DE4133359A1 - Contactless measurement of water layer thickness on road surface - directing beam of light with limited spatial angle towards road surface and detecting back-scattered light in two near infrared wavelengths - Google Patents
Contactless measurement of water layer thickness on road surface - directing beam of light with limited spatial angle towards road surface and detecting back-scattered light in two near infrared wavelengthsInfo
- Publication number
- DE4133359A1 DE4133359A1 DE4133359A DE4133359A DE4133359A1 DE 4133359 A1 DE4133359 A1 DE 4133359A1 DE 4133359 A DE4133359 A DE 4133359A DE 4133359 A DE4133359 A DE 4133359A DE 4133359 A1 DE4133359 A1 DE 4133359A1
- Authority
- DE
- Germany
- Prior art keywords
- light
- measuring
- range
- wavelength
- lambda2
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 238000005259 measurement Methods 0.000 title claims abstract description 6
- 238000000034 method Methods 0.000 claims abstract description 18
- 238000001514 detection method Methods 0.000 claims abstract description 7
- 230000035945 sensitivity Effects 0.000 claims description 6
- 238000011156 evaluation Methods 0.000 claims description 5
- 230000003595 spectral effect Effects 0.000 claims description 5
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 2
- 238000003384 imaging method Methods 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 230000004907 flux Effects 0.000 claims 2
- 230000000149 penetrating effect Effects 0.000 claims 1
- 230000001360 synchronised effect Effects 0.000 claims 1
- 230000036039 immunity Effects 0.000 abstract 1
- 230000005855 radiation Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/023—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
- B60R16/0237—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems circuits concerning the atmospheric environment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
- G01B11/0616—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
- G01B11/0625—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4738—Diffuse reflection, e.g. also for testing fluids, fibrous materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/80—Exterior conditions
- B60G2400/82—Ground surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2401/00—Indexing codes relating to the type of sensors based on the principle of their operation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2210/00—Detection or estimation of road or environment conditions; Detection or estimation of road shapes
- B60T2210/10—Detection or estimation of road conditions
- B60T2210/13—Aquaplaning, hydroplaning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N2021/4704—Angular selective
- G01N2021/4711—Multiangle measurement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3554—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/02—Mechanical
- G01N2201/021—Special mounting in general
- G01N2201/0216—Vehicle borne
Landscapes
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Environmental Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren und eine Vorrichtung nach dem Oberbegriff des Anspruchs 1.The invention relates to a method and an apparatus according to the Preamble of claim 1.
Aus Gründen der Verkehrs- und Fahrsicherheit ist es wünschenswert, einen Zustand einer mit einem Fahrzeug befahrenen Fahrbahn vom fahrenden Fahrzeug aus zu ermitteln und einem Fahrzeugführer anzuzeigen. Hierbei kommt der Bestimmung der Dicke einer Wasserschicht auf der Fahrbahn besondere Bedeutung zu, da hiervon der Reibwert zwischen abrollendem Rad und der Fahrbahn in entscheidendem Maße abhängt.For reasons of traffic and driving safety, it is desirable to have one State of a lane driven by a vehicle from the moving vehicle determined and reported to a driver. Here comes the Determination of the thickness of a layer of water on the road is of particular importance to, since the coefficient of friction between the rolling wheel and the road in crucially depends.
Aus der DE 38 41 333 A1 geht ein Verfahren und eine Vorrichtung zur Überwachung eines Zustandes einer Fahrbahn hervor, bei dem die Lauffläche eines auf der Fahrbahn laufenden Fahrzeugrads mit elektromagnetischer Strahlung beaufschlagt wird. Intensitäten eines von der Lauffläche gerichtet reflektierten Strahlungsanteils und eines diffus reflektierten Strahlungsanteils werden erfaßt und ein Zustand der Fahrbahn durch aufwerten der Intensitäten der reflektierten Strahlungsanteile ermittelt. Aufgrund der indirekten Erfassung der Nässe über dem Reifen ist jedoch eine Bestimmung der Dicke der Wasserschicht auf der Fahrbahn nicht möglich.DE 38 41 333 A1 describes a method and an apparatus for Monitoring a condition of a road surface in which the tread a vehicle wheel running on the road with electromagnetic Radiation is applied. Intensities directed from the tread reflected radiation component and a diffusely reflected Radiation components are recorded and a condition of the road is upgraded the intensities of the reflected radiation components determined. Due to the indirect detection of the wetness over the tire is however a determination of the Thickness of the water layer on the road is not possible.
Ebenso ist aus der DE 30 23 444 C2 eine Einrichtung zur Ermittlung des witterungsbedingten Straßenzustands bekannt, bei welcher das unterschiedliche Reflektionsverhalten einer nassen bzw. trockenen Fahrbahn mit optoelektronischen Mitteln abgetastet wird. Da jedoch die erfaßten Reflektionswerte jeweils lediglich nur mit Schwellwerten verglichen werden und aus den binären Ergebnissen dieser Vergleiche der Straßenzustand beurteilt wird, ist ebenfalls lediglich eine qualitative Aussage hinsichtlich naß oder trocken möglich.DE 30 23 444 C2 also describes a device for determining the weather-related road condition known, in which the different Reflection behavior of a wet or dry road with optoelectronic means is scanned. However, since the captured Reflection values are only compared with threshold values and from the binary results of these comparisons the road condition is also only a qualitative statement regarding possible wet or dry.
Es ist Aufgabe der Erfindung ein Verfahren und eine Vorrichtung zur Erfassung der Dicke einer Wasserschicht auf einer Fahrbahn zu schaffen, das die Dicke der Wasserschicht berührungslos und vorausschauend zu erfassen vermag und zum Einbau in ein Fahrzeug geeignet ist.The object of the invention is a method and a device for detection the thickness of a layer of water on a lane to create that the thickness the water layer is able to record contactlessly and with foresight and to Installation in a vehicle is suitable.
Die Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Weitere die Erfindung in vorteilhafter Weise ausgestaltende Merkmale sind in den Unteransprüchen enthalten.The object is achieved by the characterizing features of claim 1. Further features which advantageously design the invention are shown in contain the subclaims.
