DE4239319A1 - Hybrid manufacture of air gap and gate of Suspended Gate FET without using spacers producing gate separately from base structure, with air gap height based on height difference of channel and field isolators - Google Patents
Hybrid manufacture of air gap and gate of Suspended Gate FET without using spacers producing gate separately from base structure, with air gap height based on height difference of channel and field isolatorsInfo
- Publication number
- DE4239319A1 DE4239319A1 DE19924239319 DE4239319A DE4239319A1 DE 4239319 A1 DE4239319 A1 DE 4239319A1 DE 19924239319 DE19924239319 DE 19924239319 DE 4239319 A DE4239319 A DE 4239319A DE 4239319 A1 DE4239319 A1 DE 4239319A1
- Authority
- DE
- Germany
- Prior art keywords
- gate
- air gap
- field effect
- channel
- height
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
- G01N27/4141—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for gases
- G01N27/4143—Air gap between gate and channel, i.e. suspended gate [SG] FETs
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Junction Field-Effect Transistors (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
Es wird ein Verfahren zum hybriden, spacerfreien Aufbau von Luftspalt und Gate von Suspended Gate Feldeffekttransistoren angegeben. Derartige Bauelemente eignen sich für den Einsatz als Sensoren in der Analyse von Flüssigkeiten (z. B. Bestimmung von Ionenkon zentrationen) und in der Gasanalyse (z. B. für die Schadgasdetektion in der Luftüber wachung). Suspended Gate Feldeffekttransistoren sind in der Gruppe der Chemosensoren ausgezeichnet durch kurze Ansprechzeiten, da ihr Detektionsvermögen in erster Linie auf Oberflächeneffekten beruht.A method for the hybrid, spacer-free construction of the air gap and gate of Suspended gate field effect transistors specified. Such components are suitable for use as sensors in the analysis of liquids (e.g. determination of ion concentration concentrations) and in gas analysis (e.g. for the detection of harmful gases in the air watch). Suspended gate field effect transistors are in the group of chemosensors distinguished by short response times, since their detection ability primarily depends on Surface effects based.
Bislang wurden zum Aufbau des Luftspaltes von SGFET Spacer auf den Kanalisolatoren, auf diesen wiederum die Gatestruktur abgeschieden. Der Luftspalt entsteht durch Herausätzen des Spacers. Chemisch sensitive Schichten unter dem Gate werden gemäß einer Bauvariante noch vor dem Gateaufbau als Kanalisolator oder zwischen Spacer und Gate mit eingebaut unter der Einschränkung, daß die Spacerätze die sensitive Schicht nicht angreifen darf. Eine andere Variante sieht eine Beschichtung des freistehenden Gates durch elektrochemische Abscheidung vor.So far, to build up the air gap of SGFET spacers on the channel insulators, the gate structure is deposited on this in turn. The air gap is created by Etch out the spacer. Chemically sensitive layers under the gate are made according to one Construction variant even before the gate is built as a channel insulator or between spacer and gate installed with the restriction that the spacer sets do not attack the sensitive layer may. Another variant sees a coating of the free-standing gate electrochemical deposition.
Die Nachteile der bislang angegebenen Verfahren zum Aufbau von Luftspalt, chemisch sensitiver Schicht und Gate bestehen entweder in der Beschränkung auf diejenigen sensitiven Materialien, die elektrochemisch abscheidbar sind, oder in der geringen Ober flächengüte der Schichten, die durch Herausätzen des Spacers freigelegt werden: Spacer- bzw. Ätzreste beeinträchtigen ihre chemische Reinheit, was die Reproduzierbarkeit der elektrischen Signale in Bezug auf die chemischen Eingangsgrößen stört und Langzeitdriften verursacht. Zudem muß für jeden Einsatz einer neuen sensitiven Schicht der Ätzschritt überprüft und ggf. ein neues Ätzverfahren, das die sensitive Schicht nicht angreift, gefunden werden. Kelvinsondenmessungen an vergleichbaren sensitiven Materialien liefern aus diesen Gründen nicht vergleichbare Ergebnisse und können zur Optimierung dieser Materialien nicht herangezogen werden.The disadvantages of the previously stated methods of building an air gap, chemically sensitive layer and gate are either limited to those sensitive materials that can be deposited electrochemically, or in the low upper surface quality of the layers that are exposed by etching out the spacer: spacer or etching residues impair their chemical purity, which affects the reproducibility of the electrical signals in relation to the chemical input variables disturbs and long-term drift caused. In addition, the etching step must be carried out for each use of a new sensitive layer checked and, if necessary, a new etching process that does not attack the sensitive layer was found will. Kelvin probe measurements on comparable sensitive materials provide them Results not comparable and can optimize these materials not be used.
