Nachteil auf, selbst wenn sie höhere anfängliche Ausbeuten an leichtem Olefin ergeben. Die geringere Produktion aufgrund der geringeren Umsetzung zu leichten Olefinen bei LVN ist jedoch ein Nachteil, der die mit jungfräulichen Strömen beobachtete längere Katalysatorlebensdauer ausgleicht. Durch die Zugabe von Diolefinen zu LVN gemäß der Erfindung kann man die Vorteile der hohen Umsetzung von LCN zu leichten Olefinen mit der Katalysatorstabilität von LVN kombinieren.
- Es wurde ein Serie von Läufen in einem kleinen Laborreaktor durchgeführt, mit einem leichten Cat-Naphtha, das mit 1,4-Cyclohexadien oder 1,5-Hexadien versetzt war. Ähnliche Läufe wurden mit den Diolefinmodellverbindungen allein durchgeführt, und ein Kontrolllauf wurde mit LCN ohne Diolefin durchgeführt. Alle Läufe wurden bei 593ºC und 1,2 h&supmin;¹ WHSV mit einem Festbett durchgeführt, das mit ZCAT40, einem kommerziell erhältlichen ZSM-5-Katalysator von Intercat Inc., Sea Grit, New Jersey, gepackt war. Vor den Labortests wurde das ZCAT40 für 16 Stunden mit 100% Dampf bei 816ºC und 1 Atmosphäre behandelt, um den Katalysator zu altern. Der Ausflussstrom wurde durch on-line- Gaschromatographie analysiert. Es wurde eine Säule mit einer Länge von 60 m zur Analyse verwendet, die mit Quarzglas gepackt war. Die verwendete GC war ein Dual FID Hewlett Packard Modell 5880A.
- Tabelle 1 zeigt die Ergebnisse mit einem konjugierten cyclischen Diolefin: Tabelle 1 1,4-Cyclohexandien mit leichtem Cat-Naphtha
- Wie aus Tabelle 1 zu ersehen ist, betrug die Ethylenausbeute 8,4 Gew.-% während die Propylenausbeute 23,9 Gew.-% ausmachte, wenn leichtes Cat-Naphtha mit ZCAT40 bei 593ºC gecrackt wurde. Die Ausbeuten an Ethylen und Propylen waren vernachlässigbar, wenn reines 1,4-Cyclohexadien mit demselben Katalysator und unter denselben Bedingungen gecrackt wurde. Überraschenderweise wurden höhere Ausbeuten an Ethylen und Propylen erhalten, wenn das leichte Cat-Naphtha und das Diolefin miteinander gemischt wurden als jedes von beiden allein ergab. Überraschenderweise gibt es bei dieser Datenserie ein Maximum der Ethylen- und Propylenausbeuten bei etwa 11,7 Gew.-% 1,4-Cyclohexadien im Einsatzmaterial. Die erhöhten Ausbeuten an leichtem Olefin wurde von verringerten Ausbeuten an Aromaten und leichten gesättigten Verbindungen begleitet, was den Gesamtwert der vereinigten Produkte verbessert.
- Tabelle 2 fasst die Ergebnisse mit nichtkonjugierten Diolefinen zusammen: Tabelle 2 1,5-Hexadien mit leichtem Cat-Naphtha
- Wie in Tabelle 2 gezeigt ist, betrug die Ethylenausbeute 14,6 Gew.-% während die Propylenausbeute 24,0 Gew.-% betrug, wenn reines 1,5-Hexadien mit ZCAT40 bei 593ºC gecrackt wurde. Die Ausbeute an Aromaten beim Cracken von reinem 1,5-Hexadien war war mit 35,5 Gew.-% sehr hoch. Überraschend wurde gefunden, dass es ein Minimum in der Aromatenausbeute bei 10 bis 20 Gew.-% 1,5-Hexadien im Einsatzmaterial gibt. Weiterhin waren die Gesamtausbeuten an leichtem Olefin (12,0 Ethylen und 25,5 Gew.-% Propylen), die mit 21,3 Gew.-% 1,5-Hexadien im Einsatzmaterial erhalten wurden, fast 6% höher als die Gesamtmenge an leichtem Olefin, das beim Cracken von LCN ohne Diolefinzusatz erhalten wurde.