Die Vorteile der Erfindung sind in erster Linie darin zu sehen, daß die Dicke einer Wasserschicht auf einer von einem Fahrzeug befahrenen Fahrbahn berührungslos und vorausschauend quantitativ erfaßt werden kann. Die Vorrichtung ist ferner zum Einbau in ein Fahrzeug geeignet.The advantages of the invention can be seen primarily in the fact that the thickness a layer of water on a roadway used by a vehicle contactless and predictive can be quantitatively recorded. The The device is also suitable for installation in a vehicle.
Vorteilhaft sind ferner die kurzen Reaktionszeiten der Vorrichtung und eine relativ große Meßdistanz, die insbesondere den Einbau der Vorrichtung in Kraftfahrzeuge zur vorausschauenden Überwachung der Fahrbahn während der Fahrt sinnvoll erscheinen läßt. Weitere Vorteile sind die hohe Sicherheit gegen Störlichteinflüsse, so daß auch Messungen bei Sonnenlicht möglich sind.The short response times of the device and a are also advantageous relatively large measuring distance, in particular the installation of the device in Motor vehicles for predictive monitoring of the road during the Ride makes sense. High security is another advantage against the effects of stray light, so that measurements in sunlight are also possible.
Die Erfindung bedient sich des physikalischen Effekts, nach dem Wasser bestimmte Längenwellenbereiche unterschiedlich stark absorbiert. Befindet sich eine Wasserschicht auf einer Fahrbahn, so werden die spektralen Streueigenschaften, d. h. die Farbe der Fahrbahnoberfläche, verändert. Teile der auf die Fahrbahn auftreffenden Strahlung werden während des Durchgangs durch die Wasserschicht je nach Wellenlänge mehr oder weniger stark absorbiert. Beleuchtet man die Straße mit einer breitbandigen Lichtquelle, deren Spektrum bekannt ist, so kann durch Analyse des zurückgestreuten Lichtes auf die Existenz einer Wasserschicht auf der Fahrbahn und deren Schichtdicke geschlossen werden.The invention makes use of the physical effect after water certain wavelength ranges are absorbed to different extents. Located If there is a layer of water on a lane, the spectral Spreading properties, d. H. the color of the road surface changed. Parts of the radiation hitting the road during the passage through the water layer depending on the wavelength more or less strong absorbed. If you illuminate the street with a broadband light source, whose spectrum is known, can be backscattered by analyzing the Light on the existence of a layer of water on the road and its Layer thickness can be closed.
Die Erfindung wird nachstehend anhand von in den Zeichnungen dargestellten Ausführungsformen näher erläutert.The invention is illustrated below with reference to the drawings Embodiments explained in more detail.
Es zeigt:It shows:
Fig. 1 ein Diagramm, das das spektrale Absorptionsverhalten von Wasser im nahen Infrarotbereich des Lichts darstellt, Fig. 1 is a diagram illustrating the spectral absorption characteristics of water in the near infrared region of light,
Fig. 2 ein Prinzipbild der Vorrichtung, Fig. 2 is a schematic diagram of the device,
Fig. 3 ein Blockschaltbild der Vorrichtung und Fig. 3 is a block diagram of the device and
Fig 4 ein Sensorkopf der Vorrichtung in einer Explosionsdarstellung.Fig. 4 shows a sensor head of the device in an exploded view.
In Fig. 1 ist anhand eines Diagramms das spektrale Absorptionsverhalten von Wasser im nahen Infrarotbereich des Lichts gezeigt. Wie aus dem Diagramm ersichtlich, ist der transmitierte Lichtanteil stark abhängig von der Wellenlänge des die Wasserschicht durchsetzenden Lichts. Dabei tritt insbesondere im Bereich zwischen 1400 nm und 1500 nm jeweils ein charakteristisches Minimum auf.The spectral absorption behavior of water in the near infrared region of light is shown in FIG. 1 using a diagram. As can be seen from the diagram, the transmitted light component is strongly dependent on the wavelength of the light passing through the water layer. A characteristic minimum occurs in each case in the range between 1400 nm and 1500 nm.
Gemäß dem Verfahren wird die Fahrbahn mittels einer Beleuchtungsquelle mittels eines im Raumwinkel begrenzten Lichtstrahls bestrahlt und das zurückgestreute Licht selektiv auf zwei im nahen Infrarotbereich liegende unterschiedliche Wellenlängen (Meßwellenlänge lambda1, Vergleichswellenlänge lambda2) hin abgetastet.According to the method, the roadway is illuminated by means of an illumination source irradiated by means of a light beam limited in solid angle and that backscattered light selectively onto two in the near infrared range different wavelengths (measuring wavelength lambda1, comparison wavelength lambda2) sampled.
Hierzu werden zwei Wellenlängenbereiche herangezogen, die unterschiedlich stark absorbiert werden. Hierdurch können unterschiedliche "Fahrbahnhelligkeiten", d. h. unterschiedlich stark reflektierende Fahrbahnen berücksichtigt werden.For this, two wavelength ranges are used, which are different be strongly absorbed. This can be different "Roadway brightness", i.e. H. differently reflective lanes be taken into account.
Gemäß dem Verfahren wird der Meßbereich für die Dicke der Wasserschicht auf einen empfindlicheren Meßbereich I für Schichtdicken des Wassers im Bereich zwischen 0 und 1 mm und einem unempfindlicheren Meßbereich II, beispielsweise für Schichtdicken für 0 und 10 mm aufgeteilt. Hierbei werden für den empfindlicheren Meßbereich I als Meßwellenlänge lambda1I=1450 nm und als Vergleichswellenlänge der schwächer absorbierte Bereich um lambda2II=1190 nm verwendet. Der unempfindlichere Meßbereich II sieht dagegen lambda1II=1190 nm als Meßwellenlänge und lambda2II=1080 nm als Vergleichswellenlänge vor.According to the method, the measuring range for the thickness of the water layer is divided into a more sensitive measuring range I for layer thicknesses of the water in the range between 0 and 1 mm and a less sensitive measuring range II, for example for layer thicknesses for 0 and 10 mm. Here, for the more sensitive measuring range I, the measuring wavelength lambda1 I = 1450 nm and as the comparison wavelength the weakly absorbed range around lambda2 II = 1190 nm are used. By contrast, the less sensitive measuring range II provides lambda1 II = 1190 nm as the measuring wavelength and lambda2 II = 1080 nm as the comparison wavelength.