Die Aufgabe besteht im Aufbau eines Systems Luftspalt/selektive Schicht/Gate über dem Kanalisolator einer Isolator-Halbleiter-Feldeffektstruktur mit den Möglichkeiten einer hohen Reinheit und geringen Rauhigkeit der Grenzfläche selektiver Schicht - Luftspalt unter der Beibehaltung der Auswahl chemisch selektiver Materialien, wie sie die Schichtein bauvariante gestattet.The task is to build an air gap / selective layer / gate system the channel isolator of an isolator semiconductor field effect structure with the possibilities of high purity and low roughness of the interface of the selective layer - air gap while maintaining the selection of chemically selective materials as the layer construction variant allowed.
Zur Erläuterung der nachstehend beschriebenen Lösung werden vier Figuren als Ausfüh rungsbeispiele gezeigt:In order to explain the solution described below, four figures are shown Examples shown:
Fig. 1 Positionierung (1. ISFET -Struktur; 2. Gate-Struktur; 3. Feldisolation; 4. Metal lisierung, 5. Source und Draingebiete, 6. Kanalisolator, 7. Kanalgebiet, 8. Sensitive Schicht, 9. Gatemetallisierung, 10. Auflagerichtung); Fig. 1 position (1 ISFET structure;. 2 gate structure;.. 3 field isolation; 4 capitalization Metal, 5 source and drain regions, 6 channel insulator 7 channel region 8-sensitive layer, 9 gate metallization, 10...... Support direction);
Fig. 2 Luftspalt/Ausschnitt (11. Diffusionskanal, 12. Luftspalthöhe, 13. Auflage von sens. Schicht direkt auf Feldisolator); Fig. 2 air gap / section ( 11th diffusion channel, 12th air gap height, 13th layer of sens. Layer directly on field insulator);
Fig. 3. Befestigung/ Luftspalthöhe (14. Gehäuseboden, 15. Luftspalt, 16. Partikel, 17. Federbügel); Fig. 3. Fixing / air gap height ( 14th housing base, 15th air gap, 16th particle, 17th spring clip);
Fig. 4. Befestigung/Luftspalthöhe (18. Luftspalt, 19. Distanzstücke, 20. Klebestelle, 21. Kapillarsperre). Fig. 4. Fastening / air gap height ( 18th air gap, 19th spacer, 20th glue point, 21st capillary barrier).
Der Aufbau geht erfindungsgemaß aus von einer Isolator-Feldeffektstruktur ohne Gate, wie sie z. B. der ISFET (1) darstellt. Zu dieser passend wird separat eine Gatestruktur (2) aus einem leitendem Material hergestellt, z. B. aus hochdotierten Si-Wafern. Seine Formgebung wird so gewählt, daß bei Auflage auf die Feldeffektstruktur der Kanalbereich (6, 7) ohne Kontakt zu den Metallisierungen (4) der Feldeffektstruktur überdeckt werden kann. Umgekehrt kann auch die Feldeffektstruktur für die Auflage auf ein, dann einfach gestaltetes Gate konstruiert werden. Die später dem Luftspalt (12, 15, 18) zugewandte Seite des Gates benötigt eine niedrige Oberflächenrauhigkeit. Hierauf können, wenn das Gatema terial nicht selbst als sensitiv gewählt ist, sensitive Materialien durch Methoden wie elektro chemische Abscheidung, Sputtern, reaktives Sputtern, Aufdampfen, Aufschleudern, Sublima tion, Epitaxie, Aufsprühen abgeschieden werden (8). Die Gaterückseite wird für eine spätere elektrische Kontaktierung vorbereitet, im Falle eines Si-Gates für den Bondschritt metal lisiert (9).The structure is based on an isolator field effect structure without a gate, as z. B. the ISFET ( 1 ). To match this, a gate structure ( 2 ) is made separately from a conductive material, e.g. B. from highly doped Si wafers. Its shape is chosen so that when placed on the field effect structure, the channel area ( 6 , 7 ) can be covered without contact with the metallizations ( 4 ) of the field effect structure. Conversely, the field effect structure can also be constructed for the support on a then simply designed gate. The side of the gate which later faces the air gap ( 12 , 15 , 18 ) requires a low surface roughness. If the gate material is not itself selected as sensitive, sensitive materials can then be deposited by methods such as electrochemical deposition, sputtering, reactive sputtering, vapor deposition, spin coating, sublimation, epitaxy, spraying ( 8 ). The back of the gate is prepared for subsequent electrical contacting, in the case of a Si gate for the bonding step metalized ( 9 ).
