[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DE4337694A1 - Solar module with improved use of light - Google Patents

Solar module with improved use of light

Info

Publication number
DE4337694A1
DE4337694A1 DE4337694A DE4337694A DE4337694A1 DE 4337694 A1 DE4337694 A1 DE 4337694A1 DE 4337694 A DE4337694 A DE 4337694A DE 4337694 A DE4337694 A DE 4337694A DE 4337694 A1 DE4337694 A1 DE 4337694A1
Authority
DE
Germany
Prior art keywords
solar module
layer
reflector layer
module according
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE4337694A
Other languages
German (de)
Inventor
Robert Van Den Dr Rer Nat Berg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SolarWorld Industries Deutschland GmbH
Original Assignee
Siemens Solar GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Solar GmbH filed Critical Siemens Solar GmbH
Priority to DE4337694A priority Critical patent/DE4337694A1/en
Publication of DE4337694A1 publication Critical patent/DE4337694A1/en
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

It is proposed to provide a solar module having a semitransparent active layer and a likewise transparent mating electrode made of a thin conductive oxide with a reflector layer which contains a white pigment behind the mating electrode. <IMAGE>

Description

Solarzellen aus amorphem Silizium weisen wegen ihrer hohen De­ fektdichte des Materials gegenüber anderen kristallinen Halblei­ termaterialien höhere Verluste bei der Ladungsträgersammlung auf. Ein weiterer Nachteil ist die Photoinstabilität (Staebler-Wrons­ ki-Effekt), die bereits nach kurzer Zeit zu Leistungsverlusten der Solarzellen führt. Die Auswirkungen beider Effekte werden in Solarzellen mit Siliziumschichtdicken bis ca. 300 nm verringert. Werden bei solchen Zellen für den Front- und Rückkontakt trans­ parente, leitfähige Oxide benutzt, erhält man wegen der nicht vollständigen Lichtabsorption in der Siliziumschicht eine semit­ ransparente Solarzelle.Amorphous silicon solar cells have a high de perfect density of the material compared to other crystalline semiconductors higher losses in load carrier collection. Another disadvantage is the photo instability (Staebler-Wrons ki effect), which leads to a loss of performance after a short time of the solar cells. The effects of both effects are shown in Solar cells with silicon layer thicknesses reduced to approx. 300 nm. Are such cells for the front and back contact trans Parent, conductive oxides are not used because of the complete light absorption in the silicon layer a semit transparent solar cell.

In der Fig. 1 ist eine typische Transmissionskurve für einen Zellenaufbau Glas/Zinkoxid/a-Si:H/Zinkoxid dargestellt. Daraus ist zu entnehmen, daß in der Zelle das blaue Licht (Wellenlänge kleiner 500 nm) beim ersten Durchgang durch den Zellenaufbau vollständig absorbiert wird, das rote Licht (Wellenlänge größer 500 nm) dagegen nur zum Teil. Bei einer Wellenlänge von 700 nm liegt die Transmission T zum Beispiel bei ca. 40 Prozent. In der gleichen Figur ist auch eine typische Kurve für die Quantenaus­ beute Q (Q = Anteil der in Ladungsträgerpaare umgesetzten Photo­ nen) einer Einfachsolarzelle aus amorphem Silizium dargestellt. Der Überlapp der beiden Kurven T und Q im Bereich zwischen 500 und 800 nm zeigt den Anteil des Lichtes, der theoretisch noch von der Zelle ausgenutzt werden könnte.In Fig. 1 is a typical transmission curve for a cell structure of Glass / zinc oxide / a-Si: H shown / zinc oxide. It can be seen from this that the blue light (wavelength less than 500 nm) is completely absorbed in the cell during the first pass through the cell structure, whereas the red light (wavelength greater than 500 nm) is only partially absorbed. At a wavelength of 700 nm, the transmission T is, for example, approximately 40 percent. The same figure also shows a typical curve for the quantum yield Q (Q = proportion of the photons converted into charge carrier pairs) of a single solar cell made of amorphous silicon. The overlap of the two curves T and Q in the range between 500 and 800 nm shows the proportion of light that could theoretically still be used by the cell.

Zur vollständigen Nutzung der im Empfindlichkeitsbereich der So­ larzellen liegenden Lichtanteile des Sonnenspektrums werden me­ tallische Reflektoren eingesetzt. Möglich ist es beispielsweise, die Rückelektrode aus einem hochreflektierenden Metall wie bei­ spielsweise Silber auszuführen, oder eine solche hochreflektie­ rende Metallschicht mit einer üblichen Elektrode zu kombinieren.For full use of the So Lar cells of light in the solar spectrum are me metallic reflectors used. For example, it is possible  the back electrode made of a highly reflective metal as in play silver, for example, or such a high reflection metal layer with a common electrode.