Die Meßwellenlänge (lambda1) wird hierbei jeweils in einem Wellenlängenbereich des Lichts gelegt wird, in dem der spektrale durch die Wasserschicht transmittierte Lichtanteil geringer ist als derjenige Lichtanteil bei einer Vergleichswellenlänge (lambda2). The measuring wavelength (lambda1) is in each case in one Wavelength range of light is set in which the spectral through the Water layer transmitted light content is less than that Light component at a comparison wavelength (lambda2).
Die Meßwellenlängen und die Vergleichswellenlängen der beiden Meßbereiche werden bevorzugt derart gepaart, daß beim Meßbereich mit geringerer Empfindlichkeit die Differenz zwischen den transmittierten Lichtanteilen kleiner ist als beim Meßbereich mit größerer Empfindlichkeit.The measuring wavelengths and the comparison wavelengths of the two measuring ranges are preferably paired such that the measuring range with less Sensitivity the difference between the transmitted light components is smaller than the measuring range with greater sensitivity.
Aus den jeweils zurückgestreuten Lichtströmen läßt sich mit einer einfachen Berechnung die vorhandene Schichtdicke ermitteln. Erfolgt die Ausstrahlung des Lichts und die Detektion des zurückgestreuten Lichts in einen flachen Winkel zur Fahrbahnoberfläche, so ist vorausschauendes Messen möglich.From the respective backscattered light streams can be done with a simple Calculate the existing layer thickness. The broadcast takes place of light and the detection of the backscattered light in a flat Angle to the road surface, so predictive measurement is possible.
Das Absorptionsgesetz nach Gleichung GL.1The absorption law according to equation GL.1
PHIlambda = PHI₀ * ealpha(lambda)*x (Gl. 1)PHI lambda = PHI₀ * e alpha (lambda) * x (Eq. 1)
besagt, daß Strahlung PHI0 nach dem Durchgang durch ein absorbierendes Medium der Dicke x nur noch die Strahlstärke PHIlambda besitzt. alpha ist hierbei der lichtwellenabhängige Absorptionskoeffizient.states that radiation PHI 0 after passing through an absorbing medium of thickness x only has the radiation intensity PHI lambda . alpha is the absorption coefficient dependent on the light wave.
Dies führt bei Berücksichtigung zweier unterschiedlich stark vom Wasser absorbierter Wellenlängenbereiche, des doppelten Strahlungsdurchganges durch die Wasserschicht (vor und nach der Streuung) und unter der Annahme einer "grauen" Straße, d. h., daß alle Wellenlängen von ihr zum gleichen Bruchteil absorbiert werden, zur Gleichung GL. 2:This takes into account two different levels of water absorbed wavelength ranges, the double radiation passage through the water layer (before and after scattering) and assuming a "gray" street, i.e. that is, all wavelengths from it at the same fraction are absorbed, to the equation GL. 2:
Diese Gleichung liefert einen Wert für die Dicke x der Wasserschicht, der sowohl von der Menge des eingestrahlten Lichts als auch von der "Helligkeit" der Straße unabhängig ist. betalambda1 und betalambda2 sind hierbei lediglich von lambda abhängige Faktoren. Mit dieser Gleichung wird im Meßgerät aus jeweils zwei benachbarten Wellenlängenbereichen ein Meßwert für die Dicke x der Wasserschicht gebildet.This equation provides a value for the thickness x of the water layer, which is independent of both the amount of incident light and the "brightness" of the street. beta lambda1 and beta lambda2 are only factors dependent on lambda. With this equation, a measurement value for the thickness x of the water layer is formed in the measuring device from two adjacent wavelength ranges.
In Fig. 2 ist die prinzipielle Anordnung der Vorrichtung gezeigt. Mittels einer handelsüblichen Lichtquelle 1, die wenigstens Licht im nahen Infrarot-Bereich abstrahlt wird eine Fahrbahn 2 mit einer diese bedeckenden Wasserschicht 3 in einem Abstrahlwinkel von etwa 10° bestrahlt. Als Lichtquelle 1 kann hierbei eine handelsübliche Halogenlampe verwendet werden.In FIG. 2, the basic arrangement of the apparatus is shown. By means of a commercially available light source 1 , which emits at least light in the near infrared range, a roadway 2 is irradiated with a water layer 3 covering it at an angle of radiation of approximately 10 °. A commercially available halogen lamp can be used as the light source 1 .
Mittels selektiver Lichtempfänger 4, 5 und 6 werden Anteile des zurückgestreuten Lichts erfaßt, in einer Auswerteeinheit 7 verarbeitet und die ermittelte Dicke x der Wasserschicht auf einer Anzeigeeinheit 8 angezeigt.By means of selective light receivers 4 , 5 and 6 , portions of the backscattered light are detected, processed in an evaluation unit 7 and the determined thickness x of the water layer is displayed on a display unit 8 .
In Fig. 3 ist ein Blockschaltbild der Vorrichtung gezeigt. Das von der Lichtquelle 1 ausgestrahlte Licht wird mittels eines mechanischen Choppers (Modulator 9) in seiner Intensität moduliert. Die Modulationsfrequenz wird hierbei vorzugsweise in einen Bereich von ca. 5 kHz gelegt. Das modulierte Licht wird in Richtung Fahrbahn abgestrahlt und der zurückgestreute Lichtanteil mittels der selektiven Lichtempfänger 4, 5 und 6 erfaßt. Der erste selektive Lichtempfänger 4 erfaßt hierbei den Strahlungsanteil um lambda1I = 1450 nm, der zweite selektive Lichtempfänger 5 den Lichtanteil mit einer Wellenlänge von lambda2I = lambda1II = 1190 nm und der dritte selektive Empfänger 6 den Lichtanteil mit einer Wellenlänge von lambda2II = 1080 nm.In Fig. 3 is a block diagram of the device is shown. The intensity of the light emitted by the light source 1 is modulated by means of a mechanical chopper (modulator 9 ). The modulation frequency is preferably set in a range of approximately 5 kHz. The modulated light is emitted in the direction of the road and the backscattered light component is detected by means of the selective light receivers 4 , 5 and 6 . The first selective light receiver 4 detects the radiation component around lambda1 I = 1450 nm, the second selective light receiver 5 the light component with a wavelength of lambda2 I = lambda1 II = 1190 nm and the third selective receiver 6 the light component with a wavelength of lambda2 II = 1080 nm.