Das vorgefertigte Gate wird nun auf den Isolator der Feldeffektstruktur gelegt und so verschoben, daß es den Kanalbereich (6, 7) vollständig überdeckt. In einem Spitzenmanipula torplatz kann diese Justage erleichtert vorgenommen werden. Eine elektrische Messung der Kapazität zwischen Gate und dem Kanalgebiet (Steilheitsmessung) (2, 7) erhöht die Genauigkeit einer optischen Kontrolle der vollständigen Kanalüberdeckung. Vergrößert man die Kanalüberdeckung über das kapazitiv bestimmte Optimum hinaus, so verursacht dies verlängerte Ansprechzeiten des hybriden Feldeffektbauelementes. Übermäßige Kanalüberdeckungen wirken wie Diffusionskanäle (11) zwischen den umgeben den Medien und dem eigentlichen Luftspaltraum selbst. Mit Positionierung und Form gebung des Gates kann also das Ansprechverhalten des hybriden Bauelementes gesteuert werden. So wirken vertikale Öffnungen oder Ränder in der Gate- oder der Feldeffektstruk tur, die der Topografie des Kanals angepaßt sind, im Sinne kürzerer Ansprechzeiten.The prefabricated gate is now placed on the insulator of the field effect structure and moved so that it completely covers the channel area ( 6 , 7 ). This adjustment can be carried out more easily in a tip manipulator space. An electrical measurement of the capacitance between the gate and the channel area (slope measurement) ( 2 , 7 ) increases the accuracy of an optical control of the complete channel coverage. If the channel coverage is increased beyond the capacitively determined optimum, this causes longer response times of the hybrid field effect component. Excessive channel overlaps act like diffusion channels ( 11 ) between the surrounding media and the actual air gap space itself. The positioning and shaping of the gate can thus be used to control the response behavior of the hybrid component. So vertical openings or edges in the gate or field effect structure, which are adapted to the topography of the channel, in the sense of shorter response times.
Aus der Kapazitätsmessung läßt sich weiterhin durch Quotientenbildung mit den Werten, die man von einer identisch aufgebauten Struktur mit MOS-Metallisierung erhält, die Luftspalthöhe ermitteln. Dies ermöglicht die Kontrolle, ob sich Verunreinigungen zwischen den Auflageflächen befinden. Vergrößerte Luftspalthöhen führen zu verkleinerten Ein kopplungsfaktoren der gateseitigen Sensoreffekte in den elektrischen Gesamtstrom des hybriden Bauelementes. Die minimal erreichbare Luftspalthöhe wird durch die Höhen differenz von Kanal- und Feldisolatoren vorgegeben (12). Darüber hinaus einstellbar wird die Spalthöhe, indem Distanzkörper (19) an den Auflageflächen von Gate oder Feldeffekt struktur aufgebracht werden. Auch lose haftende Partikel (16) können diesen Zweck erfüllen. So genügt es, z. B. bei einem Si-Gate, Partikel, die vom Brechvorgang her an den Oberflächen haften, durch Reinigungs- oder Ätzschritte auf maximale Größen einzustellen.From the capacitance measurement, the air gap height can also be determined by forming the quotient with the values obtained from an identically constructed structure with MOS metallization. This makes it possible to check whether there is any contamination between the contact surfaces. Increased air gap heights lead to smaller coupling factors of the gate-side sensor effects in the total electrical current of the hybrid component. The minimum achievable air gap height is determined by the height difference between duct and field insulators ( 12 ). In addition, the gap height can be adjusted by applying spacers ( 19 ) to the contact surfaces of the gate or field effect structure. Loosely adhering particles ( 16 ) can also serve this purpose. So it is sufficient, for. B. with a Si gate, particles that adhere to the surfaces from the breaking process, by cleaning or etching steps to maximum sizes.