Der vorliegenden Erfindung liegt das Problem zugrunde, auch für semitransparente Dünnschichtsolarzellen und Dünnschichtsolarmodu­ le eine Möglichkeit anzugeben, nicht absorbiertes Licht besser auszunützen und dadurch Solarzellen und Solarmodule mit verbes­ serter Leistung zu schaffen.The present invention addresses the problem, also for semi-transparent thin-film solar cells and thin-film solar modules le a way to indicate better light not absorbed exploit and thereby solar cells and solar modules with verbes performance.

Die Erfindung löst dieses Problem mit einem Solarmodul, welches die Merkmale von Anspruch 1 aufweist.The invention solves this problem with a solar module, which having the features of claim 1.

Weitere Ausgestaltungen der Erfindung sind den Unteransprüchen zu entnehmen.Further embodiments of the invention are set out in the subclaims remove.

Weiße Pigmente zeigen ein hohes Reflexionsvermögen für Licht, welches insbesondere im fraglichen Bereich zwischen 500 und 800 nm bis 100 Prozent betragen kann. Das Licht wird dabei vollstän­ dig in die aktive Schicht reflektiert und kann dort absorbiert werden. Ein erfindungsgemäßes Solarmodul mit Reflektorschicht zeigt daher gegenüber einem semitransparenten Solarmodul ohne Re­ flektorschicht einen um bis zu 10 Prozent erhöhten Kurzschluß­ strom und je nach Moduldesign (Zellbreite) eine um bis zu 10 Pro­ zent verbesserte Leistung.White pigments show a high reflectivity for light, which is particularly in the range between 500 and 800 nm in question can be up to 100 percent. The light becomes complete dig reflected in the active layer and can be absorbed there become. An inventive solar module with a reflector layer therefore shows compared to a semi-transparent solar module without Re a short circuit increased by up to 10 percent current and depending on the module design (cell width) by up to 10 Pro performance improved.

Die Reflektorschicht kann mit beliebigen semitransparenten So­ larmodulen kombiniert werden. Es ist dabei nicht erforderlich, den optimierten Aufbau bekannter Solarzellen zu verbessern, da die Reflektorschicht elektrisch nicht aktiv ist, bzw. mit elek­ trisch aktiven Bereichen des Solarzellenaufbaus nicht in Wechsel­ wirkung treten kann. Daher ist es möglich, ein semitransparentes Solarmodul wechselweise mit und ohne Reflektorschicht zu betrei­ ben, je nachdem ob Semitransparenz (zum Beispiel bei einer Ver­ wendung als Fenster im weitesten Sinn) oder optimale Leistung bei gleichzeitiger Lichtundurchlässigkeit gewünscht ist.The reflector layer can with any semi-transparent So alarm modules can be combined. It is not necessary to improve the optimized structure of known solar cells because the reflector layer is not electrically active, or with elec tric active areas of the solar cell structure not alternating effect can occur. Therefore, it is possible to have a semi-transparent To operate solar module alternately with and without reflector layer depending on whether semitransparency (for example with a ver  as a window in the broadest sense) or optimal performance simultaneous opacity is desired.

Die Auswahl eines geeigneten weißen Pigments richtet sich nach den Reflexionseigenschaften des Pigments und nach der Verarbeit­ barkeit zu einer Reflektorschicht. Geeignete Pigmente können Mi­ neralien sein und sind beispielsweise ausgewählt aus Bariumsul­ fat, Titanoxid und Zinksulfid. Zur Optimierung der Eigenschaften können auch unterschiedliche weiße Pigmente gemischt werden. Eine Pigmentmischung mit sehr guten Reflexionseigenschaften ist beispielsweise Lithopone®, welches eine Mischung aus Bariumsul­ fat und Zinksulfid ist. Die Reinsubstanz zeigt im Wellenlängen­ bereich von 400 nm bis 700 nm einen Reflexionsgrad von 98 Pro­ zent.The selection of a suitable white pigment depends on the reflective properties of the pigment and after processing availability to a reflector layer. Suitable pigments can Mi minerals and are, for example, selected from barium sul fat, titanium oxide and zinc sulfide. To optimize the properties different white pigments can also be mixed. A Pigment mixture with very good reflection properties for example Lithopone®, which is a mixture of barium sul is fat and zinc sulfide. The pure substance shows in the wavelengths range from 400 nm to 700 nm a reflectance of 98 Pro cent.

Noch besser geeignet ist Titanoxid TiO₂, insbesondere in seiner rutilen Modifikation, wegen seiner hohen UV-Stabilität und der im Wellenlängenbereich 500 nm bis 1000 nm durchgängig hohen Re­ flexion (< 90 Prozent).Titanium oxide TiO₂ is even more suitable, especially in its rutile modification, because of its high UV stability and the im Wavelength range 500 nm to 1000 nm consistently high Re flexion (<90 percent).