Die Signale der selektiven Lichtempfänger 4, 5, 6 werden mittels ersten, zweiten und dritten Vorverstärkern 10, 11, 12 vorverstärkt. Lichtquelle 1, Modulator 9, Lichtempfänger 4, 5, 6 und die Vorverstärker 10, 11 und 12 sind hierbei vorzugsweise zu einem Sensorkopf 13 zusammengefaßt und können im Fahrzeug im Bereich eines Anbringungsorts für Nebelscheinwerfer angeordnet werden.The signals from the selective light receivers 4 , 5 , 6 are preamplified by means of first, second and third preamplifiers 10 , 11 , 12 . Light source 1 , modulator 9 , light receiver 4 , 5 , 6 and preamplifiers 10 , 11 and 12 are preferably combined to form a sensor head 13 and can be arranged in the vehicle in the area of a mounting location for fog lights.
In der Auswerteeinheit 7 werden die von den Vorverstärkern 10, 11, 12 kommenden Signale mittels sogenannter Lock-in-Verstärker 14, 15, 16 phasenrichtig zur Modulation des austretenden Lichstrahls, d. h. in ihren Gleichanteilen weiter verstärkt. Zur Steuerung der Lock-in-Verstärker 14 bis 16 in der Signalauswertung wird diesen eine Phasenreferenz im Rhythmus der modulierten Beleuchtung zugeführt. Diese Phasenreferenz wird durch eine später noch gezeigte Photodiode im Beleuchtungsstrahlengang erzeugt.In the evaluation unit 7 , the signals coming from the preamplifiers 10 , 11 , 12 are amplified in phase by means of so-called lock-in amplifiers 14 , 15 , 16 for modulating the emerging light beam, ie in their equal components. In order to control the lock-in amplifiers 14 to 16 in the signal evaluation, a phase reference is fed to the rhythm of the modulated lighting. This phase reference is generated by a photodiode shown later in the illuminating beam path.
Die Lock-in-Verstärker 14, 16 gewährleisten hierbei, daß lediglich die Gleichanteile der Signale an eine nachfolgende Rechenschaltung (Logarithmierer 17, 18) gelangen, welche von dem modulierten Lichtstrahl herrühren. Beeinflussungen durch Fremdlicht werden somit ausgeschlossen. Die Beschaltung ist vorzugsweise derart ausgestaltet, daß hierbei bereits ein Band von 150 Hertz um die Modulationsfrequez verstärkt wird. Ein Tiefpaßfilter mit einer Eckfrequenz von 150 Hertz schließt sich in vorteilhafter Weise an (nicht gezeigt).The lock-in amplifiers 14 , 16 ensure here that only the direct components of the signals reach a subsequent arithmetic circuit (logarithmizer 17 , 18 ) which result from the modulated light beam. Influences by extraneous light are thus excluded. The circuitry is preferably designed such that a band of 150 Hertz is already amplified by the modulation frequency. A low-pass filter with a corner frequency of 150 Hertz is advantageously connected (not shown).
Die Rechenschaltung beziehungsweise die Logarithmierer 17, 18 bestimmen hierbei gemäß Gleichung Gl. 2 den Wert x für die Dicke der Wasserschicht und führen diesen Wert den Anzeigeeinheiten 19, 20 zu, wobei die erste Anzeigeeinheit 1g den Meßbereich für die Wasserschichtdicke von 0 bis 1 mm anzeigt und die Anzeigeeinheit 20 den Meßbereich zwischen 0 und 10 mm.The arithmetic circuit or the logarithmizers 17 , 18 determine according to equation Eq. 2 the value x for the thickness of the water layer and supply this value to the display units 19 , 20 , the first display unit 1g displaying the measuring range for the water layer thickness from 0 to 1 mm and the display unit 20 displaying the measuring range between 0 and 10 mm.
Die Rechenschaltung kann hierbei als Analog- oder Digitalschaltung ausgeführt sein. Im Falle einer Analogschaltung kann den Logarithmierern jeweils ein kalibrierbarer Verstärker zum Abgleich der Vorrichtung nachgeschaltet sein.The arithmetic circuit can be designed as an analog or digital circuit be. In the case of an analog circuit, the logarithmers can each one calibratable amplifier for adjusting the device.
Der Auswerteeinheit 7 ist ferner noch eine Fehlererkennungsschaltung 21 zugeordnet, welche Fehler in den beiden Bereichen wiederum selektiv auf Anzeigeeinheiten 22 und 23 anzeigt. Die Fehlererkennungsschaltung 21 prüft die Ausgangssignale beider Meßbereiche I, II auf Plausibilität wenigstens hinsichtlich der Signalamplitude.The evaluation unit 7 is also assigned an error detection circuit 21 , which in turn selectively displays errors in the two areas on display units 22 and 23 . The error detection circuit 21 checks the output signals of both measuring ranges I, II for plausibility, at least with regard to the signal amplitude.
Fig. 4 schließlich zeigt den Sensorkopf 13 in einer Explosionsdarstellung. Der Lichtstrahl der Lampe 1 mit einem parabolischen Reflektor wird mittels dem Modulator 9 moduliert, wobei dieser aus einer ersten feststehenden Sektorscheibe 24 und einer zweiten rotierenden Sektorscheibe 25, einem Modulatorgehäuse 26 für dieselben und für die Aufnahme des Antriebsmotors (Elektromotors) 27 für die rotierende Sektorscheibe 25 besteht. Fig. 4 shows the sensor head 13 in an exploded view. The light beam from the lamp 1 with a parabolic reflector is modulated by means of the modulator 9 , which comprises a first fixed sector disk 24 and a second rotating sector disk 25 , a modulator housing 26 for the same and for receiving the drive motor (electric motor) 27 for the rotating sector disk 25 exists.
