[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DE60315970T2 - Blutdetektor zur kontrolle einer elektrochirurgischen einheit - Google Patents

Blutdetektor zur kontrolle einer elektrochirurgischen einheit Download PDF

Info

Publication number
DE60315970T2
DE60315970T2 DE60315970T DE60315970T DE60315970T2 DE 60315970 T2 DE60315970 T2 DE 60315970T2 DE 60315970 T DE60315970 T DE 60315970T DE 60315970 T DE60315970 T DE 60315970T DE 60315970 T2 DE60315970 T2 DE 60315970T2
Authority
DE
Germany
Prior art keywords
electrosurgical
energy
light energy
blood
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE60315970T
Other languages
English (en)
Other versions
DE60315970D1 (de
Inventor
Ronald J. Boulder PODHAJSKY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien AG
Original Assignee
Covidien AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covidien AG filed Critical Covidien AG
Publication of DE60315970D1 publication Critical patent/DE60315970D1/de
Application granted granted Critical
Publication of DE60315970T2 publication Critical patent/DE60315970T2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1402Probes for open surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00057Light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • A61B5/0086Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters using infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02042Determining blood loss or bleeding, e.g. during a surgical procedure

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Otolaryngology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

  • Technisches Gebiet
  • Die Offenbarung betrifft Elektrochirurgie kombiniert mit einer optischen Erfassung (Messung) von Blut, und insbesondere die automatische Steuerung des elektrochirurgischen Energiepegels, der in Übereinstimmung mit der optisch gemessenen Blutmenge dem Gewebe zugeführt werden soll.
  • Beschreibung des Stands der Technik
  • Elektrochirurgie umfasst das Anwenden von Radiofrequenzenergie, um ein Wirkung auf das Gewebe zu erzielen. Ein elektrochirurgischer Generator wird in chirurgischen Eingriffen verwendet, um dem Gewebe eines Patienten elektrische Energie zuzuführen. Ein elektrochirurgischer Generator umfasst oft einen Radiofrequenzgenerator und seine Steuerungen. Wenn eine Elektrode mit dem Generator verbunden ist, kann die Elektrode zum Schneiden und Koagulieren des Gewebes eines Patienten mit hochfrequenter elektrischer Energie verwendet werden. Im normalen Gebrauch fließt Wechselstrom vom Generator zwischen einer aktiven Elektrode und einer Rückführelektrode, wobei er durch das Gewebe und die Körperflüssigkeiten eines Patienten durchtritt.
  • Die elektrische Energie besitzt gewöhnlich eine Wellenform, die ihre Fähigkeit zum Schneiden oder Koagulieren von Gewebe verstärkt. Unterschiedliche Wellenformen entsprechen unterschiedlichen Betriebsmodi des Generators, und jeder Modus gibt dem Chirurgen verschiedene operative Vorteile. Die Modi können das Schneiden, Koagulieren, eine Mischung dieser, oder das Austrocknen umfassen. Ein Chirurg kann leicht die verschiedenen Betriebsmodi auswählen und ändern, während der chirurgische Eingriff fortschreitet.
  • In jedem Betriebsmodus ist es wichtig, die dem Patienten zugeführte elektrochirurgische Energie zu regeln, um den erwünschten chirurgischen Effekt zu erzielen. Dies kann beispielsweise dadurch getan werden, dass die aus dem elektrochirurgischen Generator ausgegebene Energie gemäß der zu behandelnden Gewebeart gesteuert wird.
  • Während der chirurgische Eingriff fortschreitet, wird man unterschiedliche Gewebearten antreffen, und jedes einzelne Gewebe erfordert mehr oder weniger Energie in Form von Spannung, Strom oder Leistung als Funktion der sich oft ändernden Gewebeimpedanz und anderer Faktoren, wie z. B. dem Grad der Vaskularisierung (Durchblutung), d. h. des Blutflusses im Gewebe. Daher wird dasselbe Gewebe unterschiedliche Lastimpedanzen aufweisen, wenn das Gewebe ausgetrocknet wird.
  • Zwei herkömmliche Arten der Energieregelung werden in kommerziellen elektrochirurgischen Generatoren verwendet. Die häufigste Art regelt die Gleichstromzufuhr des Generators, indem der Betrag der Leistung begrenzt wird, der vom Netz bereitgestellt wird, an welches der Generator angeschlossen ist. Eine Rückkopplungsregelschleife regelt die Ausgabespannung, indem eine gewünschte Spannung oder ein gewünschter Strom mit der Ausgabespannung oder dem Ausgangsstrom verglichen wird, die der von der Stromquelle zugeführt wird. Eine andere Art von Leistungsregelung bei kommerziellen elektrochirurgischen Generatoren steuert die Verstärkung des Hochfrequenz- oder Radiofrequenzverstärkers. Eine Rückkopplungsregelschleife vergleicht die von dem RF- Verstärker zugeführter Ausgabeleistung, um einen erwünschten Leistungspegel einzustellen.
  • Die US-Patente Nr. 3,964,487 , 3,980,085 , 4,188,927 und 4,092,986 besitzen Schaltungen, um den Ausgangsstrom in Übereinstimmung mit einer zunehmenden Lastimpedanz zu verringern. In jenen Patenten wird eine konstante Spannungsausgabe beibehalten und der Strom wird mit zunehmender Lastimpedanz verringert.
  • Das US-Patent Nr. 4,126,137 steuert den Leistungsverstärker der elektrochirurgischen Einheit in Übereinstimmung mit einem nicht linearen Kompensationsschaltkreis, der auf ein Rückkopplungssignal angewandt wird, welches aus einem Vergleich des Leistungspegelbezugsignals und dem mathematischen Produkt zweier Signale abgeleitet ist, die den gemessenen Strom und die gemessene Spannung in der Einheit umfassen.
  • Das US-Patent Nr. 4,658,819 besitzt einen elektrochirurgischen Generator, der eine auf einer Mikroprozessorsteuerung basierende Vorrichtung zur Verringerung der Ausgabeleistung als Funktion der Änderungen der Gewebeimpedanz aufweist.
  • Das US-Patent Nr. 4,727,874 umfasst einen elektrochirurgischen Generator mit einer von der Impulsbreite eines Hochfrequenzimpulses modulierten Leistungsregelung, bei der jeder Zyklus des Generators in seinem Leistungsgehalt dadurch geregelt wird, dass die Breite der antreibenden Energieimpulse moduliert wird.
  • Das US-Patent Nr. 3,601,126 besitzt einen elektrochirurgischen Generator mit einer Rückkopplungsschaltung, die versucht, den Ausgabestrom über einen weiten Bereich von Gewebeimpedanzen auf einer konstanten Amplitude zu halten.
  • Keines der zuvor genannten US-Patente enthält eine optische Messung von Blut, um die ausgegebene Energie oder die ausgegebenen Wellenformen des elektrochirurgischen Generators während unterschiedlicher Betriebsmodi über einen endlichen Bereich der Gewebeimpedanz des Patienten zu regeln oder zu steuern. Die optische Messung von Blut während eines elektrochirurgischen Eingriffs erlaubt es auch Chirurgen, die farbenblind sind, den elektrochirurgischen Eingriff effektiv durchzuführen. In einer 1997 veröffentlichten Studie berichteten 18 von 40 Ärzten mit Farbenblindheit Schwierigkeiten bei der Erfassung von Blut in Körperprodukten. Spalding J. Anthony B. „Doctors with inherited colour vision deficiency: their difficulties in clinical work", Cavonius CR, Herausgeber, Colour Vision Deficiencies, XII: Proceedings of the International Research Group for Colour Vision Deficiencies, 1995, Norwell, Massachusetts: Kluwer Academic Publishers, Seiten 483-489, 1997.
  • Dementsprechend besteht ein Bedarf nach einem System, um Blut während eines elektrochirurgischen Eingriffs optisch zu erfassen und die Ausgabeenergie oder Ausgabewellenformen eines elektrochirurgischen Generators in Übereinstimmung mit der optisch erfassten Blutmenge zu steuern.
  • Darstellung der Erfindung
  • Ein elektrochirurgisches System zum optischen Erfassen von Blut und zur Steuerung eines elektrochirurgischen Generators wird bereitgestellt. Ein optisches Bluterfassungssystem wird verwendet, um Blut optisch zu erfassen, und kann als ganzheitlicher Teil der Schaltung des elektrochirurgischen Systems insgesamt enthalten sein oder kann als separate Einheit konzipiert sein, die mit einem elektrochirurgischen Generator verbunden ist und ihn steuert. Das optische Bluterfassungssystem kann durch eine Vielzahl von analogen, digitalen und/oder optischen Schaltungskomponenten oder -anordnungen verkörpert werden, inklusive von Software, die auf einer Rechen- und Speicherschaltung läuft.
  • Das optische Bluterfassungssystem steuert die Ausgabeenergie des elektrochirurgischen Generators in Übereinstimmung mit der erfassten Blutmenge. Dies erlaubt es einem Chirurgen, einen elektrochirurgischen Eingriff ohne Unterbrechung durchzuführen und den Zustand des Gewebes zu beobachten, um zu bestimmen, ob ein zusätzlicher elektrochirurgischer Eingriff notwendig ist.
  • Insbesondere steuert das optische Bluterfassungssystem automatisch die von dem elektrochirurgischen Generator während des elektrochirurgischen Eingriffs erzeugte Ausgabewellenform, indem er ein vom optischen Bluterfassungssystem empfangenes Rückkopplungssignal (Regelsignal) verwendet. Wenn z. B. eine Koagulation des Gewebes erwünscht ist, analysiert das optische Bluterfassungssystem das Gewebe durchgehend auf Vorhandensein von Blut und steuert die Ausgabewellenform entsprechend.
  • Während das optische Bluterfassungssystem verwendet werden kann, um elektrochirurgische Generatoren verschiedener Designs zu steuern, ist bevorzugt, dass der elektrochirurgische Generator ein Leistungswählsystem aufweist, bei dem der Benutzer den Betrieb des elektrochirurgischen Generators initialisieren, einstellen, beobachten und/oder steuern kann. Der bevorzugte elektrochirurgische Generator muss nicht auf diese vier funktionalen Elemente beschränkt sein, z. B. könnte der elektrochirurgische Generator auch zusätzliche Sicherheits-, Beobachtungs-, Signalmodifizierungs-/Beeinflussungs- und/oder Rückkopplungsschaltkreise oder funktionale Elemente/Prozesse umfassen. Das tatsächliche Design des elektrochirurgischen Generators kann die Verwendung von digitalen Komponenten und Signalgebern, analogen Komponenten und Signalgebern und/oder optischen Komponenten und Signalgebern umfassen oder könnte vollständig oder teilweise in einem Softwareverfahren realisiert werden, das auf Hardwarekomponenten läuft. Das optische Bluterfassungssystem umfasst eine Schaltung zur Erzeugung eines optischen Lichtstrahls, die optische Komponenten zur Erzeugung und Fokussierung eines Lichtstrahls in der Nähe einer Elektrode eines elektrochirurgischen Instruments und/oder auf ihr aufweist; eine Schaltung mit optischen Komponenten zum Erfassen der reflektierten Lichtenergie, wie z. B. einen lichtempfindlichen Detektor; einen Bluterfassungsschaltkreis zur Analyse der reflektierten Lichtenergie und/oder anderer Eigenschaften und zur Bestimmung der in der Nähe der Elektrode und/oder auf ihr vorhandenen Blutmenge; und eine Rückkopplungskorrekturschaltung.
  • Die Rückkopplungskorrekturschaltung, die elektrisch angeschlossen ist, um vom Bluterfassungsschaltkreis ein Signal zu empfangen, funktioniert so, dass sie ein Rückkopplungsregelsignal erzeugt, welches sie dann dem Leistungswählsystem im elektrochirurgischen Generator zuführt, um so das Leistungswählsystem zu veranlassen, die erzeugte Menge an elektrochirurgischer Energie und/oder die Art der Ausgangswellenform zu steuern, die in Übereinstimmung mit der in der Nähe der Elektrode und/oder auf ihr vorhandenen Blutmenge erzeugt wird. Das System kann auch das Vorhandensein von Blutgefäßen in der Nähe des distalen Endes der Elektrode erfassen und den elektrochirurgischen Generator dementsprechend steuern oder den Chirurgen warnen, um beispielsweise zu verhindern, dass größere Blutgefäße durchtrennt werden.
  • Bevorzugt wird der optische Lichtstrahl vor dem distalen Ende der Elektrode fokussiert, um Blut zu erfassen, das auf dem Gewebe vorhanden ist, welches vom elektrochirurgischen Instrument geschnitten oder koaguliert wird. Der optische Lichtstrahl kann eine Lichtenergie an den Wellenlängen des sichtbaren, nahinfraroten und infraroten Lichtspektrums besitzen.
  • Es ist vorgesehen, dass eine oder mehrere der oben genannten Schaltungen durch ein oder mehrere Sätze von programmierbaren Anweisungen umgesetzt werden können, die dafür konfiguriert sind, von mindestens einem Prozessor des elektrochirurgischen Systems oder mindestens einem Prozessor, der vom elektrochirurgischen System entfernt angeordnet ist, ausgeführt zu werden. Z. B. können die der reflektierten Lichtenergie entsprechenden Daten entweder drahtlos oder nicht drahtlos über ein Netzwerk, wie z. B. ein LAN, WAN oder das Internet, an einen entfernten Server oder eine Steuerungsstation übertragen werden, um die Daten unter Verwendung eines Satzes von programmierbaren Anweisungen zu analysieren und so die in der Nähe der Elektrode und/oder auf ihr vorhandene Blutmenge zu bestimmen.
  • Gemäß der durchgeführten Analyse erzeugt der entfernte Server oder die Steuerungsstation dann unter Verwendung derselben oder eines anderen Satzes von programmierbaren Anweisungen das Rückkopplungsregelsignal und führt das Signal dem Leistungswählsystem zu. Es wird in Betracht gezogen, dass außer eines optischen Lichtstrahls eine andere Form von elektromagnetischer Energie verwendet werden kann, um das Vorhandensein von Blut zu erfassen.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird ein elektrochirurgisches System bereitgestellt, das ein Handstück mit einem proximalen und einem distalen Ende aufweist, aus dem Lichtenergie abgestrahlt wird; mindestens eine elektrochirurgische Elektrode auf dem Handstück aufweist, die sich vom distalen Ende erstreckt, aus dem die elektrochirurgische Energie abgestrahlt wird; eine Quelle von Lichtenergie aufweist, um die Lichtenergie zu erzeugen und dieselbe über mindestens einen Wellenleiter zum distalen Ende zu übertragen; eine Quelle elektrochirurgische Energie zur Erzeugung der elektrochirurgischen Energie und zur Übertragung derselben durch mindestens ein elektrisch leitendes Element zur Elektrode aufweist; und Mittel zum Analysieren der Eigenschaften der Lichtenergie aufweist, um die in der Nähe der Elektrode vorhandene Blutmenge zu bestimmen und um die Quelle der elektrochirurgischen Energie entsprechend zu steuern.
  • Kurze Beschreibung der Zeichnungen
  • Verschiedene Ausführungsformen werden im Folgenden mit Bezug auf die Zeichnungen beschriebe, in denen:
  • 1 ein perspektivisches Diagramm einer Ausführungsform des vorliegenden elektrochirurgischen Systems ist;
  • 2 ein schematisches Diagramm im Teilschnitt eines elektrochirurgischen Handstückinstruments des elektrochirurgischen Systems der 1 ist;
  • 3 ein Blockdiagramm des optischen Bluterfassungssystems ist;
  • 4 ein Flussdiagramm ist, das den Betrieb des optischen Bluterfassungssystems gemäß einem ersten Verfahren zeigt;
  • 5 ein Flussdiagramm ist, das den Betrieb des optischen Bluterfassungssystems gemäß einem zweiten Verfahren zeigt; und
  • 6 ein schematisches Diagramm im Teilschnitt einer weiteren Ausführungsform des elektrochirurgischen Handstückinstruments ist.
  • Detaillierte Beschreibung einer bevorzugten Ausführungsform
  • In 1 ist ein elektrochirurgisches System 2 in Perspektive gezeigt und erlaubt es einem Chirurgen, Gewebe eines Patienten zu schneiden; zu koagulieren und/oder eine Kombination davon durchzuführen. Das elektrochirurgische System 10 besitzt ein Handstück 12 mit einem proximalen Ende 13, das vom Chirurgen gehalten und gesteuert wird. Ein distales Ende 14 auf dem Handstück 12 besitzt eine Öffnung 15, aus der ein optischer Lichtstrahl auf den Patienten 11 gerichtet wird. Eine elektrochirurgische Elektrode 16 erstreckt sich vom distalen Ende 14 des Handstücks 12.
  • Ein optisches Bluterfassungssystem 17 zur Erzeugung des optischen Lichtstrahls ist mit dem proximalen Ende 13 des Handstücks 12 über Wellenleiter/Drähte 34 verbunden. Das optische Bluterfassungssystem 17 kann von einem Chirurgen manuell gesteuert oder automatisch gesteuert werden, um den optischen Lichtstrahl vom distalen Ende 14 des Handstücks 12 zum Patienten 11 zu führen. Ein elektrochirurgischer Generator 18 zur Erzeugung der elektrochirurgischen Energie ist elektrisch mit dem proximalen Ende 13 des Handstücks 12 verbunden und kann vom Chirurgen manuell gesteuert oder automatisch gesteuert werden, um die elektrochirurgische Energie von der elektrochirurgischen Elektrode 16 zum Patienten 11 zu übertragen. Das optische Bluterfassungssystem 17 und der elektrochirurgische Generator 18 sind mit einem Kabel 38 verbunden, welches dazu dient, zwischen ihnen eine Datenverbindung sowie ein Rückkopplungsregelsignal vom optischen Bluterfassungssystem 17 zum Generator 18 bereitzustellen und den Generator 18 dadurch zu steuern.
  • Während das optische Bluterfassungssystem 17 verwendet werden kann, um den elektrochirurgischen Generator 18 zu steuern, ist es bevorzugt, dass der elektrochirurgische Generator 18 ein Leistungswählsystem aufweist, bei dem der Benutzer den Betrieb des elektrochirurgischen Generators 18 initialisieren, einstellen, beobachten und/oder steuern kann. Der bevorzugte elektrochirurgische Generator muss nicht auf diese vier funktionalen Elemente beschränkt sein, z. B. könnte der elektrochirurgische Generator 18 auch eine zusätzlich Sicherheits-, Beobachtungs-, Signalmodifikations-/Beeinflussungs- und/oder Rückkopplungsschaltung oder funktionelle Elemente/Prozesse umfassen. Das tatsächliche Design des elektrochirurgischen Generators kann die Verwendung von digitalen Komponenten und Signalgebern, analogen Komponenten und Signalgebern und/oder optischen Komponenten und Signalgebern umfassen oder vollständig oder teilweise in einem Softwareverfahren ausgeführt werden, das auf Hardwarekomponenten läuft.
  • Eine Rückführung 19 ist für die elektrochirurgische Energie vorgesehen; die Rückführung 19 (Rückführweg) kann ein einpoliger oder zweipoliger Stromkreis sein. 1 veranschaulicht einen einpoligen Stromkreis mit einem Rückführpad 20 anstelle einer Rückführelektrode im Falle eines zweipoligen Stromkreises. Die Rückführung 19 ist so angeschlossen, dass sie mindestens einen Teil der von der Quelle elektrochirurgischer Energie 18 zum Patienten 11 übertragenen elektrochirurgischen Energie empfängt. Eine Rückführeinspeisung 22 für die Quelle der elektrochirurgischen Energie 18 ist mit der Rückführung 19 verbunden, um einen vollständigen Stromkreis 23 zwischen der elektrochirurgischen Elektrode 16, dem Patienten 11 und dem elektrochirurgischen Generator 18 bereitzustellen.
  • Ein manuell betätigter Steuerungsknopf 24 ist auf dem Handstück 12 für die selektive Steuerung des elektrochirurgischen Generators 18 seitens des Chirurgens vorgesehen, um die aus dem distalen Ende 14 zugeführte elektrochirurgische Energie zu steuern. Der Steuerungsknopf 24 kann auch auf einem Fußpedal 26 angeordnet sein.
  • Es ist vorgesehen, dass der Chirurg den optischen Strahl, der aus der Öffnung 15 austritt, verwenden kann, um das zu behandelnde Zielgewebe genau zu lokalisieren, wenn der optische Lichtstrahl seine Lichtenergie innerhalb des sichtbaren Spektrums besitzt. Es wird in Betracht gezogen, dass der optische Lichtstrahl eine Lichtenergie an den Wellenlängen des sichtbaren, nahinfraroten und infraroten Lichtspektrums besitzen kann.
  • Mit Bezug auf 3 enthält das optische Bluterfassungssystem 17 einen Schaltkreis 52 zur Erzeugung eines optischen Lichtstrahls mit optischen Komponenten zur Erzeugung und Fokussierung eines Lichtstrahls, wie z. B. eines aus dem Stand der Technik bekannten Laserlichtstrahls, in der Nähe der Elektrode 16 des Handstücks 12 oder auf ihr. Der Wellenleiter 34, der in 1 gezeigt ist, wird verwendet, um die Lichtenergie vom proximalen Ende 13 über das distale Ende 14 hinaus zu führen. Das optische Bluterfassungssystem 17 umfasst weiter mindestens eine optische Komponente 54, die am distalen Ende 14 des Handstücks 12 positioniert ist, um reflektierte Lichtenergie zu erfassen, wie aus dem Stand der Technik bekannt ist. Die mindestens eine optische Komponente 54 führt über Wellenleiter/Drähte 34 zu mindestens einem fotoempfindlichen Detektor Signale zurück, die für die zum System 17 reflektierte Lichtenergie bezeichnend sind.
  • Das optische Bluterfassungssystem 17 umfasst weiter einen Bluterfassungsschaltkreis 56 zum Analysieren der reflektierten Lichtenergie und zum Bestimmen der in der Nähe der Elektrode 16 und/oder auf ihr vorhandenen Blutmenge; und einen Rückkopplungskorrekturschaltkreis 58.
  • Die reflektierte Lichtenergie umfasst bevorzugt Lichtreflexionen entsprechende Daten, die für zwei unterschiedliche Wellenlängen bezeichnend sind, eine erste und eine zweite Wellenlänge. Zuerst wird ein optischer Lichtstrahl mit der ersten Wellenlänge erzeugt und vom Handstück 12 ausgesandt. Die reflektierte Lichtenergie, die für den ersten optischen Lichtstrahl bezeichnend ist, wird vom optischen Bluterfassungssystem 17 erfasst und analysiert, um so verschiedene Parameter wie z. B. Photonenzahlen zu messen. Dann wird ein zweiter optischer Lichtstrahl mit der zweiten Wellenlänge erzeugt und vom Handstück 12 ausgesandt. Die reflektierte Lichtenergie, die für den zweiten optischen Lichtstrahl bezeichnend ist, wird vom optischen Bluterfassungssystem 17 erfasst und analysiert, um verschiedene Parameter, wie z. B. Photonenzahlen zu messen.
