[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DE4310145A1 - Multi-cylinder IC engine with at least two groups of cylinders - has individual air-fuel mixture supply, and exhaust gas pipelines assigned to the cylinder groups and opening out into common exhaust gas pipe. - Google Patents

Multi-cylinder IC engine with at least two groups of cylinders - has individual air-fuel mixture supply, and exhaust gas pipelines assigned to the cylinder groups and opening out into common exhaust gas pipe.

Info

Publication number
DE4310145A1
DE4310145A1 DE4310145A DE4310145A DE4310145A1 DE 4310145 A1 DE4310145 A1 DE 4310145A1 DE 4310145 A DE4310145 A DE 4310145A DE 4310145 A DE4310145 A DE 4310145A DE 4310145 A1 DE4310145 A1 DE 4310145A1
Authority
DE
Germany
Prior art keywords
exhaust gas
cylinder
fuel
groups
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE4310145A
Other languages
German (de)
Inventor
Roland Dipl Ing Kemmler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler Benz AG
Original Assignee
Daimler Benz AG
Mercedes Benz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz AG, Mercedes Benz AG filed Critical Daimler Benz AG
Priority to DE4310145A priority Critical patent/DE4310145A1/en
Publication of DE4310145A1 publication Critical patent/DE4310145A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0082Controlling each cylinder individually per groups or banks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/025Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • F02D41/1443Plural sensors with one sensor per cylinder or group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

An exhaust gas catalyser (17) is connected to the common exhaust gas pipe (16). In addition, at least one lambda probe (18) is fitted in the common exhaust gas pipe. The probe voltage is fed to an electronic control unit (19), as a measure for correcting the fuel injection amount for the fuel-air mixture. With at least a substantially catalytic ineffective operating temp, during idling or part-load operation of the IC engine (1), one group (2) of cylinders is supplied with a specified lean fuel mixture and the other group (3) of cylinders with a specified rich fuel mixture, such that the cylinder groups with different air fuel ratios, produce in average at least approximately, stoichiometric air-fuel ratios. ADVANTAGE - IC engine at critical idling or part load conditions can be raised to or held at temp. to ensure catalytic conversion of harmful exhaust gas emissions.

Description

Die Erfindung betrifft eine mehrzylindrige Brennkraftmaschine mit mindestens zwei Zylindergruppen, nach den im Oberbegriff des Patentanspruchs 1 angegebenen Merkmalen.The invention relates to a multi-cylinder internal combustion engine with at least two cylinder groups, according to those in the preamble of claim 1 specified features.

Aus der DE 35 40 420 A1 ist eine derartige Brennkraftmaschine bekannt, bei der jeder Zylindergruppe eine Abgasleitungsgruppe mit Lambdasonde zugeordnet ist. Die Abgasleitungsgruppen münden in einer gemeinsamen Abgasleitung, die einen Abgaskatalysator enthält.Such an internal combustion engine is known from DE 35 40 420 A1 known, with each cylinder group an exhaust pipe group is assigned with lambda sensor. The exhaust pipe groups open in a common exhaust pipe that has an exhaust gas catalytic converter contains.

Bei dieser Ausführung werden die Luft-Kraftstoffverhältnisse der unterteilten Zylindergruppen unabhängig voneinander gere­ gelt, um zu erreichen, daß die Luft-Kraftstoffverhältnisse der verschiedenen Zylindergruppen sich nicht voneinander unter­ scheiden.In this version, the air-fuel ratios of the subdivided cylinder groups applies to achieve that the air-fuel ratios of the different cylinder groups are not different from each other divorce.

Ferner ist aus der DE 30 23 181 A1 eine Brennkraftmaschine mit unterteilten Zylindergruppen und einer Einrichtung zum Über­ wachen des Restsauerstoffgehaltes im Abgas bekannt, bei der zur Vermeidung einer plötzlichen Drehmomentänderung, die auftritt, wenn der Betrieb der Brennkraftmaschine zwischen dem Teillast- und Vollastbetrieb umgeschaltet wird, in diesem kurzen kri­ tischen Bereich in die Luft-Kraftstoffverhältnisse für die in- und aktiven Zylinder steuernd eingegriffen wird.DE 30 23 181 A1 also includes an internal combustion engine divided cylinder groups and a device for over guards the residual oxygen content in the exhaust gas known at Avoiding a sudden torque change that occurs if the operation of the internal combustion engine between the partial load and full load operation is switched in this short kri tical range in the air-fuel ratios for the internal and intervening to control the active cylinder.