Antriebsdrehzahl und Sektorscheiben werden derart ausgeführt, daß die Modulationsfrequenz bei ca. 5 kHz liegt. Lampe 1 und Modulator 9 können hierbei zu einer schwenkbaren Einheit kombiniert sein. Das Modulatorgehäuse 26 nimmt ferner noch die Diode 28 zur Erzeugung des Phasenreferenzsignals für die Lock-in-Verstärker 14 bis 16 auf. Drive speed and sector disks are designed so that the modulation frequency is about 5 kHz. Lamp 1 and modulator 9 can be combined to form a pivotable unit. The modulator housing 26 also receives the diode 28 for generating the phase reference signal for the lock-in amplifiers 14 to 16 .
Die die selektiven Lichtempfänger 4, 5 und 6 aufnehmende Empfängereinheit 29 umfaßt jeweils in dreifacher Ausführung eine Germanium- Photodiode 30, ein optisches Filter 31 und asphärischer Linse 32 zur Abbildung des beleuchteten Bereiches der Straße auf die Fotodiode 30.The receiver unit 29 receiving the selective light receivers 4 , 5 and 6 each comprises, in triplicate, a germanium photodiode 30 , an optical filter 31 and an aspherical lens 32 for imaging the illuminated area of the road onto the photodiode 30 .
Die Bauteile sind in einem Sensorkopfgehäuse 33 zusammengefaßt, wobei das Lichtaustrittsfenster 34 und das Lichteintrittsfenster 35 durch erste und zweite glasklare Scheiben 36 und 37 abgedeckt sind. Die Einheit aus Lichtquelle 1 und Modulator 9 sowie die Empfängereinheit 2g sind vorteilhaft unabhängig voneinander verschwenkbar. Ebenso können die selektiven Empfänger 4 bis 6 einzeln justiert werden.The components are combined in a sensor head housing 33 , the light exit window 34 and the light entry window 35 being covered by first and second crystal-clear panes 36 and 37 . The unit consisting of light source 1 and modulator 9 and the receiver unit 2g can advantageously be pivoted independently of one another. Likewise, the selective receivers 4 to 6 can be adjusted individually.
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4133359A DE4133359C2 (en) | 1991-10-09 | 1991-10-09 | Method for measuring the thickness of a water layer on a road and use of a device therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4133359A DE4133359C2 (en) | 1991-10-09 | 1991-10-09 | Method for measuring the thickness of a water layer on a road and use of a device therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
DE4133359A1 true DE4133359A1 (en) | 1993-04-15 |
DE4133359C2 DE4133359C2 (en) | 1997-01-02 |
Family
ID=6442288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE4133359A Expired - Fee Related DE4133359C2 (en) | 1991-10-09 | 1991-10-09 | Method for measuring the thickness of a water layer on a road and use of a device therefor |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE4133359C2 (en) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4431750A1 (en) * | 1994-09-06 | 1996-03-07 | Siemens Ag | Locally fixed lighting installation for public roads with number of lamp units |
EP0845668A2 (en) * | 1998-02-20 | 1998-06-03 | Heinz Wagner | Method and apparatus for investigating at least one property of a material |
DE19730414A1 (en) * | 1997-07-16 | 1999-01-21 | Opel Adam Ag | Method to judge condition of roadway in advance |
DE19745684A1 (en) * | 1997-10-16 | 1999-04-22 | Bayerische Motoren Werke Ag | On-board moisture sensor for recording water levels on roadways |
US6040916A (en) * | 1997-08-20 | 2000-03-21 | Daimlerchrysler Ag | Process and apparatus for determining the condition of a road surface |
DE10104684A1 (en) * | 2001-02-02 | 2002-08-08 | Creat Stefan Kipp Kg | Thickness measurement for coatings applied to workpieces in an industrial environment, uses laser radiation modulated to create a specific measurement frequency incident on and reflected from a measurement surface |
US6459083B1 (en) | 1998-04-09 | 2002-10-01 | Daimlerchrysler Ag | Apparatus for detecting the condition of a road surface |
FR2826727A1 (en) * | 2001-06-29 | 2003-01-03 | Valeo Vision | METHOD AND DEVICE FOR DETECTING THE HUMIDITY OF A ROAD ON WHICH A VEHICLE IS MOVING |
EP1466827A2 (en) | 2003-04-07 | 2004-10-13 | Thomas Dr. Huth- Fehre | Surface sensor |
EP1619466A1 (en) * | 2004-07-21 | 2006-01-25 | Edoardo Deponte | Procedure and a device for measuring the thickness of thermoplastic films with differential backscattering |
EP1635163A3 (en) * | 2004-09-09 | 2006-05-24 | Volkswagen Aktiengesellschaft | Device for determining surface condition of a roadway |
WO2009010334A1 (en) * | 2007-07-16 | 2009-01-22 | Robert Bosch Gmbh | Driver assistance device |
EP2196792A1 (en) * | 2008-12-09 | 2010-06-16 | C.R.F. Società Consortile per Azioni | Optical device for motor vehicles, for detecting the condition of the road surface |
DE102009021147A1 (en) | 2009-05-13 | 2010-11-18 | PRONET Gesellschaft für professionelle Netzwerk- und Informationstechnologie mbH | Method for determining of e.g. black ice on road, involves determining aggregate state of water in reference on different ice or water, and precalculating and displaying smoothness condition of water |
EP2284525A1 (en) | 2009-08-11 | 2011-02-16 | G. Lufft Mess- und Regeltechnik GmbH | Contact-less freezing temperature determination |
EP2402737A1 (en) * | 2010-06-30 | 2012-01-04 | WABCO GmbH | Method and device for operating a traction aid of a vehicle |
WO2012006987A1 (en) * | 2010-06-30 | 2012-01-19 | Wabco Gmbh | Method and device for controlling at least one driver assistance system of a vehicle and vehicle equipped therewith |
CN102692191A (en) * | 2012-06-14 | 2012-09-26 | 中国科学院半导体研究所 | Method for measuring water film thickness of highway pavement surface based on optical fiber sensing |
CN102830447A (en) * | 2012-08-27 | 2012-12-19 | 中国科学院半导体研究所 | Contact type meteorological monitoring pavement sensor for road traffic |