  • Alternativ wird ein optischer Breitbandlichtstrahl erzeugt und vom Handstück 12 ausgesandt. Die reflektierten Lichtenergien, die für zwei separaten und unterschiedliche Wellenlängen bezeichnend sind, werden vom optischen Bluterfassungssystem 17 erfasst und analysiert, um verschiedene Parameter, wie z. B. Photonenzahlen, zu messen. In beiden Verfahren liegt die erste Wellenlänge bevorzugt in dem Bereich von 620-700 nm und die zweite Wellenlänge liegt im Bereich von 540-610 nm oder 950-1050 nm.
  • Ein Verhältnis wird dann erhalten, indem zwei gemessene Werte verwendet werden, die einem bestimmten Parameter entsprechen; ein gemessener Wert ist für den ersten optischen Lichtstrahl oder die erste Wellenlänge bezeichnend und ein gemessener Wert ist für den zweiten optischen Lichtstrahl oder die zweite Wellenlänge bezeichnend. Eine Korrespondenztabelle oder eine andere Datenstruktur wird dann von einem Prozessor oder von einer Einzelperson verwendet, um das Verhältnis mit einer bestimmten Menge oder einem bestimmten Niveau von Blut, das in der Nähe der Elektrode 16 vorhanden ist, zu korrelieren.
  • Die reflektierte Lichtenergie kann auch analysiert werden, um die vorhandene Blutmenge unter Verwendung eines von mehreren bekannten Verfahren zu bestimmen, wie z.B.
  • Nahinfrarotspektroskopie (NIRS), Infrarotspektroskopie (IRS), Fluoreszenzspektroskopie, Raman-Spektroskopie, fotoakustischer Spektroskopie (wo das System 10 mit einem Mikrophon ausgestattet ist, um eine akustische Druckwelle zu messen, die vom optischen Strahl erzeugt wird, der das Gewebe schnell aufheizt), Laser-Doppler-Flowmetry, Messungen der Lichstreuungsänderung und Messungen der Polarisationsänderung. Diese Verfahren bestimmen den Lichtintensitätspegel, Lichtstreuungseffekte, das Niveau an Fluoreszenzenergie und andere Eigenschaften der reflektierten Lichtenergie. Der bestimmte Lichtintensitätspegel, die Lichtstreuungseffekte, das Niveau an Fluoreszenzenergie und/oder die anderen Eigenschaften der reflektierten Lichtenergie werden dann verwendet, um unter Verwendung von mathematischen Gleichungen, Algorithmen und/oder programmierbaren Anweisungen, die von mindestens einem Prozessor ausgeführt werden, die in der Nähe der Elektrode 16 vorhandene Blutmenge zu berechnen.
  • Indem man die optischen Signaleigenschaften des erzeugten Lichtsstrahls und den erzeugten Lichtintensitätspegel, die Lichtstreuungseffekte, das Niveau an Fluoreszenzenergie und die anderen Eigenschaften der reflektierten Lichtenergie kennt, ist das System 17 in der Lage, unter Verwendung einer Nachschlagetabelle oder einer anderen Datenstruktur die in der Nähe der Elektrode 16 vorhandene Blutmenge zu bestimmen. Wenn die Analyse anzeigt, dass eine hohe Blutmenge in der Nähe der Elektrode 16 vorhanden ist, kann man schließen, dass das Gewebe nicht koaguliert wurde (im Falle eines Koagulierungseingriffs) oder geschnitten wurde (im Fall eines Schneideingriffs). Wenn die Analyse anzeigt, dass eine geringe Blutmenge in der Nähe der Elektrode 16 vorhanden ist, kann man daraus schließen, dass das Gewebe koaguliert wurde (im Fall eines Koagulierungseingriffs) oder nicht ausreichend geschnitten wurde (im Fall eines Schneideingriffs).
  • Das System kann auch das Vorhandensein von Blutgefäßen in der Nähe des distalen Endes der Elektrode 16 erfassen und den elektrochirurgischen Generator 18 dementsprechend steuern oder den Chirurgen warnen, um z.B. das Durchtrennen von größeren Blutgefäßen zu verhindern.
  • Der Rückkopplungskorrekturschaltkreis 58, der elektrisch angeschlossen ist, um ein Signal vom Bluterfassungsschaltkreis 56 zu empfangen, hat die Funktion, ein Rückkopplungsregelsignal zu erzeugen, welches er dann dem Leistungswellensystem im elektrochirurgischen Generator über den Draht 38 zuführt, um so das Leistungswellensystem zu veranlassen, die erzeugte Menge an elektrochirurgischer Energie und/oder die Art der erzeugten Ausgabewellenform (Wellenform zur Koagulierung oder zur Teilung von Gewebe) in Übereinstimmung mit der in der Nähe der Elektrode 16 und/oder auf ihr vorhandenen Blutmenge zu steuern.
  • 4 ist ein Flussdiagramm, das ein beispielhaftes Betriebsverfahren des optischen Bluterfassungssystems 17 veranschaulicht. Im Schritt 400 werden der optische Lichtstrahl und die elektrochirurgische Energie erzeugt. Die reflektierte Lichtenergie wird im Schritt 402 erfasst und im Schritt 404 analysiert, um die in der Nähe der Elektrode 16 vorhandene Blutmenge im Schritt 406 zu bestimmen. Im Schritt 408 wird bestimmt, ob das in der Nähe der Elektrode 16 gemessene Blutniveau über einer vorbestimmten Schwelle liegt (der vorbestimmte Schwellenwert hängt von dem Verfahren ab, das verwendet wird, um die vorhandene Blutmenge zu erfassen).
  • Wenn das gemessene Blutniveau sich nicht oberhalb des vorbestimmten Schwellenwerts befindet, wird dann im Schritt 410 bestimmt, ob der durchgeführte Eingriff ein Koagulierungseingriff ist. Wenn kein Koagulierungseingriff durchgeführt wird, d.h. wenn ein Schneideingriff durchgeführt wird, wird der Schneideingriff im Schritt 412 fortgesetzt und das Verfahren kehrt zum Schritt 408 zurück.
  • Wenn im Schritt 410 bestimmt wird, dass ein Koagulierungseingriff durchgeführt wird, fährt das Verfahren mit Schritt 414 fort, wo durch den Rückkopplungskorrekturschaltkreis 58 ein Signal zum elektrochirurgischen Generator 18 übertragen wird, um die Menge der elektrochirurgischen Energie und/oder die Art der erzeugten Ausgabewellenform zu steuern oder um den elektrochirurgischen Generator 18 auszuschalten, da der Koagulierungseingriff adäquat durchgeführt wurde. Wenn im Schritt 408 bestimmt wird, dass das gemessene Blutniveau sich oberhalb des vorbestimmten Schwellenwerts befindet, wird dann im Schritt 416 bestimmt, ob der durchgeführte Eingriff ein Schneideingriff ist. Wenn kein Schneideingriff durchgeführt wird, d.h. wenn ein Koagulierungseingriff durchgeführt wird, wird der Koagulierungseingriff im Schritt 418 fortgesetzt und das Verfahren kehrt zum Schritt 408 zurück.
  • Wenn im Schritt 416 bestimmt wird, dass ein Schneideingriff durchgeführt wird, fährt das Verfahren mit Schritt 414 fort, wo vom Rückkopplungskorrekturschaltkreis 58 ein Signal zum elektrochirurgischen Generator 18 übertragen wird, um die Menge an elektrochirurgischer Energie und/oder die Art der erzeugten Ausgabewellenform zu steuern oder den elektrochirurgischen Generator 18 abzuschalten, da der Schneideingriff adäquat durchgeführt wurde.
  • 5 ist ein Flussdiagramm, das ein weiteres beispielhaftes Betriebsverfahren des optischen Bluterfassungssystems 17 veranschaulicht. Im Schritt 500 werden der optische Lichtstrahl und die elektrochirurgische Energie erzeugt. Die reflektierte Lichtenergie wird im Schritt 502 erfasst und im Schritt 504 analysiert, um die in der Nähe der Elektrode 16 vorhandene Blutmenge im Schritt 506 zu bestimmen. Schritt 506 bestimmt die vorhandene Blutmenge durch Berechnen des Verhältniswerts, der durch Teilen der Photonenzahl an der Wellenlänge 1 durch die Photonenzahl an der Wellenlänge 2 bestimmt wird. Der Verhältniswert wird im Schritt 508 analysiert.
  • Wenn der Verhältniswert gering ist (niedriger als ein vorbestimmter Verhältniswert), dann fährt das Verfahren mit Schritt 510 fort, wo vom Rückkopplungskorrekturschaltkreis 58 ein Signal zum elektrochirurgischen Generator 18 übertragen wird, um den Betriebsmodus zu steuern, nämlich einen Gewebeteilungs-(Schnitt-)Modus auszuwählen. Auch kann die Menge an elektrochirurgischer Energie eingestellt werden.
  • Wenn im Schritt 508 bestimmt wird, dass der Verhältniswert hoch ist (größer als der vorbestimmte Verhältniswert), dann fährt das Verfahren mit Schritt 512 fort, wo vom Rückkopplungskorrekturschaltkreis 58 ein Signal zum elektrochirurgischen Generator 18 übertragen wird, das einen Hämostase-(Koagulierungs-)Modus auswählt. Die Menge an elektrochirurgischer Energie kann ebenfalls eingestellt werden.
  • Wenn in Schritt 508 bestimmt wird, dass der Verhältniswert ein dazwischen liegender Wert ist (ungefähr gleich dem vorbestimmten Verhältniswert), dann fährt das Verfahren mit Schritt 514 fort, wo vom Rückkopplungskorrekturschaltkreis 58 ein Signal zum elektrochirurgischen Generator 18 übertragen wird, das einen gemischten Modus auswählt, der in Proportion zum erfassten Verhältniswert ist. Nach entweder dem Schritt 510, 512 oder 514 kehrt das Verfahren im Schritt 502 in einer durchgehenden Schleife zum Erfassen der reflektierten Lichtenergie zurück.
  • Es ist vorgesehen, dass in Abhängigkeit davon, welche der obigen Spektroskopien und der anderen Verfahren vom optischen Bluterfassungssystem 17 verwendet wird, um die vorhandene Blutmenge zu bestimmen, das optische Bluterfassungssystem 17 entsprechend unter Verwendung von sich auf Blut beziehenden optischen Messparametern für jedes Verfahren gesteuert wird, um einen optischen Lichtstrahl zu erzeugen und zu fokussieren, der für das Verfahren geeignete Eigenschaften aufweist. Das optische Bluterfassungssystem 17 kann die Wellenlänge des optischen Lichtstrahls innerhalb der Wellenlängen des sichtbaren, nahinfraroten und infraroten Lichtspektrums in Abhängigkeit davon ändern, welches der obigen Verfahren zur Bestimmung der in der Nähe der Elektrode 16 vorhandenen Blutmenge verwendet wird. Wenn z.B. das NIRS-Verfahren verwendet wird, muss der optische Lichtstahl eine Wellenlänge knapp oberhalb des sichtbaren Spektrums besitzen.
  • Die Wellenlänge des optischen Lichtstrahls kann unter Verwendung eines Steuerknopfes oder einer anderen Kontrollvorrichtung auf dem optischen Bluterfassungssystem 17 manuell gewählt werden. Wenn die Wellenlänge des optischen Lichtstrahls sich in einem bestimmten Bereich befindet, kann die Lichtenergie des optischen Lichtstrahls verwendet werden, um einen ionisierten, leitenden Pfad zu erzeugen, entlang dessen die elektrochirurgische Energie geführt werden kann.
  • Wenn die Lichtenergie verwendet wird, um einen ionisierten Pfad zu erzeugen, muss die Lichtenergie unter Verwendung der Kontrollvorrichtung gesteuert werden, um unerwünschte Gewebeeffekte zu vermeiden. Die Aussteuerung des Lichtstrahls sollte im Bereich von 10–5 bis 10–8 gehalten werden. Die jedem einzelnen Gewebebereich vom Lichtstrahl zugeführte Energiedichte sollte 26 Joule/cm2 für Wellenlängen zwischen 1,06 und 10,6 Mikron und 17 Joule/cm2 für Wellenlängen um und unterhalb von 0,53 Mikron nicht überschreiten. Um den ionisierten Pfad zu erzeugen, sollte die Wellenlänge des optischen Strahls sich im Bereich von 0,3 bis 10,6 Mikron befinden.
  • Es ist weiter vorgesehen, dass einer oder mehrere der oben genannten Schaltkreise 58 mithilfe eines oder mehrere Sätze von programmierbaren Anweisungen ausgeführt werden können, die dafür konfiguriert sind, von mindestens einem Prozessor des elektrochirurgischen Systems 10 oder von mindestens einem entfernt vom elektrochirurgischen System 10 liegenden Prozessor ausgeführt zu werden.
  • Z.B. können die der reflektierten Lichtenergie entsprechenden Daten entweder drahtlos oder nicht drahtlos über ein Netzwerk, wie z.B. ein LAN, WAN oder das Internet, an einen entfernten Server oder Steuerungsstation übertragen werden, um die Daten unter Verwendung eines Satzes von programmierbaren Anweisungen zu analysieren und so die in der Nähe der Elektrode 16 und/oder auf ihr vorhandene Blutmenge oder das Vorhandensein von Blutgefäßen in der Nähe des distalen Endes der Elektrode 16 zu bestimmen.
  • In Übereinstimmung mit der durchgeführten Analyse erzeugt der entfernte Server oder die Steuerungsstation dann unter Verwendung derselben oder eines anderen Satzes von programmierbaren Anweisungen das Rückkopplungsregelsignal und führt das Signal dem Leistungswählsystem zu. Es wird in Betracht gezogen, dass eine andere Form von elektromagnetischer Energie anstatt des optischen Lichtstrahls verwendet werden kann, um das Vorhandensein von Blut zu erfassen.
  • Eine weitere Ausführungsform für ein Handstück für das elektrochirurgische System 10 ist in 6 dargestellt und allgemein mit der Bezugsziffer 12A bezeichnet. Das Handstück 12A umfasst ein proximales Ende 13A, welches vom Chirurgen gehalten und gesteuert wird. Ein distales Ende 14A auf dem Handstück 12A besitzt eine Öffnung 15A, aus der ein optischer Lichtstrahl auf den Patienten 11 gerichtet wird. Eine elektrochirurgische Elektrode 16A erstreckt sich vom distalen Ende 14A des Handstücks 12A. Die mindestens eine optische Komponente 54 am distalen Ende 14A des Handstücks 12A führt über einen Wellenleiter/Drähte 34A mindestens einem lichtempfindlichen Detektor Signale zurück, die für die zum optischen Bluterfassungssystem 17 reflektierte Lichtenergie bezeichnend sind.
  • Ein manuell betätigter variabler Steuerungsknopf 24A ist auf dem Handstück 12A für die selektive Echtzeitsteuerung seitens des Chirurgen der Stromintensität oder des Strompegels vorgesehen, d.h. der Intensität der Ausgabewellenform, die vom elektrochirurgischen Generator 18 in Übereinstimmung mit der vom optischen Bluterfassungssystem 17 erfassten Blutmenge bereitgestellt wird. Dementsprechend stellt das Handstück 12A dem Chirurgen die Fähigkeit zur Verfügung, die Menge des Gewebeschneidens, -koagulierens usw. zu steuern, während das System 10 gleichzeitig die Blutmenge erfasst.
  • Mit fortlaufendem Bezug auf 6 steuert in einer weiteren bevorzugten Ausführungsform die optische Erfassung des Vorhandenseins von Blut den Modus der Ausgabe des elektrochirurgischen Generators in Echtzeit oder „on the fly" (gleichzeitig). Wenn zu darstellerischen Zwecken eine große Menge an Blut neben der Elektrode 16A erfasst wird, dann wird der Ausgabemodus des elektrochirurgischen Generators automatisch auf eine High-Level-„Hämostase"-(Koag)Wellenform eingestellt. Wenn kein Blut erfasst wird, dann wird automatisch eine „Gewebeteilungs"-(Schnitt-)Wellenform für die Ausgabe des elektrochirurgischen Generators ausgewählt. Wenn eine dazwischenliegende Menge an Blut erfasst wird, dann wird eine „Mischung" in Proportion zu der erfassten Blutmenge ausgewählt. Gleichzeitig kann der Chirurg den handbetätigten variablen Steuerungsknopf 24A für die selektive Echtzeitsteuerung der Stromintensität oder des Strompegels verwenden.
  • Der Chirurg wählt die Intensität aus, die eine Arbeitsgeschwindigkeit bereitstellt, welche in seinem individuellen Komfortbereich liegt. So wird die Auswahl des Modus automatisch durch den Bluterfassungsschaltkreis 56 ausgewählt und der Chirurg kontrolliert die Intensität der Ausgabe in Echtzeit oder „on the fly". Diese Ausführungsform vereinfacht die Schnittstelle zwischen dem Chirurgen und dem Gerät insofern sehr, als dass automatische Modusauswahl bereitgestellt wird, um den Chirurgen zu unterstützen. Als Ergebnis gibt es eine Verbesserung des chirurgischen Ergebnisses, da der geeignete Modus in Echtzeit ausgewählt wird, wodurch die Wärmeausbreitung im Gewebe verringert wird. Da der Chirurg zusätzlich die Steuerung über die Stromintensität behält, gibt es ein eingebautes Sicherheitsmerkmal.
  • Das oben beschriebene Steuerungsschema kann als wählbares Merkmal oder Option angeboten werden. D.h., ein Wählschalter würde es dem Chirurgen erlauben, zwischen einem Betrieb des Systems der vorliegenden Erfindung in einem vollständig automatischen Modus oder in einem Modus auszuwählen, welcher den Chirurgen in die Lage versetzt, die Stromintensität zu steuern.
  • Es wird in Betracht gezogen, dass der Steuerungsknopf 24A auf einem Fußpedal 26 angeordnet sein kann. Es wird weiter in Betracht gezogen, dass die Funktionen des variablen Steuerungsknopfes 24A automatisiert werden können, damit das System 10 automatisch die Stromintensität in Übereinstimmung mit der vom optischen Bluterfassungssystem 17 erfassten Blutmenge steuert.
  • Es wird vorgesehen, dass der Chirurg den aus der Öffnung 15A austretenden optischen Strahl verwenden kann, um das zu behandelnde Zielgewebe genau zu lokalisieren, wenn der optische Lichtstrahl seine Lichtenergie innerhalb des sichtbaren Spektrums besitzt. Es wird in Betracht gezogen, dass der optische Lichtstrahl seine Lichtenergie an den Wellenlängen im sichtbaren, nahinfraroten und infraroten Lichtspektrum besitzen kann.
  • Wie von 2 und 6 gezeigt, ist das elektrochirurgische System 10 so konfiguriert, dass das distale Ende 14, 14A und die elektrochirurgische Elektrode 16, 16A bevorzugt geometrisch relativ zum Handstück 12, 12A angeordnet sind, damit die Lichtenergie vom distalen Ende 14, 14A aus bereitgestellt wird. Diese Geometrie sorgt für die kombinierte gleichzeitige Anwendung der Lichtenergie und der elektrochirurgischen Energie. Der ionisierte Pfad wird von der Lichtenergie vom distalen Ende 14, 14A zum Patienten 11 ausgebildet, um die elektrochirurgische Energie dort entlang zu lenken.
  • Ein Verfahren zur Bereitstellung von Schneiden, Koagulieren und/oder einer Kombination davon an einem Gewebe des Patienten 11 mit dem elektrochirurgischen System 10 umfasst den folgenden Schritt des Richtens von Lichtenergie und elektrochirurgischer Energie aus dem Handstück 12, 12A mit seinem proximalen und distalen Ende 13, 13A und 14, 14A entlang einer Längsachse des Handstücks 12, 12A, indem sein distales Ende 14, 14A entlang der Längsachse gerichtet wird, aus welcher die Lichtenergie und die elektrochirurgische Energie zumindest teilweise gleichzeitig gerichtet werden können. Wie von 2 und 6 gezeigt, wird der optische Lichtstrahl bevorzugt vor dem distalen Ende 14, 14A der Elektrode 16, 16A fokussiert, um Blut zu erfassen, das am Gewebe vorhanden ist, welches vom Handstück 12, 12A geschnitten oder koaguliert wird. Die Lichtenergie wird durchgehend aus dem distalen Enden 14, 14A des Handstücks 12, 12A ausgesendet. Alternativ aktiviert der Chirurg den elektrochirurgischen Generator 18 unter Verwendung des Steuerungskopfes 24, 24A auf dem Handstück 12, 12A oder den Fußschalter 26. Wenn die Aktivierung eingeleitet wird, wird zuerst Lichtenergie aus dem distalen Ende 14, 14A des Handstücks 12, 12A abgestrahlt, dann wird nach einer kurzen Zeitverzögerung, in welcher das Vorhandensein von Blut erfasst wird, die Übertragung der elektrochirurgischen Energie von der elektrochirurgischen Elektrode 16, 16A am distalen Ende 14, 14A des Handstücks 12, 12A eingeschaltet.
  • Wenn ein blutendes Gefäß, das eine Blutansammlung erzeugt hat, angetroffen wird, stellt dieses Verfahren eine Erfassung der Blutansammlung und eine automatische Auswahl einer hämostatischen (Koagulations-)Wellenform durch den elektrochirurgischen Generator 18 bereit, um einen „Punkt-Koagulierungs-Eingriff" durchzuführen.
  • Wenn kein Blut vorhanden ist, wählt das Erfassungssystem auf ähnliche Weise eine Gewebeteilungs-(Schnitt-)Wellenform aus. Auf diese Weise wird der thermische Schaden am Gewebe verringert, wodurch ein verbesserter Gewebeeffekt erzeugt wird.
  • Das Verfahren umfasst den zusätzlichen Schritt des geometrischen Führens der elektrochirurgischen Energie durch Anordnen des distalen Endes 14, 14A und der elektrochirurgischen Elektrode 16, 16A in Bezug auf das Handstück 12, 12A, um den optischen Lichtstrahl vom distalen Ende 14, 14A aus für die kombinierte gleichzeitige Anwendung des optischen Lichtstrahls und der elektrochirurgischen Energie bereitzustellen. Dann wird der zusätzliche Schritt der Ionisierung eines leitenden Pfads mit Lichtenergie vom distalen Ende 14, 14A zum Patienten 11 durchgeführt, um den Fluss elektrochirurgischer Energie zu lenken.
  • Das Verfahren umfasst auch den zusätzlichen Schritt des Bereitstellens eines länglichen elektrochirurgischen Elektrodenträgers zum Tragen der Elektrode 16, 16A für einen endoskopischen oder laparoskopischen Einsatz, bei dem eine Kanüle durch die Körperwand des Patienten hindurch platziert wird.
  • Die folgenden Ansprüche versuchen, die beschriebenen Ausführungsformen und ihre Äquivalente abzudecken. Das Konzept in seinem breitesten Umfang deckt das System zur optischen Erfassung des Vorhandenseins von Blut und/oder zur Bestimmung der während des elektrochirurgischen Eingriffs erfassten Blutmenge ab. Es ist zu verstehen, dass das Konzept vielen Abwandlungen unterliegen kann, ohne vom Schutzbereich der Ansprüche abzuweichen, wie sie hier rezitiert sind.
  • Obwohl die vorliegende Erfindung mit Bezug auf bevorzugte Ausführungsformen beschrieben wurde, wird dem Durchschnittsfaschmann auf dem zugehörigen Gebiet leicht offensichtlich sein, dass Änderungen und Abwandlungen daran vorgenommen werden können, ohne vom Schutzbereich der vorliegenden Vorrichtung abzuweichen, so wie sie von den beigefügten Ansprüchen definiert ist.