Wegen der besseren Verarbeitbarkeit besteht die Reflektorschicht üblicherweise neben dem weißen Pigment auch aus einem Binder. Möglich ist es beispielsweise, Pigmentpartikel in eine sinterfä­ hige Paste einzuarbeiten und diese Paste auf einer Glasscheibe aufzubringen und einzusintern. Eine solche Scheibe mit allerdings dünnerer Reflektorschicht findet bereits als Diffusorscheibe bei Leuchtkörpern Verwendung. In vorteilhafter Weise kann daher eine solche Scheibe mit höherer Reflexion anstelle der bekannten Fensterglasscheibe für die Rückseitenabdeckung eines se­ mitransparenten Solarmoduls verwendet werden.Because of the better processability, there is a reflector layer usually also from a binder in addition to the white pigment. For example, pigment particles can be sintered and paste this paste onto a glass plate apply and sinter. Such a disc, however thinner reflector layer is already used as a diffuser disc Luminous bodies use. Therefore, a such a disk with higher reflection instead of the known one Window glass pane for the rear cover of a se can be used with transparent solar modules.

Da die Reflektorschicht üblicherweise im Inneren des Solarmoduls, das heißt unter der Rückseitenabdeckung angebracht wird, können auch weniger abriebfeste Reflektorschichten verwendet werden. Möglich ist es daher, die weißen Pigmente als Dispersion einzusetzen und beispielsweise als Anstrich auf der Innenseite der Rückseitenabdeckung der Solarzelle bzw. des Solarmoduls auf­ zubringen. Geeignete Dispersionen sind daher an die Zusammenset­ zung von weißen Anstrichfarben angelehnt.Since the reflector layer is usually inside the solar module, that is, can be attached under the back cover less abrasion-resistant reflector layers can also be used. It is therefore possible to use the white pigments as a dispersion  use and for example as a coat of paint on the inside the back cover of the solar cell or the solar module bring to. Suitable dispersions are therefore available in the composition based on white paints.

Geeignete organische Binder für die Dispersion sind Po­ lyacryl/Polyurethan-Mischungen oder Epoxy-Lacke. Letztere zeigen im Klimatest vor allem bezüglich der Haftung sehr gute Eigen­ schaften. Ein hohes Reflexionsvermögen und hervorragende Schichtstabilität wird durch eine Reflektorschicht erzielt, die als Dispersion auf der Basis eines Epoxy-Lackes mit bis zu 60 Gewichtsprozent Pigmentanteil aufgebaut ist.Suitable organic binders for the dispersion are Po lyacrylic / polyurethane mixtures or epoxy lacquers. The latter show very good in the climate test, especially with regard to liability create. High reflectivity and excellent Layer stability is achieved by a reflector layer that as a dispersion based on an epoxy paint with up to 60 Weight percent pigment content is built up.

Eine weitere Möglichkeit besteht darin, als Reflektorschicht eine Pigmente enthaltende Kunststoffolie zu verwenden. Diese kann unter der Rückseitenabdeckung angeordnet sein, oder tiefer in den Solarzellenaufbau integriert sein, beispielsweise zwischen Rück­ elektrode und thermoplastischer Schmelzklebefolie. Möglich ist es auch, in die letztgenannte Folie weiße Pigmente zu integrieren, wobei diese bereits in einem bekannten Aufbau vorhandene Folie mit Pigmenten versehen nun zusätzlich als Reflektorschicht dient.Another possibility is to use a reflector layer To use plastic film containing pigments. This can be placed under the back cover, or deeper into the Solar cell structure can be integrated, for example between the back electrode and thermoplastic hot melt adhesive film. It is possible also to integrate white pigments into the latter film, this already existing film in a known structure provided with pigments now also serves as a reflector layer.

Im folgenden wird die Erfindung anhand von Ausführungsbeispielen und der zugehörigen zwei Figuren näher erläutert. Die Fig. 2 und 3 zeigen erfindungsgemäße Solarmodule im schematischen Quer­ schnitt.The invention is explained in more detail below on the basis of exemplary embodiments and the associated two figures. Figs. 2 and 3 show solar modules according to the invention in schematic cross section.