- Eine Reihe von Läufen wurde mit leichtem jungfräulichem Naphtha, das mit 1,5-Hexadien versetzt war, LCN ohne 1,5-Hexadienzusatz und LVN ohne 1,5-Hexadienzusatz in einem Laborreaktor durchgeführt. Alle Läufe wurden bei 650ºC und 1,2 h&supmin;¹ WHSV mit einem Festbett durchgeführt, das mit ZCAT40, einem kommerziell erhältlichen ZSM-5-Katalysator von Intercat Inc., Sea Grit, New Jersey, gepackt war. Vor den Labortests wurde der ZCAT40 für 16 Stunden mit 100% Dampf bei 816ºC und 1 Atmosphäre (100 kPa) behandelt, um den Katalysator zu altern. Der Ausflussstrom wurde durch on-line-Gaschromatographie analysiert. Zur Analyse wurde eine Kapillarsäule mit einer Länge von 50 m verwendet, die mit vernetztem Methylsilikongummi gepackt war. Die verwendete GC war ein dual FID Hewlett Packard Modell 5880®. Tabelle 3 zeigt die Ausbeuten bei vergleichbaren Intervallen während des Laufs. TABELLE 3 Diolefineffekt auf einen LVN-Strom mit der Zeit
- Die voranstehenden Daten zeigen, dass die Ausbeuten an Ethylen und Propylen bei LCN anfänglich höher sind als bei LVN, dass aber LCN allein den Katalysator schnell verschmutzt und die Ausbeuten abnehmen. LVN beginnt mit anfänglich geringeren Ausbeuten, hält aber höhere Werte aufrecht, mit einem sehr viel weniger schnellem Verlust der Katalysatoraktivität. Der vorteilhafte Effekt der Erfindung wird sehr dramatisch durch die Verbesserung gegenüber den anfänglichen LVN-Ausbeuten veranschaulicht während der schnelle Verlust der Katalysatoraktivität, der mit LCN-Ausgangsmaterialien allein beobachtet wird, vermieden wird.
- Die voranstehenden Beispiele dienen der Veranschaulichung der Erfindung und nicht als Beschränkungen. Es gibt viele Variationen der Erfindung, die für den Fachmann offensichtlich sind. Die Erfindung wird durch die folgenden Ansprüche definiert und begrenzt.
Claims (14)
1. Verfahren zur Verbesserung der Umsetzung eines
Kohlenwasserstoffeinsatzmaterials zu Ethylen und Propylen umfassend:
(1) Mischen eines Kohlenwasserstoffeinsatzmaterials mit
einem Diolefin, um eine Mischung zu bilden, in der die
Diolefinkonzentration im Bereich von 2 bis 50 Gew.-%
der Mischung liegt; und
(2) Kontaktieren der Mischung mit einem ein azides Zeolith
enthaltenden Crackkatalysator.
2. Verfahren nach Anspruch 1, worin die Diolefinkonzentration
im Bereich von 10 bis 20 Gew.-% liegt.
3. Verfahren nach Anspruch 1, worin die Diolefinkonzentration
etwa 10 Gew.-% beträgt.
4. Verfahren nach einem der vorangehenden Ansprüche, worin das
Kohlenwasserstoffeinsatzmaterial aus der aus
Dampf-gecracktem Naphtha, Butenen, Pentylenen, Kokernaphtha, leichtem
Cat-Naphtha und leichtem jungfräulichem Naphtha bestehenden
Gruppe ausgewählt ist.
5. Verfahren nach einem der vorangehenden Ansprüche, worin der
Crack-Katalysator ein Zeolith mit einem molaren Verhältnis
von Silciumoxid zu Aluminiumoxid im Bereich von etwa 2,0 : 1
bis 2000 : 1 enthält.
6. Verfahren nach einem der vorangehenden Ansprüche, worin das
Zeolith aus der aus Faujasit, Chabazit, Erionit, Mordenit,
Offretit, Gmelinit, Analcit, Ferrierit, Heulandit, Mazzit,
Phillipsit, ZSM-5, ZSM-11, ZSM-18, ZSM-22, ZSM-25,
Galliumsilikat, Zeolith-β, Zeolith-Rho, ZK5, Titansilikat,
Ferrosilikat und Borsilikat bestehenden Gruppe ausgewählt ist.
7. Verfahren nach einem der vorangehenden Ansprüche, worin der
Katalysator bei einer Reaktionstemperatur im Bereich von
500ºC bis 750ºC kontaktiert wird und das Einsatzmaterial
mit einer stündlichen Gewichtsraumgeschwindigkeit im Bereich
von 0,1 h&supmin;¹ WHSV bis 100 h&supmin;¹ WHSV fließt.