Claims (15)

  1. Elektrochirurgisches System (10), umfassend: ein Mittel (17, 34, 15) zur Erzeugung und Lenkung von Lichtenergie auf Gewebe; ein Mittel (18) zur Erzeugung elektrochirurgischer Energie und zur Übertragung derselben über eine Elektrode auf das Gewebe; und ein Mittel (17) zum Analysieren von Charakteristiken der Lichtenergie, um die Menge an Blut zu bestimmen, das in der Nähe der Elektrode vorhanden ist, und um das Mittel zur Erzeugung der elektrochirurgischen Energie entsprechend zu steuern.
  2. Elektrochirurgisches System nach Anspruch 1, wobei ein Handstück (12) mit einem proximalen Ende (13) und einem distalen Ende (14) vorgesehen ist, aus dem Lichtenergie emittiert wird; die Elektrode eine elektrochirurgische Elektrode ist, die auf dem Handstück vorgesehen ist und sich vom distalen Ende weg erstreckt, aus welchem die elektrochirurgische Energie emittiert wird; eine Quelle von Lichtenergie vorgesehen ist, um die Lichtenergie zu erzeugen und dieselbe über mindestens einen Wellenleiter zum distalen Ende zu übertragen; und eine Quelle elektrochirurgischer Energie vorgesehen ist, um die elektrochirurgische Energie zu erzeugen und dieselbe durch mindestens ein elektrisch leitendes Element zur Elektrode zu übertragen.
  3. Elektrochirurgisches System nach Anspruch 1 oder 2, wobei das Mittel zur Erzeugung und Lenkung von Lichtenergie Lichtenergie in sichtbarem, nahinfrarotem und/oder infrarotem Lichtwellenlängenspektrum erzeugt.
  4. Elektrochirurgisches System nach Anspruch 1 oder 2, wobei das Mittel zur Erzeugung elektrochirurgischer Energie elektrochirurgische Energie erzeugt, die eine Ausgabewellenform zur Gewebeteilung und/oder Koagulation besitzt.
  5. Elektrochirurgisches System nach Anspruch 1 oder 2, wobei die Lichtenergieeigenschaften aus der Gruppe ausgewählt werden, die aus dem Lichtintensitätsniveau, Lichtsteuerungseffekten und dem Niveau fluoreszenter Energie bestehen.
  6. Elektrochirurgisches System nach Anspruch 1 oder 2, wobei das Mittel zum Analysieren vom Mittel zur Erzeugung von Lichtenergie und vom Mittel zur Erzeugung elektrochirurgischer Energie entfernt angeordnet ist.
  7. Elektrochirurgisches System nach Anspruch 2, wobei das Mittel zum Analysieren mit der Quelle von Lichtenergie über ein Netzwerk kommuniziert.
  8. Elektrochirurgisches System nach Anspruch 1 oder 2, wobei das Mittel zum Analysieren der Lichtenergieeigenschaften ein Verfahren verwendet, das aus der folgenden Gruppe ausgewählt ist: Nahinfrarotspektroskopie, Infrarotspektroskopie, Fluoreszenzspektroskopie, Ramanspektroskopie, fotoakustische Spektroskopie, Laser-Doppler-Flowmetry, Messung der Lichtstrahlungsänderungen und Messung der Polarisationsänderungen.
  9. Elektrochirurgisches System nach Anspruch 1 oder 2, wobei die Lichtenergie eine Wellenlänge besitzt, die zur Erzeugung eines ionisierten Pfads zwischen einem distalen Ende der Elektrode und dem Gewebe geeignet ist, und die Elektrode in der Nähe des ionisierten Pfads positioniert ist, sodass die elektrochirurgische Energie entlang des ionisierten Pfads geleitet wird.
  10. Elektrochirurgisches System nach Anspruch 1 oder 2, wobei das Mittel zum Analysieren ein Mittel zum Erfassen des Vorhandenseins von mindestens einem Blutgefäß in der Nähe eines distalen Endes der Elektrode umfasst.
  11. Elektrochirurgisches System nach Anspruch 1, wobei das Mittel zum Analysieren der Eigenschaften der Lichtenergie ein Mittel zur Bestimmung eines Werts eines Verhältnisses umfasst, indem ein erster Parameter, der durch Lenken der Lichtenergie mit einer ersten Wellenlänge erhalten wird, durch einen zweiten Parameter, der durch Lenken von Lichtenergie mit einer zweiten Wellenlänge erhalten wird, geteilt wird.
  12. Elektrochirurgisches System nach Anspruch 2, wobei das Mittel zum Analysieren der Lichtenergieeigenschaften ein Mittel zur Bestimmung eines Werts eines Verhältnisses umfasst, indem ein erster Parameter, der durch Emittieren von Lichtenergie aus dem Handstück mit einer ersten Wellenlänge erhalten wird, durch einen zweiten Parameter, der durch Lenken der Lichtenergie aus dem Handstück mit einer zweiten Wellenlänge erhalten wird, geteilt wird.
  13. Elektrochirurgisches System nach Anspruch 11 oder 12, wobei das Mittel zum Analysieren der Eigenschaften der Lichtenergie weiter ein Mittel zum Bestimmen umfasst, ob der Wert des Verhältnisses kleiner, ungefähr gleich oder größer als ein vorbestimmter Wert des Verhältnisses ist, und um das Mittel zur Erzeugung der elektrochirurgischen Energie entsprechend zu steuern.
  14. Elektrochirurgisches System nach Anspruch 11 oder 12, wobei die erste Wellenlänge im Bereich von 620 bis 700 nm liegt und die zweite Wellenlänge im Bereich von 540 bis 610 nm oder 950 bis 1.050 nm liegt.
  15. Elektrochirurgisches System nach Anspruch 1 oder 2, wobei das Mittel zum Analysieren und Steuern der Quelle elektrochirurgischer Energie ein Mittel zum variablen Steuern der Intensität des vom elektrochirurgischen Generator erzeugten Stroms umfasst.
DE60315970T 2002-05-06 2003-05-06 Blutdetektor zur kontrolle einer elektrochirurgischen einheit Expired - Lifetime DE60315970T2 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US37829002P 2002-05-06 2002-05-06
US378290P 2002-05-06
US39200802P 2002-06-26 2002-06-26
US392008P 2002-06-26
PCT/US2003/014155 WO2003092520A1 (en) 2002-05-06 2003-05-06 Blood detector for controlling anesu and method therefor

Publications (2)

Publication Number Publication Date
DE60315970D1 DE60315970D1 (de) 2007-10-11
DE60315970T2 true DE60315970T2 (de) 2008-05-21

Family

ID=29406825

Family Applications (1)

Application Number Title Priority Date Filing Date
DE60315970T Expired - Lifetime DE60315970T2 (de) 2002-05-06 2003-05-06 Blutdetektor zur kontrolle einer elektrochirurgischen einheit

Country Status (9)

Country Link
US (1) US7749217B2 (de)
EP (1) EP1501435B1 (de)
JP (1) JP4490807B2 (de)
AT (1) ATE371413T1 (de)
AU (2) AU2003265331B2 (de)
CA (1) CA2484875C (de)
DE (1) DE60315970T2 (de)
ES (1) ES2289307T3 (de)
WO (1) WO2003092520A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010015899A1 (de) * 2010-02-04 2011-08-04 Erbe Elektromedizin GmbH, 72072 Elektrochirurgische Anordnung und elektrochirurgisches Instrument