CN102967561A (en) * | 2012-12-11 | 2013-03-13 | 河南中原光电测控技术有限公司 | Backward multi-wavelength infrared spectroscopy non-contact pavement condition detection method |
FR2985236A1 (en) * | 2012-01-02 | 2013-07-05 | Peugeot Citroen Automobiles Sa | Device for detecting risk of slip of motor vehicle on layer of water or ice covering ground of road, has calculation unit for calculating thickness of ice or water layer at effective contact point using actual and theoretical parameters |
EP2698299A1 (en) * | 2012-08-13 | 2014-02-19 | Nissan Motor Manufacturing (UK) Ltd. | Water depth detection for a road vehicle |
DE102013104846B3 (en) * | 2013-05-10 | 2014-06-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for determining humidity transmissivity of optical coating e.g. inorganic dielectric layer coating, on plastic lens, involves entering beam into substrate at front side of substrate, and reflecting beam at rear part of substrate |
DE102013002333A1 (en) * | 2013-02-12 | 2014-08-14 | Continental Teves Ag & Co. Ohg | Method and radiation sensor module for predictive road condition determination in a vehicle |
WO2015131923A1 (en) * | 2014-03-03 | 2015-09-11 | G. Lufft Mess- Und Regeltechnik Gmbh | Vehicle headlight with a device for determining road conditions and a system for monitoring road conditions |
EP3023769A4 (en) * | 2013-07-17 | 2016-07-27 | Panasonic Ip Man Co Ltd | SPECTROSCOPE |
CN105823758A (en) * | 2016-05-27 | 2016-08-03 | 黑龙江省水土保持科学研究院 | Backward scattering type infrared silt measurement sensor |
WO2017215813A1 (en) * | 2016-06-13 | 2017-12-21 | Robert Bosch Gmbh | Sensor apparatus for a vehicle |
WO2019096410A1 (en) * | 2017-11-17 | 2019-05-23 | Thyssenkrupp Presta Ag | Method for detecting and warning of aquaplaning in a motor vehicle |
WO2021197850A1 (en) | 2020-04-01 | 2021-10-07 | Robert Bosch Gmbh | Surface condition sensor, method for training an evaluation algorithm of a surface condition sensor, and method for determining a surface condition parameter from a predetermined light signal |
DE102020211101A1 (en) | 2020-09-03 | 2022-03-03 | Robert Bosch Gesellschaft mit beschränkter Haftung | Optical environment sensor and vehicle |
US11520018B2 (en) | 2019-05-03 | 2022-12-06 | Robert Bosch Gmbh | Optical system, in particular a LiDAR system, and vehicle |
CN116067435A (en) * | 2023-03-20 | 2023-05-05 | 北京市农林科学院智能装备技术研究中心 | Soil environment multi-parameter monitoring sensor |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19747017A1 (en) * | 1997-10-24 | 1999-04-29 | Itt Mfg Enterprises Inc | Method for detecting water or ice on road, for use by motor vehicles. |
DE19927015A1 (en) | 1999-06-07 | 2000-12-14 | Zeiss Carl Jena Gmbh | Method and device for determining the thickness and growth rate of an ice sheet |
DE19956928C2 (en) * | 1999-11-26 | 2001-10-18 | Bayerische Motoren Werke Ag | Method and device for determining the condition of a road surface |
DE102019205903A1 (en) | 2019-04-25 | 2020-10-29 | Robert Bosch Gmbh | Method and device for determining a solid state of water on a road surface |
DE102021212659A1 (en) | 2021-11-10 | 2023-05-11 | Robert Bosch Gesellschaft mit beschränkter Haftung | Process for processing measured values of an optical sensor arrangement |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1303819B (en) * | 1964-05-29 | 1972-12-21 | Roland Offsetmaschinenfabr Faber & Schleicher A | |
DE2724919B2 (en) * | 1977-06-02 | 1979-04-05 | Paul Lippke Gmbh & Co Kg, 5450 Neuwied | Process for measuring physical properties of thin bodies with the help of ultrared radiation, e.g. for thickness measurement or moisture measurement |
DE3023444A1 (en) * | 1979-06-29 | 1981-01-22 | Omron Tateisi Electronics Co | Road surface condition monitoring system - uses IR signal reflected off road surface and sensed by array of detectors |
DE3113674A1 (en) * | 1981-04-04 | 1982-10-14 | Grapho-Metronic Meß- und Regeltechnik GmbH & Co, KG, 8000 München | DEVICE FOR MEASURING THE AMOUNT OF MOISTANT ON THE PRINT PLATE OF AN OFFSET PRINTING MACHINE |
US4490612A (en) * | 1981-08-18 | 1984-12-25 | Topwave Instruments Oy | Method for the measurement of the properties of a plastic film by means of infra-red radiation |
-
1991
- 1991-10-09 DE DE4133359A patent/DE4133359C2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1303819B (en) * | 1964-05-29 | 1972-12-21 | Roland Offsetmaschinenfabr Faber & Schleicher A | |
DE2724919B2 (en) * | 1977-06-02 | 1979-04-05 | Paul Lippke Gmbh & Co Kg, 5450 Neuwied | Process for measuring physical properties of thin bodies with the help of ultrared radiation, e.g. for thickness measurement or moisture measurement |
DE3023444A1 (en) * | 1979-06-29 | 1981-01-22 | Omron Tateisi Electronics Co | Road surface condition monitoring system - uses IR signal reflected off road surface and sensed by array of detectors |
DE3113674A1 (en) * | 1981-04-04 | 1982-10-14 | Grapho-Metronic Meß- und Regeltechnik GmbH & Co, KG, 8000 München | DEVICE FOR MEASURING THE AMOUNT OF MOISTANT ON THE PRINT PLATE OF AN OFFSET PRINTING MACHINE |
US4490612A (en) * | 1981-08-18 | 1984-12-25 | Topwave Instruments Oy | Method for the measurement of the properties of a plastic film by means of infra-red radiation |
Non-Patent Citations (2)
Title |
---|
DE-Z: ATM-Archiv für technisches Messen, Blatt V 1124-12, Januar 1966 * |
GB-Buch: T.E. Jenkins: Optical Sensing Techniques and Signal Processing, Prentice/Hall Int., London 1987, Kapitel 5.3 * |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4431750A1 (en) * | 1994-09-06 | 1996-03-07 | Siemens Ag | Locally fixed lighting installation for public roads with number of lamp units |
DE19730414A1 (en) * | 1997-07-16 | 1999-01-21 | Opel Adam Ag | Method to judge condition of roadway in advance |