8. Verfahren nach einem der vorangehenden Ansprüche, worin der
Katalysator bei einer Temperatur im Bereich von 550ºC bis
700ºC kontaktiert wird.
9. Verfahren nach einem der vorangehenden Ansprüche, worin der
Fluss des Einsatzmaterials im Bereich von 1 h&supmin;¹ WHSV bis
50 h&supmin;¹ WHSV liegt.
10. Verfahren nach einem der vorangehenden Ansprüche, worin der
Katalysator bei einer Reaktionstemperatur im Bereich von
575ºC bis 625ºC kontaktiert wird.
11. Verfahren nach einem der vorangehenden Ansprüche, worin der
Fluss des Einsatzmaterials im Bereich von 1 h&supmin;¹ WHSV bis
30 h&supmin;¹ WHSV liegt.
12. Verfahren nach einem der vorangehenden Ansprüche, worin das
Diolefin ein Kohlenwasserstoff mit 2 bis 20 Kohlenstoffen
ist.
13. Verfahren nach einem der vorangehenden Ansprüche, worin das
Diolefin ein Kohlenwasserstoff mit 2 bis 14 Kohlenstoffen
ist.
14. Verfahren nach einem der vorangehenden Ansprüche, worin das
Diolefin ein Kohlenwasserstoff mit 2 bis 10 Kohlenstoffen
ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/872,808 US6090271A (en) | 1997-06-10 | 1997-06-10 | Enhanced olefin yields in a catalytic process with diolefins |
PCT/US1998/011999 WO1998056874A1 (en) | 1997-06-10 | 1998-06-08 | Enhanced olefin yield and catalytic process with diolefins |
Publications (2)
Publication Number | Publication Date |
---|---|
DE69802417D1 DE69802417D1 (de) | 2001-12-13 |
DE69802417T2 true DE69802417T2 (de) | 2002-07-11 |
Family
ID=25360336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE69802417T Expired - Fee Related DE69802417T2 (de) | 1997-06-10 | 1998-06-08 | Katalytisches verfahren mit diolefinen mit verbesserter olefin-ausbeute |
Country Status (8)
Country | Link |
---|---|
US (1) | US6090271A (de) |
EP (1) | EP1005515B1 (de) |
JP (1) | JP3449420B2 (de) |
CN (1) | CN1179017C (de) |
AU (1) | AU734859B2 (de) |
CA (1) | CA2290960C (de) |
DE (1) | DE69802417T2 (de) |
WO (1) | WO1998056874A1 (de) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0921179A1 (de) * | 1997-12-05 | 1999-06-09 | Fina Research S.A. | Herstellung von Olefinen |
EP0921175A1 (de) * | 1997-12-05 | 1999-06-09 | Fina Research S.A. | Herstellung von Olefinen |
US6339180B1 (en) | 1998-05-05 | 2002-01-15 | Exxonmobil Chemical Patents, Inc. | Process for producing polypropylene from C3 olefins selectively produced in a fluid catalytic cracking process |
US6803494B1 (en) | 1998-05-05 | 2004-10-12 | Exxonmobil Chemical Patents Inc. | Process for selectively producing propylene in a fluid catalytic cracking process |
US6315890B1 (en) | 1998-05-05 | 2001-11-13 | Exxonmobil Chemical Patents Inc. | Naphtha cracking and hydroprocessing process for low emissions, high octane fuels |
US6602403B1 (en) | 1998-05-05 | 2003-08-05 | Exxonmobil Chemical Patents Inc. | Process for selectively producing high octane naphtha |
US6313366B1 (en) | 1998-05-05 | 2001-11-06 | Exxonmobile Chemical Patents, Inc. | Process for selectively producing C3 olefins in a fluid catalytic cracking process |
AU744826B2 (en) * | 1998-05-05 | 2002-03-07 | Exxonmobil Chemical Patents Inc | Hydrocarbon conversion to propylene with high silica medium pore zeolite catalysts |
US6455750B1 (en) | 1998-05-05 | 2002-09-24 | Exxonmobil Chemical Patents Inc. | Process for selectively producing light olefins |
US6118035A (en) | 1998-05-05 | 2000-09-12 | Exxon Research And Engineering Co. | Process for selectively producing light olefins in a fluid catalytic cracking process from a naphtha/steam feed |
US6106697A (en) | 1998-05-05 | 2000-08-22 | Exxon Research And Engineering Company | Two stage fluid catalytic cracking process for selectively producing b. C.su2 to C4 olefins |