Families Citing this family (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080154257A1 (en) * 2006-12-22 2008-06-26 Shiva Sharareh Real-time optoacoustic monitoring with electophysiologic catheters
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US20100042093A9 (en) * 1998-10-23 2010-02-18 Wham Robert H System and method for terminating treatment in impedance feedback algorithm
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US6300108B1 (en) * 1999-07-21 2001-10-09 The Regents Of The University Of California Controlled electroporation and mass transfer across cell membranes
US6795728B2 (en) 2001-08-17 2004-09-21 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits by electroporation
US6697670B2 (en) * 2001-08-17 2004-02-24 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits by electroporation with improved comfort of patients
US8251986B2 (en) 2000-08-17 2012-08-28 Angiodynamics, Inc. Method of destroying tissue cells by eletroporation
US6892099B2 (en) * 2001-02-08 2005-05-10 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits, virtual face lift and body sculpturing by electroporation
EP1656901B1 (de) 2001-04-06 2009-09-02 Covidien AG Vorrichtung zum Abdichten und Teilen eines Gefässes mit nicht leitendem Endanschlag
US7130697B2 (en) * 2002-08-13 2006-10-31 Minnesota Medical Physics Llc Apparatus and method for the treatment of benign prostatic hyperplasia
USRE42016E1 (en) 2001-08-13 2010-12-28 Angiodynamics, Inc. Apparatus and method for the treatment of benign prostatic hyperplasia
US6994706B2 (en) 2001-08-13 2006-02-07 Minnesota Medical Physics, Llc Apparatus and method for treatment of benign prostatic hyperplasia
AU2003265331B2 (en) 2002-05-06 2008-03-20 Covidien Ag Blood detector for controlling anesu and method therefor
US7931649B2 (en) 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
US7799026B2 (en) 2002-11-14 2010-09-21 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
WO2004098385A2 (en) 2003-05-01 2004-11-18 Sherwood Services Ag Method and system for programing and controlling an electrosurgical generator system
WO2004098383A2 (en) 2003-05-01 2004-11-18 Sherwood Services Ag Electrosurgical instrument which reduces thermal damage to adjacent tissue
EP1675499B1 (de) 2003-10-23 2011-10-19 Covidien AG Redundante temperaturüberwachung für elektrochirurgische systeme zur sicherheitserhöhung
CA2542798C (en) 2003-10-23 2015-06-23 Sherwood Services Ag Thermocouple measurement circuit
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7367976B2 (en) 2003-11-17 2008-05-06 Sherwood Services Ag Bipolar forceps having monopolar extension
US7131970B2 (en) 2003-11-19 2006-11-07 Sherwood Services Ag Open vessel sealing instrument with cutting mechanism
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7300435B2 (en) * 2003-11-21 2007-11-27 Sherwood Services Ag Automatic control system for an electrosurgical generator
US8298222B2 (en) * 2003-12-24 2012-10-30 The Regents Of The University Of California Electroporation to deliver chemotherapeutics and enhance tumor regression
WO2005065284A2 (en) 2003-12-24 2005-07-21 The Regents Of The University Of California Tissue ablation with irreversible electroporation
US7766905B2 (en) * 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
JP4443278B2 (ja) * 2004-03-26 2010-03-31 テルモ株式会社 拡張体付カテーテル
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
WO2006055733A1 (en) * 2004-11-17 2006-05-26 Biosense Webster, Inc. Apparatus for real time evaluation of tissue ablation
US20060161148A1 (en) * 2005-01-13 2006-07-20 Robert Behnke Circuit and method for controlling an electrosurgical generator using a full bridge topology
US7909823B2 (en) 2005-01-14 2011-03-22 Covidien Ag Open vessel sealing instrument
US7686804B2 (en) 2005-01-14 2010-03-30 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US9474564B2 (en) 2005-03-31 2016-10-25 Covidien Ag Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US8114070B2 (en) * 2005-06-24 2012-02-14 Angiodynamics, Inc. Methods and systems for treating BPH using electroporation
US20060293725A1 (en) * 2005-06-24 2006-12-28 Boris Rubinsky Methods and systems for treating fatty tissue sites using electroporation
US20060293731A1 (en) * 2005-06-24 2006-12-28 Boris Rubinsky Methods and systems for treating tumors using electroporation
US20060293730A1 (en) 2005-06-24 2006-12-28 Boris Rubinsky Methods and systems for treating restenosis sites using electroporation
EP1908057B1 (de) * 2005-06-30 2012-06-20 LG Electronics Inc. Verfahren und vorrichtung zum decodieren eines audiosignals
CA2561638C (en) 2005-09-30 2015-06-30 Sherwood Services Ag Insulating boot for electrosurgical forceps
US7879035B2 (en) 2005-09-30 2011-02-01 Covidien Ag Insulating boot for electrosurgical forceps
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
CA2561034C (en) 2005-09-30 2014-12-09 Sherwood Services Ag Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue
US7922953B2 (en) 2005-09-30 2011-04-12 Covidien Ag Method for manufacturing an end effector assembly
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US20070156135A1 (en) * 2006-01-03 2007-07-05 Boris Rubinsky System and methods for treating atrial fibrillation using electroporation
CA2574935A1 (en) 2006-01-24 2007-07-24 Sherwood Services Ag A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
CA2575392C (en) 2006-01-24 2015-07-07 Sherwood Services Ag System and method for tissue sealing
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
US20070173802A1 (en) * 2006-01-24 2007-07-26 Keppel David S Method and system for transmitting data across patient isolation barrier
US9186200B2 (en) 2006-01-24 2015-11-17 Covidien Ag System and method for tissue sealing
CA2574934C (en) 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US7648499B2 (en) 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US8753334B2 (en) 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US8034049B2 (en) 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
US7794457B2 (en) 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing
WO2008048620A2 (en) 2006-10-16 2008-04-24 The Regents Of The University Of California Gels with predetermined conductivity used in irreversible electroporation of tissue
US20080132884A1 (en) * 2006-12-01 2008-06-05 Boris Rubinsky Systems for treating tissue sites using electroporation
US8690864B2 (en) * 2007-03-09 2014-04-08 Covidien Lp System and method for controlling tissue treatment
US20080249523A1 (en) * 2007-04-03 2008-10-09 Tyco Healthcare Group Lp Controller for flexible tissue ablation procedures
US8777941B2 (en) 2007-05-10 2014-07-15 Covidien Lp Adjustable impedance electrosurgical electrodes
US8777945B2 (en) * 2007-06-29 2014-07-15 Covidien Lp Method and system for monitoring tissue during an electrosurgical procedure
US7834484B2 (en) 2007-07-16 2010-11-16 Tyco Healthcare Group Lp Connection cable and method for activating a voltage-controlled generator
US8216220B2 (en) 2007-09-07 2012-07-10 Tyco Healthcare Group Lp System and method for transmission of combined data stream
US8512332B2 (en) 2007-09-21 2013-08-20 Covidien Lp Real-time arc control in electrosurgical generators
EP2229096B1 (de) * 2007-12-28 2011-06-08 Koninklijke Philips Electronics N.V. Gewebeablationsvorrichtung mit photoakustischer läsionsbildungsrückmeldung
US20090248012A1 (en) 2008-03-27 2009-10-01 The Regents Of The University Of California Irreversible electroporation device and method for attenuating neointimal
US20100004623A1 (en) * 2008-03-27 2010-01-07 Angiodynamics, Inc. Method for Treatment of Complications Associated with Arteriovenous Grafts and Fistulas Using Electroporation
US8257349B2 (en) * 2008-03-28 2012-09-04 Tyco Healthcare Group Lp Electrosurgical apparatus with predictive RF source control
CA2722296A1 (en) 2008-04-29 2009-11-05 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation to create tissue scaffolds
US10238447B2 (en) 2008-04-29 2019-03-26 Virginia Tech Intellectual Properties, Inc. System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress
US9198733B2 (en) 2008-04-29 2015-12-01 Virginia Tech Intellectual Properties, Inc. Treatment planning for electroporation-based therapies
US9283051B2 (en) 2008-04-29 2016-03-15 Virginia Tech Intellectual Properties, Inc. System and method for estimating a treatment volume for administering electrical-energy based therapies
US8992517B2 (en) 2008-04-29 2015-03-31 Virginia Tech Intellectual Properties Inc. Irreversible electroporation to treat aberrant cell masses
US10117707B2 (en) 2008-04-29 2018-11-06 Virginia Tech Intellectual Properties, Inc. System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US11272979B2 (en) 2008-04-29 2022-03-15 Virginia Tech Intellectual Properties, Inc. System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US11254926B2 (en) 2008-04-29 2022-02-22 Virginia Tech Intellectual Properties, Inc. Devices and methods for high frequency electroporation
US9867652B2 (en) 2008-04-29 2018-01-16 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US10245098B2 (en) 2008-04-29 2019-04-02 Virginia Tech Intellectual Properties, Inc. Acute blood-brain barrier disruption using electrical energy based therapy
US10702326B2 (en) 2011-07-15 2020-07-07 Virginia Tech Intellectual Properties, Inc. Device and method for electroporation based treatment of stenosis of a tubular body part
US10272178B2 (en) 2008-04-29 2019-04-30 Virginia Tech Intellectual Properties Inc. Methods for blood-brain barrier disruption using electrical energy
WO2009137800A2 (en) * 2008-05-09 2009-11-12 Angiodynamics, Inc. Electroporation device and method
PT2291640T (pt) 2008-05-20 2019-02-26 Univ Health Network Dispositivo e método para imagiologia e monitorização baseados em fluorescência
US8226639B2 (en) 2008-06-10 2012-07-24 Tyco Healthcare Group Lp System and method for output control of electrosurgical generator
US9173704B2 (en) * 2008-06-20 2015-11-03 Angiodynamics, Inc. Device and method for the ablation of fibrin sheath formation on a venous catheter
US9681909B2 (en) * 2008-06-23 2017-06-20 Angiodynamics, Inc. Treatment devices and methods
US9603652B2 (en) * 2008-08-21 2017-03-28 Covidien Lp Electrosurgical instrument including a sensor
US8142473B2 (en) 2008-10-03 2012-03-27 Tyco Healthcare Group Lp Method of transferring rotational motion in an articulating surgical instrument
US8016827B2 (en) 2008-10-09 2011-09-13 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US9907621B2 (en) 2008-11-14 2018-03-06 Prash Jayaraj Surgical pencil
US20100125172A1 (en) * 2008-11-14 2010-05-20 Prash Jayaraj Surgical pencil providing an illuminated surgical site
US8690872B2 (en) * 2008-11-14 2014-04-08 Prash Jayaraj Surgical pencil enabling suction
US20100152725A1 (en) * 2008-12-12 2010-06-17 Angiodynamics, Inc. Method and system for tissue treatment utilizing irreversible electroporation and thermal track coagulation
US8262652B2 (en) 2009-01-12 2012-09-11 Tyco Healthcare Group Lp Imaginary impedance process monitoring and intelligent shut-off
US8114122B2 (en) 2009-01-13 2012-02-14 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
WO2010085765A2 (en) * 2009-01-23 2010-07-29 Moshe Meir H Therapeutic energy delivery device with rotational mechanism
US8231603B2 (en) * 2009-02-10 2012-07-31 Angiodynamics, Inc. Irreversible electroporation and tissue regeneration
US8319953B2 (en) * 2009-03-10 2012-11-27 Spectra Tracker LLC Method and device for spectrally detecting presence of blood
WO2010118387A1 (en) * 2009-04-09 2010-10-14 Virginia Tech Intellectual Properties, Inc. Integration of very short electric pulses for minimally to noninvasive electroporation
US11382681B2 (en) 2009-04-09 2022-07-12 Virginia Tech Intellectual Properties, Inc. Device and methods for delivery of high frequency electrical pulses for non-thermal ablation
US11638603B2 (en) 2009-04-09 2023-05-02 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
US8187273B2 (en) 2009-05-07 2012-05-29 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
USD630321S1 (en) 2009-05-08 2011-01-04 Angio Dynamics, Inc. Probe handle
US8903488B2 (en) 2009-05-28 2014-12-02 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
US9895189B2 (en) 2009-06-19 2018-02-20 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation
US8246618B2 (en) 2009-07-08 2012-08-21 Tyco Healthcare Group Lp Electrosurgical jaws with offset knife
US8983567B1 (en) 2009-08-01 2015-03-17 Nuvasive, Inc. Systems and methods for vessel avoidance during spine surgery
US8133254B2 (en) 2009-09-18 2012-03-13 Tyco Healthcare Group Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US8652125B2 (en) 2009-09-28 2014-02-18 Covidien Lp Electrosurgical generator user interface
US8112871B2 (en) 2009-09-28 2012-02-14 Tyco Healthcare Group Lp Method for manufacturing electrosurgical seal plates
US20110118732A1 (en) 2009-11-19 2011-05-19 The Regents Of The University Of California Controlled irreversible electroporation
US8961504B2 (en) 2010-04-09 2015-02-24 Covidien Lp Optical hydrology arrays and system and method for monitoring water displacement during treatment of patient tissue
EP2627274B1 (de) 2010-10-13 2022-12-14 AngioDynamics, Inc. System zur elektrischen ableitung des gewebes eines patienten
WO2012088149A2 (en) 2010-12-20 2012-06-28 Virginia Tech Intellectual Properties, Inc. High-frequency electroporation for cancer therapy
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US8897523B2 (en) 2011-07-09 2014-11-25 Gauss Surgical System and method for counting surgical samples
US9870625B2 (en) 2011-07-09 2018-01-16 Gauss Surgical, Inc. Method for estimating a quantity of a blood component in a fluid receiver and corresponding error
US10426356B2 (en) 2011-07-09 2019-10-01 Gauss Surgical, Inc. Method for estimating a quantity of a blood component in a fluid receiver and corresponding error
US9646375B2 (en) 2011-07-09 2017-05-09 Gauss Surgical, Inc. Method for setting a blood transfusion parameter
AU2012312066C1 (en) 2011-09-22 2016-06-16 460Medical, Inc. Systems and methods for visualizing ablated tissue
US9078665B2 (en) 2011-09-28 2015-07-14 Angiodynamics, Inc. Multiple treatment zone ablation probe
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
US9861427B2 (en) 2012-01-20 2018-01-09 Koninklijke Philips N.V. Electro-surgical system, an electro-surgical device, and a method for operating an electro-surgical system
US9414881B2 (en) 2012-02-08 2016-08-16 Angiodynamics, Inc. System and method for increasing a target zone for electrical ablation
US11399898B2 (en) 2012-03-06 2022-08-02 Briteseed, Llc User interface for a system used to determine tissue or artifact characteristics
US9375249B2 (en) 2012-05-11 2016-06-28 Covidien Lp System and method for directing energy to tissue
IN2014DN10121A (de) 2012-05-14 2015-08-21 Gauss Surgical
EP2850559B1 (de) 2012-05-14 2021-02-24 Gauss Surgical, Inc. System und verfahren zur schätzung einer menge von blutbestandteilen in einem flüssigkeitskanister
US9529025B2 (en) 2012-06-29 2016-12-27 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US10641644B2 (en) 2012-07-09 2020-05-05 Gauss Surgical, Inc. System and method for estimating an amount of a blood component in a volume of fluid
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9655670B2 (en) 2013-07-29 2017-05-23 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US11096584B2 (en) 2013-11-14 2021-08-24 The George Washington University Systems and methods for determining lesion depth using fluorescence imaging
CN105744883B (zh) 2013-11-20 2022-03-01 乔治华盛顿大学 用于心脏组织高光谱分析的系统和方法
US10166321B2 (en) 2014-01-09 2019-01-01 Angiodynamics, Inc. High-flow port and infusion needle systems
US10251600B2 (en) 2014-03-25 2019-04-09 Briteseed, Llc Vessel detector and method of detection
US9824441B2 (en) 2014-04-15 2017-11-21 Gauss Surgical, Inc. Method for estimating a quantity of a blood component in a fluid canister
JP6652499B2 (ja) 2014-04-15 2020-02-26 ガウス サージカル, インコーポレイテッドGauss Surgical, Inc. 流体キャニスター内の血液成分の量を推定するための方法
US10471254B2 (en) 2014-05-12 2019-11-12 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
CN115989999A (zh) 2014-07-24 2023-04-21 大学健康网络 用于诊断目的的数据的收集和分析
US12114911B2 (en) 2014-08-28 2024-10-15 Angiodynamics, Inc. System and method for ablating a tissue site by electroporation with real-time pulse monitoring
WO2016073492A1 (en) * 2014-11-03 2016-05-12 Luxcath, Llc. Systems and methods for assessment of contact quality
AU2015343258B2 (en) * 2014-11-03 2020-07-16 460Medical, Inc. Systems and methods for lesion assessment
US10694972B2 (en) 2014-12-15 2020-06-30 Virginia Tech Intellectual Properties, Inc. Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
WO2016117106A1 (ja) * 2015-01-23 2016-07-28 オリンパス株式会社 外科処置装置
US10820838B2 (en) 2015-02-19 2020-11-03 Briteseed, Llc System for determining vessel size using light absorption
EP3258841B1 (de) 2015-02-19 2019-04-10 Briteseed, LLC System zur bestimmung der gefässgrösse und/oder -kante
EP3262396B1 (de) 2015-02-25 2023-12-13 Outsense Diagnostics Ltd. Körperemissionsanalyse
JPWO2016151787A1 (ja) 2015-03-25 2018-01-11 オリンパス株式会社 血管認識用血流測定方法
JPWO2016171274A1 (ja) * 2015-04-23 2018-03-01 オリンパス株式会社 内視鏡装置
WO2016187071A1 (en) 2015-05-15 2016-11-24 Gauss Surgical, Inc. Systems and methods for assessing fluids from a patient
US10555675B2 (en) 2015-05-15 2020-02-11 Gauss Surgical, Inc. Method for projecting blood loss of a patient during a surgery
US10789710B2 (en) 2015-05-15 2020-09-29 Gauss Surgical, Inc. Methods and systems for characterizing fluids from a patient
US10779904B2 (en) 2015-07-19 2020-09-22 460Medical, Inc. Systems and methods for lesion formation and assessment
WO2017031712A1 (en) 2015-08-26 2017-03-02 Covidien Lp Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread
US10716508B2 (en) 2015-10-08 2020-07-21 Briteseed, Llc System and method for determining vessel size
US10213250B2 (en) 2015-11-05 2019-02-26 Covidien Lp Deployment and safety mechanisms for surgical instruments
JP6934253B2 (ja) 2015-12-23 2021-09-15 ガウス サージカル, インコーポレイテッドGauss Surgical, Inc. 外科織物内の血液構成要素の量の評価方法
US11992235B2 (en) 2016-02-12 2024-05-28 Briteseed, Llc System to differentiate and identify types of tissue within a region proximate to a working end of a surgical instrument
JP7027408B2 (ja) 2016-08-30 2022-03-01 アウトセンス ダイアグノスティクス リミテッド 身体排出物の分析
US11589852B2 (en) 2016-08-30 2023-02-28 Briteseed, Llc Optical surgical system having light sensor on its jaw and method for determining vessel size with angular distortion compensation
US10905492B2 (en) 2016-11-17 2021-02-02 Angiodynamics, Inc. Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode
JP7268879B2 (ja) 2017-01-02 2023-05-08 ガウス サージカル,インコーポレイテッド 重複撮像を予測した手術アイテムの追跡
US11229368B2 (en) 2017-01-13 2022-01-25 Gauss Surgical, Inc. Fluid loss estimation based on weight of medical items
US20180317995A1 (en) * 2017-05-02 2018-11-08 C. R. Bard, Inc. Systems And Methods Of An Electrohemostatic Renal Sheath
EP3449815A1 (de) * 2017-08-28 2019-03-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Überwachung der gewebekoagulation durch optische reflexionssignale
EP3678535B1 (de) 2017-09-05 2021-11-03 Briteseed, LLC System und verfahren zur bestimmung von gewebe- und / oder artefaktcharakteristika
US11607537B2 (en) 2017-12-05 2023-03-21 Virginia Tech Intellectual Properties, Inc. Method for treating neurological disorders, including tumors, with electroporation
EP3727140B1 (de) 2017-12-22 2023-11-01 Briteseed, LLC Kompaktes system zur bestimmung von gewebe- oder artefaktmerkmalen
US11311329B2 (en) 2018-03-13 2022-04-26 Virginia Tech Intellectual Properties, Inc. Treatment planning for immunotherapy based treatments using non-thermal ablation techniques
US11925405B2 (en) 2018-03-13 2024-03-12 Virginia Tech Intellectual Properties, Inc. Treatment planning system for immunotherapy enhancement via non-thermal ablation
WO2020142394A1 (en) 2018-12-30 2020-07-09 Briteseed, Llc A system and method used to detect or differentiate tissue or an artifact
US11950835B2 (en) 2019-06-28 2024-04-09 Virginia Tech Intellectual Properties, Inc. Cycled pulsing to mitigate thermal damage for multi-electrode irreversible electroporation therapy
JP2023510326A (ja) 2020-01-08 2023-03-13 460メディカル・インコーポレイテッド アブレーション焼灼巣の光学的探索のためのシステム及び方法
US20210236189A1 (en) * 2020-01-30 2021-08-05 Kester Julian Batchelor Adaptive blend of electrosurgical cutting and coagulation
US11931098B2 (en) * 2020-02-19 2024-03-19 Boston Scientific Medical Device Limited System and method for carrying out a medical procedure
DE102021101410A1 (de) 2021-01-22 2022-07-28 Olympus Winter & Ibe Gmbh Verfahren und System zur Steuerung eines chirurgischen HF-Generators sowie Softwareprogrammprodukt