Der hybride Gateaufbau wird bezüglich der Feldeffektstruktur dauerhaft fixiert, entweder durch mechanisches Klemmen des Gesamtaufbaus z. B. auf einem Header mit einer metallischen Feder (17), die dann zweckmäßigerweise auch zur Gatekontaktierung dienen kann, oder durch anodisches Bonden von dafür geeignet ausgeführten Auflagegebieten, oder durch Kleben (20) an einer Auflagefläche. Diese sollte, da der Luftspalt eine hohe Kapillar wirkung besitzt, von der Kanalregion durch geeignete weite Zwischenräume (21) derart abgesetzt sein, daß keine Kleberkomponente in den Luftspalt gelangt.The hybrid gate structure is permanently fixed with respect to the field effect structure, either by mechanical clamping of the overall structure, e.g. B. on a header with a metallic spring ( 17 ), which can then expediently also be used for gate contacting, or by anodic bonding of suitably designed contact areas, or by gluing ( 20 ) to a contact surface. Since the air gap has a high capillary effect, this should be separated from the channel region by suitable wide gaps ( 21 ) in such a way that no adhesive component gets into the air gap.
Die Vorteile des angegebenen Verfahrens liegen in der verbesserten Reproduzierbarkeit der Signale des Hybridsensors und ihrer erhöhten Stabilität bezüglich der Nullpunktdrift. Die im elektrischen Sensorsignal detektierten Austrittsarbeitsdifferenzen von selektiver Schicht und Kanalisolator entsprechen den Werten, die aus Kelvinsondenmessungen erhalten werden. Korrekturen sind anzusetzen mit dem Parameter der unterschiedlichen Luftspalthöhen ( 0,5-2 µ zu 200-500 µ) der beiden Meßverfahren. Weiter kann für den Aufbau des hybriden SGFET auf marktverfügbare ISFET als Basisstruktur zurückgegriffen werden. Zusammen mit einem Satz unterschiedlich beschichteter Gates ergibt sich ein modulares Baukastensystem von hybriden Sensoren, die im Hinblick auf differenzierte An wendungen spezifizierbar sind. Der technologische Aufwand reduziert sich gleichzeitig auf die Ebene von Aufbau- und Verbindungstechnik. Dies begünstigt auch die wirtschaftliche Produktion von kleinen und mittleren Sensorstückzahlen.The advantages of the specified method lie in the improved reproducibility the signals of the hybrid sensor and their increased stability with regard to the zero point drift. The work function differences detected in the electrical sensor signal are more selective Layer and channel insulator correspond to the values obtained from Kelvin probe measurements be preserved. Corrections are to be made with the parameter of the different Air gap heights (0.5-2 µ to 200-500 µ) of the two measuring methods. Further for the Construction of the hybrid SGFET based on available ISFET as a basic structure will. Together with a set of differently coated gates, the result is Modular modular system of hybrid sensors, which with regard to differentiated applications can be specified. The technological effort is reduced at the same time the level of assembly and connection technology. This also favors the economic Production of small and medium quantities of sensors.
Auf einen n⁺-dotierten Si-Wafer wurde Ti/W als Haftvermittler gesputtert, darüber Pt als selektive Schicht. Die Rückseite wurde mit Al bedampft. Daraus wurde ein Gate von ca. 800×1200 µm Größe gebrochen, von Bruchpartikeln gereinigt und über dem Kanal eines ISFET-Chips mit Si3N4 als Isolator fixiert. Die Luftspalthöhe betrug bei kapazitiver Messung 1,5 µm. Der Sensor wurde in einem Gasmeßplatz mit einer Kelvinsonde mit Si3N4 und identischem platinierten Gate als selektive Schichten in Reihe geschaltet. Die Messung in Fig. 5 zeigt die Änderung der Austrittsarbeiten des Systems Pt-Si3N4 von Kelvinsonde und hybridem SGFET bei Raumtemperatur und einem Durchfluß von synthetischer Luft, in die H2 in den Konzentrationen von 100 ppm und, in Stufen, 250 ppm beigemischt wurde.Ti / W was sputtered onto an n⁺-doped Si wafer as an adhesion promoter, and Pt as a selective layer. The back was steamed with Al. A gate of approx. 800 × 1200 µm was broken out of this, cleaned of broken particles and fixed over the channel of an ISFET chip with Si 3 N 4 as an insulator. The air gap height was 1.5 µm with capacitive measurement. The sensor was connected in series in a gas measuring station with a Kelvin probe with Si 3 N 4 and an identical platinum-plated gate as selective layers. The measurement in FIG. 5 shows the change in the work function of the Pt-Si 3 N 4 system of Kelvin probe and hybrid SGFET at room temperature and a flow of synthetic air, into which H 2 in the concentrations of 100 ppm and, in steps, 250 ppm was added.