US6388152B1 (en) | 1998-05-05 | 2002-05-14 | Exxonmobil Chemical Patents Inc. | Process for producing polypropylene from C3 olefins selectively produced in a fluid catalytic cracking process |
US6867341B1 (en) * | 2002-09-17 | 2005-03-15 | Uop Llc | Catalytic naphtha cracking catalyst and process |
US7425258B2 (en) * | 2003-02-28 | 2008-09-16 | Exxonmobil Research And Engineering Company | C6 recycle for propylene generation in a fluid catalytic cracking unit |
US7270739B2 (en) * | 2003-02-28 | 2007-09-18 | Exxonmobil Research And Engineering Company | Fractionating and further cracking a C6 fraction from a naphtha feed for propylene generation |
US20050100493A1 (en) * | 2003-11-06 | 2005-05-12 | George Yaluris | Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking |
US20050100494A1 (en) | 2003-11-06 | 2005-05-12 | George Yaluris | Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking |
US20050232839A1 (en) * | 2004-04-15 | 2005-10-20 | George Yaluris | Compositions and processes for reducing NOx emissions during fluid catalytic cracking |
US7304011B2 (en) * | 2004-04-15 | 2007-12-04 | W.R. Grace & Co. -Conn. | Compositions and processes for reducing NOx emissions during fluid catalytic cracking |
RU2007143987A (ru) | 2005-04-27 | 2009-06-10 | В.Р.Грейс Энд К.-Конн. (Us) | КОМПОЗИЦИИ И СПОСОБЫ ДЛЯ СНИЖЕНИЯ ВЫБРОСОВ NOx ВО ВРЕМЯ КАТАЛИТИЧЕСКОГО КРЕКИНГА В ПСЕВДООЖИЖЕННОМ СЛОЕ |
US8993824B2 (en) | 2011-09-28 | 2015-03-31 | Uop Llc | Fluid catalytic cracking process |
WO2014177988A1 (en) | 2013-04-29 | 2014-11-06 | Saudi Basic Industries Corporation | Catalytic methods for converting naphtha into olefins |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2882244A (en) * | 1953-12-24 | 1959-04-14 | Union Carbide Corp | Molecular sieve adsorbents |
US3130007A (en) * | 1961-05-12 | 1964-04-21 | Union Carbide Corp | Crystalline zeolite y |
NL238183A (de) * | 1962-08-03 | |||
US3360587A (en) * | 1966-07-29 | 1967-12-26 | Uop Process Division | Ethylene production and recovery thereof |
US3702886A (en) * | 1969-10-10 | 1972-11-14 | Mobil Oil Corp | Crystalline zeolite zsm-5 and method of preparing the same |
US3692667A (en) * | 1969-11-12 | 1972-09-19 | Gulf Research Development Co | Catalytic cracking plant and method |
US3709979A (en) * | 1970-04-23 | 1973-01-09 | Mobil Oil Corp | Crystalline zeolite zsm-11 |
US3758400A (en) * | 1971-08-02 | 1973-09-11 | Phillips Petroleum Co | Catalytic cracking process |
JPS4882023A (de) * | 1972-02-04 | 1973-11-02 | ||
US3954600A (en) * | 1974-02-15 | 1976-05-04 | Exxon Research & Engineering Co. | Catalytic cracking process for producing middle distillate |
US4066531A (en) * | 1975-09-26 | 1978-01-03 | Mobil Oil Corporation | Processing heavy reformate feedstock |
JPS5677546A (en) * | 1979-11-30 | 1981-06-25 | Nippon Soken Inc | Intake air heater |
SU1310421A1 (ru) * | 1985-12-23 | 1987-05-15 | Башкирский государственный университет им.40-летия Октября | Способ получени газообразных и жидких углеводородов |
US4855521A (en) * | 1987-01-23 | 1989-08-08 | Mobil Oil Corporation | Fluidized bed process for upgrading diene-containing light olefins |
US5246568A (en) * | 1989-06-01 | 1993-09-21 | Mobil Oil Corporation | Catalytic dewaxing process |
US5318696A (en) * | 1992-12-11 | 1994-06-07 | Mobil Oil Corporation | Catalytic conversion with improved catalyst catalytic cracking with a catalyst comprising a large-pore molecular sieve component and a ZSM-5 component |
US5324419A (en) * | 1993-01-07 | 1994-06-28 | Mobil Oil Corporation | FCC to minimize butadiene yields |