Family Cites Families (581)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE179607C (de) 1906-11-12
DE390937C (de) 1922-10-13 1924-03-03 Adolf Erb Vorrichtung zur Innenbeheizung von Wannenoefen zum Haerten, Anlassen, Gluehen, Vergueten und Schmelzen
US1841968A (en) 1924-08-16 1932-01-19 William J Cameron Radio-surgical apparatus
US1863118A (en) 1927-10-31 1932-06-14 Liebel Flarsheim Co Surgeon's instrument
US1813902A (en) 1928-01-18 1931-07-14 Liebel Flarsheim Co Electrosurgical apparatus
US1787709A (en) 1928-06-11 1931-01-06 Wappler Frederick Charles High-frequency surgical cutting device
US1945667A (en) 1929-12-11 1934-02-06 Gen Electric Supervisory system
GB607850A (en) 1946-04-01 1948-09-06 William George Curwain Electric connectors
US2849611A (en) 1955-05-16 1958-08-26 Honeywell Regulator Co Electrical oscillator circuit
US2827056A (en) 1955-06-21 1958-03-18 Thomas H Ballantine Jr Electrode discharge control for surgical apparatus
BE556940A (de) 1956-04-26
GB855459A (en) 1958-04-11 1960-11-30 Keeler Optical Products Ltd Improvements in or relating to electro-surgical apparatus
US2982881A (en) 1958-05-22 1961-05-02 Robert W Reich Portable light source
DE1099658B (de) 1959-04-29 1961-02-16 Siemens Reiniger Werke Ag Selbsttaetige Einschaltvorrichtung fuer Hochfrequenzchirurgiegeraete
GB902775A (en) 1959-05-16 1962-08-09 Kathleen Zilla Rumble Improvements in or relating to electrical plugs
US3089496A (en) 1959-08-19 1963-05-14 Code Inc Control system for surgical apparatus
US3163165A (en) 1960-09-12 1964-12-29 Islkawa Humio Uterotube-closing instrument
FR1275415A (fr) 1960-09-26 1961-11-10 Dispositif détecteur de perturbations pour installations électriques, notamment d'électrochirurgie
DE1139927B (de) 1961-01-03 1962-11-22 Friedrich Laber Hochfrequenz-Chirurgiegeraet
DE1149832C2 (de) 1961-02-25 1977-10-13 Siemens AG, 1000 Berlin und 8000 München Hochfrequenz-chirurgieapparat
FR1347865A (fr) 1962-11-22 1964-01-04 Perfectionnements aux appareils de diathermo-coagulation
US3252052A (en) 1963-08-23 1966-05-17 Jacuzzi Bros Inc Leakage detection and control circuit
DE1264513C2 (de) 1963-11-29 1973-01-25 Texas Instruments Inc Bezugspotentialfreier gleichstromdifferenzverstaerker
US3478744A (en) 1964-12-30 1969-11-18 Harry Leiter Surgical apparatus
US3486115A (en) 1965-04-01 1969-12-23 Donald J Anderson Means for measuring the power in an electrical circuit
US3439680A (en) 1965-04-12 1969-04-22 Univ Northwestern Surgical instrument for cataract removal
FR1494065A (fr) 1965-05-10 1967-09-08 Const De Vaux Andigny Atel Détecteur-amplificateur pour signaux de faible niveau et dispositifs en comportant application
US3495584A (en) 1965-06-03 1970-02-17 Gen Electric Lead failure detection circuit for a cardiac monitor
US3436563A (en) 1965-12-27 1969-04-01 Bell Telephone Labor Inc Pulse driver with linear current rise
US3471770A (en) 1966-03-30 1969-10-07 Ibm Pulsed current generating circuits
US3461874A (en) 1966-08-10 1969-08-19 Miguel Martinez Electric cautery
GB1169706A (en) 1966-09-29 1969-11-05 English Electric Co Ltd An Electrical Fault Detector
US3391351A (en) 1966-11-21 1968-07-02 Bell Telephone Labor Inc Circuits using a transistor operated into second breakdown region
US3439253A (en) 1967-04-05 1969-04-15 R I Phelon Inc Alternator rectifier and voltage regulator
NL145136C (de) 1967-07-25 1900-01-01
US3513353A (en) 1967-08-17 1970-05-19 John L Lansch Voltage monitoring circuit
US3551786A (en) 1967-12-05 1970-12-29 Omark Industries Inc Circuit for adjustably increasing or decreasing the charge on a capacitor
US3562623A (en) 1968-07-16 1971-02-09 Hughes Aircraft Co Circuit for reducing stray capacity effects in transformer windings
US3514689A (en) 1968-08-21 1970-05-26 United Aircraft Corp Three-phase ac-operated dc power supply
US3642008A (en) * 1968-09-25 1972-02-15 Medical Plastics Inc Ground electrode and test circuit
US3601126A (en) * 1969-01-08 1971-08-24 Electro Medical Systems Inc High frequency electrosurgical apparatus
US3571644A (en) 1969-01-27 1971-03-23 Heurtey Sa High frequency oscillator for inductive heating
US3595221A (en) 1969-03-04 1971-07-27 Matburn Holdings Ltd Endoscopic having illumination supply unit
US3611053A (en) 1969-10-10 1971-10-05 Farmer Electric Products Co In Intrinsically safe circuit
US3662151A (en) 1969-11-17 1972-05-09 Codman & Shurtleff Cautery
US3675655A (en) 1970-02-04 1972-07-11 Electro Medical Systems Inc Method and apparatus for high frequency electric surgery
DE2030776A1 (de) 1970-06-23 1971-12-30 Siemens Ag Handstück für Hochfrequenz-Elektroden
US3826263A (en) 1970-08-13 1974-07-30 R Shaw Electrically heated surgical cutting instrument
US3683923A (en) 1970-09-25 1972-08-15 Valleylab Inc Electrosurgery safety circuit
US3641422A (en) 1970-10-01 1972-02-08 Robert P Farnsworth Wide band boost regulator power supply
US3697808A (en) 1970-11-23 1972-10-10 Safety Co The System for monitoring chassis potential and ground continuity
US3693613A (en) 1970-12-09 1972-09-26 Cavitron Corp Surgical handpiece and flow control system for use therewith
FR2123896A5 (de) 1971-02-04 1972-09-15 Radiotechnique Compelec
US3699967A (en) 1971-04-30 1972-10-24 Valleylab Inc Electrosurgical generator
US3766434A (en) 1971-08-09 1973-10-16 S Sherman Safety power distribution system
US3848600A (en) 1972-02-03 1974-11-19 Ndm Corp Indifferent electrode in electrosurgical procedures and method of use
US3784842A (en) 1972-02-03 1974-01-08 F Kremer Body current activated circuit breaker
US3828768A (en) 1972-07-13 1974-08-13 Physiological Electronics Corp Method and apparatus for detecting cardiac arrhythmias
US3783340A (en) 1972-09-07 1974-01-01 Biotek Instr Inc Ground safe system
US3768482A (en) 1972-10-10 1973-10-30 R Shaw Surgical cutting instrument having electrically heated cutting edge
US3812858A (en) 1972-10-24 1974-05-28 Sybron Corp Dental electrosurgical unit
US3885569A (en) 1972-11-21 1975-05-27 Birtcher Corp Electrosurgical unit
US3801800A (en) 1972-12-26 1974-04-02 Valleylab Inc Isolating switching circuit for an electrosurgical generator
JPS5241593B2 (de) 1972-12-29 1977-10-19
US3801766A (en) 1973-01-22 1974-04-02 Valleylab Inc Switching means for an electro-surgical device including particular contact means and particular printed-circuit mounting means
US3971365A (en) 1973-02-12 1976-07-27 Beckman Instruments, Inc. Bioelectrical impedance measuring system
US3815015A (en) 1973-02-20 1974-06-04 Gen Electric Transformer-diode isolated circuits for high voltage power supplies
US3963030A (en) 1973-04-16 1976-06-15 Valleylab, Inc. Signal generating device and method for producing coagulation electrosurgical current
GB1480736A (en) 1973-08-23 1977-07-20 Matburn Ltd Electrodiathermy apparatus
US3933157A (en) 1973-10-23 1976-01-20 Aktiebolaget Stille-Werner Test and control device for electrosurgical apparatus
US3875945A (en) 1973-11-02 1975-04-08 Demetron Corp Electrosurgery instrument
US3870047A (en) 1973-11-12 1975-03-11 Dentsply Res & Dev Electrosurgical device
FR2251864A1 (en) 1973-11-21 1975-06-13 Termiflex Corp Portable input and output unit for connection to a data processor - is basically a calculator with transmitter and receiver
US3901216A (en) 1973-12-20 1975-08-26 Milton R Felger Method for measuring endodontic working lengths
US3897788A (en) 1974-01-14 1975-08-05 Valleylab Inc Transformer coupled power transmitting and isolated switching circuit
DE2407559C3 (de) 1974-02-16 1982-01-21 Dornier System Gmbh, 7990 Friedrichshafen Wärmesonde
US3905373A (en) 1974-04-18 1975-09-16 Dentsply Res & Dev Electrosurgical device
US3913583A (en) 1974-06-03 1975-10-21 Sybron Corp Control circuit for electrosurgical units
JPS5710740B2 (de) 1974-06-17 1982-02-27
US4024467A (en) 1974-07-15 1977-05-17 Sybron Corporation Method for controlling power during electrosurgery
US3923063A (en) 1974-07-15 1975-12-02 Sybron Corp Pulse control circuit for electrosurgical units
US3952748A (en) 1974-07-18 1976-04-27 Minnesota Mining And Manufacturing Company Electrosurgical system providing a fulguration current
US3946738A (en) 1974-10-24 1976-03-30 Newton David W Leakage current cancelling circuit for use with electrosurgical instrument
US4231372A (en) 1974-11-04 1980-11-04 Valleylab, Inc. Safety monitoring circuit for electrosurgical unit
US3964487A (en) * 1974-12-09 1976-06-22 The Birtcher Corporation Uncomplicated load-adapting electrosurgical cutting generator
US4237887A (en) 1975-01-23 1980-12-09 Valleylab, Inc. Electrosurgical device
DE2504280C3 (de) 1975-02-01 1980-08-28 Hans Heinrich Prof. Dr. 8035 Gauting Meinke Vorrichtung zum Schneiden und/oder Koagulieren menschlichen Gewebes mit Hochfrequenzstrom
US3978393A (en) * 1975-04-21 1976-08-31 Burroughs Corporation High efficiency switching regulator
US4005714A (en) 1975-05-03 1977-02-01 Richard Wolf Gmbh Bipolar coagulation forceps
CA1064581A (en) 1975-06-02 1979-10-16 Stephen W. Andrews Pulse control circuit and method for electrosurgical units
US4074719A (en) 1975-07-12 1978-02-21 Kurt Semm Method of and device for causing blood coagulation
DE2540968C2 (de) 1975-09-13 1982-12-30 Erbe Elektromedizin GmbH, 7400 Tübingen Einrichtung zum Einschalten des Koagulationsstroms einer bipolaren Koagulationspinzette
SE399495B (sv) * 1975-11-03 1978-02-13 Lindmark Magnus C W Switchande stromforsorjningsaggregat for omvandling av likspenning till vexelspenning
JPS5275882A (en) 1975-12-20 1977-06-25 Olympus Optical Co High frequency electric knife
US4051855A (en) 1976-02-06 1977-10-04 Ipco Hospital Supply Corporation, Whaledent International Division Electrosurgical unit
US4041952A (en) 1976-03-04 1977-08-16 Valleylab, Inc. Electrosurgical forceps
US4063557A (en) 1976-04-01 1977-12-20 Cavitron Corporation Ultrasonic aspirator
US4191188A (en) 1976-05-07 1980-03-04 Macan Engineering & Manufacturing Company, Inc. Variable crest factor high frequency generator apparatus
US4092986A (en) * 1976-06-14 1978-06-06 Ipco Hospital Supply Corporation (Whaledent International Division) Constant output electrosurgical unit
JPS5324173U (de) 1976-08-09 1978-03-01
US4094320A (en) 1976-09-09 1978-06-13 Valleylab, Inc. Electrosurgical safety circuit and method of using same
US4171700A (en) 1976-10-13 1979-10-23 Erbe Elektromedizin Gmbh & Co. Kg High-frequency surgical apparatus
US4114604A (en) 1976-10-18 1978-09-19 Shaw Robert F Catheter oximeter apparatus and method
US4126137A (en) 1977-01-21 1978-11-21 Minnesota Mining And Manufacturing Company Electrosurgical unit
US4123673A (en) 1977-03-14 1978-10-31 Dentsply Research And Development Corporation Control circuit for an electrical device
US4121590A (en) 1977-03-14 1978-10-24 Dentsply Research And Development Corporation System for monitoring integrity of a patient return circuit
FR2390968A1 (fr) 1977-05-16 1978-12-15 Skovajsa Joseph Dispositif de traitement local d'un patient, notamment pour acupuncture ou auriculotherapie
FR2391588A1 (fr) 1977-05-18 1978-12-15 Satelec Soc Generateur de tension haute frequence
SU727201A2 (ru) 1977-11-02 1980-04-15 Киевский Научно-Исследовательский Институт Нейрохирургии Электрохирургический аппарат
US4200104A (en) 1977-11-17 1980-04-29 Valleylab, Inc. Contact area measurement apparatus for use in electrosurgery
US4188927A (en) 1978-01-12 1980-02-19 Valleylab, Inc. Multiple source electrosurgical generator
DE2803275C3 (de) 1978-01-26 1980-09-25 Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen Fernschalteinrichtung zum Schalten eines monopolaren HF-Chirurgiegerätes
US4196734A (en) 1978-02-16 1980-04-08 Valleylab, Inc. Combined electrosurgery/cautery system and method
US4237891A (en) 1978-05-17 1980-12-09 Agri-Bio Corporation Apparatus for removing appendages from avian species by using electrodes to induce a current through the appendage
US4200105A (en) 1978-05-26 1980-04-29 Dentsply Research & Development Corp. Electrosurgical safety circuit
DE2823291A1 (de) 1978-05-27 1979-11-29 Rainer Ing Grad Koch Schaltung zur automatischen einschaltung des hochfrequenzstromes von hochfrequenz-koagulationsgeraeten
US4232676A (en) 1978-11-16 1980-11-11 Corning Glass Works Surgical cutting instrument
US4311154A (en) 1979-03-23 1982-01-19 Rca Corporation Nonsymmetrical bulb applicator for hyperthermic treatment of the body
US4321926A (en) 1979-04-16 1982-03-30 Roge Ralph R Insertion detecting probe and electrolysis system
US4608977A (en) 1979-08-29 1986-09-02 Brown Russell A System using computed tomography as for selective body treatment
DE2946728A1 (de) 1979-11-20 1981-05-27 Erbe Elektromedizin GmbH & Co KG, 7400 Tübingen Hochfrequenz-chirurgiegeraet
US4314559A (en) 1979-12-12 1982-02-09 Corning Glass Works Nonstick conductive coating
US4378801A (en) 1979-12-17 1983-04-05 Medical Research Associates Ltd. #2 Electrosurgical generator
US4287557A (en) 1979-12-17 1981-09-01 General Electric Company Inverter with improved regulation
US4494541A (en) 1980-01-17 1985-01-22 Medical Plastics, Inc. Electrosurgery safety monitor
US4303073A (en) 1980-01-17 1981-12-01 Medical Plastics, Inc. Electrosurgery safety monitor
US4334539A (en) 1980-04-28 1982-06-15 Cimarron Instruments, Inc. Electrosurgical generator control apparatus
EP0040658A3 (de) 1980-05-28 1981-12-09 Drg (Uk) Limited Patientenauflagefläche für einen Diathermieapparat und damit ausgerüsteter Diathermieapparat
US4343308A (en) 1980-06-09 1982-08-10 Gross Robert D Surgical ground detector
US4372315A (en) 1980-07-03 1983-02-08 Hair Free Centers Impedance sensing epilator
US4565200A (en) 1980-09-24 1986-01-21 Cosman Eric R Universal lesion and recording electrode system
US4411266A (en) 1980-09-24 1983-10-25 Cosman Eric R Thermocouple radio frequency lesion electrode
JPS5764036A (en) 1980-10-08 1982-04-17 Olympus Optical Co Endoscope apparatus
JPS5778844A (en) 1980-11-04 1982-05-17 Kogyo Gijutsuin Lasre knife
US4376263A (en) 1980-11-06 1983-03-08 Braun Aktiengesellschaft Battery charging circuit
DE3045996A1 (de) 1980-12-05 1982-07-08 Medic Eschmann Handelsgesellschaft für medizinische Instrumente mbH, 2000 Hamburg Elektro-chirurgiegeraet
US4436091A (en) * 1981-03-20 1984-03-13 Surgical Design Corporation Surgical cutting instrument with release mechanism
FR2502935B1 (fr) 1981-03-31 1985-10-04 Dolley Roger Procede et dispositif de controle de la coagulation de tissus a l'aide d'un courant a haute frequence
DE3120102A1 (de) 1981-05-20 1982-12-09 F.L. Fischer GmbH & Co, 7800 Freiburg Anordnung zur hochfrequenzkoagulation von eiweiss fuer chirurgische zwecke
US4566454A (en) 1981-06-16 1986-01-28 Thomas L. Mehl Selected frequency hair removal device and method
US4429694A (en) * 1981-07-06 1984-02-07 C. R. Bard, Inc. Electrosurgical generator
US4582057A (en) 1981-07-20 1986-04-15 Regents Of The University Of Washington Fast pulse thermal cautery probe
US4559496A (en) 1981-07-24 1985-12-17 General Electric Company LCD Hook-on digital ammeter
US4397314A (en) 1981-08-03 1983-08-09 Clini-Therm Corporation Method and apparatus for controlling and optimizing the heating pattern for a hyperthermia system
US4438766A (en) * 1981-09-03 1984-03-27 C. R. Bard, Inc. Electrosurgical generator
US4559943A (en) 1981-09-03 1985-12-24 C. R. Bard, Inc. Electrosurgical generator
US4416276A (en) 1981-10-26 1983-11-22 Valleylab, Inc. Adaptive, return electrode monitoring system
US4416277A (en) 1981-11-03 1983-11-22 Valleylab, Inc. Return electrode monitoring system for use during electrosurgical activation
US4437464A (en) 1981-11-09 1984-03-20 C.R. Bard, Inc. Electrosurgical generator safety apparatus
US4452546A (en) 1981-11-30 1984-06-05 Richard Wolf Gmbh Coupling member for coupling an optical system to an endoscope shaft
FR2517953A1 (fr) 1981-12-10 1983-06-17 Alvar Electronic Appareil diaphanometre et son procede d'utilisation
US4463759A (en) 1982-01-13 1984-08-07 Garito Jon C Universal finger/foot switch adaptor for tube-type electrosurgical instrument
DE3325612A1 (de) 1982-07-15 1984-01-19 Tokyo Shibaura Electric Co Ueberspannungsunterdrueckungsvorrichtung
DE3228136C2 (de) 1982-07-28 1985-05-30 Erbe Elektromedizin GmbH, 7400 Tübingen Hochfrequenz-Chirurgiegerät
US5370675A (en) 1992-08-12 1994-12-06 Vidamed, Inc. Medical probe device and method
US4492231A (en) 1982-09-17 1985-01-08 Auth David C Non-sticking electrocautery system and forceps
JPS5957650A (ja) 1982-09-27 1984-04-03 呉羽化学工業株式会社 腔内加熱用プロ−ブ
US4472661A (en) 1982-09-30 1984-09-18 Culver Clifford T High voltage, low power transformer for efficiently firing a gas discharge luminous display
US4514619A (en) 1982-09-30 1985-04-30 The B. F. Goodrich Company Indirect current monitoring via voltage and impedance monitoring
US4492832A (en) 1982-12-23 1985-01-08 Neomed, Incorporated Hand-controllable switching device for electrosurgical instruments
US4644955A (en) 1982-12-27 1987-02-24 Rdm International, Inc. Circuit apparatus and method for electrothermal treatment of cancer eye
US4576177A (en) 1983-02-18 1986-03-18 Webster Wilton W Jr Catheter for removing arteriosclerotic plaque
DE3306402C2 (de) 1983-02-24 1985-03-07 Werner Prof. Dr.-Ing. 6301 Wettenberg Irnich Überwachungsvorrichtung für ein Hochfrequenz-Chirurgiegerät
US4520818A (en) 1983-02-28 1985-06-04 Codman & Shurtleff, Inc. High dielectric output circuit for electrosurgical power source
US4630218A (en) 1983-04-22 1986-12-16 Cooper Industries, Inc. Current measuring apparatus
US4590934A (en) 1983-05-18 1986-05-27 Jerry L. Malis Bipolar cutter/coagulator
EP0126814B1 (de) 1983-05-24 1988-12-21 Sien-Shih Chang Vorrichtung zur Kontrolle eines elektrochirurgischen Gerätes
US4615330A (en) 1983-09-05 1986-10-07 Olympus Optical Co., Ltd. Noise suppressor for electronic endoscope
US4658819A (en) * 1983-09-13 1987-04-21 Valleylab, Inc. Electrosurgical generator
US4586120A (en) * 1983-12-30 1986-04-29 At&T Bell Laboratories Current limit shutdown circuit with time delay
IL74236A (en) 1984-02-08 1990-07-12 Omni Flow Inc Infusion system having plural fluid input ports and at least one patient output port
US4569345A (en) 1984-02-29 1986-02-11 Aspen Laboratories, Inc. High output electrosurgical unit
US5162217A (en) 1984-08-27 1992-11-10 Bio-Technology General Corp. Plasmids for expression of human superoxide dismutase (SOD) analogs containing lambda PL promoter with engineered restriction site for substituting ribosomal binding sites and methods of use thereof
US4651264A (en) 1984-09-05 1987-03-17 Trion, Inc. Power supply with arcing control and automatic overload protection
US4727874A (en) 1984-09-10 1988-03-01 C. R. Bard, Inc. Electrosurgical generator with high-frequency pulse width modulated feedback power control
USRE33420E (en) 1984-09-17 1990-11-06 Cordis Corporation System for controlling an implanted neural stimulator
US4735204A (en) 1984-09-17 1988-04-05 Cordis Corporation System for controlling an implanted neural stimulator
FR2573301B3 (fr) 1984-11-16 1987-04-30 Lamidey Gilles Pince chirurgicale et son appareillage de commande et de controle
US4827927A (en) 1984-12-26 1989-05-09 Valleylab, Inc. Apparatus for changing the output power level of an electrosurgical generator while remaining in the sterile field of a surgical procedure
US4632109A (en) 1984-12-11 1986-12-30 Valleylab, Inc. Circuitry for processing requests made from the sterile field of a surgical procedure to change the output power level of an electrosurgical generator
US4658820A (en) 1985-02-22 1987-04-21 Valleylab, Inc. Electrosurgical generator with improved circuitry for generating RF drive pulse trains
US4739759A (en) 1985-02-26 1988-04-26 Concept, Inc. Microprocessor controlled electrosurgical generator
DE3510586A1 (de) 1985-03-23 1986-10-02 Erbe Elektromedizin GmbH, 7400 Tübingen Kontrolleinrichtung fuer ein hochfrequenz-chirurgiegeraet
DE3516354A1 (de) 1985-05-07 1986-11-13 Werner Prof. Dr.-Ing. 6301 Wettenberg Irnich Ueberwachungsvorrichtung fuer ein hochfrequenz-chirurgiegeraet
US4848355A (en) 1985-05-20 1989-07-18 Matsushita Electric Industrial Co., Ltd. Ultrasonic doppler blood flowmeter
US4712559A (en) 1985-06-28 1987-12-15 Bsd Medical Corporation Local current capacitive field applicator for interstitial array
US4750488A (en) * 1986-05-19 1988-06-14 Sonomed Technology, Inc. Vibration apparatus preferably for endoscopic ultrasonic aspirator
DE3544443C2 (de) 1985-12-16 1994-02-17 Siemens Ag HF-Chirurgiegerät
US4887199A (en) 1986-02-07 1989-12-12 Astec International Limited Start circuit for generation of pulse width modulated switching pulses for switch mode power supplies
DE3604823C2 (de) 1986-02-15 1995-06-01 Lindenmeier Heinz Hochfrequenzgenerator mit automatischer Leistungsregelung für die Hochfrequenzchirurgie
US4827911A (en) 1986-04-02 1989-05-09 Cooper Lasersonics, Inc. Method and apparatus for ultrasonic surgical fragmentation and removal of tissue
US4901720A (en) 1986-04-08 1990-02-20 C. R. Bard, Inc. Power control for beam-type electrosurgical unit
US4691703A (en) 1986-04-25 1987-09-08 Board Of Regents, University Of Washington Thermal cautery system
FR2597744A1 (fr) 1986-04-29 1987-10-30 Boussignac Georges Catheter cardio-vasculaire pour tir au rayon laser
EP0249823B1 (de) 1986-06-16 1991-12-18 Pacesetter AB Vorrichtung zur Steuerung eines Herzschrittmachers mittels Impedanzmessung an Körpergeweben
DE3683647D1 (de) 1986-07-17 1992-03-05 Erbe Elektromedizin Hochfrequenz-chirurgiegeraet fuer die thermische koagulation biologischer gewebe.
US5157603A (en) 1986-11-06 1992-10-20 Storz Instrument Company Control system for ophthalmic surgical instruments