Der Erfindung liegt die Aufgabe zugrunde, an einer Brennkraft­ maschine mit unterteilten Zylindergruppen und mit katalytischer Nachbehandlung solche Maßnahmen vorzusehen, durch die der Ka­ talysator im kritischen Leerlauf- oder Teillast-Bereich auf eine die Umwandlung der Schadstoffe bewirkende Betriebstempe­ ratur angehoben oder gehalten werden kann.The invention is based, to an internal combustion engine machine with divided cylinder groups and with catalytic Post-treatment to provide such measures by which the Ka talysator in the critical idle or part load range an operating temperature causing the conversion of the pollutants rature can be raised or held.

Zur Lösung dieser Aufgabe dienen die im Kennzeichen des Patent­ anspruchs 1 angegebenen Merkmale.To solve this problem are the characteristics of the patent claims 1 specified characteristics.

Durch die erfindungsgemäßen Maßnahmen wird zuverlässig ver­ mieden, daß die Abgase im Leerlauf- und Teillastbetrieb in ei­ nen unteren Temperaturbereich abfallen, der einen Anstieg der Abgasemissionen zur Folge hat, da die katalytische Wirkung ausbleibt. Außerdem wird verhindert, daß im Warmlauf der Brennkraftmaschine Probleme beim Anspringen des Katalysators auftreten, die zur Auskühlung des Katalysators und somit zu hohen schadstoffhaltigen Abgasbestandteilen führen.The measures according to the invention reliably ver avoided that the exhaust gases in idle and part-load operation in egg NEN lower temperature range, which is an increase in Exhaust emissions results because of the catalytic effect is absent. It also prevents the warming up of the Internal combustion engine problems when starting the catalytic converter occur to cool the catalyst and thus to lead to high pollutant-containing exhaust gas components.

Fällt also die Abgastemperatur auf ein unzulässiges also kata­ lytisch unwirksames Maß ab, wird diesem Nachteil erfindungs­ gemäß insofern entgegengewirkt, als ein Betrieb der unter­ teilten Zylindergruppen mit unterschiedlichem Luft-Kraftstoff­ verhältnis einsetzt, wobei die magere Zylindergruppe relativ viel Sauerstoff und die fette Zylindergruppe unverbrannten Kraftstoff zu dem Katalysator liefert, in welchem der Kraft­ stoff mit dem Sauerstoff unter Wärmefreisetzung reagieren kann.So the exhaust gas temperature falls on an impermissible kata From an ineffective level, this disadvantage is fiction counteracted in so far as an operation of the under shared cylinder groups with different air-fuel ratio sets in, the lean cylinder group relative a lot of oxygen and the rich cylinder group unburned Delivers fuel to the catalytic converter in which the power can react with oxygen to release heat.

Die hierbei erzielte Reaktion führt zu einer katalytisch wirk­ samen Betriebstemperatur.The reaction achieved here leads to a catalytic effect operating temperature.

Die Zuführung der unterschiedlichen Luft-Kraftstoff-Gemische zu den unterteilten Zylindergruppen zur Anhebung der Abgastempe­ ratur wird solange beibehalten, bis sich eine zumindest weitgehende Stabilisierung der Abgastemperatur ergibt und wie­ der eine Überführung zu einem stöchiometrischen Luft-Kraft­ stoffverhältnis für die Zylindergruppen erfolgen kann.The supply of the different air-fuel mixtures too the divided cylinder groups to raise the exhaust gas temperature maturity is maintained until at least one  extensive stabilization of the exhaust gas temperature and how which is a transfer to a stoichiometric air force material ratio for the cylinder groups can take place.

In dem Unteranspruch ist eine vorteilhafte Ausführungsform der Erfindung angegeben.In the subclaim is an advantageous embodiment of the Invention specified.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und im folgenden näher beschrieben. Es zeigen:An embodiment of the invention is in the drawing shown and described in more detail below. Show it:

Fig. 1 die erfindungsgemäße Brennkraftmaschine Fig. 1, the internal combustion engine according to the invention

Fig. 2 eine grafische Darstellung, die den Verlauf der Abgastemperatur von dem Motoraustritt über die Abgasleitung und den Eintritt und Austritt des Katalysators zeigt. Fig. 2 is a graph showing the course of the exhaust gas temperature from the engine outlet through the exhaust pipe and the entry and exit of the catalyst.

Eine gemischverdichtende vierzylindrige Brennkraftmaschine 1 besteht aus zwei unterteilten Zylindergruppen 2, 3 und vier Gaswechselventilen als Einlaß- und Auslaßventile 4, 5 pro Zy­ linder 6, 7 und 8, 9 sowie aus einem für jeden Zylinder vorge­ sehenen Kraftstoffeinspritzventil 10, 11, 12, 13 und aus zwei Ab­ gasleitungsgruppen 14, 15, von denen die mit 14 bezeichnete Ab­ gasleitungsgruppe der Zylindergruppe 2 und die mit 15 bezeich­ nete Abgasleitungsgruppe der Zylindergruppe 3 zugeordnet ist. Beide Abgasleitungsgruppen 14, 15 führen in eine gemeinsame Ab­ gasleitung 16, in der ein Abgaskatalysator 17 angeordnet ist. Die Abgasleitung 16 ist mit einer Lambdasonde 18 ausgestattet.A mixture-compressing four-cylinder internal combustion engine 1 consists of two divided cylinder groups 2 , 3 and four gas exchange valves as intake and exhaust valves 4 , 5 per cylinder 6 , 7 and 8 , 9 and from a fuel injector 10 , 11 , 12 , 13 provided for each cylinder and from two gas line groups 14 , 15 , of which the gas line group designated by 14 is assigned to cylinder group 2 and the exhaust gas line group identified by 15 is assigned to cylinder group 3 . Both exhaust pipe groups 14 , 15 lead into a common gas pipe 16 , in which an exhaust gas catalytic converter 17 is arranged. The exhaust pipe 16 is equipped with a lambda probe 18 .

Ferner ist eine elektronisches Steuergerät 19 vorgesehen, das Betriebs- und Umgebungskenngrößen der Brennkraftmaschine ver­ arbeitet, ebenso die von der Lambdasonde 18 gelieferte Sondenspannung, die für die Zylindergruppen 2, 3 ein Maß für die Korrektur der Einspritzmenge bei der Gemischbildung ist.Furthermore, an electronic control unit 19 is provided, the operating and environmental parameters of the internal combustion engine works ver, as well as the probe voltage supplied by the lambda probe 18 , which for the cylinder groups 2 , 3 is a measure of the correction of the injection quantity when the mixture is formed.

In Fig. 2 ist in einer grafischen Darstellung der Temperatur­ verlauf des Abgases ausgehend vom Motoraustritt MotA über die zunächst zweiflutige und dann einflutige Abgasleitung bis zum Katalysatoreintritt KatE und von dort aus über die Katalysa­ tormitte KatM schließlich zum Katalysatoraustritt KatA gezeigt.In Fig. 2 is shown in a graphical representation of the temperature of the exhaust gas starting from the engine outlet Mot A via the initially double-flow and then single-flow exhaust pipe to the catalyst inlet Kat E and from there via the catalyst center Kat M finally to the catalyst outlet Kat A.

Bei zu niedrigen Abgastemperaturen, die zumindest die Wirksam­ keit des Abgaskatalysators 17 beeinträchtigen, wird von dem elektronischen Steuergerät 18 der Katalysator 17 auf Betriebs­ temperatur gebracht, und zwar durch Einregelung eines vorab auf dem Prüfstand ermittelten und somit vorgegebenen fetten Luft- Kraftstoff-Gemisches für die eine Zylindergruppe und eines ebenfalls vorab auf dem Prüfstand ermittelten und somit vorge­ gebenen mageren Luft-Kraftstoff-Gemisches für die andere Zy­ lindergruppe, z. B. in dem einen Fall ein λ von 0,9 und in dem anderen Fall ein λ von 1,1. Das Mittel dieser unterschiedlichen Luft-Kraftstoffverhältnisse ergibt ein zumindest annähernd stöchiometrisches Luft-Kraftstoffverhältnis.If the exhaust gas temperatures are too low, which at least impair the effectiveness of the exhaust gas catalytic converter 17 , the electronic control unit 18 brings the catalytic converter 17 to operating temperature, specifically by regulating a rich air / fuel mixture determined beforehand on the test bench and thus predetermined a cylinder group and a previously determined on the test bench and thus given lean air-fuel mixture for the other cylinder group, z. B. in one case a λ of 0.9 and in the other case a λ of 1.1. The average of these different air-fuel ratios results in an at least approximately stoichiometric air-fuel ratio.

Das Steuergerät 18 ändert somit bei kritischen Bereichen, wie Leerlauf- und Teillastbereich, die Einspritzzeit ti. Die Ein­ spritzventile 10, 11, 12, 13 der jeweiligen Zylindergruppe 2, 3 werden zeitlich so angesteuert, daß sich für die eine Zylin­ dergruppe
tfett=ti+Δt
und für die andere Zylindergruppe
tmager=ti-Δt
ergibt.
The control unit 18 thus changes the injection time t i in critical areas, such as idling and part-load range. The one injection valves 10 , 11 , 12 , 13 of the respective cylinder group 2 , 3 are timed in such a way that for one cylinder group
t bold = t i + Δt
and for the other cylinder group
t lean = t i -Δt
results.

ti bedeutet Basis-Einspritzzeit und Δt die Differenzein­ spritzzeit.t i means the basic injection time and Δt the differential injection time.

Diese unterschiedlichen Lambdawerte führen dazu, daß im Kata­ lysator 17 der Kraftstoff mit dem Sauerstoff unter Wärmefrei­ setzung (exotherm) reagieren kann. Der Katalysator wird auf Betriebstemperatur gebracht oder gehalten.These different lambda values lead to the fact that in the catalytic converter 17 the fuel can react with the oxygen to release heat (exothermic). The catalyst is brought to operating temperature or maintained.

In Fig. 2 ist z. B. bei einer Drehzahl n=2000 U/min im Teil­ lastbereich der Verlauf der Abgastemperatur bei unterschied­ lichen Werten (λ =0,9 u. λ=1,1) mit durchgehender Linie a gekennzeichnet. Beim Katalysatoreintritt KatE liegt eine Abgastemperatur von ∼250°C, nach einem raschen Temperaturanstieg eine Abgastemperatur von ∼350°C in Katalysatormitte KatM und bei Katalysatoraustritt KatA ein Abgastemperatur von ∼300°C vor.In Fig. 2 z. B. at a speed n = 2000 U / min in the partial load range, the course of the exhaust gas temperature at different values (λ = 0.9 and λ = 1.1) marked with a solid line a. An exhaust gas temperature of ∼250 ° C is at the catalytic converter inlet Cat E , an exhaust gas temperature of ∼350 ° C in the catalytic converter center Cat M after a rapid temperature rise and an exhaust gas temperature of ∼300 ° C at the catalytic converter outlet cat A.

Demgegenüber würde sich bei einem üblichen λ=1 der mit unter­ brochenen Linien gekennzeichnete Abgastemperaturverlauf b er­ geben. Der Katalysator 17 würde somit keine Betriebstemperatur erlangen. Die schadstoffhaltigen Abgasbestandteile nehmen zu und erreichen unzulässige hohe Abgasemissionen.In contrast, with a usual λ = 1, the exhaust gas temperature curve b indicated by broken lines would result. The catalytic converter 17 would therefore not reach an operating temperature. The pollutant-containing exhaust gas components increase and reach impermissibly high exhaust gas emissions.

Claims (2)

1. Mehrzylindrige Brennkraftmaschine mit mindestens zwei Zy­ lindergruppen und individueller Zuführung von Luft-Kraftstoff- Gemischen sowie mit den Zylindergruppen zugeordneten Abgasleitungsgruppen, die in einer einen Abgaskatalysator aufweisenden gemeinsamen Abgasleitung münden, ferner mit wenigstens einer Lambdasonde, deren einem elektronischen Steuergerät eingegebene Sondenspannung ein Maß für die Korrektur der Kraftstoffeinspritzmenge bei der Gemischbildung ist, dadurch gekennzeichnet, daß bei zumindest weitgehend katalytisch unwirksamer Betriebs­ temperatur im Leerlauf- oder Teillastbetrieb der Brennkraftma­ schine (1) der einen Zylindergruppe (2) ein vorgegebenes ma­ geres und der anderen Zylindergruppe (3) ein vorgegebenes fettes Luft-Kraftstoff-Gemisch derart zuführbar ist, daß der Betrieb der Zylindergruppen (2, 3) mit unterschiedlichen Luft- Kraftstoffverhältnissen im Mittel ein zumindest annähernd stöchiometrisches Luft-Kraftstoffverhältnis ergibt.1. Multi-cylinder internal combustion engine with at least two cylinder groups and individual supply of air-fuel mixtures as well as with the cylinder groups assigned exhaust pipe groups, which open into a common exhaust pipe having an exhaust gas catalytic converter, further with at least one lambda probe, the probe voltage input to an electronic control unit is a measure of is the correction of the fuel injection quantity in the mixture formation, characterized in that at least largely catalytically ineffective operating temperature in idle or part-load operation of the internal combustion engine ( 1 ) one cylinder group ( 2 ) a predetermined ma geres and the other cylinder group ( 3 ) a predetermined rich air-fuel mixture can be supplied such that the operation of the cylinder groups ( 2 , 3 ) with different air-fuel ratios results in an at least approximately stoichiometric air-fuel ratio on average. 2. Brennkraftmaschine nach Anspruch 1, dadurch gekennzeichnet, daß von den unterschiedlichen Luft-Kraftstoffverhältnissen das unterstöchiometrische Lambda etwa 0,9 und das überstöchio­ metrische Lambda etwa 1,1 entspricht.2. Internal combustion engine according to claim 1, characterized, that of the different air-fuel ratios substoichiometric lambda about 0.9 and the overstoichio metric lambda corresponds to approximately 1.1.
DE4310145A 1993-03-29 1993-03-29 Multi-cylinder IC engine with at least two groups of cylinders - has individual air-fuel mixture supply, and exhaust gas pipelines assigned to the cylinder groups and opening out into common exhaust gas pipe. Withdrawn DE4310145A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4310145A DE4310145A1 (en) 1993-03-29 1993-03-29 Multi-cylinder IC engine with at least two groups of cylinders - has individual air-fuel mixture supply, and exhaust gas pipelines assigned to the cylinder groups and opening out into common exhaust gas pipe.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4310145A DE4310145A1 (en) 1993-03-29 1993-03-29 Multi-cylinder IC engine with at least two groups of cylinders - has individual air-fuel mixture supply, and exhaust gas pipelines assigned to the cylinder groups and opening out into common exhaust gas pipe.

Publications (1)

Publication Number Publication Date
DE4310145A1 true DE4310145A1 (en) 1994-04-07

Family

ID=6484128

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4310145A Withdrawn DE4310145A1 (en) 1993-03-29 1993-03-29 Multi-cylinder IC engine with at least two groups of cylinders - has individual air-fuel mixture supply, and exhaust gas pipelines assigned to the cylinder groups and opening out into common exhaust gas pipe.

Country Status (1)

Country Link
DE (1) DE4310145A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2721653A1 (en) * 1994-06-27 1995-12-29 Siemens Automotive Sa Motor vehicle internal combustion engine pollution emission control method
DE19549076A1 (en) * 1995-12-29 1997-07-03 Opel Adam Ag Method for suppressing the jerking of an internal combustion engine used to drive a motor vehicle during the transition from pull to push operation
DE19646651C1 (en) * 1996-11-12 1998-04-09 Daimler Benz Ag Method for operating remotely ignited internal combustion engine with lambda probe, cylinder-specific fuel injection
EP0838582A1 (en) * 1996-10-28 1998-04-29 Institut Francais Du Petrole Method for controlling the intake of a four stroke direct injection engine
DE19903721C1 (en) * 1999-01-30 2000-07-13 Daimler Chrysler Ag Internal combustion engine operating method involves regulating lambda values of individual cylinders/groups to different demand values using I- and/or D-regulating components
EP0902172A3 (en) * 1997-09-15 2000-12-13 Audi Ag Method for operating a multicylinder internal combustion engine with direct injection in the cylinder
EP1052393A3 (en) * 1999-05-10 2001-02-07 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control apparatus and method of internal combustion engine
EP0937879A3 (en) * 1998-02-24 2001-03-21 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control system for multi-cylinder internal combustion engine
WO2001050005A2 (en) * 1999-12-31 2001-07-12 Robert Bosch Gmbh Method for operating an internal combustion engine, especially of a motor vehicle
WO2004059150A1 (en) * 2002-12-30 2004-07-15 Volkswagen Aktiengesellschaft Method for controlling the temperature of a catalyst and multicylinder engine comprising a lambda splitting exhaust gas cleaning system
WO2008081279A3 (en) * 2006-12-21 2008-10-16 Toyota Motor Co Ltd Internal combustion engine control apparatus and method
DE10322963B4 (en) * 2002-06-04 2015-09-24 Ford Global Technologies, Llc (N.D.Ges.D. Staates Delaware) Method for controlling an engine with several cylinder groups
DE102016202351A1 (en) * 2016-02-16 2017-08-17 Volkswagen Aktiengesellschaft Method for operating an internal combustion engine and three-cylinder engine for carrying out such a method
EP3643897A1 (en) 2018-10-25 2020-04-29 Volkswagen AG Internal combustion engine and method for operating said engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068637A (en) * 1975-10-24 1978-01-17 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Multicylinder internal combustion engine
EP0408206A2 (en) * 1989-07-14 1991-01-16 Ford Motor Company Limited Apparatus and method for correcting air/fuel ratio of internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068637A (en) * 1975-10-24 1978-01-17 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Multicylinder internal combustion engine
EP0408206A2 (en) * 1989-07-14 1991-01-16 Ford Motor Company Limited Apparatus and method for correcting air/fuel ratio of internal combustion engine

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2721653A1 (en) * 1994-06-27 1995-12-29 Siemens Automotive Sa Motor vehicle internal combustion engine pollution emission control method
DE19549076A1 (en) * 1995-12-29 1997-07-03 Opel Adam Ag Method for suppressing the jerking of an internal combustion engine used to drive a motor vehicle during the transition from pull to push operation
EP0838582A1 (en) * 1996-10-28 1998-04-29 Institut Francais Du Petrole Method for controlling the intake of a four stroke direct injection engine
FR2755186A1 (en) * 1996-10-28 1998-04-30 Inst Francais Du Petrole METHOD FOR CONTROLLING THE ADMISSION OF A FOUR-STROKE ENGINE WITH DIRECT INJECTION
US5894726A (en) * 1996-10-28 1999-04-20 Institute Francais Du Petrole Process for controlling the intake of a direct-injection four-stroke engine
DE19646651C1 (en) * 1996-11-12 1998-04-09 Daimler Benz Ag Method for operating remotely ignited internal combustion engine with lambda probe, cylinder-specific fuel injection
EP0902172A3 (en) * 1997-09-15 2000-12-13 Audi Ag Method for operating a multicylinder internal combustion engine with direct injection in the cylinder
EP0937879A3 (en) * 1998-02-24 2001-03-21 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control system for multi-cylinder internal combustion engine
US6325056B1 (en) 1999-01-30 2001-12-04 Daimlerchrysler Ag Operating method for an internal combustion engine with lambda-value control
DE19903721C1 (en) * 1999-01-30 2000-07-13 Daimler Chrysler Ag Internal combustion engine operating method involves regulating lambda values of individual cylinders/groups to different demand values using I- and/or D-regulating components
US6250074B1 (en) 1999-05-10 2001-06-26 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control apparatus and method of internal combustion engine
EP1052393A3 (en) * 1999-05-10 2001-02-07 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control apparatus and method of internal combustion engine
WO2001050005A2 (en) * 1999-12-31 2001-07-12 Robert Bosch Gmbh Method for operating an internal combustion engine, especially of a motor vehicle
WO2001050005A3 (en) * 1999-12-31 2002-03-28 Bosch Gmbh Robert Method for operating an internal combustion engine, especially of a motor vehicle
DE10322963B4 (en) * 2002-06-04 2015-09-24 Ford Global Technologies, Llc (N.D.Ges.D. Staates Delaware) Method for controlling an engine with several cylinder groups
WO2004059150A1 (en) * 2002-12-30 2004-07-15 Volkswagen Aktiengesellschaft Method for controlling the temperature of a catalyst and multicylinder engine comprising a lambda splitting exhaust gas cleaning system
US7356988B2 (en) 2002-12-30 2008-04-15 Volkswagen Aktiengesellschaft Method for controlling the temperature of a catalyst and multicylinder engine comprising a lambda splitting exhaust gas cleaning system
CN100422530C (en) * 2002-12-30 2008-10-01 大众汽车股份公司 Catalyst temperature control method and multi-cylinder engine equipped with lambda-separable exhaust gas purification system
WO2008081279A3 (en) * 2006-12-21 2008-10-16 Toyota Motor Co Ltd Internal combustion engine control apparatus and method
CN101563534B (en) * 2006-12-21 2012-08-22 丰田自动车株式会社 Internal combustion engine control apparatus and method
US8209105B2 (en) 2006-12-21 2012-06-26 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control apparatus and method
DE102016202351A1 (en) * 2016-02-16 2017-08-17 Volkswagen Aktiengesellschaft Method for operating an internal combustion engine and three-cylinder engine for carrying out such a method
EP3643897A1 (en) 2018-10-25 2020-04-29 Volkswagen AG Internal combustion engine and method for operating said engine
DE102018126618A1 (en) 2018-10-25 2020-04-30 Volkswagen Aktiengesellschaft Method for operating an internal combustion engine and internal combustion engine
US11181024B2 (en) 2018-10-25 2021-11-23 Volkswagen Aktiengesellschaft Method for operating an internal combustion engine as well as internal combustion engine

Similar Documents

Publication Publication Date Title
DE69732461T2 (en) Fuel injection control device for a direct injection engine
DE19510642C2 (en) Method for reducing pollutants in the exhaust gas of an internal combustion engine having multiple cylinders
DE4310145A1 (en) Multi-cylinder IC engine with at least two groups of cylinders - has individual air-fuel mixture supply, and exhaust gas pipelines assigned to the cylinder groups and opening out into common exhaust gas pipe.
EP3208450B1 (en) Method for operating a combustion engine and three-cylinder engine for carrying out such a method
WO1999022128A1 (en) Method for secondary treatment of exhaust in piston internal combustion engines with direct fuel injection
DE102019101576A1 (en) Device and method for exhaust gas aftertreatment of an internal combustion engine
DE3873318T2 (en) EXHAUST TREATMENT FOR A TWO-STROKE ENGINE.
DE102012003310B4 (en) Method and device for heating an exhaust gas catalytic converter
DE102016214951A1 (en) Method for operating an engine
DE2912796A1 (en) EXHAUST SYSTEM FOR PREFERRED EIGHT CYLINDER COMBUSTION ENGINES
WO2001059271A1 (en) Desulphurisation of a storage catalyst by heating
EP1180586B1 (en) Multi-cylinder internal combustion engine with a catalyst heating device
EP0814237B1 (en) Valve drive in an internal combustion engine
DE4418112B4 (en) A method of operating an internal combustion engine adapted to combust a high air ratio mixture
DE10101593B4 (en) Method for operating an internal combustion engine provided with direct fuel injection into the combustion chamber
DE10349855B4 (en) Method and device for desulfurization of a catalyst
DE102004061400B4 (en) Method for generating a stream of hot combustion gases with adjustable temperature, apparatus for carrying out the method and use of the combustion gases for the targeted aging of catalysts
AT2489U1 (en) PISTON PISTON INTERNAL COMBUSTION ENGINE
DE102019107514A1 (en) Method for operating an internal combustion engine and an internal combustion engine
DE10153901A1 (en) Process for desulfurizing NOx accumulation catalyst placed downstream of diesel engine by altering amount of fuel injected into working cycle of cylinder(s) of engine
DE10018062B4 (en) Multi-cylinder engine for motor vehicles having a multi-flow exhaust gas purification system and method for controlling operation of the multi-cylinder engine
DE102017101610A1 (en) Method for reducing cold-start emissions in a spark-ignited internal combustion engine
DE102021205170A1 (en) Internal combustion engine with a secondary air line branching off downstream of a fresh gas compressor
EP3683427A1 (en) Exhaust gas treatment of an internal combustion engine
DE102018122843A1 (en) Process for regeneration of a particle filter

Legal Events

Date Code Title Description
OAV Applicant agreed to the publication of the unexamined application as to paragraph 31 lit. 2 z1
OP8 Request for examination as to paragraph 44 patent law
8130 Withdrawal