Fig. 2: Erfindungsgemäße Solarmodule sind auf einem transparen­ ten Substrat 1 aufgebaut, beispielsweise auf 4 mm dickem Fenster­ glas. Direkt darüber befindet sich die transparente Frontelektro­ de 2, die aus einem dünnen leitfähigen Oxid bestehen kann und beispielsweise aus Zinkoxid ist, welches zusätzlich noch mit Aluminium oder Bor dotiert sein kann. Darüber ist die (photovoltaisch) aktive Schicht 3 angeordnet, welche aus einem beliebigen Dünnschichthalbleitermaterial bestehen kann, übli­ cherweise aus amorphem Silizium oder einer amorphes Silizium enthaltenden Legierung. Die aktive Schicht 3 ist weiter in zu­ mindest zwei Bereiche von unterschiedlicher Dotierung aufgeteilt und weist zumindest einen Halbleiterübergang auf. Für amorphes Silizium als aktive Schicht 3 ist beispielsweise ein pin-Aufbau bevorzugt. Die Dicke der aktiven Schicht ist dünner gewählt, als zur vollständigen Absorption einfallenden Lichtes im Empfind­ lichkeitsbereich der aktiven Schicht erforderlich ist. Bei einer Einfachsolarzelle (mit nur einem pn-Übergang) aus amorphem Sili­ zium beträgt die Schichtdicke der aktiven Schicht 3 maximal 300 nm, um den genannten Staebler-Wronski-Effekt zu minimieren, das heißt einen möglichst hohen, stabilen Endwirkungsgrad zu erhal­ ten. Über der aktiven Schicht 3 ist die Rückelektrode 4 angeord­ net, welche wie die Frontelektrode 2 transparent ausgebildet ist und zum Beispiel aus einer 2 µm dicken ZnO-Schicht besteht. Fig. 2: Solar modules according to the invention are built on a transparent substrate 1 , for example on 4 mm thick window glass. Directly above is the transparent front electrode de 2 , which can consist of a thin conductive oxide and is made of zinc oxide, for example, which is additionally can be doped with aluminum or boron. Above it is arranged the (photovoltaically) active layer 3 , which can consist of any thin-film semiconductor material, usually made of amorphous silicon or an alloy containing amorphous silicon. The active layer 3 is further divided into at least two areas with different doping and has at least one semiconductor junction. For example, a pin structure is preferred for amorphous silicon as active layer 3 . The thickness of the active layer is chosen to be thinner than is required for complete absorption of incident light in the sensitivity range of the active layer. In the case of a single solar cell (with only one pn junction) made of amorphous silicon, the layer thickness of the active layer 3 is a maximum of 300 nm in order to minimize the Staebler-Wronski effect mentioned, that is to say to obtain the highest possible stable end efficiency the active layer 3 , the back electrode 4 is angeord net, which is transparent like the front electrode 2 and consists for example of a 2 micron thick ZnO layer.

Über dem bis dahin bekannten Solarzellenaufbau wird nun erfin­ dungsgemäß die Reflektorschicht 5 angeordnet. Im vorliegenden Beispiel kann dies eine über der Rückelektrode 4 aufgebrachte Lackschicht sein, in der ein weißes Pigment eindispergiert ist. Möglich ist es auch, für diesen Aufbau eine Schmelzklebefolie zu verwenden, welche ein weißes Pigment enthält, beispielsweise eine mit Titanoxid gefüllte Tedlar® Folie.Over the previously known solar cell structure, the reflector layer 5 is now inven tion according to the invention. In the present example, this can be a lacquer layer applied over the back electrode 4 , in which a white pigment is dispersed. It is also possible to use a hot-melt adhesive film that contains a white pigment for this structure, for example a Tedlar® film filled with titanium oxide.

Vervollständigt wird der Aufbau durch eine Rückseitenabdeckung 7, welche ebenfalls eine Glasplatte sein kann. Sie wird mit Hilfe einer dazwischenliegenden Schmelzklebefolie 6 mit dem bisherigen Aufbau verbunden. Durch Aufschmelzen der Schmelzklebefolie 6, welche beispielsweise aus Polyvinylbutyral besteht, wird ein me­ chanisch fester und klimastabiler Verbund erzeugt.The structure is completed by a rear cover 7 , which can also be a glass plate. It is connected to the previous structure with the aid of an intermediate hot-melt adhesive film 6 . By melting the hot-melt adhesive film 6 , which consists for example of polyvinyl butyral, a mechanically strong and climate-stable composite is produced.

Fig. 3: Das hier dargestellte Solarmodul weist vom Glassubstrat bis zur Rückelektrode den gleichen Aufbau auf, wie er bereits im ersten Ausführungsbeispiel beschrieben wurde. Im Unterschied zu letzterem ist im vorliegenden Aufbau jedoch die Reihenfolge der Reflektorschicht 5 und der Schmelzklebefolie 6 vertauscht. Bei dieser Anordnung besteht die Möglichkeit, die Reflektorschicht 5 direkt mit der Rückseitenabdeckung 7 zu verbinden, beispielsweise durch Aufsintern einer weiße Pigmente enthaltenden Druckpaste auf die Rückseitenabdeckung 7, welche beispielsweise eine Glasscheibe ist. Die mit der Reflektorschicht 5 versehene Rückseitenabdeckung 7 kann dann in bekannter Weise mit dem darunterliegenden Verbund mit Hilfe einer Schmelzklebefolie 6 laminiert werden. Anstelle des Aufsinterns der Reflektorschicht 5 auf die Rückseitenab­ deckung 7 ist es auch möglich, einen ein weißes Pigment enthal­ tenden Lack auf der Rückseitenabdeckung 7 aufzubringen und wie beschrieben mit dem übrigen Verbund zu laminieren. Möglich ist es auch, als Reflektorschicht 5 eine ein weißes Pigment enthaltende Schmelzklebefolie zu verwenden, welche den Laminierprozeß zusätz­ lich unterstützen kann. Fig. 3: The solar module shown here has the same structure from the glass substrate to the back electrode as was already described in the first embodiment. In contrast to the latter, the order of the reflector layer 5 and the hot-melt adhesive film 6 is reversed in the present structure. With this arrangement, there is the possibility of connecting the reflector layer 5 directly to the rear cover 7 , for example by sintering a printing paste containing white pigments onto the rear cover 7 , which is, for example, a glass pane. The rear cover 7 provided with the reflector layer 5 can then be laminated in a known manner with the underlying composite with the aid of a hot-melt adhesive film 6 . Instead of sintering the reflector layer 5 onto the rear cover 7 , it is also possible to apply a varnish containing a white pigment to the rear cover 7 and to laminate it as described with the rest of the composite. It is also possible to use a hot-melt adhesive film containing a white pigment as reflector layer 5 , which can additionally support the lamination process.