JPH0511882Y2 (de) 1987-01-06 1993-03-25
US5024668A (en) * 1987-01-20 1991-06-18 Rocky Mountain Research, Inc. Retrograde perfusion system, components and method
EP0285962B1 (de) 1987-04-10 1993-02-17 Siemens Aktiengesellschaft Überwachungsschaltung für ein HF-Chirurgiegerät
US4788634A (en) 1987-06-22 1988-11-29 Massachusetts Institute Of Technology Resonant forward converter
JPS6410264A (en) 1987-07-03 1989-01-13 Fuji Xerox Co Ltd Electrophotographic developer
DE3728906A1 (de) 1987-08-29 1989-03-09 Asea Brown Boveri Verfahren zur erfassung eines einem phasenleiter und dem mp-leiter ueber den menschlichen koerper fliessenden stromes und schaltungsanordnung zur durchfuehrung des verfahrens
US4931047A (en) 1987-09-30 1990-06-05 Cavitron, Inc. Method and apparatus for providing enhanced tissue fragmentation and/or hemostasis
US5015227A (en) 1987-09-30 1991-05-14 Valleylab Inc. Apparatus for providing enhanced tissue fragmentation and/or hemostasis
JPH0636834Y2 (ja) 1987-10-28 1994-09-28 オリンパス光学工業株式会社 高周波誘電加温用電極
DE3751452D1 (de) 1987-11-17 1995-09-14 Erbe Elektromedizin Hochfrequenz-Chirugiegerät zum Schneiden und/oder Koagulieren biologischer Gewebe.
DE68925215D1 (de) * 1988-01-20 1996-02-08 G2 Design Ltd Diathermiegerät
GB8801177D0 (en) 1988-01-20 1988-02-17 Goble N M Diathermy unit
US4848335B1 (en) 1988-02-16 1994-06-07 Aspen Lab Inc Return electrode contact monitor
DE3805179A1 (de) 1988-02-19 1989-08-31 Wolf Gmbh Richard Geraet mit einem rotierend angetriebenen chirurgischen instrument
US5588432A (en) 1988-03-21 1996-12-31 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials, and ablating tissue
US4907589A (en) 1988-04-29 1990-03-13 Cosman Eric R Automatic over-temperature control apparatus for a therapeutic heating device
DE3815835A1 (de) 1988-05-09 1989-11-23 Flachenecker Gerhard Hochfrequenzgenerator zum gewebeschneiden und koagulieren in der hochfrequenzchirurgie
US4890610A (en) 1988-05-15 1990-01-02 Kirwan Sr Lawrence T Bipolar forceps
DE3824970C2 (de) 1988-07-22 1999-04-01 Lindenmeier Heinz Rückgekoppelter Hochfrequenz-Leistungsoszillator
US4903696A (en) 1988-10-06 1990-02-27 Everest Medical Corporation Electrosurgical generator
US4966597A (en) 1988-11-04 1990-10-30 Cosman Eric R Thermometric cardiac tissue ablation electrode with ultra-sensitive temperature detection
US4961047A (en) 1988-11-10 1990-10-02 Smiths Industries Public Limited Company Electrical power control apparatus and methods
US4959606A (en) 1989-01-06 1990-09-25 Uniphase Corporation Current mode switching regulator with programmed offtime
DE3904558C2 (de) 1989-02-15 1997-09-18 Lindenmeier Heinz Automatisch leistungsgeregelter Hochfrequenzgenerator für die Hochfrequenz-Chirurgie
US4938761A (en) 1989-03-06 1990-07-03 Mdt Corporation Bipolar electrosurgical forceps
DE58908600D1 (de) 1989-04-01 1994-12-08 Erbe Elektromedizin Einrichtung zur Überwachung der Applikation von Neutralelektroden bei der Hochfrequenzchirurgie.
DE3911416A1 (de) 1989-04-07 1990-10-11 Delma Elektro Med App Elektrochirurgisches hochfrequenzgeraet
US5151085A (en) * 1989-04-28 1992-09-29 Olympus Optical Co., Ltd. Apparatus for generating ultrasonic oscillation
US5151102A (en) 1989-05-31 1992-09-29 Kyocera Corporation Blood vessel coagulation/stanching device
US5029588A (en) 1989-06-15 1991-07-09 Cardiovascular Imaging Systems, Inc. Laser catheter with imaging capability
US4992719A (en) * 1989-07-24 1991-02-12 Hughes Aircraft Company Stable high voltage pulse power supply
US4931717A (en) 1989-09-05 1990-06-05 Motorola Inc. Load response control and method
ES2064404T3 (es) 1989-09-07 1995-02-01 Siemens Ag Procedimiento y disposicion de circuito para la supervision de varias superficies de electrodos del electrodo neutro de un aparato quirurgico de h.f..
US5531774A (en) 1989-09-22 1996-07-02 Alfred E. Mann Foundation For Scientific Research Multichannel implantable cochlear stimulator having programmable bipolar, monopolar or multipolar electrode configurations
US5249121A (en) 1989-10-27 1993-09-28 American Cyanamid Company Remote control console for surgical control system
DE3942998C2 (de) 1989-12-27 1998-11-26 Delma Elektro Med App Elektrochirurgisches Hochfrequenzgerät
US5290283A (en) 1990-01-31 1994-03-01 Kabushiki Kaisha Toshiba Power supply apparatus for electrosurgical unit including electrosurgical-current waveform data storage
US5031618A (en) 1990-03-07 1991-07-16 Medtronic, Inc. Position-responsive neuro stimulator
US5019176A (en) 1990-03-20 1991-05-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Thin solar cell and lightweight array
US5122137A (en) 1990-04-27 1992-06-16 Boston Scientific Corporation Temperature controlled rf coagulation
US5108389A (en) 1990-05-23 1992-04-28 Ioan Cosmescu Automatic smoke evacuator activator system for a surgical laser apparatus and method therefor
US5233515A (en) 1990-06-08 1993-08-03 Cosman Eric R Real-time graphic display of heat lesioning parameters in a clinical lesion generator system
US5540677A (en) * 1990-06-15 1996-07-30 Rare Earth Medical, Inc. Endoscopic systems for photoreactive suturing of biological materials
US5103804A (en) 1990-07-03 1992-04-14 Boston Scientific Corporation Expandable tip hemostatic probes and the like
US5152762A (en) 1990-11-16 1992-10-06 Birtcher Medical Systems, Inc. Current leakage control for electrosurgical generator
EP0495140B1 (de) 1991-01-16 1997-06-18 Erbe Elektromedizin GmbH Hochfrequenz-Chirurgiegerät
US5167658A (en) 1991-01-31 1992-12-01 Mdt Corporation Method and apparatus for electrosurgical measurement
US5160334A (en) 1991-04-30 1992-11-03 Utah Medical Products, Inc. Electrosurgical generator and suction apparatus
FI93607C (fi) 1991-05-24 1995-05-10 John Koivukangas Leikkaustoimenpidelaite
US5190517A (en) 1991-06-06 1993-03-02 Valleylab Inc. Electrosurgical and ultrasonic surgical system
US5472443A (en) 1991-06-07 1995-12-05 Hemostatic Surgery Corporation Electrosurgical apparatus employing constant voltage and methods of use
DE4121977C2 (de) 1991-07-03 1994-10-27 Wolf Gmbh Richard Medizinisches Instrument mit einem kontaktlosen Schalter zum Steuern externer Geräte
US5383917A (en) 1991-07-05 1995-01-24 Jawahar M. Desai Device and method for multi-phase radio-frequency ablation
DE4126608A1 (de) 1991-08-12 1993-02-18 Fastenmeier Karl Anordnung zum schneiden von biologischem gewebe mit hochfrequenzstrom
WO1993003677A2 (de) 1991-08-12 1993-03-04 Karl Storz Gmbh & Co. Hochfrequenzchirurgiegenerator zum schneiden von geweben
US5196009A (en) 1991-09-11 1993-03-23 Kirwan Jr Lawrence T Non-sticking electrosurgical device having nickel tips
CA2075319C (en) 1991-09-26 1998-06-30 Ernie Aranyi Handle for surgical instruments
US5713896A (en) 1991-11-01 1998-02-03 Medical Scientific, Inc. Impedance feedback electrosurgical system
US5207691A (en) 1991-11-01 1993-05-04 Medical Scientific, Inc. Electrosurgical clip applicator
US5323778A (en) 1991-11-05 1994-06-28 Brigham & Women's Hospital Method and apparatus for magnetic resonance imaging and heating tissues
EP0566725B1 (de) 1991-11-08 2003-06-04 Boston Scientific Limited Ablationselektrode mit isoliertem temperaturmesselement
US5383874A (en) 1991-11-08 1995-01-24 Ep Technologies, Inc. Systems for identifying catheters and monitoring their use
AU3128593A (en) 1991-11-08 1993-06-07 Ep Technologies Inc Radiofrequency ablation with phase sensitive power detection
US5230623A (en) 1991-12-10 1993-07-27 Radionics, Inc. Operating pointer with interactive computergraphics
US6142992A (en) 1993-05-10 2000-11-07 Arthrocare Corporation Power supply for limiting power in electrosurgery
KR0145453B1 (ko) 1992-01-21 1998-07-01 알렌 제이 전기외과용 투관침 제어장치
US5267994A (en) 1992-02-10 1993-12-07 Conmed Corporation Electrosurgical probe
GB9204218D0 (en) 1992-02-27 1992-04-08 Goble Nigel M A surgical cutting tool
GB9204217D0 (en) 1992-02-27 1992-04-08 Goble Nigel M Cauterising apparatus
US5201900A (en) 1992-02-27 1993-04-13 Medical Scientific, Inc. Bipolar surgical clip
US5330518A (en) 1992-03-06 1994-07-19 Urologix, Inc. Method for treating interstitial tissue associated with microwave thermal therapy
US5432459A (en) 1992-03-17 1995-07-11 Conmed Corporation Leakage capacitance compensating current sensor for current supplied to medical device loads with unconnected reference conductor
US5300070A (en) 1992-03-17 1994-04-05 Conmed Corporation Electrosurgical trocar assembly with bi-polar electrode
US5436566A (en) 1992-03-17 1995-07-25 Conmed Corporation Leakage capacitance compensating current sensor for current supplied to medical device loads
US5254117A (en) 1992-03-17 1993-10-19 Alton Dean Medical Multi-functional endoscopic probe apparatus
US5540681A (en) 1992-04-10 1996-07-30 Medtronic Cardiorhythm Method and system for radiofrequency ablation of tissue
US5573533A (en) 1992-04-10 1996-11-12 Medtronic Cardiorhythm Method and system for radiofrequency ablation of cardiac tissue
US5281213A (en) 1992-04-16 1994-01-25 Implemed, Inc. Catheter for ice mapping and ablation
US5300068A (en) 1992-04-21 1994-04-05 St. Jude Medical, Inc. Electrosurgical apparatus
US5443463A (en) 1992-05-01 1995-08-22 Vesta Medical, Inc. Coagulating forceps
US5445635A (en) 1992-05-01 1995-08-29 Hemostatic Surgery Corporation Regulated-current power supply and methods for resistively-heated surgical instruments
GB9209859D0 (en) 1992-05-07 1992-06-24 Smiths Industries Plc Electrical apparatus
US5318563A (en) 1992-06-04 1994-06-07 Valley Forge Scientific Corporation Bipolar RF generator
US5341807A (en) 1992-06-30 1994-08-30 American Cardiac Ablation Co., Inc. Ablation catheter positioning system
WO1994002077A2 (en) 1992-07-15 1994-02-03 Angelase, Inc. Ablation catheter system
US5762609A (en) * 1992-09-14 1998-06-09 Sextant Medical Corporation Device and method for analysis of surgical tissue interventions
US5478303A (en) 1992-09-18 1995-12-26 Foley-Nolan; Darragh Electromagnetic apparatus for use in therapy
US5414238A (en) * 1992-10-02 1995-05-09 Martin Marietta Corporation Resonant power supply for an arcjet thruster
US5370672A (en) 1992-10-30 1994-12-06 The Johns Hopkins University Computer-controlled neurological stimulation system
WO1994010924A1 (en) 1992-11-13 1994-05-26 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical probe
US5334193A (en) 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
US5342357A (en) 1992-11-13 1994-08-30 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical cauterization system
US5348554A (en) 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
US5342356A (en) 1992-12-02 1994-08-30 Ellman Alan G Electrical coupling unit for electrosurgery
DE4240722C2 (de) 1992-12-03 1996-08-29 Siemens Ag Gerät für die Behandlung von pathologischem Gewebe
US5400267A (en) 1992-12-08 1995-03-21 Hemostatix Corporation Local in-device memory feature for electrically powered medical equipment
US5558671A (en) 1993-07-22 1996-09-24 Yates; David C. Impedance feedback monitor for electrosurgical instrument
US5403312A (en) 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
US5403276A (en) 1993-02-16 1995-04-04 Danek Medical, Inc. Apparatus for minimally invasive tissue removal
US5430434A (en) 1993-02-24 1995-07-04 Lederer; Gabor Portable surgical early warning device
US5403311A (en) 1993-03-29 1995-04-04 Boston Scientific Corporation Electro-coagulation and ablation and other electrotherapeutic treatments of body tissue
GB9306637D0 (en) 1993-03-30 1993-05-26 Smiths Industries Plc Electrosurgery monitor and appartus
US5370645A (en) 1993-04-19 1994-12-06 Valleylab Inc. Electrosurgical processor and method of use
US6235020B1 (en) 1993-05-10 2001-05-22 Arthrocare Corporation Power supply and methods for fluid delivery in electrosurgery
US5395368A (en) 1993-05-20 1995-03-07 Ellman; Alan G. Multiple-wire electrosurgical electrodes
US5396062A (en) 1993-05-27 1995-03-07 The Whitaker Corporation Receptacle having an internal switch with an emitter and a receiver
ATE284650T1 (de) 1993-06-10 2005-01-15 Mir A Imran Urethrales gerät zur ablation mittels hochfrequenz
GB9314391D0 (en) 1993-07-12 1993-08-25 Gyrus Medical Ltd A radio frequency oscillator and an electrosurgical generator incorporating such an oscillator
US5817093A (en) 1993-07-22 1998-10-06 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
US5372596A (en) 1993-07-27 1994-12-13 Valleylab Inc. Apparatus for leakage control and method for its use
US5385148A (en) 1993-07-30 1995-01-31 The Regents Of The University Of California Cardiac imaging and ablation catheter
US5921982A (en) 1993-07-30 1999-07-13 Lesh; Michael D. Systems and methods for ablating body tissue
US5749871A (en) 1993-08-23 1998-05-12 Refractec Inc. Method and apparatus for modifications of visual acuity by thermal means
US5417719A (en) 1993-08-25 1995-05-23 Medtronic, Inc. Method of using a spinal cord stimulation lead
US5409000A (en) 1993-09-14 1995-04-25 Cardiac Pathways Corporation Endocardial mapping and ablation system utilizing separately controlled steerable ablation catheter with ultrasonic imaging capabilities and method
US5485312A (en) * 1993-09-14 1996-01-16 The United States Of America As Represented By The Secretary Of The Air Force Optical pattern recognition system and method for verifying the authenticity of a person, product or thing
US5423806A (en) 1993-10-01 1995-06-13 Medtronic, Inc. Laser extractor for an implanted object
US5496312A (en) 1993-10-07 1996-03-05 Valleylab Inc. Impedance and temperature generator control
US6210403B1 (en) 1993-10-07 2001-04-03 Sherwood Services Ag Automatic control for energy from an electrosurgical generator
US5433739A (en) 1993-11-02 1995-07-18 Sluijter; Menno E. Method and apparatus for heating an intervertebral disc for relief of back pain
US5571147A (en) 1993-11-02 1996-11-05 Sluijter; Menno E. Thermal denervation of an intervertebral disc for relief of back pain
US5536267A (en) 1993-11-08 1996-07-16 Zomed International Multiple electrode ablation apparatus
JP3325098B2 (ja) 1993-11-08 2002-09-17 オリンパス光学工業株式会社 高周波焼灼装置
US5599345A (en) 1993-11-08 1997-02-04 Zomed International, Inc. RF treatment apparatus
US5458597A (en) 1993-11-08 1995-10-17 Zomed International Device for treating cancer and non-malignant tumors and methods
US5472441A (en) 1993-11-08 1995-12-05 Zomed International Device for treating cancer and non-malignant tumors and methods
DE4339049C2 (de) 1993-11-16 2001-06-28 Erbe Elektromedizin Einrichtung zur Konfiguration chirurgischer Systeme
US5514129A (en) 1993-12-03 1996-05-07 Valleylab Inc. Automatic bipolar control for an electrosurgical generator
US6241725B1 (en) 1993-12-15 2001-06-05 Sherwood Services Ag High frequency thermal ablation of cancerous tumors and functional targets with image data assistance
US5645059A (en) 1993-12-17 1997-07-08 Nellcor Incorporated Medical sensor with modulated encoding scheme
US5462521A (en) 1993-12-21 1995-10-31 Angeion Corporation Fluid cooled and perfused tip for a catheter
US5422567A (en) 1993-12-27 1995-06-06 Valleylab Inc. High frequency power measurement
EP0740533A4 (de) 1994-01-18 1998-01-14 Endovascular Inc Apparat und verfahren zur venösen abbindung
US5501703A (en) 1994-01-24 1996-03-26 Medtronic, Inc. Multichannel apparatus for epidural spinal cord stimulator
US5434398A (en) 1994-02-22 1995-07-18 Haim Labenski Magnetic smartcard
US5584830A (en) 1994-03-30 1996-12-17 Medtronic Cardiorhythm Method and system for radiofrequency ablation of cardiac tissue
US5529235A (en) 1994-04-28 1996-06-25 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
US5458596A (en) 1994-05-06 1995-10-17 Dorsal Orthopedic Corporation Method and apparatus for controlled contraction of soft tissue
US5696441A (en) 1994-05-13 1997-12-09 Distribution Control Systems, Inc. Linear alternating current interface for electronic meters
US6464689B1 (en) 1999-09-08 2002-10-15 Curon Medical, Inc. Graphical user interface for monitoring and controlling use of medical devices
US6113591A (en) 1994-06-27 2000-09-05 Ep Technologies, Inc. Systems and methods for sensing sub-surface temperatures in body tissue
EP0767628B1 (de) 1994-06-27 2004-01-14 Boston Scientific Limited Nichtlineare regelsysteme zur erwärmung und zum abtragen von körpergewebe
JP3564141B2 (ja) 1994-06-27 2004-09-08 ボストン サイエンティフィック リミテッド 複数の温度感知要素を使用して組織のアブレーションを制御するためのシステム
US5594636A (en) 1994-06-29 1997-01-14 Northrop Grumman Corporation Matrix converter circuit and commutating method
GB9413070D0 (en) 1994-06-29 1994-08-17 Gyrus Medical Ltd Electrosurgical apparatus
US5846236A (en) 1994-07-18 1998-12-08 Karl Storz Gmbh & Co. High frequency-surgical generator for adjusted cutting and coagulation
US5625370A (en) 1994-07-25 1997-04-29 Texas Instruments Incorporated Identification system antenna with impedance transformer
US5540684A (en) 1994-07-28 1996-07-30 Hassler, Jr.; William L. Method and apparatus for electrosurgically treating tissue
US8025661B2 (en) * 1994-09-09 2011-09-27 Cardiofocus, Inc. Coaxial catheter instruments for ablation with radiant energy
US5496313A (en) 1994-09-20 1996-03-05 Conmed Corporation System for detecting penetration of medical instruments
US6142994A (en) 1994-10-07 2000-11-07 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic a therapeutic element within the body
US5605150A (en) 1994-11-04 1997-02-25 Physio-Control Corporation Electrical interface for a portable electronic physiological instrument having separable components
US5534018A (en) 1994-11-30 1996-07-09 Medtronic, Inc. Automatic lead recognition for implantable medical device
AU4252596A (en) 1994-12-13 1996-07-03 Torben Lorentzen An electrosurgical instrument for tissue ablation, an apparatus, and a method for providing a lesion in damaged and diseased tissue from a mammal
US5613966A (en) 1994-12-21 1997-03-25 Valleylab Inc System and method for accessory rate control
US5695494A (en) 1994-12-22 1997-12-09 Valleylab Inc Rem output stage topology
US5596466A (en) 1995-01-13 1997-01-21 Ixys Corporation Intelligent, isolated half-bridge power module
US5500616A (en) 1995-01-13 1996-03-19 Ixys Corporation Overvoltage clamp and desaturation detection circuit
US5540724A (en) 1995-02-03 1996-07-30 Intermedics, Inc. Cardiac cardioverter/defibrillator with in vivo impedance estimation
US5712772A (en) * 1995-02-03 1998-01-27 Ericsson Raynet Controller for high efficiency resonant switching converters
US5694304A (en) 1995-02-03 1997-12-02 Ericsson Raynet Corporation High efficiency resonant switching converters
US6409722B1 (en) * 1998-07-07 2002-06-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US5647871A (en) 1995-03-10 1997-07-15 Microsurge, Inc. Electrosurgery with cooled electrodes
US5696351A (en) 1995-03-10 1997-12-09 Ericsson Raynet Cable retention and sealing device
US5868740A (en) 1995-03-24 1999-02-09 Board Of Regents-Univ Of Nebraska Method for volumetric tissue ablation
US5707369A (en) 1995-04-24 1998-01-13 Ethicon Endo-Surgery, Inc. Temperature feedback monitor for hemostatic surgical instrument
US5626575A (en) 1995-04-28 1997-05-06 Conmed Corporation Power level control apparatus for electrosurgical generators
US6053912A (en) 1995-05-01 2000-04-25 Ep Techonologies, Inc. Systems and methods for sensing sub-surface temperatures in body tissue during ablation with actively cooled electrodes
US5688267A (en) 1995-05-01 1997-11-18 Ep Technologies, Inc. Systems and methods for sensing multiple temperature conditions during tissue ablation
WO1996034570A1 (en) 1995-05-01 1996-11-07 Ep Technologies, Inc. Systems and methods for obtaining desired lesion characteristics while ablating body tissue
WO1996034567A1 (en) 1995-05-02 1996-11-07 Heart Rhythm Technologies, Inc. System for controlling the energy delivered to a patient for ablation
US6575969B1 (en) 1995-05-04 2003-06-10 Sherwood Services Ag Cool-tip radiofrequency thermosurgery electrode system for tumor ablation
WO1996034571A1 (en) 1995-05-04 1996-11-07 Cosman Eric R Cool-tip electrode thermosurgery system
US5613996A (en) 1995-05-08 1997-03-25 Plasma Processing Corporation Process for treatment of reactive fines
EP0830095B1 (de) 1995-05-31 1999-02-10 Nuvotek Ltd. Elektrochirurgischer schneid-koagulationsapparat
US5628745A (en) 1995-06-06 1997-05-13 Bek; Robin B. Exit spark control for an electrosurgical generator
US5720744A (en) 1995-06-06 1998-02-24 Valleylab Inc Control system for neurosurgery
US5599344A (en) 1995-06-06 1997-02-04 Valleylab Inc. Control apparatus for electrosurgical generator power output
US5868737A (en) 1995-06-09 1999-02-09 Engineering Research & Associates, Inc. Apparatus and method for determining ablation
US6293942B1 (en) 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
GB9526627D0 (en) 1995-12-29 1996-02-28 Gyrus Medical Ltd An electrosurgical instrument and an electrosurgical electrode assembly
IL122713A (en) 1995-06-23 2001-04-30 Gyrus Medical Ltd Electrosurgical device
DE19534151A1 (de) 1995-09-14 1997-03-20 Storz Endoskop Gmbh Hochfrequenz-Chirurgiegerät
US5827271A (en) 1995-09-19 1998-10-27 Valleylab Energy delivery system for vessel sealing
US5766165A (en) 1995-09-22 1998-06-16 Gentelia; John S. Return path monitoring system
US5772659A (en) 1995-09-26 1998-06-30 Valleylab Inc. Electrosurgical generator power control circuit and method
US5658322A (en) 1995-10-11 1997-08-19 Regeneration Technology Bio-active frequency generator and method
BR9611166A (pt) 1995-10-11 1999-04-06 Regeneration Tech Processo e gerador de freqüência bioativa
US5660567A (en) 1995-11-14 1997-08-26 Nellcor Puritan Bennett Incorporated Medical sensor connector with removable encoding device