-
1997
- 1997-06-10 US US08/872,808 patent/US6090271A/en not_active Expired - Fee Related
-
1998
- 1998-06-08 CN CNB988059274A patent/CN1179017C/zh not_active Expired - Fee Related
- 1998-06-08 CA CA002290960A patent/CA2290960C/en not_active Expired - Fee Related
- 1998-06-08 JP JP50314099A patent/JP3449420B2/ja not_active Expired - Fee Related
- 1998-06-08 WO PCT/US1998/011999 patent/WO1998056874A1/en active IP Right Grant
- 1998-06-08 DE DE69802417T patent/DE69802417T2/de not_active Expired - Fee Related
- 1998-06-08 AU AU78329/98A patent/AU734859B2/en not_active Ceased
- 1998-06-08 EP EP98926509A patent/EP1005515B1/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
CA2290960A1 (en) | 1998-12-17 |
CN1259161A (zh) | 2000-07-05 |
JP2001523298A (ja) | 2001-11-20 |
CA2290960C (en) | 2005-03-15 |
DE69802417D1 (de) | 2001-12-13 |
JP3449420B2 (ja) | 2003-09-22 |
AU7832998A (en) | 1998-12-30 |
EP1005515B1 (de) | 2001-11-07 |
CN1179017C (zh) | 2004-12-08 |
AU734859B2 (en) | 2001-06-21 |
US6090271A (en) | 2000-07-18 |
WO1998056874A1 (en) | 1998-12-17 |
EP1005515A1 (de) | 2000-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69802417T2 (de) | Katalytisches verfahren mit diolefinen mit verbesserter olefin-ausbeute | |
DE2400946C2 (de) | ||
DE112005003177B4 (de) | Verfahren zur direkten Umwandlung einer Beschickung, die Olefine mit vier und/oder fünf Kohlenstoffatomen umfasst, zur Produktion von Propylen mit einer Koproduktion von Benzin | |
DE60132024T2 (de) | Fcc-verfahren mit verbesserter ausbeute an leichten olefinen | |
DE60316415T2 (de) | Mehrstufenverfahren zur umsetzung einer beschickung, die olefine mit drei, vier oder mehr kohlenstoffatomen enthält, zur herstellung von propylen | |
DE69816114T2 (de) | Herstellung von olefinen | |
DE69918451T2 (de) | Verfahren zur herstellung von olefinen unter verwendung eines pentasil-zeolith enthaltenden katalysators | |
DE2526887C2 (de) | Verfahren zur Herstellung von aromatischen Kohlenwasserstoffen | |
DE60034125T2 (de) | Herstellung von olefinen | |
DE2615150C2 (de) | Verfahren zur Umwandlung von Alkoholen und/oder Äthern in Olefine | |
DE69000210T2 (de) | Herstellung von olefinen. | |
DE2832619C2 (de) | ||
DE69807476T2 (de) | Behandlung von schweren aromaten | |
DE69624729T2 (de) | Verfahren zur selektiven öffnung von naphtalinringen | |
DE2147547C3 (de) | Verfahren und Vorrichtung zum katalytischer! Cracken von Schwerbenzin und Gasöl | |
DE60004367T2 (de) | Herstellung von olefinen | |
DE69529286T2 (de) | Para-xylen selektives reformieren/aromatisieren | |
DE4114874B4 (de) | Verfahren zum katalytischen Kracken in Anwesenheit eines Katalysators, der einen Zeolithen ZSM mit intermediären Porenöffnungen beinhaltet | |
DE2934460A1 (de) | Verfahren zur herstellung von kohlenwasserstoffen mit einer motoroktanzahl von ueber etwa 78 | |
DE60131084T2 (de) | Katalysator für das kräcken von kohlenwasserstoffeinsätzen zur erzeugung von leichtolefinen und herstellung der katalysatoren | |
DE2149370A1 (de) | Verfahren zur Umwandlung rueckstandshaltiger Erdoelfraktionen | |
DE69321347T2 (de) | Katalytisches wirbelschicht-krackverfahren | |
EP0049803B1 (de) | Hydrierte Kohlenwasserstoffgemische, Verfahren zu ihrer Herstellung, ihre Verwendung und Treibstoffe, enthaltend diese hydrierten Kohlenwasserstoffgemische | |
DE68907065T2 (de) | Katalytische Krackverfahren. | |
DE69102209T2 (de) | Verfahren zur Erzeugung von Benzinkomponenten. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8364 | No opposition during term of opposition | ||
8339 | Ceased/non-payment of the annual fee |