US6040916A (en) * | 1997-08-20 | 2000-03-21 | Daimlerchrysler Ag | Process and apparatus for determining the condition of a road surface |
US6049387A (en) * | 1997-08-20 | 2000-04-11 | Daimlerchrysler Ag | Process for determining the condition of a road surface and system for implementing the process |
DE19745684A1 (en) * | 1997-10-16 | 1999-04-22 | Bayerische Motoren Werke Ag | On-board moisture sensor for recording water levels on roadways |
EP0845668A2 (en) * | 1998-02-20 | 1998-06-03 | Heinz Wagner | Method and apparatus for investigating at least one property of a material |
EP0845668A3 (en) * | 1998-02-20 | 1998-09-02 | Heinz Wagner | Method and apparatus for investigating at least one property of a material |
WO1999042815A1 (en) * | 1998-02-20 | 1999-08-26 | Heinz Wagner | Method and device for checking at least one quantity relative to a material |
US6459083B1 (en) | 1998-04-09 | 2002-10-01 | Daimlerchrysler Ag | Apparatus for detecting the condition of a road surface |
DE10104684A1 (en) * | 2001-02-02 | 2002-08-08 | Creat Stefan Kipp Kg | Thickness measurement for coatings applied to workpieces in an industrial environment, uses laser radiation modulated to create a specific measurement frequency incident on and reflected from a measurement surface |
US6765353B2 (en) | 2001-06-29 | 2004-07-20 | Valeo Vision | Method and apparatus for detecting the state of humidity on a road on which a vehicle is travelling |
EP1273476A1 (en) * | 2001-06-29 | 2003-01-08 | Valeo Vision | Method and system for detecting the wetness of a road on which a vehicle is travelling |
FR2826727A1 (en) * | 2001-06-29 | 2003-01-03 | Valeo Vision | METHOD AND DEVICE FOR DETECTING THE HUMIDITY OF A ROAD ON WHICH A VEHICLE IS MOVING |
EP1466827A2 (en) | 2003-04-07 | 2004-10-13 | Thomas Dr. Huth- Fehre | Surface sensor |
EP1619466A1 (en) * | 2004-07-21 | 2006-01-25 | Edoardo Deponte | Procedure and a device for measuring the thickness of thermoplastic films with differential backscattering |
US7615750B2 (en) | 2004-09-09 | 2009-11-10 | Volkswagen Ag | Device for determining the surface condition of a roadway |
EP1635163A3 (en) * | 2004-09-09 | 2006-05-24 | Volkswagen Aktiengesellschaft | Device for determining surface condition of a roadway |
WO2009010334A1 (en) * | 2007-07-16 | 2009-01-22 | Robert Bosch Gmbh | Driver assistance device |
EP2196792A1 (en) * | 2008-12-09 | 2010-06-16 | C.R.F. Società Consortile per Azioni | Optical device for motor vehicles, for detecting the condition of the road surface |
US8350910B2 (en) | 2008-12-09 | 2013-01-08 | C.R.F. Società Consortile Per Azioni | Optical device for motor vehicles, for detecting the condition of the road surface |
DE102009021147A1 (en) | 2009-05-13 | 2010-11-18 | PRONET Gesellschaft für professionelle Netzwerk- und Informationstechnologie mbH | Method for determining of e.g. black ice on road, involves determining aggregate state of water in reference on different ice or water, and precalculating and displaying smoothness condition of water |
EP2284525A1 (en) | 2009-08-11 | 2011-02-16 | G. Lufft Mess- und Regeltechnik GmbH | Contact-less freezing temperature determination |
US8838407B2 (en) | 2009-08-11 | 2014-09-16 | G. Lufft Meβ-Und Regeltechnik GmbH | Non-contact freezing temperature determination |
EP2402737A1 (en) * | 2010-06-30 | 2012-01-04 | WABCO GmbH | Method and device for operating a traction aid of a vehicle |
WO2012006987A1 (en) * | 2010-06-30 | 2012-01-19 | Wabco Gmbh | Method and device for controlling at least one driver assistance system of a vehicle and vehicle equipped therewith |
US9135219B2 (en) | 2010-06-30 | 2015-09-15 | Wabco Gmbh | Method and device for controlling at least one driver assistance system of a vehicle |
FR2985236A1 (en) * | 2012-01-02 | 2013-07-05 | Peugeot Citroen Automobiles Sa | Device for detecting risk of slip of motor vehicle on layer of water or ice covering ground of road, has calculation unit for calculating thickness of ice or water layer at effective contact point using actual and theoretical parameters |
CN102692191B (en) * | 2012-06-14 | 2014-07-30 | 中国科学院半导体研究所 | Method for measuring water film thickness of highway pavement surface based on optical fiber sensing |
CN102692191A (en) * | 2012-06-14 | 2012-09-26 | 中国科学院半导体研究所 | Method for measuring water film thickness of highway pavement surface based on optical fiber sensing |
EP2698299A1 (en) * | 2012-08-13 | 2014-02-19 | Nissan Motor Manufacturing (UK) Ltd. | Water depth detection for a road vehicle |
CN102830447A (en) * | 2012-08-27 | 2012-12-19 | 中国科学院半导体研究所 | Contact type meteorological monitoring pavement sensor for road traffic |
CN102967561B (en) * | 2012-12-11 | 2015-07-15 | 河南中原光电测控技术有限公司 | Backward multi-wavelength infrared spectroscopy non-contact pavement condition detection method |
CN102967561A (en) * | 2012-12-11 | 2013-03-13 | 河南中原光电测控技术有限公司 | Backward multi-wavelength infrared spectroscopy non-contact pavement condition detection method |
DE102013002333A1 (en) * | 2013-02-12 | 2014-08-14 | Continental Teves Ag & Co. Ohg | Method and radiation sensor module for predictive road condition determination in a vehicle |
DE102013104846B3 (en) * | 2013-05-10 | 2014-06-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for determining humidity transmissivity of optical coating e.g. inorganic dielectric layer coating, on plastic lens, involves entering beam into substrate at front side of substrate, and reflecting beam at rear part of substrate |
JPWO2015008435A1 (en) * | 2013-07-17 | 2017-03-02 | パナソニックIpマネジメント株式会社 | Spectrometer |
US9829380B2 (en) | 2013-07-17 | 2017-11-28 | Panasonic Intellectual Property Management Co., Ltd. | Spectroscopic apparatus |
EP3023769A4 (en) * | 2013-07-17 | 2016-07-27 | Panasonic Ip Man Co Ltd | SPECTROSCOPE |