US5718246A (en) * 1996-01-03 1998-02-17 Preferential, Inc. Preferential induction of electrically mediated cell death from applied pulses
US5792138A (en) 1996-02-22 1998-08-11 Apollo Camera, Llc Cordless bipolar electrocautery unit with automatic power control
US6458121B1 (en) 1996-03-19 2002-10-01 Diapulse Corporation Of America Apparatus for athermapeutic medical treatments
US5733281A (en) 1996-03-19 1998-03-31 American Ablation Co., Inc. Ultrasound and impedance feedback system for use with electrosurgical instruments
US5925070A (en) 1996-04-04 1999-07-20 Medtronic, Inc. Techniques for adjusting the locus of excitation of electrically excitable tissue
US5702429A (en) 1996-04-04 1997-12-30 Medtronic, Inc. Neural stimulation techniques with feedback
US5797902A (en) 1996-05-10 1998-08-25 Minnesota Mining And Manufacturing Company Biomedical electrode providing early detection of accidental detachment
US5938690A (en) 1996-06-07 1999-08-17 Advanced Neuromodulation Systems, Inc. Pain management system and method
DE19623840A1 (de) 1996-06-14 1997-12-18 Berchtold Gmbh & Co Geb Elektrochirurgischer Hochfrequenz-Generator
US6246912B1 (en) 1996-06-27 2001-06-12 Sherwood Services Ag Modulated high frequency tissue modification
US5983141A (en) 1996-06-27 1999-11-09 Radionics, Inc. Method and apparatus for altering neural tissue function
DE19628482A1 (de) 1996-07-15 1998-01-22 Berchtold Gmbh & Co Geb Verfahren zum Betrieb eines Hochfrequenz-Chirurgiegerätes und Hochfrequenz-Chirurgiegerät
US5931836A (en) 1996-07-29 1999-08-03 Olympus Optical Co., Ltd. Electrosurgery apparatus and medical apparatus combined with the same
US5836943A (en) 1996-08-23 1998-11-17 Team Medical, L.L.C. Electrosurgical generator
US5836909A (en) 1996-09-13 1998-11-17 Cosmescu; Ioan Automatic fluid control system for use in open and laparoscopic laser surgery and electrosurgery and method therefor
US5820568A (en) 1996-10-15 1998-10-13 Cardiac Pathways Corporation Apparatus and method for aiding in the positioning of a catheter
ATE238328T1 (de) 1996-10-16 2003-05-15 Ribapharm Inc Monozyklische l-nukleoside, analoga und ihre anwendungen
US5830212A (en) 1996-10-21 1998-11-03 Ndm, Inc. Electrosurgical generator and electrode
US6053910A (en) 1996-10-30 2000-04-25 Megadyne Medical Products, Inc. Capacitive reusable electrosurgical return electrode
US5729448A (en) * 1996-10-31 1998-03-17 Hewlett-Packard Company Low cost highly manufacturable DC-to-DC power converter
US5954719A (en) 1996-12-11 1999-09-21 Irvine Biomedical, Inc. System for operating a RF ablation generator
GB9626512D0 (en) 1996-12-20 1997-02-05 Gyrus Medical Ltd An improved electrosurgical generator and system
US6113596A (en) 1996-12-30 2000-09-05 Enable Medical Corporation Combination monopolar-bipolar electrosurgical instrument system, instrument and cable
US6063078A (en) 1997-03-12 2000-05-16 Medtronic, Inc. Method and apparatus for tissue ablation
AU6880598A (en) * 1997-04-04 1998-10-30 Minnesota Mining And Manufacturing Company Method and apparatus for controlling contact of biomedical electrodes with patient skin
US6033399A (en) * 1997-04-09 2000-03-07 Valleylab, Inc. Electrosurgical generator with adaptive power control
DE19714972C2 (de) 1997-04-10 2001-12-06 Storz Endoskop Gmbh Schaffhaus Einrichtung zur Überwachung der Applikation einer Neutralelektrode
US5871481A (en) 1997-04-11 1999-02-16 Vidamed, Inc. Tissue ablation apparatus and method
GB9708268D0 (en) 1997-04-24 1997-06-18 Gyrus Medical Ltd An electrosurgical instrument
DE19717411A1 (de) 1997-04-25 1998-11-05 Aesculap Ag & Co Kg Verfahren und Vorrichtung zur Überwachung der thermischen Belastung des Gewebes eines Patienten
US5948007A (en) 1997-04-30 1999-09-07 Medtronic, Inc. Dual channel implantation neurostimulation techniques
US5797802A (en) 1997-05-12 1998-08-25 Nowak Products, Inc. Die head
US5838558A (en) 1997-05-19 1998-11-17 Trw Inc. Phase staggered full-bridge converter with soft-PWM switching
US5908444A (en) 1997-06-19 1999-06-01 Healing Machines, Inc. Complex frequency pulsed electromagnetic generator and method of use
JP3315623B2 (ja) 1997-06-19 2002-08-19 オリンパス光学工業株式会社 電気メス装置の帰還電極剥離モニタ
DE19730456A1 (de) * 1997-07-16 1999-01-21 Berchtold Gmbh & Co Geb Elektrisch betriebene medizinische Vorrichtung
US5961344A (en) 1997-08-26 1999-10-05 Yazaki Corporation Cam-actuated terminal connector
US6055458A (en) * 1997-08-28 2000-04-25 Bausch & Lomb Surgical, Inc. Modes/surgical functions
DE19739699A1 (de) * 1997-09-04 1999-03-11 Laser & Med Tech Gmbh Elektrodenanordnung zur elektro-thermischen Behandlung des menschlichen oder tierischen Körpers
US5836990A (en) 1997-09-19 1998-11-17 Medtronic, Inc. Method and apparatus for determining electrode/tissue contact
US5954717A (en) 1997-09-25 1999-09-21 Radiotherapeutics Corporation Method and system for heating solid tissue
US6358246B1 (en) 1999-06-25 2002-03-19 Radiotherapeutics Corporation Method and system for heating solid tissue
US6231569B1 (en) 1997-10-06 2001-05-15 Somnus Medical Technologies, Inc. Dual processor architecture for electro generator
US6176857B1 (en) * 1997-10-22 2001-01-23 Oratec Interventions, Inc. Method and apparatus for applying thermal energy to tissue asymmetrically
US6068627A (en) * 1997-12-10 2000-05-30 Valleylab, Inc. Smart recognition apparatus and method
US6080149A (en) 1998-01-09 2000-06-27 Radiotherapeutics, Corporation Method and apparatus for monitoring solid tissue heating
US5954686A (en) 1998-02-02 1999-09-21 Garito; Jon C Dual-frequency electrosurgical instrument
US6562037B2 (en) 1998-02-12 2003-05-13 Boris E. Paton Bonding of soft biological tissues by passing high frequency electric current therethrough
US6132429A (en) 1998-02-17 2000-10-17 Baker; James A. Radiofrequency medical instrument and methods for luminal welding
US6273886B1 (en) 1998-02-19 2001-08-14 Curon Medical, Inc. Integrated tissue heating and cooling apparatus
US6358245B1 (en) 1998-02-19 2002-03-19 Curon Medical, Inc. Graphical user interface for association with an electrode structure deployed in contact with a tissue region
US6864686B2 (en) 1998-03-12 2005-03-08 Storz Endoskop Gmbh High-frequency surgical device and operation monitoring device for a high-frequency surgical device
US6014581A (en) 1998-03-26 2000-01-11 Ep Technologies, Inc. Interface for performing a diagnostic or therapeutic procedure on heart tissue with an electrode structure
DE19814681B4 (de) * 1998-04-01 2008-11-13 Infineon Technologies Ag Current-Mode-Schaltregler
US6383183B1 (en) 1998-04-09 2002-05-07 Olympus Optical Co., Ltd. High frequency treatment apparatus
US6508815B1 (en) 1998-05-08 2003-01-21 Novacept Radio-frequency generator for powering an ablation device
US6188211B1 (en) * 1998-05-13 2001-02-13 Texas Instruments Incorporated Current-efficient low-drop-out voltage regulator with improved load regulation and frequency response
US6212433B1 (en) 1998-07-28 2001-04-03 Radiotherapeutics Corporation Method for treating tumors near the surface of an organ
US6123702A (en) 1998-09-10 2000-09-26 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
US6245065B1 (en) 1998-09-10 2001-06-12 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
US6402748B1 (en) * 1998-09-23 2002-06-11 Sherwood Services Ag Electrosurgical device having a dielectrical seal
JP4136118B2 (ja) 1998-09-30 2008-08-20 オリンパス株式会社 電気手術装置
DE19848540A1 (de) 1998-10-21 2000-05-25 Reinhard Kalfhaus Schaltungsanordnung und Verfahren zum Betreiben eines Wechselrichters
US7137980B2 (en) * 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US20100042093A9 (en) * 1998-10-23 2010-02-18 Wham Robert H System and method for terminating treatment in impedance feedback algorithm
US6796981B2 (en) 1999-09-30 2004-09-28 Sherwood Services Ag Vessel sealing system
US6398779B1 (en) 1998-10-23 2002-06-04 Sherwood Services Ag Vessel sealing system
US20040167508A1 (en) 2002-02-11 2004-08-26 Robert Wham Vessel sealing system
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US6102497A (en) * 1998-11-03 2000-08-15 Sherwood Services Ag Universal cart
US6155975A (en) 1998-11-06 2000-12-05 Urich; Alex Phacoemulsification apparatus with personal computer
US6451015B1 (en) 1998-11-18 2002-09-17 Sherwood Services Ag Method and system for menu-driven two-dimensional display lesion generator
US6436096B1 (en) 1998-11-27 2002-08-20 Olympus Optical Co., Ltd. Electrosurgical apparatus with stable coagulation
SE520276C2 (sv) * 1999-01-25 2003-06-17 Elekta Ab Anordning för kontrollerat förstörande av vävnad
US6464696B1 (en) 1999-02-26 2002-10-15 Olympus Optical Co., Ltd. Electrical surgical operating apparatus
US6398781B1 (en) 1999-03-05 2002-06-04 Gyrus Medical Limited Electrosurgery system
US6582427B1 (en) 1999-03-05 2003-06-24 Gyrus Medical Limited Electrosurgery system
US6645198B1 (en) 1999-03-17 2003-11-11 Ntero Surgical, Inc. Systems and methods for reducing post-surgical complications
US6162217A (en) * 1999-04-21 2000-12-19 Oratec Interventions, Inc. Method and apparatus for controlling a temperature-controlled probe
US6939346B2 (en) 1999-04-21 2005-09-06 Oratec Interventions, Inc. Method and apparatus for controlling a temperature-controlled probe
US6203541B1 (en) 1999-04-23 2001-03-20 Sherwood Services Ag Automatic activation of electrosurgical generator bipolar output
US6258085B1 (en) 1999-05-11 2001-07-10 Sherwood Services Ag Electrosurgical return electrode monitor
US6547786B1 (en) 1999-05-21 2003-04-15 Gyrus Medical Electrosurgery system and instrument
GB9911956D0 (en) 1999-05-21 1999-07-21 Gyrus Medical Ltd Electrosurgery system and method
US20030181898A1 (en) 1999-05-28 2003-09-25 Bowers William J. RF filter for an electrosurgical generator
US6391024B1 (en) * 1999-06-17 2002-05-21 Cardiac Pacemakers, Inc. RF ablation apparatus and method having electrode/tissue contact assessment scheme and electrocardiogram filtering
US6692489B1 (en) 1999-07-21 2004-02-17 Team Medical, Llc Electrosurgical mode conversion system
US6666860B1 (en) 1999-08-24 2003-12-23 Olympus Optical Co., Ltd. Electric treatment system
AU1629001A (en) 1999-09-08 2001-04-10 Curon Medical, Inc. Systems and methods for monitoring and controlling use of medical devices
EP1210024A1 (de) 1999-09-08 2002-06-05 Curon Medical, Inc. System zur regelung einer familie von behandlungsgeräten
US6238388B1 (en) 1999-09-10 2001-05-29 Alan G. Ellman Low-voltage electrosurgical apparatus
US6402741B1 (en) 1999-10-08 2002-06-11 Sherwood Services Ag Current and status monitor
US6517538B1 (en) * 1999-10-15 2003-02-11 Harold Jacob Temperature-controlled snare
US6442434B1 (en) * 1999-10-19 2002-08-27 Abiomed, Inc. Methods and apparatus for providing a sufficiently stable power to a load in an energy transfer system
US6635057B2 (en) * 1999-12-02 2003-10-21 Olympus Optical Co. Ltd. Electric operation apparatus
GB0002607D0 (en) 2000-02-05 2000-03-29 Smiths Industries Plc Cable testing
US6758846B2 (en) * 2000-02-08 2004-07-06 Gyrus Medical Limited Electrosurgical instrument and an electrosurgery system including such an instrument
US6623423B2 (en) 2000-02-29 2003-09-23 Olympus Optical Co., Ltd. Surgical operation system
US6689131B2 (en) * 2001-03-08 2004-02-10 Tissuelink Medical, Inc. Electrosurgical device having a tissue reduction sensor
US6663623B1 (en) 2000-03-13 2003-12-16 Olympus Optical Co., Ltd. Electric surgical operation apparatus
US6498466B1 (en) 2000-05-23 2002-12-24 Linear Technology Corp. Cancellation of slope compensation effect on current limit
US6558376B2 (en) 2000-06-30 2003-05-06 Gregory D. Bishop Method of use of an ultrasonic clamp and coagulation apparatus with tissue support surface
US6511478B1 (en) * 2000-06-30 2003-01-28 Scimed Life Systems, Inc. Medical probe with reduced number of temperature sensor wires
JP4667709B2 (ja) * 2000-08-08 2011-04-13 エルベ エレクトロメディツィン ゲーエムベーハー 許容電力量を調整できる高周波外科手術用高周波発生器および許容電力の制御方法
US6730080B2 (en) * 2000-08-23 2004-05-04 Olympus Corporation Electric operation apparatus
US6693782B1 (en) * 2000-09-20 2004-02-17 Dell Products L.P. Surge suppression for current limiting circuits
US6338657B1 (en) 2000-10-20 2002-01-15 Ethicon Endo-Surgery Hand piece connector
US6843789B2 (en) 2000-10-31 2005-01-18 Gyrus Medical Limited Electrosurgical system
US6893435B2 (en) * 2000-10-31 2005-05-17 Gyrus Medical Limited Electrosurgical system
US20030139741A1 (en) 2000-10-31 2003-07-24 Gyrus Medical Limited Surgical instrument
US6560470B1 (en) * 2000-11-15 2003-05-06 Datex-Ohmeda, Inc. Electrical lockout photoplethysmographic measurement system
US6740085B2 (en) 2000-11-16 2004-05-25 Olympus Corporation Heating treatment system
DE10057585A1 (de) 2000-11-21 2002-05-29 Erbe Elektromedizin Vorrichtung und Verfahren zur automatischen Konfiguration von Hochfrequenz-Systemelementen
US6620157B1 (en) * 2000-12-28 2003-09-16 Senorx, Inc. High frequency power source
US20020107517A1 (en) * 2001-01-26 2002-08-08 Witt David A. Electrosurgical instrument for coagulation and cutting
US20020111624A1 (en) * 2001-01-26 2002-08-15 Witt David A. Coagulating electrosurgical instrument with tissue dam
JP2002238919A (ja) 2001-02-20 2002-08-27 Olympus Optical Co Ltd 医療システム用制御装置及び医療システム
US6682527B2 (en) 2001-03-13 2004-01-27 Perfect Surgical Techniques, Inc. Method and system for heating tissue with a bipolar instrument
JP4504621B2 (ja) 2001-04-06 2010-07-14 コヴィディエン アクチェンゲゼルシャフト 血管の封着機および分割機
US6989010B2 (en) * 2001-04-26 2006-01-24 Medtronic, Inc. Ablation system and method of use
US6648883B2 (en) 2001-04-26 2003-11-18 Medtronic, Inc. Ablation system and method of use
WO2002088128A1 (en) 2001-04-30 2002-11-07 North Carolina State University Rational syntheses of heteroleptic lanthanide sandwich coordination complexes
JP4656755B2 (ja) 2001-05-07 2011-03-23 オリンパス株式会社 電気手術装置
US20040015159A1 (en) * 2001-07-03 2004-01-22 Syntheon, Llc Methods and apparatus for treating the wall of a blood vessel with electromagnetic energy
US6923804B2 (en) 2001-07-12 2005-08-02 Neothermia Corporation Electrosurgical generator
US6740079B1 (en) 2001-07-12 2004-05-25 Neothermia Corporation Electrosurgical generator
US6966907B2 (en) 2001-08-27 2005-11-22 Gyrus Medical Limited Electrosurgical generator and system
US6929641B2 (en) 2001-08-27 2005-08-16 Gyrus Medical Limited Electrosurgical system
US7282048B2 (en) 2001-08-27 2007-10-16 Gyrus Medical Limited Electrosurgical generator and system
US6652514B2 (en) * 2001-09-13 2003-11-25 Alan G. Ellman Intelligent selection system for electrosurgical instrument
US6685703B2 (en) * 2001-10-19 2004-02-03 Scimed Life Systems, Inc. Generator and probe adapter
US6790206B2 (en) 2002-01-31 2004-09-14 Scimed Life Systems, Inc. Compensation for power variation along patient cables
US6733498B2 (en) 2002-02-19 2004-05-11 Live Tissue Connect, Inc. System and method for control of tissue welding
US20040030330A1 (en) * 2002-04-18 2004-02-12 Brassell James L. Electrosurgery systems
DE10218895B4 (de) 2002-04-26 2006-12-21 Storz Endoskop Produktions Gmbh Hochfrequenz-Chirurgiegenerator
AU2003265331B2 (en) 2002-05-06 2008-03-20 Covidien Ag Blood detector for controlling anesu and method therefor
US20040015216A1 (en) * 2002-05-30 2004-01-22 Desisto Stephen R. Self-evacuating electrocautery device
US7004174B2 (en) * 2002-05-31 2006-02-28 Neothermia Corporation Electrosurgery with infiltration anesthesia
US7220260B2 (en) * 2002-06-27 2007-05-22 Gyrus Medical Limited Electrosurgical system
US6855141B2 (en) 2002-07-22 2005-02-15 Medtronic, Inc. Method for monitoring impedance to control power and apparatus utilizing same
US6824539B2 (en) 2002-08-02 2004-11-30 Storz Endoskop Produktions Gmbh Touchscreen controlling medical equipment from multiple manufacturers
GB0221707D0 (en) * 2002-09-18 2002-10-30 Gyrus Medical Ltd Electrical system
US6860881B2 (en) 2002-09-25 2005-03-01 Sherwood Services Ag Multiple RF return pad contact detection system
US7041096B2 (en) * 2002-10-24 2006-05-09 Synergetics Usa, Inc. Electrosurgical generator apparatus
WO2004043240A2 (en) * 2002-11-13 2004-05-27 Artemis Medical, Inc. Devices and methods for controlling initial movement of an electrosurgical electrode
US7799026B2 (en) * 2002-11-14 2010-09-21 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US20040097912A1 (en) 2002-11-18 2004-05-20 Gonnering Wayne J. Electrosurgical generator and method with removable front panel having replaceable electrical connection sockets and illuminated receptacles
US6948503B2 (en) 2002-11-19 2005-09-27 Conmed Corporation Electrosurgical generator and method for cross-checking output power
US6942660B2 (en) 2002-11-19 2005-09-13 Conmed Corporation Electrosurgical generator and method with multiple semi-autonomously executable functions
US6830569B2 (en) 2002-11-19 2004-12-14 Conmed Corporation Electrosurgical generator and method for detecting output power delivery malfunction
US6875210B2 (en) 2002-11-19 2005-04-05 Conmed Corporation Electrosurgical generator and method for cross-checking mode functionality
US6939347B2 (en) * 2002-11-19 2005-09-06 Conmed Corporation Electrosurgical generator and method with voltage and frequency regulated high-voltage current mode power supply
US7255694B2 (en) 2002-12-10 2007-08-14 Sherwood Services Ag Variable output crest factor electrosurgical generator
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
JP2004208922A (ja) 2002-12-27 2004-07-29 Olympus Corp 医療装置及び医療用マニピュレータ並びに医療装置の制御方法
CA2512904C (en) * 2003-01-09 2011-06-14 Gyrus Medical Limited An electrosurgical generator
WO2004098385A2 (en) * 2003-05-01 2004-11-18 Sherwood Services Ag Method and system for programing and controlling an electrosurgical generator system
WO2004098383A2 (en) 2003-05-01 2004-11-18 Sherwood Services Ag Electrosurgical instrument which reduces thermal damage to adjacent tissue
US20050021020A1 (en) 2003-05-15 2005-01-27 Blaha Derek M. System for activating an electrosurgical instrument
JP4231743B2 (ja) 2003-07-07 2009-03-04 オリンパス株式会社 生体組織切除装置
EP1675499B1 (de) 2003-10-23 2011-10-19 Covidien AG Redundante temperaturüberwachung für elektrochirurgische systeme zur sicherheitserhöhung
CA2542798C (en) 2003-10-23 2015-06-23 Sherwood Services Ag Thermocouple measurement circuit
US7396336B2 (en) * 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
WO2005046496A1 (en) 2003-10-30 2005-05-26 Sherwood Services Ag Automatic control system for an electrosurgical generator
US7252667B2 (en) 2003-11-19 2007-08-07 Sherwood Services Ag Open vessel sealing instrument with cutting mechanism and distal lockout
AU2003294390A1 (en) 2003-11-20 2005-07-14 Sherwood Services Ag Electrosurgical pencil with plurality of controls
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7300435B2 (en) 2003-11-21 2007-11-27 Sherwood Services Ag Automatic control system for an electrosurgical generator
US7766905B2 (en) 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US7250746B2 (en) * 2004-03-31 2007-07-31 Matsushita Electric Industrial Co., Ltd. Current mode switching regulator with predetermined on time
US20050251117A1 (en) * 2004-05-07 2005-11-10 Anderson Robert S Apparatus and method for treating biological external tissue
US7282049B2 (en) 2004-10-08 2007-10-16 Sherwood Services Ag Electrosurgical system employing multiple electrodes and method thereof
US7628786B2 (en) * 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US20060161148A1 (en) * 2005-01-13 2006-07-20 Robert Behnke Circuit and method for controlling an electrosurgical generator using a full bridge topology
US7491202B2 (en) 2005-03-31 2009-02-17 Covidien Ag Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
US9474564B2 (en) 2005-03-31 2016-10-25 Covidien Ag Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US8734438B2 (en) * 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US7947039B2 (en) * 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US20070173813A1 (en) 2006-01-24 2007-07-26 Sherwood Services Ag System and method for tissue sealing
CA2574934C (en) * 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
CA2575392C (en) * 2006-01-24 2015-07-07 Sherwood Services Ag System and method for tissue sealing
US7513896B2 (en) * 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US20070173802A1 (en) * 2006-01-24 2007-07-26 Keppel David S Method and system for transmitting data across patient isolation barrier
CA2574935A1 (en) * 2006-01-24 2007-07-24 Sherwood Services Ag A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US7648499B2 (en) 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US8753334B2 (en) 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
US20070282320A1 (en) 2006-05-30 2007-12-06 Sherwood Services Ag System and method for controlling tissue heating rate prior to cellular vaporization
US7662152B2 (en) * 2006-06-13 2010-02-16 Biosense Webster, Inc. Catheter with multi port tip for optical lesion evaluation
US8034049B2 (en) * 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
US7731717B2 (en) * 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US7794457B2 (en) * 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010015899A1 (de) * 2010-02-04 2011-08-04 Erbe Elektromedizin GmbH, 72072 Elektrochirurgische Anordnung und elektrochirurgisches Instrument
US9216051B2 (en) 2010-02-04 2015-12-22 Erbe Elektromedizin Gmbh Electrosurgical assembly and electrosurgical instrument
DE102010015899B4 (de) 2010-02-04 2022-07-28 Erbe Elektromedizin Gmbh Elektrochirurgische Anordnung und elektrochirurgisches Instrument

Also Published As

Publication number Publication date
ES2289307T3 (es) 2008-02-01
EP1501435B1 (de) 2007-08-29
ATE371413T1 (de) 2007-09-15
AU2008202721A2 (en) 2008-10-02
DE60315970D1 (de) 2007-10-11
WO2003092520A1 (en) 2003-11-13
CA2484875A1 (en) 2003-11-13
CA2484875C (en) 2013-04-23
AU2003265331B2 (en) 2008-03-20
AU2008202721A1 (en) 2008-07-10
US7749217B2 (en) 2010-07-06
JP2005524441A (ja) 2005-08-18
JP4490807B2 (ja) 2010-06-30
EP1501435A1 (de) 2005-02-02
US20060025760A1 (en) 2006-02-02
AU2003265331A1 (en) 2003-11-17
AU2008202721B2 (en) 2011-04-14

Similar Documents

Publication Publication Date Title
DE60315970T2 (de) Blutdetektor zur kontrolle einer elektrochirurgischen einheit
DE69534437T2 (de) Impedanzrückkopplungsüberwacher für elektrochirurgisches Instrument
DE60222114T2 (de) Hochfrequenz-ablationssystem
DE60026191T2 (de) Automatische Aktivierung des bipolaren Ausgangssignals eines elektrochirurgischen Generators
DE69432252T2 (de) Elektrochirurgisches impedanzrückkopplungssystem
DE60015667T2 (de) Lasergerät und Verfahren zu dessen Verwendung
EP0868884B1 (de) Vorrichtung und Verfahren zur Katheterablation
DE60023985T2 (de) Überwachungsvorrichtung für elektrochirurgische Neutralelektrode
DE19954710C1 (de) Vorrichtung zur Behandlung von wachsenden, erweiterten oder mißgebildeten Blutgefäßen
DE60018900T2 (de) Vorrichtung zur kontrollierten zerstörung von gewebe
EP0341446B1 (de) Hochfrequenzgenerator zum Gewebeschneiden und Koagulieren in der Hochfrequenzchirurgie
WO1993003677A2 (de) Hochfrequenzchirurgiegenerator zum schneiden von geweben
EP1601285A1 (de) Blutoptode
DE102021101410A1 (de) Verfahren und System zur Steuerung eines chirurgischen HF-Generators sowie Softwareprogrammprodukt
EP2337516B1 (de) Elektrochirurgischer hf-generator
EP0978259B1 (de) Hochfrequenzchirurgiegenerator mit einer einstellbaren Ausgangsleistung
DE112022001331T5 (de) Energiezufuhr für die Gewebetherapie durch optische Bildgebung
DE4126609A1 (de) Hochfrequenzchirurgiegenerator zum geregelten koagulierenden schneiden
DE102008054351B4 (de) Elektrochirurgischer HF-Generator
DE4135185A1 (de) Hochfrequenzchirurgiegenerator zur koagulation von geweben
EP4190228A1 (de) Einrichtung zur gewebeidentifikation
DE102023128353A1 (de) Koaxiale faseroptische laufzeitmessung mit doppelkamm-entfernungsmessung
DE10305062A1 (de) Verfahren zur gewebeselektiven Behandlung in Therapie und Chirurgie
WO2017088850A1 (de) Kontrollanordnung umfassend eine sonde mit einer lichtquelle oder einer schallquelle und eine sonde zur erfassung eines antwortsignals

Legal Events

Date Code Title Description
8364 No opposition during term of opposition