Die Ausführungsformen, in denen die Reflektorschicht 5 in einem ersten Schritt auf der Rückseitenabdeckung aufgebracht wird, hat den Vorteil, daß die so beschichtete Rückseitenabdeckung in be­ kannter Weise in einem gebräuchlichen Laminierverfahren zur Her­ stellung einer Solarzelle bzw. des Solarmoduls eingesetzt werden kann. So können mit ein und demselben bis auf die Rückseitenab­ deckung 7 kompletten Aufbau durch die Wahl einer transparenten oder mit einer Reflektorschicht 5 versehenen Rückseitenabdeckung sowohl semitransparente als auch optisch undurchlässige Solarmo­ dule erzeugt werden.The embodiments in which the reflector layer 5 is applied in a first step to the back cover has the advantage that the back cover thus coated can be used in a known manner in a conventional lamination process for the manufacture of a solar cell or the solar module. So with one and the same except for the Rückseitenab cover 7 complete structure by choosing a transparent or provided with a reflector layer 5 back cover both semitransparent and optically opaque solar modules can be generated.

In einer weiteren Ausgestaltung der Erfindung ist es möglich, die direkt mit der Schmelzklebefolie 6 in Kontakt stehende Seite der Reflektorschicht 5 zu strukturieren bzw. oberflächlich aufzurau­ hen. Damit wird ein verbessertes Reflexionsverhalten der Reflek­ torschicht erzielt. Diese Ausführungsform eignet sich insbeson­ dere für die Anordnungen, bei denen eine Lackschicht auf dem So­ larzellenaufbau oder auf der Rückseitenabdeckung 7 aufgebracht ist, oder bei der auf der Rückseitenabdeckung 7 eine Reflektor­ schicht 5 aufgesintert ist.In a further embodiment of the invention, it is possible to structure or roughen the surface of the reflector layer 5 that is in direct contact with the hot-melt adhesive film 6 . This results in an improved reflection behavior of the reflector gate layer. This embodiment is particularly suitable for the arrangements in which a lacquer layer is applied to the solar cell structure or on the rear cover 7 , or in which a reflector layer 5 is sintered onto the rear cover 7 .

Für ein komplettes Solarmodul ist der in den Figuren dargestellte Aufbau natürlich in bekannter Weise z. B. streifenförmig struktu­ riert, wobei Front- und Rückelektroden der streifenförmigen Ein­ zelsolarzellen so miteinander verbunden sind, daß sich eine Seri­ enverschaltung der Einzelsolarzellen ergibt. Wegen der besseren Übersichtlichkeit ist diese Modulstruktur in den Figuren nicht dargestellt.For a complete solar module, the one shown in the figures is Structure, of course, in a known manner. B. stripe-like structure riert, with front and back electrodes of the strip-shaped Ein cell solar cells are connected to each other so that a Seri interconnection of the individual solar cells results. Because of the better This module structure is not clear in the figures shown.

Claims (9)