CN106573569A (en) * | 2014-03-03 | 2017-04-19 | G·卢夫特·梅斯调节技术有限责任公司 | Vehicle headlight with device for determining road conditions and system for monitoring road conditions |
WO2015131923A1 (en) * | 2014-03-03 | 2015-09-11 | G. Lufft Mess- Und Regeltechnik Gmbh | Vehicle headlight with a device for determining road conditions and a system for monitoring road conditions |
CN105823758B (en) * | 2016-05-27 | 2019-05-03 | 黑龙江省水利科学研究院 | Backscattering infrared sediment measurement sensor |
CN105823758A (en) * | 2016-05-27 | 2016-08-03 | 黑龙江省水土保持科学研究院 | Backward scattering type infrared silt measurement sensor |
WO2017215813A1 (en) * | 2016-06-13 | 2017-12-21 | Robert Bosch Gmbh | Sensor apparatus for a vehicle |
CN109313266A (en) * | 2016-06-13 | 2019-02-05 | 罗伯特·博世有限公司 | Sensor device for vehicle |
CN109313266B (en) * | 2016-06-13 | 2023-12-01 | 罗伯特·博世有限公司 | Sensor device for a vehicle |
WO2019096410A1 (en) * | 2017-11-17 | 2019-05-23 | Thyssenkrupp Presta Ag | Method for detecting and warning of aquaplaning in a motor vehicle |
US11520018B2 (en) | 2019-05-03 | 2022-12-06 | Robert Bosch Gmbh | Optical system, in particular a LiDAR system, and vehicle |
WO2021197850A1 (en) | 2020-04-01 | 2021-10-07 | Robert Bosch Gmbh | Surface condition sensor, method for training an evaluation algorithm of a surface condition sensor, and method for determining a surface condition parameter from a predetermined light signal |
DE102021201599A1 (en) | 2020-04-01 | 2021-10-07 | Robert Bosch Gesellschaft mit beschränkter Haftung | Surface condition sensor, method for training an evaluation algorithm of a surface condition sensor and method for determining a surface condition parameter from a predetermined light signal |
WO2022048862A1 (en) | 2020-09-03 | 2022-03-10 | Robert Bosch Gmbh | Optical surround sensor with compensation of the ambient light |
DE102020211101A1 (en) | 2020-09-03 | 2022-03-03 | Robert Bosch Gesellschaft mit beschränkter Haftung | Optical environment sensor and vehicle |
CN116067435A (en) * | 2023-03-20 | 2023-05-05 | 北京市农林科学院智能装备技术研究中心 | Soil environment multi-parameter monitoring sensor |
Also Published As
Publication number | Publication date |
---|---|
DE4133359C2 (en) | 1997-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4133359C2 (en) | Method for measuring the thickness of a water layer on a road and use of a device therefor | |
EP0472668B1 (en) | Process for determining the condition of a road surface | |
DE10316707B4 (en) | Method and device for detecting defects in transparent material | |
EP0785883B1 (en) | Sensor for determining visual range and rain cover | |
DE4300896C1 (en) | Road surface characteristics evaluation system - uses reflection of IR beam directed onto road surface at Brewster angle. | |
DE3023444C2 (en) | Device for determining the weather-related road conditions | |
DE2361209C2 (en) | Device for determining the optical quality of transparent or reflective panes | |
EP2402737A1 (en) | Method and device for operating a traction aid of a vehicle | |
DE102011015527A1 (en) | Sensor for non-contact determination of the road condition and its use | |
WO2011157319A1 (en) | Sensor for determining the roadway condition without contact and use thereof | |
DE3841333C2 (en) | Method and device for monitoring a condition of a roadway | |
DE102007013830B4 (en) | Method and device for determining the amount of H2O present on a road surface | |
DE3101591C2 (en) | "Process for controlling a tunnel lighting system and device for carrying out the process" | |
DE4318358C2 (en) | Method and device for measuring stray light-producing surface defects of optical media, such as glass or plastic, in particular of vehicle windows | |
DE10314424A1 (en) | Warning system for real-time spatially resolved detection of icing of component or part surfaces employs diffuse infrared reflection spectrometry with a modified thermographic camera or infrared planar detector array | |
DE4329188C2 (en) | Optical sensor for controlling a windshield wiper system | |
DE102010025703A1 (en) | Method for controlling application of e.g. sand, on road surface to enable road surface to be passable and accessible, involves adjusting amount of grit to be applied on road surface based on information | |
DE3816416A1 (en) | Method and device for detecting the weather-dependent state of smoothness of a road surface | |
DE102004037040B4 (en) | Device for the quantified evaluation of surface properties | |
EP0555508B1 (en) | Method and device for simultaneous determination of concentrations of molecular compounds in gases and liquids | |
EP2047236B1 (en) | Apparatus and method for differentiating types of mist | |
DE19816359A1 (en) | Optical structural change detector for surface of moving part, especially adhesive layer | |
DE4326170A1 (en) | Optronic visual range indicator | |
DE10032387B4 (en) | Method and device for measuring a profile of a surface | |
DE4135930C1 (en) | Measuring strength of spray mist formation for motor vehicle travelling on wet road - projecting EM radiation in fan shaped distribution pattern with receiver kept at constant relative position |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8120 | Willingness to grant licenses paragraph 23 | ||
8127 | New person/name/address of the applicant |
Owner name: DR.ING.H.C. F. PORSCHE AG, 70435 STUTTGART, DE DAI |
|
8110 | Request for examination paragraph 44 | ||
D2 | Grant after examination | ||
8364 | No opposition during term of opposition | ||
8327 | Change in the person/name/address of the patent owner |
Owner name: DR.ING.H.C. F. PORSCHE AG, 70435 STUTTGART, DE DAI |
|
8339 | Ceased/non-payment of the annual fee | ||
8327 | Change in the person/name/address of the patent owner |
Owner name: DR.ING.H.C. F. PORSCHE AG, 70435 STUTTGART, DE Owner name: DAIMLER AG, 70327 STUTTGART, DE |