Fig. 5 Änderung von ΔΦ als Reaktion auf Wasserstoff in Synthetischer Luft (1. ΔΦ in V/Skt.; 2. H2 in 100 ppm/Skt.; 3. Zeit in 30 min/Skt. 4. Signal Kelvinsonde; 5. H2- Konzentration; 6. Signal Hybrider SGFET.) Fig. 5 Change in ΔΦ in response to hydrogen in synthetic air (1. ΔΦ in V / skt .; 2. H 2 in 100 ppm / skt .; 3. Time in 30 min / skt. 4. Signal Kelvin probe; 5. H 2 concentration; 6th signal hybrid SGFET.)
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19924239319 DE4239319C2 (en) | 1992-11-23 | 1992-11-23 | Process for the spacer-free, hybrid construction of air gap and gate of suspended gate field effect transistors (SGFET) as well as components manufactured according to the process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19924239319 DE4239319C2 (en) | 1992-11-23 | 1992-11-23 | Process for the spacer-free, hybrid construction of air gap and gate of suspended gate field effect transistors (SGFET) as well as components manufactured according to the process |
Publications (2)
Publication Number | Publication Date |
---|---|
DE4239319A1 true DE4239319A1 (en) | 1993-04-08 |
DE4239319C2 DE4239319C2 (en) | 1996-10-02 |
Family
ID=6473429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19924239319 Expired - Fee Related DE4239319C2 (en) | 1992-11-23 | 1992-11-23 | Process for the spacer-free, hybrid construction of air gap and gate of suspended gate field effect transistors (SGFET) as well as components manufactured according to the process |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE4239319C2 (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994025863A2 (en) * | 1993-05-05 | 1994-11-10 | Siemens Aktiengesellschaft | Process for depositing a large-surface layer through a mask and optional closure of said mask |
DE4333875A1 (en) * | 1993-10-05 | 1995-04-06 | Zenko Dipl Ing Gergintschew | Semiconductor gas sensor based on a capacitive controlled field effect transistor (CCFET) |
DE4444607A1 (en) * | 1994-12-14 | 1996-05-09 | Ignaz Prof Dr Eisele | Gas sensors for oxidising or reducing gases using work function principle |
WO1999051976A1 (en) * | 1998-04-02 | 1999-10-14 | Tyco Electronics Logistics Ag | Gas sensor which functions according to the principle of measurement of work function |
EP1059528A2 (en) | 1999-06-11 | 2000-12-13 | Siemens Aktiengesellschaft | Gassensor using the principle of workfunction |
EP1103808A2 (en) * | 1999-11-25 | 2001-05-30 | Siemens Aktiengesellschaft | Gas sensor and method for its manufacturing |
EP1103809A1 (en) * | 1999-11-25 | 2001-05-30 | Siemens Aktiengesellschaft | Gas sensor |
EP1249699A2 (en) * | 2001-04-12 | 2002-10-16 | Micronas GmbH | Sensor for measuring a gaseous concentration or an ionic concentration |
WO2003050526A2 (en) * | 2001-12-13 | 2003-06-19 | Voigt, Wolfgang, M. | Gas sensor and method for the detection of hydrogen according to the principle of work function measurement, and method for the production of such a gas sensor |
US6955749B2 (en) | 2001-04-12 | 2005-10-18 | Micronas Gmbh | Sensor for measuring an ion concentration or gas concentration |
WO2005121765A1 (en) * | 2004-06-09 | 2005-12-22 | Consiglio Nazionale Delle Ricerche - Infm Istituto Nazionale Per La Fisica Della Materia | A field-effect device for the detection of small quantities of electric charge, such as those generated in bio-molecular processes, bound in the vicinity of the surface |
EP1707952A1 (en) * | 2005-03-31 | 2006-10-04 | Micronas GmbH | Gas sensitive field effect transistor comprising air gap and manufacturing thereof |
US7326974B2 (en) | 2002-11-22 | 2008-02-05 | Micronas Gmbh | Sensor for measuring a gas concentration or ion concentration |
US7553458B2 (en) | 2001-03-05 | 2009-06-30 | Micronas Gmbh | Alcohol sensor using the work function measurement principle |
US7707869B2 (en) | 2004-04-22 | 2010-05-04 | Micronas Gmbh | FET-based gas sensor |
US7772617B2 (en) | 2005-03-31 | 2010-08-10 | Micronas Gmbh | Gas sensitive field-effect-transistor |
US7946153B2 (en) | 2004-04-22 | 2011-05-24 | Micronas Gmbh | Method for measuring gases and/or minimizing cross sensitivity in FET-based gas sensors |
US7992426B2 (en) | 2004-04-22 | 2011-08-09 | Micronas Gmbh | Apparatus and method for increasing the selectivity of FET-based gas sensors |
US8592875B2 (en) | 2011-11-21 | 2013-11-26 | Micronas Gmbh | Semiconductor gas sensor |
US8669662B2 (en) | 2011-12-02 | 2014-03-11 | Micronas Gmbh | Fastening device |
DE102011089261B4 (en) * | 2011-12-20 | 2014-11-13 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Transistor structure, method for producing a transistor structure, force measuring system |
DE102014226816A1 (en) | 2014-12-22 | 2016-06-23 | Robert Bosch Gmbh | Semiconductor-based gas sensor arrangement for detecting a gas and corresponding production method |
US10157777B2 (en) | 2016-05-12 | 2018-12-18 | Globalfoundries Inc. | Air gap over transistor gate and related method |
US10211146B2 (en) | 2016-05-12 | 2019-02-19 | Globalfoundries Inc. | Air gap over transistor gate and related method |
US11467115B2 (en) | 2017-09-27 | 2022-10-11 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Fluid sensor |
WO2022238569A1 (en) | 2021-05-14 | 2022-11-17 | Katholieke Universiteit Leuven | Metal organic framework photonic and electronic device for gas sensing |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10161213B4 (en) * | 2001-12-13 | 2004-02-19 | Ignaz Prof. Dr. Eisele | Gas sensor and method for the detection of one or more components of a gas mixture and / or gases in a liquid according to the principle of work function measurement |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4411741A (en) * | 1982-01-12 | 1983-10-25 | University Of Utah | Apparatus and method for measuring the concentration of components in fluids |
DE3834189C1 (en) * | 1988-10-07 | 1990-02-15 | Ignaz Eisele | Non-electrochemical production of chemically selective layers in suspended-gate field-effect transistors |
-
1992
- 1992-11-23 DE DE19924239319 patent/DE4239319C2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4411741A (en) * | 1982-01-12 | 1983-10-25 | University Of Utah | Apparatus and method for measuring the concentration of components in fluids |
DE3834189C1 (en) * | 1988-10-07 | 1990-02-15 | Ignaz Eisele | Non-electrochemical production of chemically selective layers in suspended-gate field-effect transistors |
Non-Patent Citations (1)
Title |
---|
JESOWICZ, M., JANATA, J.: Suspended Gate Field Effect Transistor. In: Chemical Sensor Technology,Elsevier, 1988 * |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994025863A2 (en) * | 1993-05-05 | 1994-11-10 | Siemens Aktiengesellschaft | Process for depositing a large-surface layer through a mask and optional closure of said mask |
WO1994025863A3 (en) * | 1993-05-05 | 1995-01-12 | Ignaz Eisele | Process for depositing a large-surface layer through a mask and optional closure of said mask |
US5786235A (en) * | 1993-05-05 | 1998-07-28 | Siemens Aktiengesellschaft | Process for depositing a surface-wide layer through a mask and optionally closing said mask |
DE4333875A1 (en) * | 1993-10-05 | 1995-04-06 | Zenko Dipl Ing Gergintschew | Semiconductor gas sensor based on a capacitive controlled field effect transistor (CCFET) |
DE4444607A1 (en) * | 1994-12-14 | 1996-05-09 | Ignaz Prof Dr Eisele | Gas sensors for oxidising or reducing gases using work function principle |
WO1999051976A1 (en) * | 1998-04-02 | 1999-10-14 | Tyco Electronics Logistics Ag | Gas sensor which functions according to the principle of measurement of work function |
EP1059528A2 (en) | 1999-06-11 | 2000-12-13 | Siemens Aktiengesellschaft | Gassensor using the principle of workfunction |
EP1059528A3 (en) * | 1999-06-11 | 2003-01-02 | Siemens Aktiengesellschaft | Gassensor using the principle of workfunction |
EP1103809A1 (en) * | 1999-11-25 | 2001-05-30 | Siemens Aktiengesellschaft | Gas sensor |
EP1103808A2 (en) * | 1999-11-25 | 2001-05-30 | Siemens Aktiengesellschaft | Gas sensor and method for its manufacturing |
EP1103808A3 (en) * | 1999-11-25 | 2003-11-05 | Siemens Aktiengesellschaft | Gas sensor and method for its manufacturing |
US7553458B2 (en) | 2001-03-05 | 2009-06-30 | Micronas Gmbh | Alcohol sensor using the work function measurement principle |
US6955749B2 (en) | 2001-04-12 | 2005-10-18 | Micronas Gmbh | Sensor for measuring an ion concentration or gas concentration |
EP1249699A2 (en) * | 2001-04-12 | 2002-10-16 | Micronas GmbH | Sensor for measuring a gaseous concentration or an ionic concentration |
EP1249699A3 (en) * | 2001-04-12 | 2004-02-04 | Micronas GmbH | Sensor for measuring a gaseous concentration or an ionic concentration |
US6929728B2 (en) | 2001-04-12 | 2005-08-16 | Micronas Gmbh | Sensor for measuring a gas concentration or ion concentration |
WO2003050526A2 (en) * | 2001-12-13 | 2003-06-19 | Voigt, Wolfgang, M. | Gas sensor and method for the detection of hydrogen according to the principle of work function measurement, and method for the production of such a gas sensor |
WO2003050526A3 (en) * | 2001-12-13 | 2004-03-04 | Ignaz Eisele | Gas sensor and method for the detection of hydrogen according to the principle of work function measurement, and method for the production of such a gas sensor |
US7326974B2 (en) | 2002-11-22 | 2008-02-05 | Micronas Gmbh | Sensor for measuring a gas concentration or ion concentration |
US7946153B2 (en) | 2004-04-22 | 2011-05-24 | Micronas Gmbh | Method for measuring gases and/or minimizing cross sensitivity in FET-based gas sensors |
US7992426B2 (en) | 2004-04-22 | 2011-08-09 | Micronas Gmbh | Apparatus and method for increasing the selectivity of FET-based gas sensors |
US7707869B2 (en) | 2004-04-22 | 2010-05-04 | Micronas Gmbh | FET-based gas sensor |
WO2005121765A1 (en) * | 2004-06-09 | 2005-12-22 | Consiglio Nazionale Delle Ricerche - Infm Istituto Nazionale Per La Fisica Della Materia | A field-effect device for the detection of small quantities of electric charge, such as those generated in bio-molecular processes, bound in the vicinity of the surface |
US7535232B2 (en) | 2004-06-09 | 2009-05-19 | Consiglio Nazionale Delle Ricerche | Field-effect device for the detection of small quantities of electric charge, such as those generated in bio-molecular process, bound in the vicinity of the surface |
EP1707952A1 (en) * | 2005-03-31 | 2006-10-04 | Micronas GmbH | Gas sensitive field effect transistor comprising air gap and manufacturing thereof |
US7772617B2 (en) | 2005-03-31 | 2010-08-10 | Micronas Gmbh | Gas sensitive field-effect-transistor |
US7459732B2 (en) | 2005-03-31 | 2008-12-02 | Micronas Gmbh | Gas-sensitive field-effect transistor with air gap |
US8592875B2 (en) | 2011-11-21 | 2013-11-26 | Micronas Gmbh | Semiconductor gas sensor |
US8669662B2 (en) | 2011-12-02 | 2014-03-11 | Micronas Gmbh | Fastening device |
DE102011089261B4 (en) * | 2011-12-20 | 2014-11-13 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Transistor structure, method for producing a transistor structure, force measuring system |
US9312397B2 (en) | 2011-12-20 | 2016-04-12 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forshung E.V. | Transistor structure, method for manufacturing a transistor structure, force-measuring system |
DE102014226816A1 (en) | 2014-12-22 | 2016-06-23 | Robert Bosch Gmbh | Semiconductor-based gas sensor arrangement for detecting a gas and corresponding production method |
US10157777B2 (en) | 2016-05-12 | 2018-12-18 | Globalfoundries Inc. | Air gap over transistor gate and related method |
US10211146B2 (en) | 2016-05-12 | 2019-02-19 | Globalfoundries Inc. | Air gap over transistor gate and related method |
US11467115B2 (en) | 2017-09-27 | 2022-10-11 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Fluid sensor |
WO2022238569A1 (en) | 2021-05-14 | 2022-11-17 | Katholieke Universiteit Leuven | Metal organic framework photonic and electronic device for gas sensing |
Also Published As
Publication number | Publication date |
---|---|
DE4239319C2 (en) | 1996-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4239319C2 (en) | Process for the spacer-free, hybrid construction of air gap and gate of suspended gate field effect transistors (SGFET) as well as components manufactured according to the process | |
DE3741941C2 (en) | ||
DE69611119T2 (en) | Non-contact electrical measurement method for thin oxides | |
DE4314888C1 (en) | Method for depositing a total surface (covering) layer through a mask and optional closure of this mask | |
DE4115414A1 (en) | METHOD FOR PRODUCING MINIATURIZED CHEMO AND BIOSENSOR ELEMENTS WITH ION SELECTIVE MEMBRANE AND CARRIERS FOR THESE ELEMENTS | |
DE4408352A1 (en) | Miniaturized flow measuring chamber with integrated chemical and biosensor elements as well as processes for their production | |
DE4031425A1 (en) | FLOW CELL ADAPTIVE TYPE FET SENSOR DEVICE AND PRODUCTION METHOD | |
DE4333875A1 (en) | Semiconductor gas sensor based on a capacitive controlled field effect transistor (CCFET) | |
US6464940B1 (en) | pH sensor and pH measurement method employing the same | |
DE4424342C1 (en) | Sensor array | |
DE4309206C1 (en) | Semiconductor device having a force and/or acceleration sensor | |
EP0941460B1 (en) | Process for producing micromechanical sensors | |
EP1601957B1 (en) | Ion-sensitive field effect transistor and method for producing an ion-sensitive field effect transistor | |
EP1436607B1 (en) | Ion-sensitive field effect transistor and a method for producing a transistor of this type | |
EP0382831B1 (en) | Chemically sensitive transducer | |
WO2002031481A2 (en) | Device and method for electrically accelerated immobilisation and detection of molecules | |
DE3520064C2 (en) | Method of manufacturing a capacitive pressure sensor | |
EP1389307A2 (en) | Sensor arrangement, in particular micro-mechanical sensor arrangement | |
EP1583957B1 (en) | Ion-sensitive field effect transistor and method for producing an ion-sensitive field effect transistor | |
EP0645613B1 (en) | Method of manufacturing thin-film absolute-pressure sensors | |
DE102018207689B4 (en) | Method for producing at least one membrane arrangement, membrane arrangement for a micromechanical sensor and component | |
DE102019217465A1 (en) | Sensor element for detecting at least one property of a fluid medium in at least one measuring room | |
DE4337418A1 (en) | Silicon technology biosensor element and method for its production | |
DE4131927C2 (en) | Method for producing a sensor element with at least one ion-selective electrode in an integrated circuit | |
DE3930768A1 (en) | Chemo- and bio-sensor system for ion conc. determn. without contact - by measuring interface potential with variable capacity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OAV | Applicant agreed to the publication of the unexamined application as to paragraph 31 lit. 2 z1 | ||
OP8 | Request for examination as to paragraph 44 patent law | ||
8122 | Nonbinding interest in granting licenses declared | ||
D2 | Grant after examination | ||
8364 | No opposition during term of opposition | ||
8339 | Ceased/non-payment of the annual fee |