1. Solarmodul mit einer semitransparenten aktiven Schicht (3), einer ebenfalls transparenten Rückelektrode (4) aus einem dünnen leitfähigen Oxid und einer hinter der Rückelektrode (4) angeord­ neten Reflektorschicht (5), welche ein weißes Pigment enthält.1. Solar module with a semitransparent active layer ( 3 ), a likewise transparent back electrode ( 4 ) made of a thin conductive oxide and a reflector layer ( 5 ) arranged behind the back electrode ( 4 ), which contains a white pigment. 2. Solarmodul nach Anspruch 1, bei dem die Reflektorschicht (5) zumindest eines der Pigmente um­ faßt, welche ausgewählt sind aus Bariumsulfat, Titanoxid und Zinksulfid.2. Solar module according to claim 1, wherein the reflector layer ( 5 ) comprises at least one of the pigments which are selected from barium sulfate, titanium oxide and zinc sulfide. 3. Solarmodul nach Anspruch 1 oder 2, bei dem die Reflektorschicht (5) Lithopone als Pigment enthält.3. Solar module according to claim 1 or 2, wherein the reflector layer ( 5 ) contains lithopone as a pigment. 4. Solarmodul nach Anspruch 1 oder 2, bei dem die Reflektorschicht (5) rutiles Titanoxid als Pigment enthält.4. Solar module according to claim 1 or 2, wherein the reflector layer ( 5 ) contains rutile titanium oxide as a pigment. 5. Solarmodul nach einem der Ansprüche 1 bis 4, bei dem die Reflektorschicht (5) eine weiße Pigmente enthaltende Lackschicht ist.5. Solar module according to one of claims 1 to 4, wherein the reflector layer ( 5 ) is a white pigment-containing lacquer layer. 6. Solarmodul nach Anspruch 5, bei dem die Reflektorschicht (5) eine weiße Pigmente enthaltende Epoxylackschicht ist.6. Solar module according to claim 5, wherein the reflector layer ( 5 ) is an epoxy lacquer layer containing white pigments. 7. Solarmodul nach Anspruch 5 oder 6, bei dem die als Lackschicht ausgebildete Reflektorschicht (5) 40 bis 65 Gewichtsprozent weißer Pigmente enthält.7. Solar module according to claim 5 or 6, in which the reflector layer ( 5 ) formed as a lacquer layer contains 40 to 65 percent by weight of white pigments. 8. Solarmodul nach einem der vorangehenden Ansprüche, bei dem die Reflektorschicht (5) auf einer Glasscheibe aufge­ bracht ist, die gleichzeitig als Rückseitenabdeckung (7) des So­ larmoduls dient.8. Solar module according to one of the preceding claims, in which the reflector layer ( 5 ) is brought up on a glass pane which at the same time serves as the rear cover ( 7 ) of the solar module. 9. Solarmodul nach einem der vorangehenden Ansprüche, welches einen die folgenden Schichten umfassenden Schichtaufbau aufweist:
Glassubstrat (1)/Zinkoxidfrontelektrode (2)/photovoltaisch aktive Schicht (3) aus amorphem Silizium oder einer, amorphes Silizium enthaltenden Legierung/Zinkoxid-Rückelektrode (4)/thermoplastische Schmelzkleberfolie (6) und eine Glasscheibe als Rückseitenabdeckung (7), bei der auf der Innenseite als Re­ flektorschicht (5) ein ein weißes Pigment enthaltender Lack auf­ gebracht ist.
9. Solar module according to one of the preceding claims, which has a layer structure comprising the following layers:
Glass substrate ( 1 ) / zinc oxide front electrode ( 2 ) / photovoltaically active layer ( 3 ) made of amorphous silicon or an alloy containing amorphous silicon / zinc oxide back electrode ( 4 ) / thermoplastic hot-melt adhesive film ( 6 ) and a glass pane as a back cover ( 7 ), in which on the inside as a reflector layer ( 5 ), a varnish containing a white pigment is applied.
DE4337694A 1993-11-04 1993-11-04 Solar module with improved use of light Ceased DE4337694A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4337694A DE4337694A1 (en) 1993-11-04 1993-11-04 Solar module with improved use of light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4337694A DE4337694A1 (en) 1993-11-04 1993-11-04 Solar module with improved use of light

Publications (1)

Publication Number Publication Date
DE4337694A1 true DE4337694A1 (en) 1995-05-11

Family

ID=6501816

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4337694A Ceased DE4337694A1 (en) 1993-11-04 1993-11-04 Solar module with improved use of light

Country Status (1)

Country Link
DE (1) DE4337694A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19838439C1 (en) * 1998-08-24 2000-04-27 Fraunhofer Ges Forschung Vertically integrated thin film photodiode, for photodetector used e.g. in optical data storage and transmission, is produced by thinning and reflective coating of a photodiode substrate bonded to a temporary substrate
WO2005076370A2 (en) * 2004-02-06 2005-08-18 Unaxis Balzers Ag Back contact and back reflector for thin film silicon solar cells
DE102004032810A1 (en) * 2004-07-07 2006-02-02 Saint-Gobain Glass Deutschland Gmbh Photovoltaic solar cell for solar module, has substrate, and layer having light-dispersing and/or light-reflecting properties located between upper electrode and lower electrode
DE102004046554A1 (en) * 2004-09-24 2006-04-06 Saint-Gobain Glass Deutschland Gmbh Photovoltaic solar cell for solar module, has substrate, and layer having light-dispersing and/or light-reflecting properties located between upper electrode and lower electrode
WO2009071703A2 (en) * 2007-12-07 2009-06-11 Kuraray Europe Gmbh Photovoltaic modules having reflective adhesive films
WO2010040775A2 (en) * 2008-10-07 2010-04-15 Oerlikon Solar Ip Ag, Trübbach Photovoltaic module
EP2180527A1 (en) 2008-10-22 2010-04-28 Applied Materials, Inc. Semiconductor device and method of producing a semiconductor device
WO2010046180A2 (en) * 2008-10-22 2010-04-29 Applied Materials Inc. - A Corporation Of The State Of Delaware Semiconductor device and method of producing a semiconductor device
DE102009021051A1 (en) * 2009-05-07 2010-11-11 Inventux Technologies Ag Solar cell, has layer system arranged between transparent substrate i.e. glass substrate, and cover, and reflector layer arranged between laminate layer and cover or integrated with laminate layer or cover
DE102009024050A1 (en) 2009-06-05 2010-12-09 Schott Solar Ag Thin section solar cell has transparent substrate, transparent front electrode, photovoltaic active layer system, transparent back electrode and electrically non-conductive reflector
DE102009042093A1 (en) * 2009-09-18 2011-03-24 Inventux Technologies Ag Photovoltaic module i.e. thin-layer photovoltaic module, has regions connected in parallel and comprising absorber layer, where absorber layer is arranged between front contact layer and rear contact layer
EP2340566A2 (en) * 2008-09-09 2011-07-06 Lg Electronics Inc. Thin-film type solar cell module having a reflective media layer and fabrication method thereof
EP2395558A1 (en) 2010-06-11 2011-12-14 Kuraray Europe GmbH Photovoltaic module with reflecting adhesive films with low discoloration tendency
WO2010127844A3 (en) * 2009-05-07 2011-12-29 Inventux Technologies Ag Solar cell and method for the production thereof
US8197928B2 (en) 2006-12-29 2012-06-12 E. I. Du Pont De Nemours And Company Intrusion resistant safety glazings and solar cell modules
EP2746044A1 (en) 2012-12-20 2014-06-25 Kuraray Europe GmbH Photovoltaic module with efficiency enhancing adhesive films

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4497974A (en) * 1982-11-22 1985-02-05 Exxon Research & Engineering Co. Realization of a thin film solar cell with a detached reflector
JPH02180081A (en) * 1988-12-30 1990-07-12 Taiyo Yuden Co Ltd Amorphous semiconductor solar cell
DE4227860A1 (en) * 1991-09-19 1993-04-01 Aug Guttendoerfer Gmbh & Co Photovoltaic plate in form of facade panel - comprises front and rear glass panes and plate-shaped solar module sandwiched between them
US5230746A (en) * 1992-03-03 1993-07-27 Amoco Corporation Photovoltaic device having enhanced rear reflecting contact
WO1993019491A1 (en) * 1992-03-19 1993-09-30 Siemens Solar Gmbh Weather-resistant thin layer solar module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4497974A (en) * 1982-11-22 1985-02-05 Exxon Research & Engineering Co. Realization of a thin film solar cell with a detached reflector
JPH02180081A (en) * 1988-12-30 1990-07-12 Taiyo Yuden Co Ltd Amorphous semiconductor solar cell
DE4227860A1 (en) * 1991-09-19 1993-04-01 Aug Guttendoerfer Gmbh & Co Photovoltaic plate in form of facade panel - comprises front and rear glass panes and plate-shaped solar module sandwiched between them
US5230746A (en) * 1992-03-03 1993-07-27 Amoco Corporation Photovoltaic device having enhanced rear reflecting contact
WO1993019491A1 (en) * 1992-03-19 1993-09-30 Siemens Solar Gmbh Weather-resistant thin layer solar module

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19838439C1 (en) * 1998-08-24 2000-04-27 Fraunhofer Ges Forschung Vertically integrated thin film photodiode, for photodetector used e.g. in optical data storage and transmission, is produced by thinning and reflective coating of a photodiode substrate bonded to a temporary substrate
WO2005076370A2 (en) * 2004-02-06 2005-08-18 Unaxis Balzers Ag Back contact and back reflector for thin film silicon solar cells
WO2005076370A3 (en) * 2004-02-06 2005-11-10 Unaxis Balzers Ag Back contact and back reflector for thin film silicon solar cells
DE102004032810A1 (en) * 2004-07-07 2006-02-02 Saint-Gobain Glass Deutschland Gmbh Photovoltaic solar cell for solar module, has substrate, and layer having light-dispersing and/or light-reflecting properties located between upper electrode and lower electrode
DE102004032810B4 (en) * 2004-07-07 2009-01-08 Saint-Gobain Glass Deutschland Gmbh Photovoltaic solar cell with a layer of light-scattering properties and solar module
DE102004046554A1 (en) * 2004-09-24 2006-04-06 Saint-Gobain Glass Deutschland Gmbh Photovoltaic solar cell for solar module, has substrate, and layer having light-dispersing and/or light-reflecting properties located between upper electrode and lower electrode
US8197928B2 (en) 2006-12-29 2012-06-12 E. I. Du Pont De Nemours And Company Intrusion resistant safety glazings and solar cell modules
US20100275980A1 (en) * 2007-12-07 2010-11-04 Kuraray Europe Gmbh Photovoltaic modules having reflective adhesive films
WO2009071703A3 (en) * 2007-12-07 2009-12-03 Kuraray Europe Gmbh Photovoltaic modules having reflective adhesive films
EP2296191A3 (en) * 2007-12-07 2014-05-07 Kuraray Europe GmbH Photovoltaic module with reflective adhesive films based on ethylene/vinyl acetate
RU2489773C2 (en) * 2007-12-07 2013-08-10 Курарай Юроп Гмбх Photovoltaic modules having reflecting adhesive films
WO2009071703A2 (en) * 2007-12-07 2009-06-11 Kuraray Europe Gmbh Photovoltaic modules having reflective adhesive films
EP2340566A2 (en) * 2008-09-09 2011-07-06 Lg Electronics Inc. Thin-film type solar cell module having a reflective media layer and fabrication method thereof
EP2340566A4 (en) * 2008-09-09 2013-06-19 Lg Electronics Inc Thin-film type solar cell module having a reflective media layer and fabrication method thereof
WO2010040775A2 (en) * 2008-10-07 2010-04-15 Oerlikon Solar Ip Ag, Trübbach Photovoltaic module
WO2010040775A3 (en) * 2008-10-07 2010-06-24 Oerlikon Solar Ip Ag, Trübbach Photovoltaic module
WO2010046180A3 (en) * 2008-10-22 2011-09-15 Applied Materials Inc. - A Corporation Of The State Of Delaware Semiconductor device and method of producing a semiconductor device
WO2010046180A2 (en) * 2008-10-22 2010-04-29 Applied Materials Inc. - A Corporation Of The State Of Delaware Semiconductor device and method of producing a semiconductor device
EP2180527A1 (en) 2008-10-22 2010-04-28 Applied Materials, Inc. Semiconductor device and method of producing a semiconductor device
DE102009021051A1 (en) * 2009-05-07 2010-11-11 Inventux Technologies Ag Solar cell, has layer system arranged between transparent substrate i.e. glass substrate, and cover, and reflector layer arranged between laminate layer and cover or integrated with laminate layer or cover
WO2010127844A3 (en) * 2009-05-07 2011-12-29 Inventux Technologies Ag Solar cell and method for the production thereof
DE102009024050A1 (en) 2009-06-05 2010-12-09 Schott Solar Ag Thin section solar cell has transparent substrate, transparent front electrode, photovoltaic active layer system, transparent back electrode and electrically non-conductive reflector
DE102009042093A1 (en) * 2009-09-18 2011-03-24 Inventux Technologies Ag Photovoltaic module i.e. thin-layer photovoltaic module, has regions connected in parallel and comprising absorber layer, where absorber layer is arranged between front contact layer and rear contact layer
EP2395558A1 (en) 2010-06-11 2011-12-14 Kuraray Europe GmbH Photovoltaic module with reflecting adhesive films with low discoloration tendency
EP2395561A1 (en) 2010-06-11 2011-12-14 Kuraray Europe GmbH Photovoltaic module with reflecting adhesive films with low discoloration tendency
EP2746044A1 (en) 2012-12-20 2014-06-25 Kuraray Europe GmbH Photovoltaic module with efficiency enhancing adhesive films

Similar Documents

Publication Publication Date Title
DE69333252T2 (en) ELECTROCHROME DEVICE
DE112005000948B4 (en) Chalcopyrite-type solar cell with a mica-containing insulating substrate
DE3650653T2 (en) Translucent photovoltaic module
DE4337694A1 (en) Solar module with improved use of light
EP0630524A1 (en) Weather-resistant thin layer solar module
DE3688772T2 (en) Optical filter for power generation.
DE3707214C2 (en)
DE3431603C2 (en) Photoelectric converter
EP2537065B1 (en) Electrochromic glazing with cells connected in series and method for producing same
DE19958878A1 (en) Process for the production of solar cells and thin-film solar cells
DE102017203105B4 (en) Glazing unit, process for their preparation and their use
EP1631996B2 (en) Organic solar cell comprising an intermediate layer with asymmetrical transport properties
DE102009043047A1 (en) solar cell
DE2926461A1 (en) SOLAR CELL MODULE
WO2009024509A2 (en) Solar cell construction
DE112009004970T5 (en) Conductive paste and electronic component provided with an electrode wiring formed therefrom
DE2533364A1 (en) COATED DISC
EP2758993B1 (en) Thin film solar module having series connection and method for the series connection of thin film solar cells
DE2702251C3 (en) Electrochromic display cell
DE10065530A1 (en) Device for power generation and shading in motor vehicles
EP3531458B1 (en) Solar module with homogeneous colour effect
DE3643691C1 (en) Thermal control layer
DE202008017971U1 (en) Thin-film solar cell with conductor track electrode
EP0582211A1 (en) Photoelectrochemical cell
DE102009013960B4 (en) Electromagnetic radiation selectively reflective film for solar control glass

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection